numpy 2.4.2__cp313-cp313t-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (929) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +203 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp313t-win32.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp313t-win32.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp313t-win32.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp313t-win32.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp313t-win32.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp313t-win32.pyd +0 -0
  35. numpy/_core/_rational_tests.cp313t-win32.lib +0 -0
  36. numpy/_core/_rational_tests.cp313t-win32.pyd +0 -0
  37. numpy/_core/_simd.cp313t-win32.lib +0 -0
  38. numpy/_core/_simd.cp313t-win32.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp313t-win32.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp313t-win32.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp313t-win32.lib +0 -0
  49. numpy/_core/_umath_tests.cp313t-win32.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1328 -0
  101. numpy/_core/numeric.py +2771 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +374 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +15 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +63 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +95 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +406 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4301 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp313t-win32.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp313t-win32.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4756 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp313t-win32.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp313t-win32.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp313t-win32.lib +0 -0
  582. numpy/linalg/lapack_lite.cp313t-win32.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3733 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp313t-win32.lib +0 -0
  660. numpy/random/_bounded_integers.cp313t-win32.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp313t-win32.lib +0 -0
  664. numpy/random/_common.cp313t-win32.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp313t-win32.lib +0 -0
  675. numpy/random/_generator.cp313t-win32.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp313t-win32.lib +0 -0
  678. numpy/random/_mt19937.cp313t-win32.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp313t-win32.lib +0 -0
  681. numpy/random/_pcg64.cp313t-win32.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp313t-win32.lib +0 -0
  684. numpy/random/_philox.cp313t-win32.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp313t-win32.lib +0 -0
  689. numpy/random/_sfc64.cp313t-win32.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp313t-win32.lib +0 -0
  692. numpy/random/bit_generator.cp313t-win32.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp313t-win32.lib +0 -0
  698. numpy/random/mtrand.cp313t-win32.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +279 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.2.dist-info/METADATA +139 -0
  910. numpy-2.4.2.dist-info/RECORD +929 -0
  911. numpy-2.4.2.dist-info/WHEEL +4 -0
  912. numpy-2.4.2.dist-info/entry_points.txt +13 -0
  913. numpy-2.4.2.dist-info/licenses/LICENSE.txt +914 -0
  914. numpy-2.4.2.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  915. numpy-2.4.2.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  916. numpy-2.4.2.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  917. numpy-2.4.2.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  918. numpy-2.4.2.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  919. numpy-2.4.2.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  920. numpy-2.4.2.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  921. numpy-2.4.2.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  922. numpy-2.4.2.dist-info/licenses/numpy/ma/LICENSE +24 -0
  923. numpy-2.4.2.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  924. numpy-2.4.2.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  925. numpy-2.4.2.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  926. numpy-2.4.2.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  927. numpy-2.4.2.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  928. numpy-2.4.2.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  929. numpy-2.4.2.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,2583 @@
1
+ """
2
+ IO related functions.
3
+ """
4
+ import contextlib
5
+ import functools
6
+ import itertools
7
+ import operator
8
+ import os
9
+ import pickle
10
+ import re
11
+ import warnings
12
+ import weakref
13
+ from collections.abc import Mapping
14
+ from operator import itemgetter
15
+
16
+ import numpy as np
17
+ from numpy._core import overrides
18
+ from numpy._core._multiarray_umath import _load_from_filelike
19
+ from numpy._core.multiarray import packbits, unpackbits
20
+ from numpy._core.overrides import finalize_array_function_like, set_module
21
+ from numpy._utils import asbytes, asunicode
22
+
23
+ from . import format
24
+ from ._datasource import DataSource # noqa: F401
25
+ from ._format_impl import _MAX_HEADER_SIZE
26
+ from ._iotools import (
27
+ ConversionWarning,
28
+ ConverterError,
29
+ ConverterLockError,
30
+ LineSplitter,
31
+ NameValidator,
32
+ StringConverter,
33
+ _decode_line,
34
+ _is_string_like,
35
+ easy_dtype,
36
+ flatten_dtype,
37
+ has_nested_fields,
38
+ )
39
+
40
+ __all__ = [
41
+ 'savetxt', 'loadtxt', 'genfromtxt', 'load', 'save', 'savez',
42
+ 'savez_compressed', 'packbits', 'unpackbits', 'fromregex'
43
+ ]
44
+
45
+
46
+ array_function_dispatch = functools.partial(
47
+ overrides.array_function_dispatch, module='numpy')
48
+
49
+
50
+ class BagObj:
51
+ """
52
+ BagObj(obj)
53
+
54
+ Convert attribute look-ups to getitems on the object passed in.
55
+
56
+ Parameters
57
+ ----------
58
+ obj : class instance
59
+ Object on which attribute look-up is performed.
60
+
61
+ Examples
62
+ --------
63
+ >>> import numpy as np
64
+ >>> from numpy.lib._npyio_impl import BagObj as BO
65
+ >>> class BagDemo:
66
+ ... def __getitem__(self, key): # An instance of BagObj(BagDemo)
67
+ ... # will call this method when any
68
+ ... # attribute look-up is required
69
+ ... result = "Doesn't matter what you want, "
70
+ ... return result + "you're gonna get this"
71
+ ...
72
+ >>> demo_obj = BagDemo()
73
+ >>> bagobj = BO(demo_obj)
74
+ >>> bagobj.hello_there
75
+ "Doesn't matter what you want, you're gonna get this"
76
+ >>> bagobj.I_can_be_anything
77
+ "Doesn't matter what you want, you're gonna get this"
78
+
79
+ """
80
+
81
+ def __init__(self, obj):
82
+ # Use weakref to make NpzFile objects collectable by refcount
83
+ self._obj = weakref.proxy(obj)
84
+
85
+ def __getattribute__(self, key):
86
+ try:
87
+ return object.__getattribute__(self, '_obj')[key]
88
+ except KeyError:
89
+ raise AttributeError(key) from None
90
+
91
+ def __dir__(self):
92
+ """
93
+ Enables dir(bagobj) to list the files in an NpzFile.
94
+
95
+ This also enables tab-completion in an interpreter or IPython.
96
+ """
97
+ return list(object.__getattribute__(self, '_obj').keys())
98
+
99
+
100
+ def zipfile_factory(file, *args, **kwargs):
101
+ """
102
+ Create a ZipFile.
103
+
104
+ Allows for Zip64, and the `file` argument can accept file, str, or
105
+ pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile
106
+ constructor.
107
+ """
108
+ if not hasattr(file, 'read'):
109
+ file = os.fspath(file)
110
+ import zipfile
111
+ kwargs['allowZip64'] = True
112
+ return zipfile.ZipFile(file, *args, **kwargs)
113
+
114
+
115
+ @set_module('numpy.lib.npyio')
116
+ class NpzFile(Mapping):
117
+ """
118
+ NpzFile(fid)
119
+
120
+ A dictionary-like object with lazy-loading of files in the zipped
121
+ archive provided on construction.
122
+
123
+ `NpzFile` is used to load files in the NumPy ``.npz`` data archive
124
+ format. It assumes that files in the archive have a ``.npy`` extension,
125
+ other files are ignored.
126
+
127
+ The arrays and file strings are lazily loaded on either
128
+ getitem access using ``obj['key']`` or attribute lookup using
129
+ ``obj.f.key``. A list of all files (without ``.npy`` extensions) can
130
+ be obtained with ``obj.files`` and the ZipFile object itself using
131
+ ``obj.zip``.
132
+
133
+ Attributes
134
+ ----------
135
+ files : list of str
136
+ List of all files in the archive with a ``.npy`` extension.
137
+ zip : ZipFile instance
138
+ The ZipFile object initialized with the zipped archive.
139
+ f : BagObj instance
140
+ An object on which attribute can be performed as an alternative
141
+ to getitem access on the `NpzFile` instance itself.
142
+ allow_pickle : bool, optional
143
+ Allow loading pickled data. Default: False
144
+ pickle_kwargs : dict, optional
145
+ Additional keyword arguments to pass on to pickle.load.
146
+ These are only useful when loading object arrays saved on
147
+ Python 2.
148
+ max_header_size : int, optional
149
+ Maximum allowed size of the header. Large headers may not be safe
150
+ to load securely and thus require explicitly passing a larger value.
151
+ See :py:func:`ast.literal_eval()` for details.
152
+ This option is ignored when `allow_pickle` is passed. In that case
153
+ the file is by definition trusted and the limit is unnecessary.
154
+
155
+ Parameters
156
+ ----------
157
+ fid : file, str, or pathlib.Path
158
+ The zipped archive to open. This is either a file-like object
159
+ or a string containing the path to the archive.
160
+ own_fid : bool, optional
161
+ Whether NpzFile should close the file handle.
162
+ Requires that `fid` is a file-like object.
163
+
164
+ Examples
165
+ --------
166
+ >>> import numpy as np
167
+ >>> from tempfile import TemporaryFile
168
+ >>> outfile = TemporaryFile()
169
+ >>> x = np.arange(10)
170
+ >>> y = np.sin(x)
171
+ >>> np.savez(outfile, x=x, y=y)
172
+ >>> _ = outfile.seek(0)
173
+
174
+ >>> npz = np.load(outfile)
175
+ >>> isinstance(npz, np.lib.npyio.NpzFile)
176
+ True
177
+ >>> npz
178
+ NpzFile 'object' with keys: x, y
179
+ >>> sorted(npz.files)
180
+ ['x', 'y']
181
+ >>> npz['x'] # getitem access
182
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
183
+ >>> npz.f.x # attribute lookup
184
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
185
+
186
+ """
187
+ # Make __exit__ safe if zipfile_factory raises an exception
188
+ zip = None
189
+ fid = None
190
+ _MAX_REPR_ARRAY_COUNT = 5
191
+
192
+ def __init__(self, fid, own_fid=False, allow_pickle=False,
193
+ pickle_kwargs=None, *,
194
+ max_header_size=_MAX_HEADER_SIZE):
195
+ # Import is postponed to here since zipfile depends on gzip, an
196
+ # optional component of the so-called standard library.
197
+ _zip = zipfile_factory(fid)
198
+ _files = _zip.namelist()
199
+ self.files = [name.removesuffix(".npy") for name in _files]
200
+ self._files = dict(zip(self.files, _files))
201
+ self._files.update(zip(_files, _files))
202
+ self.allow_pickle = allow_pickle
203
+ self.max_header_size = max_header_size
204
+ self.pickle_kwargs = pickle_kwargs
205
+ self.zip = _zip
206
+ self.f = BagObj(self)
207
+ if own_fid:
208
+ self.fid = fid
209
+
210
+ def __enter__(self):
211
+ return self
212
+
213
+ def __exit__(self, exc_type, exc_value, traceback):
214
+ self.close()
215
+
216
+ def close(self):
217
+ """
218
+ Close the file.
219
+
220
+ """
221
+ if self.zip is not None:
222
+ self.zip.close()
223
+ self.zip = None
224
+ if self.fid is not None:
225
+ self.fid.close()
226
+ self.fid = None
227
+ self.f = None # break reference cycle
228
+
229
+ def __del__(self):
230
+ self.close()
231
+
232
+ # Implement the Mapping ABC
233
+ def __iter__(self):
234
+ return iter(self.files)
235
+
236
+ def __len__(self):
237
+ return len(self.files)
238
+
239
+ def __getitem__(self, key):
240
+ try:
241
+ key = self._files[key]
242
+ except KeyError:
243
+ raise KeyError(f"{key} is not a file in the archive") from None
244
+ else:
245
+ with self.zip.open(key) as bytes:
246
+ magic = bytes.read(len(format.MAGIC_PREFIX))
247
+ bytes.seek(0)
248
+ if magic == format.MAGIC_PREFIX:
249
+ # FIXME: This seems like it will copy strings around
250
+ # more than is strictly necessary. The zipfile
251
+ # will read the string and then
252
+ # the format.read_array will copy the string
253
+ # to another place in memory.
254
+ # It would be better if the zipfile could read
255
+ # (or at least uncompress) the data
256
+ # directly into the array memory.
257
+ return format.read_array(
258
+ bytes,
259
+ allow_pickle=self.allow_pickle,
260
+ pickle_kwargs=self.pickle_kwargs,
261
+ max_header_size=self.max_header_size
262
+ )
263
+ else:
264
+ return bytes.read()
265
+
266
+ def __contains__(self, key):
267
+ return (key in self._files)
268
+
269
+ def __repr__(self):
270
+ # Get filename or default to `object`
271
+ if isinstance(self.fid, str):
272
+ filename = self.fid
273
+ else:
274
+ filename = getattr(self.fid, "name", "object")
275
+
276
+ # Get the name of arrays
277
+ array_names = ', '.join(self.files[:self._MAX_REPR_ARRAY_COUNT])
278
+ if len(self.files) > self._MAX_REPR_ARRAY_COUNT:
279
+ array_names += "..."
280
+ return f"NpzFile {filename!r} with keys: {array_names}"
281
+
282
+ # Work around problems with the docstrings in the Mapping methods
283
+ # They contain a `->`, which confuses the type annotation interpretations
284
+ # of sphinx-docs. See gh-25964
285
+
286
+ def get(self, key, default=None, /):
287
+ """
288
+ D.get(k,[,d]) returns D[k] if k in D, else d. d defaults to None.
289
+ """
290
+ return Mapping.get(self, key, default)
291
+
292
+ def items(self):
293
+ """
294
+ D.items() returns a set-like object providing a view on the items
295
+ """
296
+ return Mapping.items(self)
297
+
298
+ def keys(self):
299
+ """
300
+ D.keys() returns a set-like object providing a view on the keys
301
+ """
302
+ return Mapping.keys(self)
303
+
304
+ def values(self):
305
+ """
306
+ D.values() returns a set-like object providing a view on the values
307
+ """
308
+ return Mapping.values(self)
309
+
310
+
311
+ @set_module('numpy')
312
+ def load(file, mmap_mode=None, allow_pickle=False, fix_imports=True,
313
+ encoding='ASCII', *, max_header_size=_MAX_HEADER_SIZE):
314
+ """
315
+ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files.
316
+
317
+ .. warning:: Loading files that contain object arrays uses the ``pickle``
318
+ module, which is not secure against erroneous or maliciously
319
+ constructed data. Consider passing ``allow_pickle=False`` to
320
+ load data that is known not to contain object arrays for the
321
+ safer handling of untrusted sources.
322
+
323
+ Parameters
324
+ ----------
325
+ file : file-like object, string, or pathlib.Path
326
+ The file to read. File-like objects must support the
327
+ ``seek()`` and ``read()`` methods and must always
328
+ be opened in binary mode. Pickled files require that the
329
+ file-like object support the ``readline()`` method as well.
330
+ mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional
331
+ If not None, then memory-map the file, using the given mode (see
332
+ `numpy.memmap` for a detailed description of the modes). A
333
+ memory-mapped array is kept on disk. However, it can be accessed
334
+ and sliced like any ndarray. Memory mapping is especially useful
335
+ for accessing small fragments of large files without reading the
336
+ entire file into memory.
337
+ allow_pickle : bool, optional
338
+ Allow loading pickled object arrays stored in npy files. Reasons for
339
+ disallowing pickles include security, as loading pickled data can
340
+ execute arbitrary code. If pickles are disallowed, loading object
341
+ arrays will fail. Default: False
342
+ fix_imports : bool, optional
343
+ Only useful when loading Python 2 generated pickled files,
344
+ which includes npy/npz files containing object arrays. If `fix_imports`
345
+ is True, pickle will try to map the old Python 2 names to the new names
346
+ used in Python 3.
347
+ encoding : str, optional
348
+ What encoding to use when reading Python 2 strings. Only useful when
349
+ loading Python 2 generated pickled files, which includes
350
+ npy/npz files containing object arrays. Values other than 'latin1',
351
+ 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical
352
+ data. Default: 'ASCII'
353
+ max_header_size : int, optional
354
+ Maximum allowed size of the header. Large headers may not be safe
355
+ to load securely and thus require explicitly passing a larger value.
356
+ See :py:func:`ast.literal_eval()` for details.
357
+ This option is ignored when `allow_pickle` is passed. In that case
358
+ the file is by definition trusted and the limit is unnecessary.
359
+
360
+ Returns
361
+ -------
362
+ result : array, tuple, dict, etc.
363
+ Data stored in the file. For ``.npz`` files, the returned instance
364
+ of NpzFile class must be closed to avoid leaking file descriptors.
365
+
366
+ Raises
367
+ ------
368
+ OSError
369
+ If the input file does not exist or cannot be read.
370
+ UnpicklingError
371
+ If ``allow_pickle=True``, but the file cannot be loaded as a pickle.
372
+ ValueError
373
+ The file contains an object array, but ``allow_pickle=False`` given.
374
+ EOFError
375
+ When calling ``np.load`` multiple times on the same file handle,
376
+ if all data has already been read
377
+
378
+ See Also
379
+ --------
380
+ save, savez, savez_compressed, loadtxt
381
+ memmap : Create a memory-map to an array stored in a file on disk.
382
+ lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.
383
+
384
+ Notes
385
+ -----
386
+ - If the file contains pickle data, then whatever object is stored
387
+ in the pickle is returned.
388
+ - If the file is a ``.npy`` file, then a single array is returned.
389
+ - If the file is a ``.npz`` file, then a dictionary-like object is
390
+ returned, containing ``{filename: array}`` key-value pairs, one for
391
+ each file in the archive.
392
+ - If the file is a ``.npz`` file, the returned value supports the
393
+ context manager protocol in a similar fashion to the open function::
394
+
395
+ with load('foo.npz') as data:
396
+ a = data['a']
397
+
398
+ The underlying file descriptor is closed when exiting the 'with'
399
+ block.
400
+
401
+ Examples
402
+ --------
403
+ >>> import numpy as np
404
+
405
+ Store data to disk, and load it again:
406
+
407
+ >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
408
+ >>> np.load('/tmp/123.npy')
409
+ array([[1, 2, 3],
410
+ [4, 5, 6]])
411
+
412
+ Store compressed data to disk, and load it again:
413
+
414
+ >>> a=np.array([[1, 2, 3], [4, 5, 6]])
415
+ >>> b=np.array([1, 2])
416
+ >>> np.savez('/tmp/123.npz', a=a, b=b)
417
+ >>> data = np.load('/tmp/123.npz')
418
+ >>> data['a']
419
+ array([[1, 2, 3],
420
+ [4, 5, 6]])
421
+ >>> data['b']
422
+ array([1, 2])
423
+ >>> data.close()
424
+
425
+ Mem-map the stored array, and then access the second row
426
+ directly from disk:
427
+
428
+ >>> X = np.load('/tmp/123.npy', mmap_mode='r')
429
+ >>> X[1, :]
430
+ memmap([4, 5, 6])
431
+
432
+ """
433
+ if encoding not in ('ASCII', 'latin1', 'bytes'):
434
+ # The 'encoding' value for pickle also affects what encoding
435
+ # the serialized binary data of NumPy arrays is loaded
436
+ # in. Pickle does not pass on the encoding information to
437
+ # NumPy. The unpickling code in numpy._core.multiarray is
438
+ # written to assume that unicode data appearing where binary
439
+ # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'.
440
+ #
441
+ # Other encoding values can corrupt binary data, and we
442
+ # purposefully disallow them. For the same reason, the errors=
443
+ # argument is not exposed, as values other than 'strict'
444
+ # result can similarly silently corrupt numerical data.
445
+ raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'")
446
+
447
+ pickle_kwargs = {'encoding': encoding, 'fix_imports': fix_imports}
448
+
449
+ with contextlib.ExitStack() as stack:
450
+ if hasattr(file, 'read'):
451
+ fid = file
452
+ own_fid = False
453
+ else:
454
+ fid = stack.enter_context(open(os.fspath(file), "rb"))
455
+ own_fid = True
456
+
457
+ # Code to distinguish from NumPy binary files and pickles.
458
+ _ZIP_PREFIX = b'PK\x03\x04'
459
+ _ZIP_SUFFIX = b'PK\x05\x06' # empty zip files start with this
460
+ N = len(format.MAGIC_PREFIX)
461
+ magic = fid.read(N)
462
+ if not magic:
463
+ raise EOFError("No data left in file")
464
+ # If the file size is less than N, we need to make sure not
465
+ # to seek past the beginning of the file
466
+ fid.seek(-min(N, len(magic)), 1) # back-up
467
+ if magic.startswith((_ZIP_PREFIX, _ZIP_SUFFIX)):
468
+ # zip-file (assume .npz)
469
+ # Potentially transfer file ownership to NpzFile
470
+ stack.pop_all()
471
+ ret = NpzFile(fid, own_fid=own_fid, allow_pickle=allow_pickle,
472
+ pickle_kwargs=pickle_kwargs,
473
+ max_header_size=max_header_size)
474
+ return ret
475
+ elif magic == format.MAGIC_PREFIX:
476
+ # .npy file
477
+ if mmap_mode:
478
+ if allow_pickle:
479
+ max_header_size = 2**64
480
+ return format.open_memmap(file, mode=mmap_mode,
481
+ max_header_size=max_header_size)
482
+ else:
483
+ return format.read_array(fid, allow_pickle=allow_pickle,
484
+ pickle_kwargs=pickle_kwargs,
485
+ max_header_size=max_header_size)
486
+ else:
487
+ # Try a pickle
488
+ if not allow_pickle:
489
+ raise ValueError(
490
+ "This file contains pickled (object) data. If you trust "
491
+ "the file you can load it unsafely using the "
492
+ "`allow_pickle=` keyword argument or `pickle.load()`.")
493
+ try:
494
+ return pickle.load(fid, **pickle_kwargs)
495
+ except Exception as e:
496
+ raise pickle.UnpicklingError(
497
+ f"Failed to interpret file {file!r} as a pickle") from e
498
+
499
+
500
+ def _save_dispatcher(file, arr, allow_pickle=None):
501
+ return (arr,)
502
+
503
+
504
+ @array_function_dispatch(_save_dispatcher)
505
+ def save(file, arr, allow_pickle=True):
506
+ """
507
+ Save an array to a binary file in NumPy ``.npy`` format.
508
+
509
+ Parameters
510
+ ----------
511
+ file : file, str, or pathlib.Path
512
+ File or filename to which the data is saved. If file is a file-object,
513
+ then the filename is unchanged. If file is a string or Path,
514
+ a ``.npy`` extension will be appended to the filename if it does not
515
+ already have one.
516
+ arr : array_like
517
+ Array data to be saved.
518
+ allow_pickle : bool, optional
519
+ Allow saving object arrays using Python pickles. Reasons for
520
+ disallowing pickles include security (loading pickled data can execute
521
+ arbitrary code) and portability (pickled objects may not be loadable
522
+ on different Python installations, for example if the stored objects
523
+ require libraries that are not available, and not all pickled data is
524
+ compatible between different versions of Python).
525
+ Default: True
526
+
527
+ See Also
528
+ --------
529
+ savez : Save several arrays into a ``.npz`` archive
530
+ savetxt, load
531
+
532
+ Notes
533
+ -----
534
+ For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`.
535
+
536
+ Any data saved to the file is appended to the end of the file.
537
+
538
+ Examples
539
+ --------
540
+ >>> import numpy as np
541
+
542
+ >>> from tempfile import TemporaryFile
543
+ >>> outfile = TemporaryFile()
544
+
545
+ >>> x = np.arange(10)
546
+ >>> np.save(outfile, x)
547
+
548
+ >>> _ = outfile.seek(0) # Only needed to simulate closing & reopening file
549
+ >>> np.load(outfile)
550
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
551
+
552
+
553
+ >>> with open('test.npy', 'wb') as f:
554
+ ... np.save(f, np.array([1, 2]))
555
+ ... np.save(f, np.array([1, 3]))
556
+ >>> with open('test.npy', 'rb') as f:
557
+ ... a = np.load(f)
558
+ ... b = np.load(f)
559
+ >>> print(a, b)
560
+ # [1 2] [1 3]
561
+ """
562
+ if hasattr(file, 'write'):
563
+ file_ctx = contextlib.nullcontext(file)
564
+ else:
565
+ file = os.fspath(file)
566
+ if not file.endswith('.npy'):
567
+ file = file + '.npy'
568
+ file_ctx = open(file, "wb")
569
+
570
+ with file_ctx as fid:
571
+ arr = np.asanyarray(arr)
572
+ format.write_array(fid, arr, allow_pickle=allow_pickle)
573
+
574
+
575
+ def _savez_dispatcher(file, *args, allow_pickle=True, **kwds):
576
+ yield from args
577
+ yield from kwds.values()
578
+
579
+
580
+ @array_function_dispatch(_savez_dispatcher)
581
+ def savez(file, *args, allow_pickle=True, **kwds):
582
+ """Save several arrays into a single file in uncompressed ``.npz`` format.
583
+
584
+ Provide arrays as keyword arguments to store them under the
585
+ corresponding name in the output file: ``savez(fn, x=x, y=y)``.
586
+
587
+ If arrays are specified as positional arguments, i.e., ``savez(fn,
588
+ x, y)``, their names will be `arr_0`, `arr_1`, etc.
589
+
590
+ Parameters
591
+ ----------
592
+ file : file, str, or pathlib.Path
593
+ Either the filename (string) or an open file (file-like object)
594
+ where the data will be saved. If file is a string or a Path, the
595
+ ``.npz`` extension will be appended to the filename if it is not
596
+ already there.
597
+ args : Arguments, optional
598
+ Arrays to save to the file. Please use keyword arguments (see
599
+ `kwds` below) to assign names to arrays. Arrays specified as
600
+ args will be named "arr_0", "arr_1", and so on.
601
+ allow_pickle : bool, optional
602
+ Allow saving object arrays using Python pickles. Reasons for
603
+ disallowing pickles include security (loading pickled data can execute
604
+ arbitrary code) and portability (pickled objects may not be loadable
605
+ on different Python installations, for example if the stored objects
606
+ require libraries that are not available, and not all pickled data is
607
+ compatible between different versions of Python).
608
+ Default: True
609
+ kwds : Keyword arguments, optional
610
+ Arrays to save to the file. Each array will be saved to the
611
+ output file with its corresponding keyword name.
612
+
613
+ Returns
614
+ -------
615
+ None
616
+
617
+ See Also
618
+ --------
619
+ save : Save a single array to a binary file in NumPy format.
620
+ savetxt : Save an array to a file as plain text.
621
+ savez_compressed : Save several arrays into a compressed ``.npz`` archive
622
+
623
+ Notes
624
+ -----
625
+ The ``.npz`` file format is a zipped archive of files named after the
626
+ variables they contain. The archive is not compressed and each file
627
+ in the archive contains one variable in ``.npy`` format. For a
628
+ description of the ``.npy`` format, see :py:mod:`numpy.lib.format`.
629
+
630
+ When opening the saved ``.npz`` file with `load` a `~lib.npyio.NpzFile`
631
+ object is returned. This is a dictionary-like object which can be queried
632
+ for its list of arrays (with the ``.files`` attribute), and for the arrays
633
+ themselves.
634
+
635
+ Keys passed in `kwds` are used as filenames inside the ZIP archive.
636
+ Therefore, keys should be valid filenames; e.g., avoid keys that begin with
637
+ ``/`` or contain ``.``.
638
+
639
+ When naming variables with keyword arguments, it is not possible to name a
640
+ variable ``file``, as this would cause the ``file`` argument to be defined
641
+ twice in the call to ``savez``.
642
+
643
+ Examples
644
+ --------
645
+ >>> import numpy as np
646
+ >>> from tempfile import TemporaryFile
647
+ >>> outfile = TemporaryFile()
648
+ >>> x = np.arange(10)
649
+ >>> y = np.sin(x)
650
+
651
+ Using `savez` with \\*args, the arrays are saved with default names.
652
+
653
+ >>> np.savez(outfile, x, y)
654
+ >>> _ = outfile.seek(0) # Only needed to simulate closing & reopening file
655
+ >>> npzfile = np.load(outfile)
656
+ >>> npzfile.files
657
+ ['arr_0', 'arr_1']
658
+ >>> npzfile['arr_0']
659
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
660
+
661
+ Using `savez` with \\**kwds, the arrays are saved with the keyword names.
662
+
663
+ >>> outfile = TemporaryFile()
664
+ >>> np.savez(outfile, x=x, y=y)
665
+ >>> _ = outfile.seek(0)
666
+ >>> npzfile = np.load(outfile)
667
+ >>> sorted(npzfile.files)
668
+ ['x', 'y']
669
+ >>> npzfile['x']
670
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
671
+
672
+ """
673
+ _savez(file, args, kwds, False, allow_pickle=allow_pickle)
674
+
675
+
676
+ def _savez_compressed_dispatcher(file, *args, allow_pickle=True, **kwds):
677
+ yield from args
678
+ yield from kwds.values()
679
+
680
+
681
+ @array_function_dispatch(_savez_compressed_dispatcher)
682
+ def savez_compressed(file, *args, allow_pickle=True, **kwds):
683
+ """
684
+ Save several arrays into a single file in compressed ``.npz`` format.
685
+
686
+ Provide arrays as keyword arguments to store them under the
687
+ corresponding name in the output file: ``savez_compressed(fn, x=x, y=y)``.
688
+
689
+ If arrays are specified as positional arguments, i.e.,
690
+ ``savez_compressed(fn, x, y)``, their names will be `arr_0`, `arr_1`, etc.
691
+
692
+ Parameters
693
+ ----------
694
+ file : file, str, or pathlib.Path
695
+ Either the filename (string) or an open file (file-like object)
696
+ where the data will be saved. If file is a string or a Path, the
697
+ ``.npz`` extension will be appended to the filename if it is not
698
+ already there.
699
+ args : Arguments, optional
700
+ Arrays to save to the file. Please use keyword arguments (see
701
+ `kwds` below) to assign names to arrays. Arrays specified as
702
+ args will be named "arr_0", "arr_1", and so on.
703
+ allow_pickle : bool, optional
704
+ Allow saving object arrays using Python pickles. Reasons for
705
+ disallowing pickles include security (loading pickled data can execute
706
+ arbitrary code) and portability (pickled objects may not be loadable
707
+ on different Python installations, for example if the stored objects
708
+ require libraries that are not available, and not all pickled data is
709
+ compatible between different versions of Python).
710
+ Default: True
711
+ kwds : Keyword arguments, optional
712
+ Arrays to save to the file. Each array will be saved to the
713
+ output file with its corresponding keyword name.
714
+
715
+ Returns
716
+ -------
717
+ None
718
+
719
+ See Also
720
+ --------
721
+ numpy.save : Save a single array to a binary file in NumPy format.
722
+ numpy.savetxt : Save an array to a file as plain text.
723
+ numpy.savez : Save several arrays into an uncompressed ``.npz`` file format
724
+ numpy.load : Load the files created by savez_compressed.
725
+
726
+ Notes
727
+ -----
728
+ The ``.npz`` file format is a zipped archive of files named after the
729
+ variables they contain. The archive is compressed with
730
+ ``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable
731
+ in ``.npy`` format. For a description of the ``.npy`` format, see
732
+ :py:mod:`numpy.lib.format`.
733
+
734
+
735
+ When opening the saved ``.npz`` file with `load` a `~lib.npyio.NpzFile`
736
+ object is returned. This is a dictionary-like object which can be queried
737
+ for its list of arrays (with the ``.files`` attribute), and for the arrays
738
+ themselves.
739
+
740
+ Examples
741
+ --------
742
+ >>> import numpy as np
743
+ >>> test_array = np.random.rand(3, 2)
744
+ >>> test_vector = np.random.rand(4)
745
+ >>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector)
746
+ >>> loaded = np.load('/tmp/123.npz')
747
+ >>> print(np.array_equal(test_array, loaded['a']))
748
+ True
749
+ >>> print(np.array_equal(test_vector, loaded['b']))
750
+ True
751
+
752
+ """
753
+ _savez(file, args, kwds, True, allow_pickle=allow_pickle)
754
+
755
+
756
+ def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None):
757
+ # Import is postponed to here since zipfile depends on gzip, an optional
758
+ # component of the so-called standard library.
759
+ import zipfile
760
+
761
+ if not hasattr(file, 'write'):
762
+ file = os.fspath(file)
763
+ if not file.endswith('.npz'):
764
+ file = file + '.npz'
765
+
766
+ namedict = kwds
767
+ for i, val in enumerate(args):
768
+ key = 'arr_%d' % i
769
+ if key in namedict.keys():
770
+ raise ValueError(
771
+ f"Cannot use un-named variables and keyword {key}")
772
+ namedict[key] = val
773
+
774
+ if compress:
775
+ compression = zipfile.ZIP_DEFLATED
776
+ else:
777
+ compression = zipfile.ZIP_STORED
778
+
779
+ zipf = zipfile_factory(file, mode="w", compression=compression)
780
+ try:
781
+ for key, val in namedict.items():
782
+ fname = key + '.npy'
783
+ val = np.asanyarray(val)
784
+ # always force zip64, gh-10776
785
+ with zipf.open(fname, 'w', force_zip64=True) as fid:
786
+ format.write_array(fid, val,
787
+ allow_pickle=allow_pickle,
788
+ pickle_kwargs=pickle_kwargs)
789
+ finally:
790
+ zipf.close()
791
+
792
+
793
+ def _ensure_ndmin_ndarray_check_param(ndmin):
794
+ """Just checks if the param ndmin is supported on
795
+ _ensure_ndmin_ndarray. It is intended to be used as
796
+ verification before running anything expensive.
797
+ e.g. loadtxt, genfromtxt
798
+ """
799
+ # Check correctness of the values of `ndmin`
800
+ if ndmin not in [0, 1, 2]:
801
+ raise ValueError(f"Illegal value of ndmin keyword: {ndmin}")
802
+
803
+ def _ensure_ndmin_ndarray(a, *, ndmin: int):
804
+ """This is a helper function of loadtxt and genfromtxt to ensure
805
+ proper minimum dimension as requested
806
+
807
+ ndim : int. Supported values 1, 2, 3
808
+ ^^ whenever this changes, keep in sync with
809
+ _ensure_ndmin_ndarray_check_param
810
+ """
811
+ # Verify that the array has at least dimensions `ndmin`.
812
+ # Tweak the size and shape of the arrays - remove extraneous dimensions
813
+ if a.ndim > ndmin:
814
+ a = np.squeeze(a)
815
+ # and ensure we have the minimum number of dimensions asked for
816
+ # - has to be in this order for the odd case ndmin=1, a.squeeze().ndim=0
817
+ if a.ndim < ndmin:
818
+ if ndmin == 1:
819
+ a = np.atleast_1d(a)
820
+ elif ndmin == 2:
821
+ a = np.atleast_2d(a).T
822
+
823
+ return a
824
+
825
+
826
+ # amount of lines loadtxt reads in one chunk, can be overridden for testing
827
+ _loadtxt_chunksize = 50000
828
+
829
+
830
+ def _check_nonneg_int(value, name="argument"):
831
+ try:
832
+ operator.index(value)
833
+ except TypeError:
834
+ raise TypeError(f"{name} must be an integer") from None
835
+ if value < 0:
836
+ raise ValueError(f"{name} must be nonnegative")
837
+
838
+
839
+ def _preprocess_comments(iterable, comments, encoding):
840
+ """
841
+ Generator that consumes a line iterated iterable and strips out the
842
+ multiple (or multi-character) comments from lines.
843
+ This is a pre-processing step to achieve feature parity with loadtxt
844
+ (we assume that this feature is a nieche feature).
845
+ """
846
+ for line in iterable:
847
+ if isinstance(line, bytes):
848
+ # Need to handle conversion here, or the splitting would fail
849
+ line = line.decode(encoding)
850
+
851
+ for c in comments:
852
+ line = line.split(c, 1)[0]
853
+
854
+ yield line
855
+
856
+
857
+ # The number of rows we read in one go if confronted with a parametric dtype
858
+ _loadtxt_chunksize = 50000
859
+
860
+
861
+ def _read(fname, *, delimiter=',', comment='#', quote='"',
862
+ imaginary_unit='j', usecols=None, skiplines=0,
863
+ max_rows=None, converters=None, ndmin=None, unpack=False,
864
+ dtype=np.float64, encoding=None):
865
+ r"""
866
+ Read a NumPy array from a text file.
867
+ This is a helper function for loadtxt.
868
+
869
+ Parameters
870
+ ----------
871
+ fname : file, str, or pathlib.Path
872
+ The filename or the file to be read.
873
+ delimiter : str, optional
874
+ Field delimiter of the fields in line of the file.
875
+ Default is a comma, ','. If None any sequence of whitespace is
876
+ considered a delimiter.
877
+ comment : str or sequence of str or None, optional
878
+ Character that begins a comment. All text from the comment
879
+ character to the end of the line is ignored.
880
+ Multiple comments or multiple-character comment strings are supported,
881
+ but may be slower and `quote` must be empty if used.
882
+ Use None to disable all use of comments.
883
+ quote : str or None, optional
884
+ Character that is used to quote string fields. Default is '"'
885
+ (a double quote). Use None to disable quote support.
886
+ imaginary_unit : str, optional
887
+ Character that represent the imaginary unit `sqrt(-1)`.
888
+ Default is 'j'.
889
+ usecols : array_like, optional
890
+ A one-dimensional array of integer column numbers. These are the
891
+ columns from the file to be included in the array. If this value
892
+ is not given, all the columns are used.
893
+ skiplines : int, optional
894
+ Number of lines to skip before interpreting the data in the file.
895
+ max_rows : int, optional
896
+ Maximum number of rows of data to read. Default is to read the
897
+ entire file.
898
+ converters : dict or callable, optional
899
+ A function to parse all columns strings into the desired value, or
900
+ a dictionary mapping column number to a parser function.
901
+ E.g. if column 0 is a date string: ``converters = {0: datestr2num}``.
902
+ Converters can also be used to provide a default value for missing
903
+ data, e.g. ``converters = lambda s: float(s.strip() or 0)`` will
904
+ convert empty fields to 0.
905
+ Default: None
906
+ ndmin : int, optional
907
+ Minimum dimension of the array returned.
908
+ Allowed values are 0, 1 or 2. Default is 0.
909
+ unpack : bool, optional
910
+ If True, the returned array is transposed, so that arguments may be
911
+ unpacked using ``x, y, z = read(...)``. When used with a structured
912
+ data-type, arrays are returned for each field. Default is False.
913
+ dtype : numpy data type
914
+ A NumPy dtype instance, can be a structured dtype to map to the
915
+ columns of the file.
916
+ encoding : str, optional
917
+ Encoding used to decode the inputfile. The special value 'bytes'
918
+ (the default) enables backwards-compatible behavior for `converters`,
919
+ ensuring that inputs to the converter functions are encoded
920
+ bytes objects. The special value 'bytes' has no additional effect if
921
+ ``converters=None``. If encoding is ``'bytes'`` or ``None``, the
922
+ default system encoding is used.
923
+
924
+ Returns
925
+ -------
926
+ ndarray
927
+ NumPy array.
928
+ """
929
+ # Handle special 'bytes' keyword for encoding
930
+ byte_converters = False
931
+ if encoding == 'bytes':
932
+ encoding = None
933
+ byte_converters = True
934
+
935
+ if dtype is None:
936
+ raise TypeError("a dtype must be provided.")
937
+ dtype = np.dtype(dtype)
938
+
939
+ read_dtype_via_object_chunks = None
940
+ if dtype.kind in 'SUM' and dtype in {
941
+ np.dtype("S0"), np.dtype("U0"), np.dtype("M8"), np.dtype("m8")}:
942
+ # This is a legacy "flexible" dtype. We do not truly support
943
+ # parametric dtypes currently (no dtype discovery step in the core),
944
+ # but have to support these for backward compatibility.
945
+ read_dtype_via_object_chunks = dtype
946
+ dtype = np.dtype(object)
947
+
948
+ if usecols is not None:
949
+ # Allow usecols to be a single int or a sequence of ints, the C-code
950
+ # handles the rest
951
+ try:
952
+ usecols = list(usecols)
953
+ except TypeError:
954
+ usecols = [usecols]
955
+
956
+ _ensure_ndmin_ndarray_check_param(ndmin)
957
+
958
+ if comment is None:
959
+ comments = None
960
+ else:
961
+ # assume comments are a sequence of strings
962
+ if "" in comment:
963
+ raise ValueError(
964
+ "comments cannot be an empty string. Use comments=None to "
965
+ "disable comments."
966
+ )
967
+ comments = tuple(comment)
968
+ comment = None
969
+ if len(comments) == 0:
970
+ comments = None # No comments at all
971
+ elif len(comments) == 1:
972
+ # If there is only one comment, and that comment has one character,
973
+ # the normal parsing can deal with it just fine.
974
+ if isinstance(comments[0], str) and len(comments[0]) == 1:
975
+ comment = comments[0]
976
+ comments = None
977
+ # Input validation if there are multiple comment characters
978
+ elif delimiter in comments:
979
+ raise TypeError(
980
+ f"Comment characters '{comments}' cannot include the "
981
+ f"delimiter '{delimiter}'"
982
+ )
983
+
984
+ # comment is now either a 1 or 0 character string or a tuple:
985
+ if comments is not None:
986
+ # Note: An earlier version support two character comments (and could
987
+ # have been extended to multiple characters, we assume this is
988
+ # rare enough to not optimize for.
989
+ if quote is not None:
990
+ raise ValueError(
991
+ "when multiple comments or a multi-character comment is "
992
+ "given, quotes are not supported. In this case quotechar "
993
+ "must be set to None.")
994
+
995
+ if len(imaginary_unit) != 1:
996
+ raise ValueError('len(imaginary_unit) must be 1.')
997
+
998
+ _check_nonneg_int(skiplines)
999
+ if max_rows is not None:
1000
+ _check_nonneg_int(max_rows)
1001
+ else:
1002
+ # Passing -1 to the C code means "read the entire file".
1003
+ max_rows = -1
1004
+
1005
+ fh_closing_ctx = contextlib.nullcontext()
1006
+ filelike = False
1007
+ try:
1008
+ if isinstance(fname, os.PathLike):
1009
+ fname = os.fspath(fname)
1010
+ if isinstance(fname, str):
1011
+ fh = np.lib._datasource.open(fname, 'rt', encoding=encoding)
1012
+ if encoding is None:
1013
+ encoding = getattr(fh, 'encoding', 'latin1')
1014
+
1015
+ fh_closing_ctx = contextlib.closing(fh)
1016
+ data = fh
1017
+ filelike = True
1018
+ else:
1019
+ if encoding is None:
1020
+ encoding = getattr(fname, 'encoding', 'latin1')
1021
+ data = iter(fname)
1022
+ except TypeError as e:
1023
+ raise ValueError(
1024
+ f"fname must be a string, filehandle, list of strings,\n"
1025
+ f"or generator. Got {type(fname)} instead.") from e
1026
+
1027
+ with fh_closing_ctx:
1028
+ if comments is not None:
1029
+ if filelike:
1030
+ data = iter(data)
1031
+ filelike = False
1032
+ data = _preprocess_comments(data, comments, encoding)
1033
+
1034
+ if read_dtype_via_object_chunks is None:
1035
+ arr = _load_from_filelike(
1036
+ data, delimiter=delimiter, comment=comment, quote=quote,
1037
+ imaginary_unit=imaginary_unit,
1038
+ usecols=usecols, skiplines=skiplines, max_rows=max_rows,
1039
+ converters=converters, dtype=dtype,
1040
+ encoding=encoding, filelike=filelike,
1041
+ byte_converters=byte_converters)
1042
+
1043
+ else:
1044
+ # This branch reads the file into chunks of object arrays and then
1045
+ # casts them to the desired actual dtype. This ensures correct
1046
+ # string-length and datetime-unit discovery (like `arr.astype()`).
1047
+ # Due to chunking, certain error reports are less clear, currently.
1048
+ if filelike:
1049
+ data = iter(data) # cannot chunk when reading from file
1050
+ filelike = False
1051
+
1052
+ c_byte_converters = False
1053
+ if read_dtype_via_object_chunks == "S":
1054
+ c_byte_converters = True # Use latin1 rather than ascii
1055
+
1056
+ chunks = []
1057
+ while max_rows != 0:
1058
+ if max_rows < 0:
1059
+ chunk_size = _loadtxt_chunksize
1060
+ else:
1061
+ chunk_size = min(_loadtxt_chunksize, max_rows)
1062
+
1063
+ next_arr = _load_from_filelike(
1064
+ data, delimiter=delimiter, comment=comment, quote=quote,
1065
+ imaginary_unit=imaginary_unit,
1066
+ usecols=usecols, skiplines=skiplines, max_rows=chunk_size,
1067
+ converters=converters, dtype=dtype,
1068
+ encoding=encoding, filelike=filelike,
1069
+ byte_converters=byte_converters,
1070
+ c_byte_converters=c_byte_converters)
1071
+ # Cast here already. We hope that this is better even for
1072
+ # large files because the storage is more compact. It could
1073
+ # be adapted (in principle the concatenate could cast).
1074
+ chunks.append(next_arr.astype(read_dtype_via_object_chunks))
1075
+
1076
+ skiplines = 0 # Only have to skip for first chunk
1077
+ if max_rows >= 0:
1078
+ max_rows -= chunk_size
1079
+ if len(next_arr) < chunk_size:
1080
+ # There was less data than requested, so we are done.
1081
+ break
1082
+
1083
+ # Need at least one chunk, but if empty, the last one may have
1084
+ # the wrong shape.
1085
+ if len(chunks) > 1 and len(chunks[-1]) == 0:
1086
+ del chunks[-1]
1087
+ if len(chunks) == 1:
1088
+ arr = chunks[0]
1089
+ else:
1090
+ arr = np.concatenate(chunks, axis=0)
1091
+
1092
+ # NOTE: ndmin works as advertised for structured dtypes, but normally
1093
+ # these would return a 1D result plus the structured dimension,
1094
+ # so ndmin=2 adds a third dimension even when no squeezing occurs.
1095
+ # A `squeeze=False` could be a better solution (pandas uses squeeze).
1096
+ arr = _ensure_ndmin_ndarray(arr, ndmin=ndmin)
1097
+
1098
+ if arr.shape:
1099
+ if arr.shape[0] == 0:
1100
+ warnings.warn(
1101
+ f'loadtxt: input contained no data: "{fname}"',
1102
+ category=UserWarning,
1103
+ stacklevel=3
1104
+ )
1105
+
1106
+ if unpack:
1107
+ # Unpack structured dtypes if requested:
1108
+ dt = arr.dtype
1109
+ if dt.names is not None:
1110
+ # For structured arrays, return an array for each field.
1111
+ return [arr[field] for field in dt.names]
1112
+ else:
1113
+ return arr.T
1114
+ else:
1115
+ return arr
1116
+
1117
+
1118
+ @finalize_array_function_like
1119
+ @set_module('numpy')
1120
+ def loadtxt(fname, dtype=float, comments='#', delimiter=None,
1121
+ converters=None, skiprows=0, usecols=None, unpack=False,
1122
+ ndmin=0, encoding=None, max_rows=None, *, quotechar=None,
1123
+ like=None):
1124
+ r"""
1125
+ Load data from a text file.
1126
+
1127
+ Parameters
1128
+ ----------
1129
+ fname : file, str, pathlib.Path, list of str, generator
1130
+ File, filename, list, or generator to read. If the filename
1131
+ extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note
1132
+ that generators must return bytes or strings. The strings
1133
+ in a list or produced by a generator are treated as lines.
1134
+ dtype : data-type, optional
1135
+ Data-type of the resulting array; default: float. If this is a
1136
+ structured data-type, the resulting array will be 1-dimensional, and
1137
+ each row will be interpreted as an element of the array. In this
1138
+ case, the number of columns used must match the number of fields in
1139
+ the data-type.
1140
+ comments : str or sequence of str or None, optional
1141
+ The characters or list of characters used to indicate the start of a
1142
+ comment. None implies no comments. For backwards compatibility, byte
1143
+ strings will be decoded as 'latin1'. The default is '#'.
1144
+ delimiter : str, optional
1145
+ The character used to separate the values. For backwards compatibility,
1146
+ byte strings will be decoded as 'latin1'. The default is whitespace.
1147
+
1148
+ .. versionchanged:: 1.23.0
1149
+ Only single character delimiters are supported. Newline characters
1150
+ cannot be used as the delimiter.
1151
+
1152
+ converters : dict or callable, optional
1153
+ Converter functions to customize value parsing. If `converters` is
1154
+ callable, the function is applied to all columns, else it must be a
1155
+ dict that maps column number to a parser function.
1156
+ See examples for further details.
1157
+ Default: None.
1158
+
1159
+ .. versionchanged:: 1.23.0
1160
+ The ability to pass a single callable to be applied to all columns
1161
+ was added.
1162
+
1163
+ skiprows : int, optional
1164
+ Skip the first `skiprows` lines, including comments; default: 0.
1165
+ usecols : int or sequence, optional
1166
+ Which columns to read, with 0 being the first. For example,
1167
+ ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns.
1168
+ The default, None, results in all columns being read.
1169
+ unpack : bool, optional
1170
+ If True, the returned array is transposed, so that arguments may be
1171
+ unpacked using ``x, y, z = loadtxt(...)``. When used with a
1172
+ structured data-type, arrays are returned for each field.
1173
+ Default is False.
1174
+ ndmin : int, optional
1175
+ The returned array will have at least `ndmin` dimensions.
1176
+ Otherwise mono-dimensional axes will be squeezed.
1177
+ Legal values: 0 (default), 1 or 2.
1178
+ encoding : str, optional
1179
+ Encoding used to decode the inputfile. Does not apply to input streams.
1180
+ The special value 'bytes' enables backward compatibility workarounds
1181
+ that ensures you receive byte arrays as results if possible and passes
1182
+ 'latin1' encoded strings to converters. Override this value to receive
1183
+ unicode arrays and pass strings as input to converters. If set to None
1184
+ the system default is used. The default value is None.
1185
+
1186
+ .. versionchanged:: 2.0
1187
+ Before NumPy 2, the default was ``'bytes'`` for Python 2
1188
+ compatibility. The default is now ``None``.
1189
+
1190
+ max_rows : int, optional
1191
+ Read `max_rows` rows of content after `skiprows` lines. The default is
1192
+ to read all the rows. Note that empty rows containing no data such as
1193
+ empty lines and comment lines are not counted towards `max_rows`,
1194
+ while such lines are counted in `skiprows`.
1195
+
1196
+ .. versionchanged:: 1.23.0
1197
+ Lines containing no data, including comment lines (e.g., lines
1198
+ starting with '#' or as specified via `comments`) are not counted
1199
+ towards `max_rows`.
1200
+ quotechar : unicode character or None, optional
1201
+ The character used to denote the start and end of a quoted item.
1202
+ Occurrences of the delimiter or comment characters are ignored within
1203
+ a quoted item. The default value is ``quotechar=None``, which means
1204
+ quoting support is disabled.
1205
+
1206
+ If two consecutive instances of `quotechar` are found within a quoted
1207
+ field, the first is treated as an escape character. See examples.
1208
+
1209
+ .. versionadded:: 1.23.0
1210
+ ${ARRAY_FUNCTION_LIKE}
1211
+
1212
+ .. versionadded:: 1.20.0
1213
+
1214
+ Returns
1215
+ -------
1216
+ out : ndarray
1217
+ Data read from the text file.
1218
+
1219
+ See Also
1220
+ --------
1221
+ load, fromstring, fromregex
1222
+ genfromtxt : Load data with missing values handled as specified.
1223
+ scipy.io.loadmat : reads MATLAB data files
1224
+
1225
+ Notes
1226
+ -----
1227
+ This function aims to be a fast reader for simply formatted files. The
1228
+ `genfromtxt` function provides more sophisticated handling of, e.g.,
1229
+ lines with missing values.
1230
+
1231
+ Each row in the input text file must have the same number of values to be
1232
+ able to read all values. If all rows do not have same number of values, a
1233
+ subset of up to n columns (where n is the least number of values present
1234
+ in all rows) can be read by specifying the columns via `usecols`.
1235
+
1236
+ The strings produced by the Python float.hex method can be used as
1237
+ input for floats.
1238
+
1239
+ Examples
1240
+ --------
1241
+ >>> import numpy as np
1242
+ >>> from io import StringIO # StringIO behaves like a file object
1243
+ >>> c = StringIO("0 1\n2 3")
1244
+ >>> np.loadtxt(c)
1245
+ array([[0., 1.],
1246
+ [2., 3.]])
1247
+
1248
+ >>> d = StringIO("M 21 72\nF 35 58")
1249
+ >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
1250
+ ... 'formats': ('S1', 'i4', 'f4')})
1251
+ array([(b'M', 21, 72.), (b'F', 35, 58.)],
1252
+ dtype=[('gender', 'S1'), ('age', '<i4'), ('weight', '<f4')])
1253
+
1254
+ >>> c = StringIO("1,0,2\n3,0,4")
1255
+ >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True)
1256
+ >>> x
1257
+ array([1., 3.])
1258
+ >>> y
1259
+ array([2., 4.])
1260
+
1261
+ The `converters` argument is used to specify functions to preprocess the
1262
+ text prior to parsing. `converters` can be a dictionary that maps
1263
+ preprocessing functions to each column:
1264
+
1265
+ >>> s = StringIO("1.618, 2.296\n3.141, 4.669\n")
1266
+ >>> conv = {
1267
+ ... 0: lambda x: np.floor(float(x)), # conversion fn for column 0
1268
+ ... 1: lambda x: np.ceil(float(x)), # conversion fn for column 1
1269
+ ... }
1270
+ >>> np.loadtxt(s, delimiter=",", converters=conv)
1271
+ array([[1., 3.],
1272
+ [3., 5.]])
1273
+
1274
+ `converters` can be a callable instead of a dictionary, in which case it
1275
+ is applied to all columns:
1276
+
1277
+ >>> s = StringIO("0xDE 0xAD\n0xC0 0xDE")
1278
+ >>> import functools
1279
+ >>> conv = functools.partial(int, base=16)
1280
+ >>> np.loadtxt(s, converters=conv)
1281
+ array([[222., 173.],
1282
+ [192., 222.]])
1283
+
1284
+ This example shows how `converters` can be used to convert a field
1285
+ with a trailing minus sign into a negative number.
1286
+
1287
+ >>> s = StringIO("10.01 31.25-\n19.22 64.31\n17.57- 63.94")
1288
+ >>> def conv(fld):
1289
+ ... return -float(fld[:-1]) if fld.endswith("-") else float(fld)
1290
+ ...
1291
+ >>> np.loadtxt(s, converters=conv)
1292
+ array([[ 10.01, -31.25],
1293
+ [ 19.22, 64.31],
1294
+ [-17.57, 63.94]])
1295
+
1296
+ Using a callable as the converter can be particularly useful for handling
1297
+ values with different formatting, e.g. floats with underscores:
1298
+
1299
+ >>> s = StringIO("1 2.7 100_000")
1300
+ >>> np.loadtxt(s, converters=float)
1301
+ array([1.e+00, 2.7e+00, 1.e+05])
1302
+
1303
+ This idea can be extended to automatically handle values specified in
1304
+ many different formats, such as hex values:
1305
+
1306
+ >>> def conv(val):
1307
+ ... try:
1308
+ ... return float(val)
1309
+ ... except ValueError:
1310
+ ... return float.fromhex(val)
1311
+ >>> s = StringIO("1, 2.5, 3_000, 0b4, 0x1.4000000000000p+2")
1312
+ >>> np.loadtxt(s, delimiter=",", converters=conv)
1313
+ array([1.0e+00, 2.5e+00, 3.0e+03, 1.8e+02, 5.0e+00])
1314
+
1315
+ Or a format where the ``-`` sign comes after the number:
1316
+
1317
+ >>> s = StringIO("10.01 31.25-\n19.22 64.31\n17.57- 63.94")
1318
+ >>> conv = lambda x: -float(x[:-1]) if x.endswith("-") else float(x)
1319
+ >>> np.loadtxt(s, converters=conv)
1320
+ array([[ 10.01, -31.25],
1321
+ [ 19.22, 64.31],
1322
+ [-17.57, 63.94]])
1323
+
1324
+ Support for quoted fields is enabled with the `quotechar` parameter.
1325
+ Comment and delimiter characters are ignored when they appear within a
1326
+ quoted item delineated by `quotechar`:
1327
+
1328
+ >>> s = StringIO('"alpha, #42", 10.0\n"beta, #64", 2.0\n')
1329
+ >>> dtype = np.dtype([("label", "U12"), ("value", float)])
1330
+ >>> np.loadtxt(s, dtype=dtype, delimiter=",", quotechar='"')
1331
+ array([('alpha, #42', 10.), ('beta, #64', 2.)],
1332
+ dtype=[('label', '<U12'), ('value', '<f8')])
1333
+
1334
+ Quoted fields can be separated by multiple whitespace characters:
1335
+
1336
+ >>> s = StringIO('"alpha, #42" 10.0\n"beta, #64" 2.0\n')
1337
+ >>> dtype = np.dtype([("label", "U12"), ("value", float)])
1338
+ >>> np.loadtxt(s, dtype=dtype, delimiter=None, quotechar='"')
1339
+ array([('alpha, #42', 10.), ('beta, #64', 2.)],
1340
+ dtype=[('label', '<U12'), ('value', '<f8')])
1341
+
1342
+ Two consecutive quote characters within a quoted field are treated as a
1343
+ single escaped character:
1344
+
1345
+ >>> s = StringIO('"Hello, my name is ""Monty""!"')
1346
+ >>> np.loadtxt(s, dtype="U", delimiter=",", quotechar='"')
1347
+ array('Hello, my name is "Monty"!', dtype='<U26')
1348
+
1349
+ Read subset of columns when all rows do not contain equal number of values:
1350
+
1351
+ >>> d = StringIO("1 2\n2 4\n3 9 12\n4 16 20")
1352
+ >>> np.loadtxt(d, usecols=(0, 1))
1353
+ array([[ 1., 2.],
1354
+ [ 2., 4.],
1355
+ [ 3., 9.],
1356
+ [ 4., 16.]])
1357
+
1358
+ """
1359
+
1360
+ if like is not None:
1361
+ return _loadtxt_with_like(
1362
+ like, fname, dtype=dtype, comments=comments, delimiter=delimiter,
1363
+ converters=converters, skiprows=skiprows, usecols=usecols,
1364
+ unpack=unpack, ndmin=ndmin, encoding=encoding,
1365
+ max_rows=max_rows
1366
+ )
1367
+
1368
+ if isinstance(delimiter, bytes):
1369
+ delimiter.decode("latin1")
1370
+
1371
+ if dtype is None:
1372
+ dtype = np.float64
1373
+
1374
+ comment = comments
1375
+ # Control character type conversions for Py3 convenience
1376
+ if comment is not None:
1377
+ if isinstance(comment, (str, bytes)):
1378
+ comment = [comment]
1379
+ comment = [
1380
+ x.decode('latin1') if isinstance(x, bytes) else x for x in comment]
1381
+ if isinstance(delimiter, bytes):
1382
+ delimiter = delimiter.decode('latin1')
1383
+
1384
+ arr = _read(fname, dtype=dtype, comment=comment, delimiter=delimiter,
1385
+ converters=converters, skiplines=skiprows, usecols=usecols,
1386
+ unpack=unpack, ndmin=ndmin, encoding=encoding,
1387
+ max_rows=max_rows, quote=quotechar)
1388
+
1389
+ return arr
1390
+
1391
+
1392
+ _loadtxt_with_like = array_function_dispatch()(loadtxt)
1393
+
1394
+
1395
+ def _savetxt_dispatcher(fname, X, fmt=None, delimiter=None, newline=None,
1396
+ header=None, footer=None, comments=None,
1397
+ encoding=None):
1398
+ return (X,)
1399
+
1400
+
1401
+ @array_function_dispatch(_savetxt_dispatcher)
1402
+ def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='',
1403
+ footer='', comments='# ', encoding=None):
1404
+ """
1405
+ Save an array to a text file.
1406
+
1407
+ Parameters
1408
+ ----------
1409
+ fname : filename, file handle or pathlib.Path
1410
+ If the filename ends in ``.gz``, the file is automatically saved in
1411
+ compressed gzip format. `loadtxt` understands gzipped files
1412
+ transparently.
1413
+ X : 1D or 2D array_like
1414
+ Data to be saved to a text file.
1415
+ fmt : str or sequence of strs, optional
1416
+ A single format (%10.5f), a sequence of formats, or a
1417
+ multi-format string, e.g. 'Iteration %d -- %10.5f', in which
1418
+ case `delimiter` is ignored. For complex `X`, the legal options
1419
+ for `fmt` are:
1420
+
1421
+ * a single specifier, ``fmt='%.4e'``, resulting in numbers formatted
1422
+ like ``' (%s+%sj)' % (fmt, fmt)``
1423
+ * a full string specifying every real and imaginary part, e.g.
1424
+ ``' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'`` for 3 columns
1425
+ * a list of specifiers, one per column - in this case, the real
1426
+ and imaginary part must have separate specifiers,
1427
+ e.g. ``['%.3e + %.3ej', '(%.15e%+.15ej)']`` for 2 columns
1428
+ delimiter : str, optional
1429
+ String or character separating columns.
1430
+ newline : str, optional
1431
+ String or character separating lines.
1432
+ header : str, optional
1433
+ String that will be written at the beginning of the file.
1434
+ footer : str, optional
1435
+ String that will be written at the end of the file.
1436
+ comments : str, optional
1437
+ String that will be prepended to the ``header`` and ``footer`` strings,
1438
+ to mark them as comments. Default: '# ', as expected by e.g.
1439
+ ``numpy.loadtxt``.
1440
+ encoding : {None, str}, optional
1441
+ Encoding used to encode the outputfile. Does not apply to output
1442
+ streams. If the encoding is something other than 'bytes' or 'latin1'
1443
+ you will not be able to load the file in NumPy versions < 1.14. Default
1444
+ is 'latin1'.
1445
+
1446
+ See Also
1447
+ --------
1448
+ save : Save an array to a binary file in NumPy ``.npy`` format
1449
+ savez : Save several arrays into an uncompressed ``.npz`` archive
1450
+ savez_compressed : Save several arrays into a compressed ``.npz`` archive
1451
+
1452
+ Notes
1453
+ -----
1454
+ Further explanation of the `fmt` parameter
1455
+ (``%[flag]width[.precision]specifier``):
1456
+
1457
+ flags:
1458
+ ``-`` : left justify
1459
+
1460
+ ``+`` : Forces to precede result with + or -.
1461
+
1462
+ ``0`` : Left pad the number with zeros instead of space (see width).
1463
+
1464
+ width:
1465
+ Minimum number of characters to be printed. The value is not truncated
1466
+ if it has more characters.
1467
+
1468
+ precision:
1469
+ - For integer specifiers (eg. ``d,i,o,x``), the minimum number of
1470
+ digits.
1471
+ - For ``e, E`` and ``f`` specifiers, the number of digits to print
1472
+ after the decimal point.
1473
+ - For ``g`` and ``G``, the maximum number of significant digits.
1474
+ - For ``s``, the maximum number of characters.
1475
+
1476
+ specifiers:
1477
+ ``c`` : character
1478
+
1479
+ ``d`` or ``i`` : signed decimal integer
1480
+
1481
+ ``e`` or ``E`` : scientific notation with ``e`` or ``E``.
1482
+
1483
+ ``f`` : decimal floating point
1484
+
1485
+ ``g,G`` : use the shorter of ``e,E`` or ``f``
1486
+
1487
+ ``o`` : signed octal
1488
+
1489
+ ``s`` : string of characters
1490
+
1491
+ ``u`` : unsigned decimal integer
1492
+
1493
+ ``x,X`` : unsigned hexadecimal integer
1494
+
1495
+ This explanation of ``fmt`` is not complete, for an exhaustive
1496
+ specification see [1]_.
1497
+
1498
+ References
1499
+ ----------
1500
+ .. [1] `Format Specification Mini-Language
1501
+ <https://docs.python.org/library/string.html#format-specification-mini-language>`_,
1502
+ Python Documentation.
1503
+
1504
+ Examples
1505
+ --------
1506
+ >>> import numpy as np
1507
+ >>> x = y = z = np.arange(0.0,5.0,1.0)
1508
+ >>> np.savetxt('test.out', x, delimiter=',') # X is an array
1509
+ >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
1510
+ >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation
1511
+
1512
+ """
1513
+
1514
+ class WriteWrap:
1515
+ """Convert to bytes on bytestream inputs.
1516
+
1517
+ """
1518
+ def __init__(self, fh, encoding):
1519
+ self.fh = fh
1520
+ self.encoding = encoding
1521
+ self.do_write = self.first_write
1522
+
1523
+ def close(self):
1524
+ self.fh.close()
1525
+
1526
+ def write(self, v):
1527
+ self.do_write(v)
1528
+
1529
+ def write_bytes(self, v):
1530
+ if isinstance(v, bytes):
1531
+ self.fh.write(v)
1532
+ else:
1533
+ self.fh.write(v.encode(self.encoding))
1534
+
1535
+ def write_normal(self, v):
1536
+ self.fh.write(asunicode(v))
1537
+
1538
+ def first_write(self, v):
1539
+ try:
1540
+ self.write_normal(v)
1541
+ self.write = self.write_normal
1542
+ except TypeError:
1543
+ # input is probably a bytestream
1544
+ self.write_bytes(v)
1545
+ self.write = self.write_bytes
1546
+
1547
+ own_fh = False
1548
+ if isinstance(fname, os.PathLike):
1549
+ fname = os.fspath(fname)
1550
+ if _is_string_like(fname):
1551
+ # datasource doesn't support creating a new file ...
1552
+ open(fname, 'wt').close()
1553
+ fh = np.lib._datasource.open(fname, 'wt', encoding=encoding)
1554
+ own_fh = True
1555
+ elif hasattr(fname, 'write'):
1556
+ # wrap to handle byte output streams
1557
+ fh = WriteWrap(fname, encoding or 'latin1')
1558
+ else:
1559
+ raise ValueError('fname must be a string or file handle')
1560
+
1561
+ try:
1562
+ X = np.asarray(X)
1563
+
1564
+ # Handle 1-dimensional arrays
1565
+ if X.ndim == 0 or X.ndim > 2:
1566
+ raise ValueError(
1567
+ "Expected 1D or 2D array, got %dD array instead" % X.ndim)
1568
+ elif X.ndim == 1:
1569
+ # Common case -- 1d array of numbers
1570
+ if X.dtype.names is None:
1571
+ X = np.atleast_2d(X).T
1572
+ ncol = 1
1573
+
1574
+ # Complex dtype -- each field indicates a separate column
1575
+ else:
1576
+ ncol = len(X.dtype.names)
1577
+ else:
1578
+ ncol = X.shape[1]
1579
+
1580
+ iscomplex_X = np.iscomplexobj(X)
1581
+ # `fmt` can be a string with multiple insertion points or a
1582
+ # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d')
1583
+ if type(fmt) in (list, tuple):
1584
+ if len(fmt) != ncol:
1585
+ raise AttributeError(f'fmt has wrong shape. {str(fmt)}')
1586
+ format = delimiter.join(fmt)
1587
+ elif isinstance(fmt, str):
1588
+ n_fmt_chars = fmt.count('%')
1589
+ error = ValueError(f'fmt has wrong number of % formats: {fmt}')
1590
+ if n_fmt_chars == 1:
1591
+ if iscomplex_X:
1592
+ fmt = [f' ({fmt}+{fmt}j)', ] * ncol
1593
+ else:
1594
+ fmt = [fmt, ] * ncol
1595
+ format = delimiter.join(fmt)
1596
+ elif iscomplex_X and n_fmt_chars != (2 * ncol):
1597
+ raise error
1598
+ elif ((not iscomplex_X) and n_fmt_chars != ncol):
1599
+ raise error
1600
+ else:
1601
+ format = fmt
1602
+ else:
1603
+ raise ValueError(f'invalid fmt: {fmt!r}')
1604
+
1605
+ if len(header) > 0:
1606
+ header = header.replace('\n', '\n' + comments)
1607
+ fh.write(comments + header + newline)
1608
+ if iscomplex_X:
1609
+ for row in X:
1610
+ row2 = []
1611
+ for number in row:
1612
+ row2.extend((number.real, number.imag))
1613
+ s = format % tuple(row2) + newline
1614
+ fh.write(s.replace('+-', '-'))
1615
+ else:
1616
+ for row in X:
1617
+ try:
1618
+ v = format % tuple(row) + newline
1619
+ except TypeError as e:
1620
+ raise TypeError("Mismatch between array dtype ('%s') and "
1621
+ "format specifier ('%s')"
1622
+ % (str(X.dtype), format)) from e
1623
+ fh.write(v)
1624
+
1625
+ if len(footer) > 0:
1626
+ footer = footer.replace('\n', '\n' + comments)
1627
+ fh.write(comments + footer + newline)
1628
+ finally:
1629
+ if own_fh:
1630
+ fh.close()
1631
+
1632
+
1633
+ @set_module('numpy')
1634
+ def fromregex(file, regexp, dtype, encoding=None):
1635
+ r"""
1636
+ Construct an array from a text file, using regular expression parsing.
1637
+
1638
+ The returned array is always a structured array, and is constructed from
1639
+ all matches of the regular expression in the file. Groups in the regular
1640
+ expression are converted to fields of the structured array.
1641
+
1642
+ Parameters
1643
+ ----------
1644
+ file : file, str, or pathlib.Path
1645
+ Filename or file object to read.
1646
+
1647
+ .. versionchanged:: 1.22.0
1648
+ Now accepts `os.PathLike` implementations.
1649
+
1650
+ regexp : str or regexp
1651
+ Regular expression used to parse the file.
1652
+ Groups in the regular expression correspond to fields in the dtype.
1653
+ dtype : dtype or list of dtypes
1654
+ Dtype for the structured array; must be a structured datatype.
1655
+ encoding : str, optional
1656
+ Encoding used to decode the inputfile. Does not apply to input streams.
1657
+
1658
+ Returns
1659
+ -------
1660
+ output : ndarray
1661
+ The output array, containing the part of the content of `file` that
1662
+ was matched by `regexp`. `output` is always a structured array.
1663
+
1664
+ Raises
1665
+ ------
1666
+ TypeError
1667
+ When `dtype` is not a valid dtype for a structured array.
1668
+
1669
+ See Also
1670
+ --------
1671
+ fromstring, loadtxt
1672
+
1673
+ Notes
1674
+ -----
1675
+ Dtypes for structured arrays can be specified in several forms, but all
1676
+ forms specify at least the data type and field name. For details see
1677
+ `basics.rec`.
1678
+
1679
+ Examples
1680
+ --------
1681
+ >>> import numpy as np
1682
+ >>> from io import StringIO
1683
+ >>> text = StringIO("1312 foo\n1534 bar\n444 qux")
1684
+
1685
+ >>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything]
1686
+ >>> output = np.fromregex(text, regexp,
1687
+ ... [('num', np.int64), ('key', 'S3')])
1688
+ >>> output
1689
+ array([(1312, b'foo'), (1534, b'bar'), ( 444, b'qux')],
1690
+ dtype=[('num', '<i8'), ('key', 'S3')])
1691
+ >>> output['num']
1692
+ array([1312, 1534, 444])
1693
+
1694
+ """
1695
+ own_fh = False
1696
+ if not hasattr(file, "read"):
1697
+ file = os.fspath(file)
1698
+ file = np.lib._datasource.open(file, 'rt', encoding=encoding)
1699
+ own_fh = True
1700
+
1701
+ try:
1702
+ if not isinstance(dtype, np.dtype):
1703
+ dtype = np.dtype(dtype)
1704
+ if dtype.names is None:
1705
+ raise TypeError('dtype must be a structured datatype.')
1706
+
1707
+ content = file.read()
1708
+ if isinstance(content, bytes) and isinstance(regexp, str):
1709
+ regexp = asbytes(regexp)
1710
+
1711
+ if not hasattr(regexp, 'match'):
1712
+ regexp = re.compile(regexp)
1713
+ seq = regexp.findall(content)
1714
+ if seq and not isinstance(seq[0], tuple):
1715
+ # Only one group is in the regexp.
1716
+ # Create the new array as a single data-type and then
1717
+ # re-interpret as a single-field structured array.
1718
+ newdtype = np.dtype(dtype[dtype.names[0]])
1719
+ output = np.array(seq, dtype=newdtype)
1720
+ output = output.view(dtype)
1721
+ else:
1722
+ output = np.array(seq, dtype=dtype)
1723
+
1724
+ return output
1725
+ finally:
1726
+ if own_fh:
1727
+ file.close()
1728
+
1729
+
1730
+ #####--------------------------------------------------------------------------
1731
+ #---- --- ASCII functions ---
1732
+ #####--------------------------------------------------------------------------
1733
+
1734
+
1735
+ @finalize_array_function_like
1736
+ @set_module('numpy')
1737
+ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
1738
+ skip_header=0, skip_footer=0, converters=None,
1739
+ missing_values=None, filling_values=None, usecols=None,
1740
+ names=None, excludelist=None,
1741
+ deletechars=''.join(sorted(NameValidator.defaultdeletechars)), # noqa: B008
1742
+ replace_space='_', autostrip=False, case_sensitive=True,
1743
+ defaultfmt="f%i", unpack=None, usemask=False, loose=True,
1744
+ invalid_raise=True, max_rows=None, encoding=None,
1745
+ *, ndmin=0, like=None):
1746
+ """
1747
+ Load data from a text file, with missing values handled as specified.
1748
+
1749
+ Each line past the first `skip_header` lines is split at the `delimiter`
1750
+ character, and characters following the `comments` character are discarded.
1751
+
1752
+ Parameters
1753
+ ----------
1754
+ fname : file, str, pathlib.Path, list of str, generator
1755
+ File, filename, list, or generator to read. If the filename
1756
+ extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note
1757
+ that generators must return bytes or strings. The strings
1758
+ in a list or produced by a generator are treated as lines.
1759
+ dtype : dtype, optional
1760
+ Data type of the resulting array.
1761
+ If None, the dtypes will be determined by the contents of each
1762
+ column, individually.
1763
+ comments : str, optional
1764
+ The character used to indicate the start of a comment.
1765
+ All the characters occurring on a line after a comment are discarded.
1766
+ delimiter : str, int, or sequence, optional
1767
+ The string used to separate values. By default, any consecutive
1768
+ whitespaces act as delimiter. An integer or sequence of integers
1769
+ can also be provided as width(s) of each field.
1770
+ skiprows : int, optional
1771
+ `skiprows` was removed in numpy 1.10. Please use `skip_header` instead.
1772
+ skip_header : int, optional
1773
+ The number of lines to skip at the beginning of the file.
1774
+ skip_footer : int, optional
1775
+ The number of lines to skip at the end of the file.
1776
+ converters : variable, optional
1777
+ The set of functions that convert the data of a column to a value.
1778
+ The converters can also be used to provide a default value
1779
+ for missing data: ``converters = {3: lambda s: float(s or 0)}``.
1780
+ missing : variable, optional
1781
+ `missing` was removed in numpy 1.10. Please use `missing_values`
1782
+ instead.
1783
+ missing_values : variable, optional
1784
+ The set of strings corresponding to missing data.
1785
+ filling_values : variable, optional
1786
+ The set of values to be used as default when the data are missing.
1787
+ usecols : sequence, optional
1788
+ Which columns to read, with 0 being the first. For example,
1789
+ ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns.
1790
+ names : {None, True, str, sequence}, optional
1791
+ If `names` is True, the field names are read from the first line after
1792
+ the first `skip_header` lines. This line can optionally be preceded
1793
+ by a comment delimiter. Any content before the comment delimiter is
1794
+ discarded. If `names` is a sequence or a single-string of
1795
+ comma-separated names, the names will be used to define the field
1796
+ names in a structured dtype. If `names` is None, the names of the
1797
+ dtype fields will be used, if any.
1798
+ excludelist : sequence, optional
1799
+ A list of names to exclude. This list is appended to the default list
1800
+ ['return','file','print']. Excluded names are appended with an
1801
+ underscore: for example, `file` would become `file_`.
1802
+ deletechars : str, optional
1803
+ A string combining invalid characters that must be deleted from the
1804
+ names.
1805
+ defaultfmt : str, optional
1806
+ A format used to define default field names, such as "f%i" or "f_%02i".
1807
+ autostrip : bool, optional
1808
+ Whether to automatically strip white spaces from the variables.
1809
+ replace_space : char, optional
1810
+ Character(s) used in replacement of white spaces in the variable
1811
+ names. By default, use a '_'.
1812
+ case_sensitive : {True, False, 'upper', 'lower'}, optional
1813
+ If True, field names are case sensitive.
1814
+ If False or 'upper', field names are converted to upper case.
1815
+ If 'lower', field names are converted to lower case.
1816
+ unpack : bool, optional
1817
+ If True, the returned array is transposed, so that arguments may be
1818
+ unpacked using ``x, y, z = genfromtxt(...)``. When used with a
1819
+ structured data-type, arrays are returned for each field.
1820
+ Default is False.
1821
+ usemask : bool, optional
1822
+ If True, return a masked array.
1823
+ If False, return a regular array.
1824
+ loose : bool, optional
1825
+ If True, do not raise errors for invalid values.
1826
+ invalid_raise : bool, optional
1827
+ If True, an exception is raised if an inconsistency is detected in the
1828
+ number of columns.
1829
+ If False, a warning is emitted and the offending lines are skipped.
1830
+ max_rows : int, optional
1831
+ The maximum number of rows to read. Must not be used with skip_footer
1832
+ at the same time. If given, the value must be at least 1. Default is
1833
+ to read the entire file.
1834
+ encoding : str, optional
1835
+ Encoding used to decode the inputfile. Does not apply when `fname`
1836
+ is a file object. The special value 'bytes' enables backward
1837
+ compatibility workarounds that ensure that you receive byte arrays
1838
+ when possible and passes latin1 encoded strings to converters.
1839
+ Override this value to receive unicode arrays and pass strings
1840
+ as input to converters. If set to None the system default is used.
1841
+ The default value is 'bytes'.
1842
+
1843
+ .. versionchanged:: 2.0
1844
+ Before NumPy 2, the default was ``'bytes'`` for Python 2
1845
+ compatibility. The default is now ``None``.
1846
+
1847
+ ndmin : int, optional
1848
+ Same parameter as `loadtxt`
1849
+
1850
+ .. versionadded:: 1.23.0
1851
+ ${ARRAY_FUNCTION_LIKE}
1852
+
1853
+ .. versionadded:: 1.20.0
1854
+
1855
+ Returns
1856
+ -------
1857
+ out : ndarray
1858
+ Data read from the text file. If `usemask` is True, this is a
1859
+ masked array.
1860
+
1861
+ See Also
1862
+ --------
1863
+ numpy.loadtxt : equivalent function when no data is missing.
1864
+
1865
+ Notes
1866
+ -----
1867
+ * When spaces are used as delimiters, or when no delimiter has been given
1868
+ as input, there should not be any missing data between two fields.
1869
+ * When variables are named (either by a flexible dtype or with a `names`
1870
+ sequence), there must not be any header in the file (else a ValueError
1871
+ exception is raised).
1872
+ * Individual values are not stripped of spaces by default.
1873
+ When using a custom converter, make sure the function does remove spaces.
1874
+ * Custom converters may receive unexpected values due to dtype
1875
+ discovery.
1876
+
1877
+ References
1878
+ ----------
1879
+ .. [1] NumPy User Guide, section `I/O with NumPy
1880
+ <https://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_.
1881
+
1882
+ Examples
1883
+ --------
1884
+ >>> from io import StringIO
1885
+ >>> import numpy as np
1886
+
1887
+ Comma delimited file with mixed dtype
1888
+
1889
+ >>> s = StringIO("1,1.3,abcde")
1890
+ >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
1891
+ ... ('mystring','S5')], delimiter=",")
1892
+ >>> data
1893
+ array((1, 1.3, b'abcde'),
1894
+ dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
1895
+
1896
+ Using dtype = None
1897
+
1898
+ >>> _ = s.seek(0) # needed for StringIO example only
1899
+ >>> data = np.genfromtxt(s, dtype=None,
1900
+ ... names = ['myint','myfloat','mystring'], delimiter=",")
1901
+ >>> data
1902
+ array((1, 1.3, 'abcde'),
1903
+ dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '<U5')])
1904
+
1905
+ Specifying dtype and names
1906
+
1907
+ >>> _ = s.seek(0)
1908
+ >>> data = np.genfromtxt(s, dtype="i8,f8,S5",
1909
+ ... names=['myint','myfloat','mystring'], delimiter=",")
1910
+ >>> data
1911
+ array((1, 1.3, b'abcde'),
1912
+ dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
1913
+
1914
+ An example with fixed-width columns
1915
+
1916
+ >>> s = StringIO("11.3abcde")
1917
+ >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
1918
+ ... delimiter=[1,3,5])
1919
+ >>> data
1920
+ array((1, 1.3, 'abcde'),
1921
+ dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '<U5')])
1922
+
1923
+ An example to show comments
1924
+
1925
+ >>> f = StringIO('''
1926
+ ... text,# of chars
1927
+ ... hello world,11
1928
+ ... numpy,5''')
1929
+ >>> np.genfromtxt(f, dtype='S12,S12', delimiter=',')
1930
+ array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')],
1931
+ dtype=[('f0', 'S12'), ('f1', 'S12')])
1932
+
1933
+ """
1934
+
1935
+ if like is not None:
1936
+ return _genfromtxt_with_like(
1937
+ like, fname, dtype=dtype, comments=comments, delimiter=delimiter,
1938
+ skip_header=skip_header, skip_footer=skip_footer,
1939
+ converters=converters, missing_values=missing_values,
1940
+ filling_values=filling_values, usecols=usecols, names=names,
1941
+ excludelist=excludelist, deletechars=deletechars,
1942
+ replace_space=replace_space, autostrip=autostrip,
1943
+ case_sensitive=case_sensitive, defaultfmt=defaultfmt,
1944
+ unpack=unpack, usemask=usemask, loose=loose,
1945
+ invalid_raise=invalid_raise, max_rows=max_rows, encoding=encoding,
1946
+ ndmin=ndmin,
1947
+ )
1948
+
1949
+ _ensure_ndmin_ndarray_check_param(ndmin)
1950
+
1951
+ if max_rows is not None:
1952
+ if skip_footer:
1953
+ raise ValueError(
1954
+ "The keywords 'skip_footer' and 'max_rows' can not be "
1955
+ "specified at the same time.")
1956
+ if max_rows < 1:
1957
+ raise ValueError("'max_rows' must be at least 1.")
1958
+
1959
+ if usemask:
1960
+ from numpy.ma import MaskedArray, make_mask_descr
1961
+ # Check the input dictionary of converters
1962
+ user_converters = converters or {}
1963
+ if not isinstance(user_converters, dict):
1964
+ raise TypeError(
1965
+ "The input argument 'converter' should be a valid dictionary "
1966
+ "(got '%s' instead)" % type(user_converters))
1967
+
1968
+ if encoding == 'bytes':
1969
+ encoding = None
1970
+ byte_converters = True
1971
+ else:
1972
+ byte_converters = False
1973
+
1974
+ # Initialize the filehandle, the LineSplitter and the NameValidator
1975
+ if isinstance(fname, os.PathLike):
1976
+ fname = os.fspath(fname)
1977
+ if isinstance(fname, str):
1978
+ fid = np.lib._datasource.open(fname, 'rt', encoding=encoding)
1979
+ fid_ctx = contextlib.closing(fid)
1980
+ else:
1981
+ fid = fname
1982
+ fid_ctx = contextlib.nullcontext(fid)
1983
+ try:
1984
+ fhd = iter(fid)
1985
+ except TypeError as e:
1986
+ raise TypeError(
1987
+ "fname must be a string, a filehandle, a sequence of strings,\n"
1988
+ f"or an iterator of strings. Got {type(fname)} instead."
1989
+ ) from e
1990
+ with fid_ctx:
1991
+ split_line = LineSplitter(delimiter=delimiter, comments=comments,
1992
+ autostrip=autostrip, encoding=encoding)
1993
+ validate_names = NameValidator(excludelist=excludelist,
1994
+ deletechars=deletechars,
1995
+ case_sensitive=case_sensitive,
1996
+ replace_space=replace_space)
1997
+
1998
+ # Skip the first `skip_header` rows
1999
+ try:
2000
+ for i in range(skip_header):
2001
+ next(fhd)
2002
+
2003
+ # Keep on until we find the first valid values
2004
+ first_values = None
2005
+
2006
+ while not first_values:
2007
+ first_line = _decode_line(next(fhd), encoding)
2008
+ if (names is True) and (comments is not None):
2009
+ if comments in first_line:
2010
+ first_line = (
2011
+ ''.join(first_line.split(comments)[1:]))
2012
+ first_values = split_line(first_line)
2013
+ except StopIteration:
2014
+ # return an empty array if the datafile is empty
2015
+ first_line = ''
2016
+ first_values = []
2017
+ warnings.warn(
2018
+ f'genfromtxt: Empty input file: "{fname}"', stacklevel=2
2019
+ )
2020
+
2021
+ # Should we take the first values as names ?
2022
+ if names is True:
2023
+ fval = first_values[0].strip()
2024
+ if comments is not None:
2025
+ if fval in comments:
2026
+ del first_values[0]
2027
+
2028
+ # Check the columns to use: make sure `usecols` is a list
2029
+ if usecols is not None:
2030
+ try:
2031
+ usecols = [_.strip() for _ in usecols.split(",")]
2032
+ except AttributeError:
2033
+ try:
2034
+ usecols = list(usecols)
2035
+ except TypeError:
2036
+ usecols = [usecols, ]
2037
+ nbcols = len(usecols or first_values)
2038
+
2039
+ # Check the names and overwrite the dtype.names if needed
2040
+ if names is True:
2041
+ names = validate_names([str(_.strip()) for _ in first_values])
2042
+ first_line = ''
2043
+ elif _is_string_like(names):
2044
+ names = validate_names([_.strip() for _ in names.split(',')])
2045
+ elif names:
2046
+ names = validate_names(names)
2047
+ # Get the dtype
2048
+ if dtype is not None:
2049
+ dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names,
2050
+ excludelist=excludelist,
2051
+ deletechars=deletechars,
2052
+ case_sensitive=case_sensitive,
2053
+ replace_space=replace_space)
2054
+ # Make sure the names is a list (for 2.5)
2055
+ if names is not None:
2056
+ names = list(names)
2057
+
2058
+ if usecols:
2059
+ for (i, current) in enumerate(usecols):
2060
+ # if usecols is a list of names, convert to a list of indices
2061
+ if _is_string_like(current):
2062
+ usecols[i] = names.index(current)
2063
+ elif current < 0:
2064
+ usecols[i] = current + len(first_values)
2065
+ # If the dtype is not None, make sure we update it
2066
+ if (dtype is not None) and (len(dtype) > nbcols):
2067
+ descr = dtype.descr
2068
+ dtype = np.dtype([descr[_] for _ in usecols])
2069
+ names = list(dtype.names)
2070
+ # If `names` is not None, update the names
2071
+ elif (names is not None) and (len(names) > nbcols):
2072
+ names = [names[_] for _ in usecols]
2073
+ elif (names is not None) and (dtype is not None):
2074
+ names = list(dtype.names)
2075
+
2076
+ # Process the missing values ...............................
2077
+ # Rename missing_values for convenience
2078
+ user_missing_values = missing_values or ()
2079
+ if isinstance(user_missing_values, bytes):
2080
+ user_missing_values = user_missing_values.decode('latin1')
2081
+
2082
+ # Define the list of missing_values (one column: one list)
2083
+ missing_values = [[''] for _ in range(nbcols)]
2084
+
2085
+ # We have a dictionary: process it field by field
2086
+ if isinstance(user_missing_values, dict):
2087
+ # Loop on the items
2088
+ for (key, val) in user_missing_values.items():
2089
+ # Is the key a string ?
2090
+ if _is_string_like(key):
2091
+ try:
2092
+ # Transform it into an integer
2093
+ key = names.index(key)
2094
+ except ValueError:
2095
+ # We couldn't find it: the name must have been dropped
2096
+ continue
2097
+ # Redefine the key as needed if it's a column number
2098
+ if usecols:
2099
+ try:
2100
+ key = usecols.index(key)
2101
+ except ValueError:
2102
+ pass
2103
+ # Transform the value as a list of string
2104
+ if isinstance(val, (list, tuple)):
2105
+ val = [str(_) for _ in val]
2106
+ else:
2107
+ val = [str(val), ]
2108
+ # Add the value(s) to the current list of missing
2109
+ if key is None:
2110
+ # None acts as default
2111
+ for miss in missing_values:
2112
+ miss.extend(val)
2113
+ else:
2114
+ missing_values[key].extend(val)
2115
+ # We have a sequence : each item matches a column
2116
+ elif isinstance(user_missing_values, (list, tuple)):
2117
+ for (value, entry) in zip(user_missing_values, missing_values):
2118
+ value = str(value)
2119
+ if value not in entry:
2120
+ entry.append(value)
2121
+ # We have a string : apply it to all entries
2122
+ elif isinstance(user_missing_values, str):
2123
+ user_value = user_missing_values.split(",")
2124
+ for entry in missing_values:
2125
+ entry.extend(user_value)
2126
+ # We have something else: apply it to all entries
2127
+ else:
2128
+ for entry in missing_values:
2129
+ entry.extend([str(user_missing_values)])
2130
+
2131
+ # Process the filling_values ...............................
2132
+ # Rename the input for convenience
2133
+ user_filling_values = filling_values
2134
+ if user_filling_values is None:
2135
+ user_filling_values = []
2136
+ # Define the default
2137
+ filling_values = [None] * nbcols
2138
+ # We have a dictionary : update each entry individually
2139
+ if isinstance(user_filling_values, dict):
2140
+ for (key, val) in user_filling_values.items():
2141
+ if _is_string_like(key):
2142
+ try:
2143
+ # Transform it into an integer
2144
+ key = names.index(key)
2145
+ except ValueError:
2146
+ # We couldn't find it: the name must have been dropped
2147
+ continue
2148
+ # Redefine the key if it's a column number
2149
+ # and usecols is defined
2150
+ if usecols:
2151
+ try:
2152
+ key = usecols.index(key)
2153
+ except ValueError:
2154
+ pass
2155
+ # Add the value to the list
2156
+ filling_values[key] = val
2157
+ # We have a sequence : update on a one-to-one basis
2158
+ elif isinstance(user_filling_values, (list, tuple)):
2159
+ n = len(user_filling_values)
2160
+ if (n <= nbcols):
2161
+ filling_values[:n] = user_filling_values
2162
+ else:
2163
+ filling_values = user_filling_values[:nbcols]
2164
+ # We have something else : use it for all entries
2165
+ else:
2166
+ filling_values = [user_filling_values] * nbcols
2167
+
2168
+ # Initialize the converters ................................
2169
+ if dtype is None:
2170
+ # Note: we can't use a [...]*nbcols, as we would have 3 times
2171
+ # the same converter, instead of 3 different converters.
2172
+ converters = [
2173
+ StringConverter(None, missing_values=miss, default=fill)
2174
+ for (miss, fill) in zip(missing_values, filling_values)
2175
+ ]
2176
+ else:
2177
+ dtype_flat = flatten_dtype(dtype, flatten_base=True)
2178
+ # Initialize the converters
2179
+ if len(dtype_flat) > 1:
2180
+ # Flexible type : get a converter from each dtype
2181
+ zipit = zip(dtype_flat, missing_values, filling_values)
2182
+ converters = [StringConverter(dt,
2183
+ locked=True,
2184
+ missing_values=miss,
2185
+ default=fill)
2186
+ for (dt, miss, fill) in zipit]
2187
+ else:
2188
+ # Set to a default converter (but w/ different missing values)
2189
+ zipit = zip(missing_values, filling_values)
2190
+ converters = [StringConverter(dtype,
2191
+ locked=True,
2192
+ missing_values=miss,
2193
+ default=fill)
2194
+ for (miss, fill) in zipit]
2195
+ # Update the converters to use the user-defined ones
2196
+ uc_update = []
2197
+ for (j, conv) in user_converters.items():
2198
+ # If the converter is specified by column names,
2199
+ # use the index instead
2200
+ if _is_string_like(j):
2201
+ try:
2202
+ j = names.index(j)
2203
+ i = j
2204
+ except ValueError:
2205
+ continue
2206
+ elif usecols:
2207
+ try:
2208
+ i = usecols.index(j)
2209
+ except ValueError:
2210
+ # Unused converter specified
2211
+ continue
2212
+ else:
2213
+ i = j
2214
+ # Find the value to test - first_line is not filtered by usecols:
2215
+ if len(first_line):
2216
+ testing_value = first_values[j]
2217
+ else:
2218
+ testing_value = None
2219
+ if conv is bytes:
2220
+ user_conv = asbytes
2221
+ elif byte_converters:
2222
+ # Converters may use decode to workaround numpy's old
2223
+ # behavior, so encode the string again before passing
2224
+ # to the user converter.
2225
+ def tobytes_first(x, conv):
2226
+ if type(x) is bytes:
2227
+ return conv(x)
2228
+ return conv(x.encode("latin1"))
2229
+ user_conv = functools.partial(tobytes_first, conv=conv)
2230
+ else:
2231
+ user_conv = conv
2232
+ converters[i].update(user_conv, locked=True,
2233
+ testing_value=testing_value,
2234
+ default=filling_values[i],
2235
+ missing_values=missing_values[i],)
2236
+ uc_update.append((i, user_conv))
2237
+ # Make sure we have the corrected keys in user_converters...
2238
+ user_converters.update(uc_update)
2239
+
2240
+ # Fixme: possible error as following variable never used.
2241
+ # miss_chars = [_.missing_values for _ in converters]
2242
+
2243
+ # Initialize the output lists ...
2244
+ # ... rows
2245
+ rows = []
2246
+ append_to_rows = rows.append
2247
+ # ... masks
2248
+ if usemask:
2249
+ masks = []
2250
+ append_to_masks = masks.append
2251
+ # ... invalid
2252
+ invalid = []
2253
+ append_to_invalid = invalid.append
2254
+
2255
+ # Parse each line
2256
+ for (i, line) in enumerate(itertools.chain([first_line, ], fhd)):
2257
+ values = split_line(line)
2258
+ nbvalues = len(values)
2259
+ # Skip an empty line
2260
+ if nbvalues == 0:
2261
+ continue
2262
+ if usecols:
2263
+ # Select only the columns we need
2264
+ try:
2265
+ values = [values[_] for _ in usecols]
2266
+ except IndexError:
2267
+ append_to_invalid((i + skip_header + 1, nbvalues))
2268
+ continue
2269
+ elif nbvalues != nbcols:
2270
+ append_to_invalid((i + skip_header + 1, nbvalues))
2271
+ continue
2272
+ # Store the values
2273
+ append_to_rows(tuple(values))
2274
+ if usemask:
2275
+ append_to_masks(tuple(v.strip() in m
2276
+ for (v, m) in zip(values,
2277
+ missing_values)))
2278
+ if len(rows) == max_rows:
2279
+ break
2280
+
2281
+ # Upgrade the converters (if needed)
2282
+ if dtype is None:
2283
+ for (i, converter) in enumerate(converters):
2284
+ current_column = [itemgetter(i)(_m) for _m in rows]
2285
+ try:
2286
+ converter.iterupgrade(current_column)
2287
+ except ConverterLockError:
2288
+ errmsg = f"Converter #{i} is locked and cannot be upgraded: "
2289
+ current_column = map(itemgetter(i), rows)
2290
+ for (j, value) in enumerate(current_column):
2291
+ try:
2292
+ converter.upgrade(value)
2293
+ except (ConverterError, ValueError):
2294
+ line_number = j + 1 + skip_header
2295
+ errmsg += f"(occurred line #{line_number} for value '{value}')"
2296
+ raise ConverterError(errmsg)
2297
+
2298
+ # Check that we don't have invalid values
2299
+ nbinvalid = len(invalid)
2300
+ if nbinvalid > 0:
2301
+ nbrows = len(rows) + nbinvalid - skip_footer
2302
+ # Construct the error message
2303
+ template = f" Line #%i (got %i columns instead of {nbcols})"
2304
+ if skip_footer > 0:
2305
+ nbinvalid_skipped = len([_ for _ in invalid
2306
+ if _[0] > nbrows + skip_header])
2307
+ invalid = invalid[:nbinvalid - nbinvalid_skipped]
2308
+ skip_footer -= nbinvalid_skipped
2309
+ #
2310
+ # nbrows -= skip_footer
2311
+ # errmsg = [template % (i, nb)
2312
+ # for (i, nb) in invalid if i < nbrows]
2313
+ # else:
2314
+ errmsg = [template % (i, nb)
2315
+ for (i, nb) in invalid]
2316
+ if len(errmsg):
2317
+ errmsg.insert(0, "Some errors were detected !")
2318
+ errmsg = "\n".join(errmsg)
2319
+ # Raise an exception ?
2320
+ if invalid_raise:
2321
+ raise ValueError(errmsg)
2322
+ # Issue a warning ?
2323
+ else:
2324
+ warnings.warn(errmsg, ConversionWarning, stacklevel=2)
2325
+
2326
+ # Strip the last skip_footer data
2327
+ if skip_footer > 0:
2328
+ rows = rows[:-skip_footer]
2329
+ if usemask:
2330
+ masks = masks[:-skip_footer]
2331
+
2332
+ # Convert each value according to the converter:
2333
+ # We want to modify the list in place to avoid creating a new one...
2334
+ if loose:
2335
+ rows = list(
2336
+ zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)]
2337
+ for (i, conv) in enumerate(converters)]))
2338
+ else:
2339
+ rows = list(
2340
+ zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)]
2341
+ for (i, conv) in enumerate(converters)]))
2342
+
2343
+ # Reset the dtype
2344
+ data = rows
2345
+ if dtype is None:
2346
+ # Get the dtypes from the types of the converters
2347
+ column_types = [conv.type for conv in converters]
2348
+ # Find the columns with strings...
2349
+ strcolidx = [i for (i, v) in enumerate(column_types)
2350
+ if v == np.str_]
2351
+
2352
+ if byte_converters and strcolidx:
2353
+ # convert strings back to bytes for backward compatibility
2354
+ warnings.warn(
2355
+ "Reading unicode strings without specifying the encoding "
2356
+ "argument is deprecated. Set the encoding, use None for the "
2357
+ "system default.",
2358
+ np.exceptions.VisibleDeprecationWarning, stacklevel=2)
2359
+
2360
+ def encode_unicode_cols(row_tup):
2361
+ row = list(row_tup)
2362
+ for i in strcolidx:
2363
+ row[i] = row[i].encode('latin1')
2364
+ return tuple(row)
2365
+
2366
+ try:
2367
+ data = [encode_unicode_cols(r) for r in data]
2368
+ except UnicodeEncodeError:
2369
+ pass
2370
+ else:
2371
+ for i in strcolidx:
2372
+ column_types[i] = np.bytes_
2373
+
2374
+ # Update string types to be the right length
2375
+ sized_column_types = column_types.copy()
2376
+ for i, col_type in enumerate(column_types):
2377
+ if np.issubdtype(col_type, np.character):
2378
+ n_chars = max(len(row[i]) for row in data)
2379
+ sized_column_types[i] = (col_type, n_chars)
2380
+
2381
+ if names is None:
2382
+ # If the dtype is uniform (before sizing strings)
2383
+ base = {
2384
+ c_type
2385
+ for c, c_type in zip(converters, column_types)
2386
+ if c._checked}
2387
+ if len(base) == 1:
2388
+ uniform_type, = base
2389
+ (ddtype, mdtype) = (uniform_type, bool)
2390
+ else:
2391
+ ddtype = [(defaultfmt % i, dt)
2392
+ for (i, dt) in enumerate(sized_column_types)]
2393
+ if usemask:
2394
+ mdtype = [(defaultfmt % i, bool)
2395
+ for (i, dt) in enumerate(sized_column_types)]
2396
+ else:
2397
+ ddtype = list(zip(names, sized_column_types))
2398
+ mdtype = list(zip(names, [bool] * len(sized_column_types)))
2399
+ output = np.array(data, dtype=ddtype)
2400
+ if usemask:
2401
+ outputmask = np.array(masks, dtype=mdtype)
2402
+ else:
2403
+ # Overwrite the initial dtype names if needed
2404
+ if names and dtype.names is not None:
2405
+ dtype.names = names
2406
+ # Case 1. We have a structured type
2407
+ if len(dtype_flat) > 1:
2408
+ # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])]
2409
+ # First, create the array using a flattened dtype:
2410
+ # [('a', int), ('b1', int), ('b2', float)]
2411
+ # Then, view the array using the specified dtype.
2412
+ if 'O' in (_.char for _ in dtype_flat):
2413
+ if has_nested_fields(dtype):
2414
+ raise NotImplementedError(
2415
+ "Nested fields involving objects are not supported...")
2416
+ else:
2417
+ output = np.array(data, dtype=dtype)
2418
+ else:
2419
+ rows = np.array(data, dtype=[('', _) for _ in dtype_flat])
2420
+ output = rows.view(dtype)
2421
+ # Now, process the rowmasks the same way
2422
+ if usemask:
2423
+ rowmasks = np.array(
2424
+ masks, dtype=np.dtype([('', bool) for t in dtype_flat]))
2425
+ # Construct the new dtype
2426
+ mdtype = make_mask_descr(dtype)
2427
+ outputmask = rowmasks.view(mdtype)
2428
+ # Case #2. We have a basic dtype
2429
+ else:
2430
+ # We used some user-defined converters
2431
+ if user_converters:
2432
+ ishomogeneous = True
2433
+ descr = []
2434
+ for i, ttype in enumerate([conv.type for conv in converters]):
2435
+ # Keep the dtype of the current converter
2436
+ if i in user_converters:
2437
+ ishomogeneous &= (ttype == dtype.type)
2438
+ if np.issubdtype(ttype, np.character):
2439
+ ttype = (ttype, max(len(row[i]) for row in data))
2440
+ descr.append(('', ttype))
2441
+ else:
2442
+ descr.append(('', dtype))
2443
+ # So we changed the dtype ?
2444
+ if not ishomogeneous:
2445
+ # We have more than one field
2446
+ if len(descr) > 1:
2447
+ dtype = np.dtype(descr)
2448
+ # We have only one field: drop the name if not needed.
2449
+ else:
2450
+ dtype = np.dtype(ttype)
2451
+ #
2452
+ output = np.array(data, dtype)
2453
+ if usemask:
2454
+ if dtype.names is not None:
2455
+ mdtype = [(_, bool) for _ in dtype.names]
2456
+ else:
2457
+ mdtype = bool
2458
+ outputmask = np.array(masks, dtype=mdtype)
2459
+ # Try to take care of the missing data we missed
2460
+ names = output.dtype.names
2461
+ if usemask and names:
2462
+ for (name, conv) in zip(names, converters):
2463
+ missing_values = [conv(_) for _ in conv.missing_values
2464
+ if _ != '']
2465
+ for mval in missing_values:
2466
+ outputmask[name] |= (output[name] == mval)
2467
+ # Construct the final array
2468
+ if usemask:
2469
+ output = output.view(MaskedArray)
2470
+ output._mask = outputmask
2471
+
2472
+ output = _ensure_ndmin_ndarray(output, ndmin=ndmin)
2473
+
2474
+ if unpack:
2475
+ if names is None:
2476
+ return output.T
2477
+ elif len(names) == 1:
2478
+ # squeeze single-name dtypes too
2479
+ return output[names[0]]
2480
+ else:
2481
+ # For structured arrays with multiple fields,
2482
+ # return an array for each field.
2483
+ return [output[field] for field in names]
2484
+ return output
2485
+
2486
+
2487
+ _genfromtxt_with_like = array_function_dispatch()(genfromtxt)
2488
+
2489
+
2490
+ def recfromtxt(fname, **kwargs):
2491
+ """
2492
+ Load ASCII data from a file and return it in a record array.
2493
+
2494
+ If ``usemask=False`` a standard `recarray` is returned,
2495
+ if ``usemask=True`` a MaskedRecords array is returned.
2496
+
2497
+ .. deprecated:: 2.0
2498
+ Use `numpy.genfromtxt` instead.
2499
+
2500
+ Parameters
2501
+ ----------
2502
+ fname, kwargs : For a description of input parameters, see `genfromtxt`.
2503
+
2504
+ See Also
2505
+ --------
2506
+ numpy.genfromtxt : generic function
2507
+
2508
+ Notes
2509
+ -----
2510
+ By default, `dtype` is None, which means that the data-type of the output
2511
+ array will be determined from the data.
2512
+
2513
+ """
2514
+
2515
+ # Deprecated in NumPy 2.0, 2023-07-11
2516
+ warnings.warn(
2517
+ "`recfromtxt` is deprecated, "
2518
+ "use `numpy.genfromtxt` instead."
2519
+ "(deprecated in NumPy 2.0)",
2520
+ DeprecationWarning,
2521
+ stacklevel=2
2522
+ )
2523
+
2524
+ kwargs.setdefault("dtype", None)
2525
+ usemask = kwargs.get('usemask', False)
2526
+ output = genfromtxt(fname, **kwargs)
2527
+ if usemask:
2528
+ from numpy.ma.mrecords import MaskedRecords
2529
+ output = output.view(MaskedRecords)
2530
+ else:
2531
+ output = output.view(np.recarray)
2532
+ return output
2533
+
2534
+
2535
+ def recfromcsv(fname, **kwargs):
2536
+ """
2537
+ Load ASCII data stored in a comma-separated file.
2538
+
2539
+ The returned array is a record array (if ``usemask=False``, see
2540
+ `recarray`) or a masked record array (if ``usemask=True``,
2541
+ see `ma.mrecords.MaskedRecords`).
2542
+
2543
+ .. deprecated:: 2.0
2544
+ Use `numpy.genfromtxt` with comma as `delimiter` instead.
2545
+
2546
+ Parameters
2547
+ ----------
2548
+ fname, kwargs : For a description of input parameters, see `genfromtxt`.
2549
+
2550
+ See Also
2551
+ --------
2552
+ numpy.genfromtxt : generic function to load ASCII data.
2553
+
2554
+ Notes
2555
+ -----
2556
+ By default, `dtype` is None, which means that the data-type of the output
2557
+ array will be determined from the data.
2558
+
2559
+ """
2560
+
2561
+ # Deprecated in NumPy 2.0, 2023-07-11
2562
+ warnings.warn(
2563
+ "`recfromcsv` is deprecated, "
2564
+ "use `numpy.genfromtxt` with comma as `delimiter` instead. "
2565
+ "(deprecated in NumPy 2.0)",
2566
+ DeprecationWarning,
2567
+ stacklevel=2
2568
+ )
2569
+
2570
+ # Set default kwargs for genfromtxt as relevant to csv import.
2571
+ kwargs.setdefault("case_sensitive", "lower")
2572
+ kwargs.setdefault("names", True)
2573
+ kwargs.setdefault("delimiter", ",")
2574
+ kwargs.setdefault("dtype", None)
2575
+ output = genfromtxt(fname, **kwargs)
2576
+
2577
+ usemask = kwargs.get("usemask", False)
2578
+ if usemask:
2579
+ from numpy.ma.mrecords import MaskedRecords
2580
+ output = output.view(MaskedRecords)
2581
+ else:
2582
+ output = output.view(np.recarray)
2583
+ return output