numpy 2.4.2__cp313-cp313t-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (929) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +203 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp313t-win32.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp313t-win32.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp313t-win32.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp313t-win32.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp313t-win32.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp313t-win32.pyd +0 -0
  35. numpy/_core/_rational_tests.cp313t-win32.lib +0 -0
  36. numpy/_core/_rational_tests.cp313t-win32.pyd +0 -0
  37. numpy/_core/_simd.cp313t-win32.lib +0 -0
  38. numpy/_core/_simd.cp313t-win32.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp313t-win32.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp313t-win32.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp313t-win32.lib +0 -0
  49. numpy/_core/_umath_tests.cp313t-win32.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1328 -0
  101. numpy/_core/numeric.py +2771 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +374 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +15 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +63 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +95 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +406 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4301 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp313t-win32.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp313t-win32.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4756 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp313t-win32.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp313t-win32.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp313t-win32.lib +0 -0
  582. numpy/linalg/lapack_lite.cp313t-win32.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3733 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp313t-win32.lib +0 -0
  660. numpy/random/_bounded_integers.cp313t-win32.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp313t-win32.lib +0 -0
  664. numpy/random/_common.cp313t-win32.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp313t-win32.lib +0 -0
  675. numpy/random/_generator.cp313t-win32.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp313t-win32.lib +0 -0
  678. numpy/random/_mt19937.cp313t-win32.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp313t-win32.lib +0 -0
  681. numpy/random/_pcg64.cp313t-win32.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp313t-win32.lib +0 -0
  684. numpy/random/_philox.cp313t-win32.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp313t-win32.lib +0 -0
  689. numpy/random/_sfc64.cp313t-win32.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp313t-win32.lib +0 -0
  692. numpy/random/bit_generator.cp313t-win32.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp313t-win32.lib +0 -0
  698. numpy/random/mtrand.cp313t-win32.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +279 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.2.dist-info/METADATA +139 -0
  910. numpy-2.4.2.dist-info/RECORD +929 -0
  911. numpy-2.4.2.dist-info/WHEEL +4 -0
  912. numpy-2.4.2.dist-info/entry_points.txt +13 -0
  913. numpy-2.4.2.dist-info/licenses/LICENSE.txt +914 -0
  914. numpy-2.4.2.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  915. numpy-2.4.2.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  916. numpy-2.4.2.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  917. numpy-2.4.2.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  918. numpy-2.4.2.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  919. numpy-2.4.2.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  920. numpy-2.4.2.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  921. numpy-2.4.2.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  922. numpy-2.4.2.dist-info/licenses/numpy/ma/LICENSE +24 -0
  923. numpy-2.4.2.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  924. numpy-2.4.2.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  925. numpy-2.4.2.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  926. numpy-2.4.2.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  927. numpy-2.4.2.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  928. numpy-2.4.2.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  929. numpy-2.4.2.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,3657 @@
1
+ """Lite version of scipy.linalg.
2
+
3
+ Notes
4
+ -----
5
+ This module is a lite version of the linalg.py module in SciPy which
6
+ contains high-level Python interface to the LAPACK library. The lite
7
+ version only accesses the following LAPACK functions: dgesv, zgesv,
8
+ dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
9
+ zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
10
+ """
11
+
12
+ __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv',
13
+ 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det',
14
+ 'svd', 'svdvals', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond',
15
+ 'matrix_rank', 'LinAlgError', 'multi_dot', 'trace', 'diagonal',
16
+ 'cross', 'outer', 'tensordot', 'matmul', 'matrix_transpose',
17
+ 'matrix_norm', 'vector_norm', 'vecdot']
18
+
19
+ import functools
20
+ import operator
21
+ import warnings
22
+ from typing import Any, NamedTuple
23
+
24
+ from numpy._core import (
25
+ abs,
26
+ add,
27
+ all,
28
+ amax,
29
+ amin,
30
+ argsort,
31
+ array,
32
+ asanyarray,
33
+ asarray,
34
+ atleast_2d,
35
+ cdouble,
36
+ complexfloating,
37
+ count_nonzero,
38
+ cross as _core_cross,
39
+ csingle,
40
+ diagonal as _core_diagonal,
41
+ divide,
42
+ dot,
43
+ double,
44
+ empty,
45
+ empty_like,
46
+ errstate,
47
+ finfo,
48
+ inexact,
49
+ inf,
50
+ intc,
51
+ intp,
52
+ isfinite,
53
+ isnan,
54
+ matmul as _core_matmul,
55
+ matrix_transpose as _core_matrix_transpose,
56
+ moveaxis,
57
+ multiply,
58
+ newaxis,
59
+ object_,
60
+ outer as _core_outer,
61
+ overrides,
62
+ prod,
63
+ reciprocal,
64
+ sign,
65
+ single,
66
+ sort,
67
+ sqrt,
68
+ sum,
69
+ swapaxes,
70
+ tensordot as _core_tensordot,
71
+ trace as _core_trace,
72
+ transpose as _core_transpose,
73
+ vecdot as _core_vecdot,
74
+ zeros,
75
+ )
76
+ from numpy._globals import _NoValue
77
+ from numpy._typing import NDArray
78
+ from numpy._utils import set_module
79
+ from numpy.lib._twodim_base_impl import eye, triu
80
+ from numpy.lib.array_utils import normalize_axis_index, normalize_axis_tuple
81
+ from numpy.linalg import _umath_linalg
82
+
83
+
84
+ class EigResult(NamedTuple):
85
+ eigenvalues: NDArray[Any]
86
+ eigenvectors: NDArray[Any]
87
+
88
+ class EighResult(NamedTuple):
89
+ eigenvalues: NDArray[Any]
90
+ eigenvectors: NDArray[Any]
91
+
92
+ class QRResult(NamedTuple):
93
+ Q: NDArray[Any]
94
+ R: NDArray[Any]
95
+
96
+ class SlogdetResult(NamedTuple):
97
+ sign: NDArray[Any]
98
+ logabsdet: NDArray[Any]
99
+
100
+ class SVDResult(NamedTuple):
101
+ U: NDArray[Any]
102
+ S: NDArray[Any]
103
+ Vh: NDArray[Any]
104
+
105
+
106
+ array_function_dispatch = functools.partial(
107
+ overrides.array_function_dispatch, module='numpy.linalg'
108
+ )
109
+
110
+
111
+ fortran_int = intc
112
+
113
+
114
+ @set_module('numpy.linalg')
115
+ class LinAlgError(ValueError):
116
+ """
117
+ Generic Python-exception-derived object raised by linalg functions.
118
+
119
+ General purpose exception class, derived from Python's ValueError
120
+ class, programmatically raised in linalg functions when a Linear
121
+ Algebra-related condition would prevent further correct execution of the
122
+ function.
123
+
124
+ Parameters
125
+ ----------
126
+ None
127
+
128
+ Examples
129
+ --------
130
+ >>> from numpy import linalg as LA
131
+ >>> LA.inv(np.zeros((2,2)))
132
+ Traceback (most recent call last):
133
+ File "<stdin>", line 1, in <module>
134
+ File "...linalg.py", line 350,
135
+ in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
136
+ File "...linalg.py", line 249,
137
+ in solve
138
+ raise LinAlgError('Singular matrix')
139
+ numpy.linalg.LinAlgError: Singular matrix
140
+
141
+ """
142
+
143
+
144
+ def _raise_linalgerror_singular(err, flag):
145
+ raise LinAlgError("Singular matrix")
146
+
147
+ def _raise_linalgerror_nonposdef(err, flag):
148
+ raise LinAlgError("Matrix is not positive definite")
149
+
150
+ def _raise_linalgerror_eigenvalues_nonconvergence(err, flag):
151
+ raise LinAlgError("Eigenvalues did not converge")
152
+
153
+ def _raise_linalgerror_svd_nonconvergence(err, flag):
154
+ raise LinAlgError("SVD did not converge")
155
+
156
+ def _raise_linalgerror_lstsq(err, flag):
157
+ raise LinAlgError("SVD did not converge in Linear Least Squares")
158
+
159
+ def _raise_linalgerror_qr(err, flag):
160
+ raise LinAlgError("Incorrect argument found while performing "
161
+ "QR factorization")
162
+
163
+
164
+ def _makearray(a):
165
+ new = asarray(a)
166
+ wrap = getattr(a, "__array_wrap__", new.__array_wrap__)
167
+ return new, wrap
168
+
169
+ def isComplexType(t):
170
+ return issubclass(t, complexfloating)
171
+
172
+
173
+ _real_types_map = {single: single,
174
+ double: double,
175
+ csingle: single,
176
+ cdouble: double}
177
+
178
+ _complex_types_map = {single: csingle,
179
+ double: cdouble,
180
+ csingle: csingle,
181
+ cdouble: cdouble}
182
+
183
+ def _realType(t, default=double):
184
+ return _real_types_map.get(t, default)
185
+
186
+ def _complexType(t, default=cdouble):
187
+ return _complex_types_map.get(t, default)
188
+
189
+ def _commonType(*arrays):
190
+ # in lite version, use higher precision (always double or cdouble)
191
+ result_type = single
192
+ is_complex = False
193
+ for a in arrays:
194
+ type_ = a.dtype.type
195
+ if issubclass(type_, inexact):
196
+ if isComplexType(type_):
197
+ is_complex = True
198
+ rt = _realType(type_, default=None)
199
+ if rt is double:
200
+ result_type = double
201
+ elif rt is None:
202
+ # unsupported inexact scalar
203
+ raise TypeError(f"array type {a.dtype.name} is unsupported in linalg")
204
+ else:
205
+ result_type = double
206
+ if is_complex:
207
+ result_type = _complex_types_map[result_type]
208
+ return cdouble, result_type
209
+ else:
210
+ return double, result_type
211
+
212
+
213
+ def _to_native_byte_order(*arrays):
214
+ ret = []
215
+ for arr in arrays:
216
+ if arr.dtype.byteorder not in ('=', '|'):
217
+ ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('=')))
218
+ else:
219
+ ret.append(arr)
220
+ if len(ret) == 1:
221
+ return ret[0]
222
+ else:
223
+ return ret
224
+
225
+
226
+ def _assert_2d(*arrays):
227
+ for a in arrays:
228
+ if a.ndim != 2:
229
+ raise LinAlgError('%d-dimensional array given. Array must be '
230
+ 'two-dimensional' % a.ndim)
231
+
232
+ def _assert_stacked_2d(*arrays):
233
+ for a in arrays:
234
+ if a.ndim < 2:
235
+ raise LinAlgError('%d-dimensional array given. Array must be '
236
+ 'at least two-dimensional' % a.ndim)
237
+
238
+ def _assert_stacked_square(*arrays):
239
+ for a in arrays:
240
+ try:
241
+ m, n = a.shape[-2:]
242
+ except ValueError:
243
+ raise LinAlgError('%d-dimensional array given. Array must be '
244
+ 'at least two-dimensional' % a.ndim)
245
+ if m != n:
246
+ raise LinAlgError('Last 2 dimensions of the array must be square')
247
+
248
+ def _assert_finite(*arrays):
249
+ for a in arrays:
250
+ if not isfinite(a).all():
251
+ raise LinAlgError("Array must not contain infs or NaNs")
252
+
253
+ def _is_empty_2d(arr):
254
+ # check size first for efficiency
255
+ return arr.size == 0 and prod(arr.shape[-2:]) == 0
256
+
257
+
258
+ def transpose(a):
259
+ """
260
+ Transpose each matrix in a stack of matrices.
261
+
262
+ Unlike np.transpose, this only swaps the last two axes, rather than all of
263
+ them
264
+
265
+ Parameters
266
+ ----------
267
+ a : (...,M,N) array_like
268
+
269
+ Returns
270
+ -------
271
+ aT : (...,N,M) ndarray
272
+ """
273
+ return swapaxes(a, -1, -2)
274
+
275
+ # Linear equations
276
+
277
+ def _tensorsolve_dispatcher(a, b, axes=None):
278
+ return (a, b)
279
+
280
+
281
+ @array_function_dispatch(_tensorsolve_dispatcher)
282
+ def tensorsolve(a, b, axes=None):
283
+ """
284
+ Solve the tensor equation ``a x = b`` for x.
285
+
286
+ It is assumed that all indices of `x` are summed over in the product,
287
+ together with the rightmost indices of `a`, as is done in, for example,
288
+ ``tensordot(a, x, axes=x.ndim)``.
289
+
290
+ Parameters
291
+ ----------
292
+ a : array_like
293
+ Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals
294
+ the shape of that sub-tensor of `a` consisting of the appropriate
295
+ number of its rightmost indices, and must be such that
296
+ ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
297
+ 'square').
298
+ b : array_like
299
+ Right-hand tensor, which can be of any shape.
300
+ axes : tuple of ints, optional
301
+ Axes in `a` to reorder to the right, before inversion.
302
+ If None (default), no reordering is done.
303
+
304
+ Returns
305
+ -------
306
+ x : ndarray, shape Q
307
+
308
+ Raises
309
+ ------
310
+ LinAlgError
311
+ If `a` is singular or not 'square' (in the above sense).
312
+
313
+ See Also
314
+ --------
315
+ numpy.tensordot, tensorinv, numpy.einsum
316
+
317
+ Examples
318
+ --------
319
+ >>> import numpy as np
320
+ >>> a = np.eye(2*3*4).reshape((2*3, 4, 2, 3, 4))
321
+ >>> rng = np.random.default_rng()
322
+ >>> b = rng.normal(size=(2*3, 4))
323
+ >>> x = np.linalg.tensorsolve(a, b)
324
+ >>> x.shape
325
+ (2, 3, 4)
326
+ >>> np.allclose(np.tensordot(a, x, axes=3), b)
327
+ True
328
+
329
+ """
330
+ a, wrap = _makearray(a)
331
+ b = asarray(b)
332
+ an = a.ndim
333
+
334
+ if axes is not None:
335
+ allaxes = list(range(an))
336
+ for k in axes:
337
+ allaxes.remove(k)
338
+ allaxes.insert(an, k)
339
+ a = a.transpose(allaxes)
340
+
341
+ oldshape = a.shape[-(an - b.ndim):]
342
+ prod = 1
343
+ for k in oldshape:
344
+ prod *= k
345
+
346
+ if a.size != prod ** 2:
347
+ raise LinAlgError(
348
+ "Input arrays must satisfy the requirement \
349
+ prod(a.shape[b.ndim:]) == prod(a.shape[:b.ndim])"
350
+ )
351
+
352
+ a = a.reshape(prod, prod)
353
+ b = b.ravel()
354
+ res = wrap(solve(a, b))
355
+ res.shape = oldshape
356
+ return res
357
+
358
+
359
+ def _solve_dispatcher(a, b):
360
+ return (a, b)
361
+
362
+
363
+ @array_function_dispatch(_solve_dispatcher)
364
+ def solve(a, b):
365
+ """
366
+ Solve a linear matrix equation, or system of linear scalar equations.
367
+
368
+ Computes the "exact" solution, `x`, of the well-determined, i.e., full
369
+ rank, linear matrix equation `ax = b`.
370
+
371
+ Parameters
372
+ ----------
373
+ a : (..., M, M) array_like
374
+ Coefficient matrix.
375
+ b : {(M,), (..., M, K)}, array_like
376
+ Ordinate or "dependent variable" values.
377
+
378
+ Returns
379
+ -------
380
+ x : {(..., M,), (..., M, K)} ndarray
381
+ Solution to the system a x = b. Returned shape is (..., M) if b is
382
+ shape (M,) and (..., M, K) if b is (..., M, K), where the "..." part is
383
+ broadcasted between a and b.
384
+
385
+ Raises
386
+ ------
387
+ LinAlgError
388
+ If `a` is singular or not square.
389
+
390
+ See Also
391
+ --------
392
+ scipy.linalg.solve : Similar function in SciPy.
393
+
394
+ Notes
395
+ -----
396
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
397
+ details.
398
+
399
+ The solutions are computed using LAPACK routine ``_gesv``.
400
+
401
+ `a` must be square and of full-rank, i.e., all rows (or, equivalently,
402
+ columns) must be linearly independent; if either is not true, use
403
+ `lstsq` for the least-squares best "solution" of the
404
+ system/equation.
405
+
406
+ .. versionchanged:: 2.0
407
+
408
+ The b array is only treated as a shape (M,) column vector if it is
409
+ exactly 1-dimensional. In all other instances it is treated as a stack
410
+ of (M, K) matrices. Previously b would be treated as a stack of (M,)
411
+ vectors if b.ndim was equal to a.ndim - 1.
412
+
413
+ References
414
+ ----------
415
+ .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
416
+ FL, Academic Press, Inc., 1980, pg. 22.
417
+
418
+ Examples
419
+ --------
420
+ Solve the system of equations:
421
+ ``x0 + 2 * x1 = 1`` and
422
+ ``3 * x0 + 5 * x1 = 2``:
423
+
424
+ >>> import numpy as np
425
+ >>> a = np.array([[1, 2], [3, 5]])
426
+ >>> b = np.array([1, 2])
427
+ >>> x = np.linalg.solve(a, b)
428
+ >>> x
429
+ array([-1., 1.])
430
+
431
+ Check that the solution is correct:
432
+
433
+ >>> np.allclose(np.dot(a, x), b)
434
+ True
435
+
436
+ """
437
+ a, _ = _makearray(a)
438
+ _assert_stacked_square(a)
439
+ b, wrap = _makearray(b)
440
+ t, result_t = _commonType(a, b)
441
+
442
+ # We use the b = (..., M,) logic, only if the number of extra dimensions
443
+ # match exactly
444
+ if b.ndim == 1:
445
+ gufunc = _umath_linalg.solve1
446
+ else:
447
+ gufunc = _umath_linalg.solve
448
+
449
+ signature = 'DD->D' if isComplexType(t) else 'dd->d'
450
+ with errstate(call=_raise_linalgerror_singular, invalid='call',
451
+ over='ignore', divide='ignore', under='ignore'):
452
+ r = gufunc(a, b, signature=signature)
453
+
454
+ return wrap(r.astype(result_t, copy=False))
455
+
456
+
457
+ def _tensorinv_dispatcher(a, ind=None):
458
+ return (a,)
459
+
460
+
461
+ @array_function_dispatch(_tensorinv_dispatcher)
462
+ def tensorinv(a, ind=2):
463
+ """
464
+ Compute the 'inverse' of an N-dimensional array.
465
+
466
+ The result is an inverse for `a` relative to the tensordot operation
467
+ ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy,
468
+ ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the
469
+ tensordot operation.
470
+
471
+ Parameters
472
+ ----------
473
+ a : array_like
474
+ Tensor to 'invert'. Its shape must be 'square', i. e.,
475
+ ``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
476
+ ind : int, optional
477
+ Number of first indices that are involved in the inverse sum.
478
+ Must be a positive integer, default is 2.
479
+
480
+ Returns
481
+ -------
482
+ b : ndarray
483
+ `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``.
484
+
485
+ Raises
486
+ ------
487
+ LinAlgError
488
+ If `a` is singular or not 'square' (in the above sense).
489
+
490
+ See Also
491
+ --------
492
+ numpy.tensordot, tensorsolve
493
+
494
+ Examples
495
+ --------
496
+ >>> import numpy as np
497
+ >>> a = np.eye(4*6).reshape((4, 6, 8, 3))
498
+ >>> ainv = np.linalg.tensorinv(a, ind=2)
499
+ >>> ainv.shape
500
+ (8, 3, 4, 6)
501
+ >>> rng = np.random.default_rng()
502
+ >>> b = rng.normal(size=(4, 6))
503
+ >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
504
+ True
505
+
506
+ >>> a = np.eye(4*6).reshape((24, 8, 3))
507
+ >>> ainv = np.linalg.tensorinv(a, ind=1)
508
+ >>> ainv.shape
509
+ (8, 3, 24)
510
+ >>> rng = np.random.default_rng()
511
+ >>> b = rng.normal(size=24)
512
+ >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
513
+ True
514
+
515
+ """
516
+ a = asarray(a)
517
+ oldshape = a.shape
518
+ prod = 1
519
+ if ind > 0:
520
+ invshape = oldshape[ind:] + oldshape[:ind]
521
+ for k in oldshape[ind:]:
522
+ prod *= k
523
+ else:
524
+ raise ValueError("Invalid ind argument.")
525
+ a = a.reshape(prod, -1)
526
+ ia = inv(a)
527
+ return ia.reshape(*invshape)
528
+
529
+
530
+ # Matrix inversion
531
+
532
+ def _unary_dispatcher(a):
533
+ return (a,)
534
+
535
+
536
+ @array_function_dispatch(_unary_dispatcher)
537
+ def inv(a):
538
+ """
539
+ Compute the inverse of a matrix.
540
+
541
+ Given a square matrix `a`, return the matrix `ainv` satisfying
542
+ ``a @ ainv = ainv @ a = eye(a.shape[0])``.
543
+
544
+ Parameters
545
+ ----------
546
+ a : (..., M, M) array_like
547
+ Matrix to be inverted.
548
+
549
+ Returns
550
+ -------
551
+ ainv : (..., M, M) ndarray or matrix
552
+ Inverse of the matrix `a`.
553
+
554
+ Raises
555
+ ------
556
+ LinAlgError
557
+ If `a` is not square or inversion fails.
558
+
559
+ See Also
560
+ --------
561
+ scipy.linalg.inv : Similar function in SciPy.
562
+ numpy.linalg.cond : Compute the condition number of a matrix.
563
+ numpy.linalg.svd : Compute the singular value decomposition of a matrix.
564
+
565
+ Notes
566
+ -----
567
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
568
+ details.
569
+
570
+ If `a` is detected to be singular, a `LinAlgError` is raised. If `a` is
571
+ ill-conditioned, a `LinAlgError` may or may not be raised, and results may
572
+ be inaccurate due to floating-point errors.
573
+
574
+ References
575
+ ----------
576
+ .. [1] Wikipedia, "Condition number",
577
+ https://en.wikipedia.org/wiki/Condition_number
578
+
579
+ Examples
580
+ --------
581
+ >>> import numpy as np
582
+ >>> from numpy.linalg import inv
583
+ >>> a = np.array([[1., 2.], [3., 4.]])
584
+ >>> ainv = inv(a)
585
+ >>> np.allclose(a @ ainv, np.eye(2))
586
+ True
587
+ >>> np.allclose(ainv @ a, np.eye(2))
588
+ True
589
+
590
+ If a is a matrix object, then the return value is a matrix as well:
591
+
592
+ >>> ainv = inv(np.matrix(a))
593
+ >>> ainv
594
+ matrix([[-2. , 1. ],
595
+ [ 1.5, -0.5]])
596
+
597
+ Inverses of several matrices can be computed at once:
598
+
599
+ >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
600
+ >>> inv(a)
601
+ array([[[-2. , 1. ],
602
+ [ 1.5 , -0.5 ]],
603
+ [[-1.25, 0.75],
604
+ [ 0.75, -0.25]]])
605
+
606
+ If a matrix is close to singular, the computed inverse may not satisfy
607
+ ``a @ ainv = ainv @ a = eye(a.shape[0])`` even if a `LinAlgError`
608
+ is not raised:
609
+
610
+ >>> a = np.array([[2,4,6],[2,0,2],[6,8,14]])
611
+ >>> inv(a) # No errors raised
612
+ array([[-1.12589991e+15, -5.62949953e+14, 5.62949953e+14],
613
+ [-1.12589991e+15, -5.62949953e+14, 5.62949953e+14],
614
+ [ 1.12589991e+15, 5.62949953e+14, -5.62949953e+14]])
615
+ >>> a @ inv(a)
616
+ array([[ 0. , -0.5 , 0. ], # may vary
617
+ [-0.5 , 0.625, 0.25 ],
618
+ [ 0. , 0. , 1. ]])
619
+
620
+ To detect ill-conditioned matrices, you can use `numpy.linalg.cond` to
621
+ compute its *condition number* [1]_. The larger the condition number, the
622
+ more ill-conditioned the matrix is. As a rule of thumb, if the condition
623
+ number ``cond(a) = 10**k``, then you may lose up to ``k`` digits of
624
+ accuracy on top of what would be lost to the numerical method due to loss
625
+ of precision from arithmetic methods.
626
+
627
+ >>> from numpy.linalg import cond
628
+ >>> cond(a)
629
+ np.float64(8.659885634118668e+17) # may vary
630
+
631
+ It is also possible to detect ill-conditioning by inspecting the matrix's
632
+ singular values directly. The ratio between the largest and the smallest
633
+ singular value is the condition number:
634
+
635
+ >>> from numpy.linalg import svd
636
+ >>> sigma = svd(a, compute_uv=False) # Do not compute singular vectors
637
+ >>> sigma.max()/sigma.min()
638
+ 8.659885634118668e+17 # may vary
639
+
640
+ """
641
+ a, wrap = _makearray(a)
642
+ _assert_stacked_square(a)
643
+ t, result_t = _commonType(a)
644
+
645
+ signature = 'D->D' if isComplexType(t) else 'd->d'
646
+ with errstate(call=_raise_linalgerror_singular, invalid='call',
647
+ over='ignore', divide='ignore', under='ignore'):
648
+ ainv = _umath_linalg.inv(a, signature=signature)
649
+ return wrap(ainv.astype(result_t, copy=False))
650
+
651
+
652
+ def _matrix_power_dispatcher(a, n):
653
+ return (a,)
654
+
655
+
656
+ @array_function_dispatch(_matrix_power_dispatcher)
657
+ def matrix_power(a, n):
658
+ """
659
+ Raise a square matrix to the (integer) power `n`.
660
+
661
+ For positive integers `n`, the power is computed by repeated matrix
662
+ squarings and matrix multiplications. If ``n == 0``, the identity matrix
663
+ of the same shape as M is returned. If ``n < 0``, the inverse
664
+ is computed and then raised to the ``abs(n)``.
665
+
666
+ .. note:: Stacks of object matrices are not currently supported.
667
+
668
+ Parameters
669
+ ----------
670
+ a : (..., M, M) array_like
671
+ Matrix to be "powered".
672
+ n : int
673
+ The exponent can be any integer or long integer, positive,
674
+ negative, or zero.
675
+
676
+ Returns
677
+ -------
678
+ a**n : (..., M, M) ndarray or matrix object
679
+ The return value is the same shape and type as `M`;
680
+ if the exponent is positive or zero then the type of the
681
+ elements is the same as those of `M`. If the exponent is
682
+ negative the elements are floating-point.
683
+
684
+ Raises
685
+ ------
686
+ LinAlgError
687
+ For matrices that are not square or that (for negative powers) cannot
688
+ be inverted numerically.
689
+
690
+ Examples
691
+ --------
692
+ >>> import numpy as np
693
+ >>> from numpy.linalg import matrix_power
694
+ >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
695
+ >>> matrix_power(i, 3) # should = -i
696
+ array([[ 0, -1],
697
+ [ 1, 0]])
698
+ >>> matrix_power(i, 0)
699
+ array([[1, 0],
700
+ [0, 1]])
701
+ >>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
702
+ array([[ 0., 1.],
703
+ [-1., 0.]])
704
+
705
+ Somewhat more sophisticated example
706
+
707
+ >>> q = np.zeros((4, 4))
708
+ >>> q[0:2, 0:2] = -i
709
+ >>> q[2:4, 2:4] = i
710
+ >>> q # one of the three quaternion units not equal to 1
711
+ array([[ 0., -1., 0., 0.],
712
+ [ 1., 0., 0., 0.],
713
+ [ 0., 0., 0., 1.],
714
+ [ 0., 0., -1., 0.]])
715
+ >>> matrix_power(q, 2) # = -np.eye(4)
716
+ array([[-1., 0., 0., 0.],
717
+ [ 0., -1., 0., 0.],
718
+ [ 0., 0., -1., 0.],
719
+ [ 0., 0., 0., -1.]])
720
+
721
+ """
722
+ a = asanyarray(a)
723
+ _assert_stacked_square(a)
724
+
725
+ try:
726
+ n = operator.index(n)
727
+ except TypeError as e:
728
+ raise TypeError("exponent must be an integer") from e
729
+
730
+ # Fall back on dot for object arrays. Object arrays are not supported by
731
+ # the current implementation of matmul using einsum
732
+ if a.dtype != object:
733
+ fmatmul = matmul
734
+ elif a.ndim == 2:
735
+ fmatmul = dot
736
+ else:
737
+ raise NotImplementedError(
738
+ "matrix_power not supported for stacks of object arrays")
739
+
740
+ if n == 0:
741
+ a = empty_like(a)
742
+ a[...] = eye(a.shape[-2], dtype=a.dtype)
743
+ return a
744
+
745
+ elif n < 0:
746
+ a = inv(a)
747
+ n = abs(n)
748
+
749
+ # short-cuts.
750
+ if n == 1:
751
+ return a
752
+
753
+ elif n == 2:
754
+ return fmatmul(a, a)
755
+
756
+ elif n == 3:
757
+ return fmatmul(fmatmul(a, a), a)
758
+
759
+ # Use binary decomposition to reduce the number of matrix multiplications.
760
+ # Here, we iterate over the bits of n, from LSB to MSB, raise `a` to
761
+ # increasing powers of 2, and multiply into the result as needed.
762
+ z = result = None
763
+ while n > 0:
764
+ z = a if z is None else fmatmul(z, z)
765
+ n, bit = divmod(n, 2)
766
+ if bit:
767
+ result = z if result is None else fmatmul(result, z)
768
+
769
+ return result
770
+
771
+
772
+ # Cholesky decomposition
773
+
774
+ def _cholesky_dispatcher(a, /, *, upper=None):
775
+ return (a,)
776
+
777
+
778
+ @array_function_dispatch(_cholesky_dispatcher)
779
+ def cholesky(a, /, *, upper=False):
780
+ """
781
+ Cholesky decomposition.
782
+
783
+ Return the lower or upper Cholesky decomposition, ``L * L.H`` or
784
+ ``U.H * U``, of the square matrix ``a``, where ``L`` is lower-triangular,
785
+ ``U`` is upper-triangular, and ``.H`` is the conjugate transpose operator
786
+ (which is the ordinary transpose if ``a`` is real-valued). ``a`` must be
787
+ Hermitian (symmetric if real-valued) and positive-definite. No checking is
788
+ performed to verify whether ``a`` is Hermitian or not. In addition, only
789
+ the lower or upper-triangular and diagonal elements of ``a`` are used.
790
+ Only ``L`` or ``U`` is actually returned.
791
+
792
+ Parameters
793
+ ----------
794
+ a : (..., M, M) array_like
795
+ Hermitian (symmetric if all elements are real), positive-definite
796
+ input matrix.
797
+ upper : bool
798
+ If ``True``, the result must be the upper-triangular Cholesky factor.
799
+ If ``False``, the result must be the lower-triangular Cholesky factor.
800
+ Default: ``False``.
801
+
802
+ Returns
803
+ -------
804
+ L : (..., M, M) array_like
805
+ Lower or upper-triangular Cholesky factor of `a`. Returns a matrix
806
+ object if `a` is a matrix object.
807
+
808
+ Raises
809
+ ------
810
+ LinAlgError
811
+ If the decomposition fails, for example, if `a` is not
812
+ positive-definite.
813
+
814
+ See Also
815
+ --------
816
+ scipy.linalg.cholesky : Similar function in SciPy.
817
+ scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian
818
+ positive-definite matrix.
819
+ scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in
820
+ `scipy.linalg.cho_solve`.
821
+
822
+ Notes
823
+ -----
824
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
825
+ details.
826
+
827
+ The Cholesky decomposition is often used as a fast way of solving
828
+
829
+ .. math:: A \\mathbf{x} = \\mathbf{b}
830
+
831
+ (when `A` is both Hermitian/symmetric and positive-definite).
832
+
833
+ First, we solve for :math:`\\mathbf{y}` in
834
+
835
+ .. math:: L \\mathbf{y} = \\mathbf{b},
836
+
837
+ and then for :math:`\\mathbf{x}` in
838
+
839
+ .. math:: L^{H} \\mathbf{x} = \\mathbf{y}.
840
+
841
+ Examples
842
+ --------
843
+ >>> import numpy as np
844
+ >>> A = np.array([[1,-2j],[2j,5]])
845
+ >>> A
846
+ array([[ 1.+0.j, -0.-2.j],
847
+ [ 0.+2.j, 5.+0.j]])
848
+ >>> L = np.linalg.cholesky(A)
849
+ >>> L
850
+ array([[1.+0.j, 0.+0.j],
851
+ [0.+2.j, 1.+0.j]])
852
+ >>> np.dot(L, L.T.conj()) # verify that L * L.H = A
853
+ array([[1.+0.j, 0.-2.j],
854
+ [0.+2.j, 5.+0.j]])
855
+ >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
856
+ >>> np.linalg.cholesky(A) # an ndarray object is returned
857
+ array([[1.+0.j, 0.+0.j],
858
+ [0.+2.j, 1.+0.j]])
859
+ >>> # But a matrix object is returned if A is a matrix object
860
+ >>> np.linalg.cholesky(np.matrix(A))
861
+ matrix([[ 1.+0.j, 0.+0.j],
862
+ [ 0.+2.j, 1.+0.j]])
863
+ >>> # The upper-triangular Cholesky factor can also be obtained.
864
+ >>> np.linalg.cholesky(A, upper=True)
865
+ array([[1.-0.j, 0.-2.j],
866
+ [0.-0.j, 1.-0.j]])
867
+
868
+ """
869
+ gufunc = _umath_linalg.cholesky_up if upper else _umath_linalg.cholesky_lo
870
+ a, wrap = _makearray(a)
871
+ _assert_stacked_square(a)
872
+ t, result_t = _commonType(a)
873
+ signature = 'D->D' if isComplexType(t) else 'd->d'
874
+ with errstate(call=_raise_linalgerror_nonposdef, invalid='call',
875
+ over='ignore', divide='ignore', under='ignore'):
876
+ r = gufunc(a, signature=signature)
877
+ return wrap(r.astype(result_t, copy=False))
878
+
879
+
880
+ # outer product
881
+
882
+
883
+ def _outer_dispatcher(x1, x2):
884
+ return (x1, x2)
885
+
886
+
887
+ @array_function_dispatch(_outer_dispatcher)
888
+ def outer(x1, x2, /):
889
+ """
890
+ Compute the outer product of two vectors.
891
+
892
+ This function is Array API compatible. Compared to ``np.outer``
893
+ it accepts 1-dimensional inputs only.
894
+
895
+ Parameters
896
+ ----------
897
+ x1 : (M,) array_like
898
+ One-dimensional input array of size ``N``.
899
+ Must have a numeric data type.
900
+ x2 : (N,) array_like
901
+ One-dimensional input array of size ``M``.
902
+ Must have a numeric data type.
903
+
904
+ Returns
905
+ -------
906
+ out : (M, N) ndarray
907
+ ``out[i, j] = a[i] * b[j]``
908
+
909
+ See also
910
+ --------
911
+ outer
912
+
913
+ Examples
914
+ --------
915
+ Make a (*very* coarse) grid for computing a Mandelbrot set:
916
+
917
+ >>> rl = np.linalg.outer(np.ones((5,)), np.linspace(-2, 2, 5))
918
+ >>> rl
919
+ array([[-2., -1., 0., 1., 2.],
920
+ [-2., -1., 0., 1., 2.],
921
+ [-2., -1., 0., 1., 2.],
922
+ [-2., -1., 0., 1., 2.],
923
+ [-2., -1., 0., 1., 2.]])
924
+ >>> im = np.linalg.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
925
+ >>> im
926
+ array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
927
+ [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
928
+ [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
929
+ [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
930
+ [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
931
+ >>> grid = rl + im
932
+ >>> grid
933
+ array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
934
+ [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
935
+ [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
936
+ [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
937
+ [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])
938
+
939
+ An example using a "vector" of letters:
940
+
941
+ >>> x = np.array(['a', 'b', 'c'], dtype=object)
942
+ >>> np.linalg.outer(x, [1, 2, 3])
943
+ array([['a', 'aa', 'aaa'],
944
+ ['b', 'bb', 'bbb'],
945
+ ['c', 'cc', 'ccc']], dtype=object)
946
+
947
+ """
948
+ x1 = asanyarray(x1)
949
+ x2 = asanyarray(x2)
950
+ if x1.ndim != 1 or x2.ndim != 1:
951
+ raise ValueError(
952
+ "Input arrays must be one-dimensional, but they are "
953
+ f"{x1.ndim=} and {x2.ndim=}."
954
+ )
955
+ return _core_outer(x1, x2, out=None)
956
+
957
+
958
+ # QR decomposition
959
+
960
+
961
+ def _qr_dispatcher(a, mode=None):
962
+ return (a,)
963
+
964
+
965
+ @array_function_dispatch(_qr_dispatcher)
966
+ def qr(a, mode='reduced'):
967
+ """
968
+ Compute the qr factorization of a matrix.
969
+
970
+ Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is
971
+ upper-triangular.
972
+
973
+ Parameters
974
+ ----------
975
+ a : array_like, shape (..., M, N)
976
+ An array-like object with the dimensionality of at least 2.
977
+ mode : {'reduced', 'complete', 'r', 'raw'}, optional, default: 'reduced'
978
+ If K = min(M, N), then
979
+
980
+ * 'reduced' : returns Q, R with dimensions (..., M, K), (..., K, N)
981
+ * 'complete' : returns Q, R with dimensions (..., M, M), (..., M, N)
982
+ * 'r' : returns R only with dimensions (..., K, N)
983
+ * 'raw' : returns h, tau with dimensions (..., N, M), (..., K,)
984
+
985
+ The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,
986
+ see the notes for more information. The default is 'reduced', and to
987
+ maintain backward compatibility with earlier versions of numpy both
988
+ it and the old default 'full' can be omitted. Note that array h
989
+ returned in 'raw' mode is transposed for calling Fortran. The
990
+ 'economic' mode is deprecated. The modes 'full' and 'economic' may
991
+ be passed using only the first letter for backwards compatibility,
992
+ but all others must be spelled out. See the Notes for more
993
+ explanation.
994
+
995
+
996
+ Returns
997
+ -------
998
+ Q : ndarray of float or complex, optional
999
+ A matrix with orthonormal columns. When mode = 'complete' the
1000
+ result is an orthogonal/unitary matrix depending on whether or not
1001
+ a is real/complex. The determinant may be either +/- 1 in that
1002
+ case. In case the number of dimensions in the input array is
1003
+ greater than 2 then a stack of the matrices with above properties
1004
+ is returned.
1005
+ R : ndarray of float or complex, optional
1006
+ The upper-triangular matrix or a stack of upper-triangular
1007
+ matrices if the number of dimensions in the input array is greater
1008
+ than 2.
1009
+ (h, tau) : ndarrays of np.double or np.cdouble, optional
1010
+ The array h contains the Householder reflectors that generate q
1011
+ along with r. The tau array contains scaling factors for the
1012
+ reflectors. In the deprecated 'economic' mode only h is returned.
1013
+
1014
+ Raises
1015
+ ------
1016
+ LinAlgError
1017
+ If factoring fails.
1018
+
1019
+ See Also
1020
+ --------
1021
+ scipy.linalg.qr : Similar function in SciPy.
1022
+ scipy.linalg.rq : Compute RQ decomposition of a matrix.
1023
+
1024
+ Notes
1025
+ -----
1026
+ When mode is 'reduced' or 'complete', the result will be a namedtuple with
1027
+ the attributes ``Q`` and ``R``.
1028
+
1029
+ This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
1030
+ ``dorgqr``, and ``zungqr``.
1031
+
1032
+ For more information on the qr factorization, see for example:
1033
+ https://en.wikipedia.org/wiki/QR_factorization
1034
+
1035
+ Subclasses of `ndarray` are preserved except for the 'raw' mode. So if
1036
+ `a` is of type `matrix`, all the return values will be matrices too.
1037
+
1038
+ New 'reduced', 'complete', and 'raw' options for mode were added in
1039
+ NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In
1040
+ addition the options 'full' and 'economic' were deprecated. Because
1041
+ 'full' was the previous default and 'reduced' is the new default,
1042
+ backward compatibility can be maintained by letting `mode` default.
1043
+ The 'raw' option was added so that LAPACK routines that can multiply
1044
+ arrays by q using the Householder reflectors can be used. Note that in
1045
+ this case the returned arrays are of type np.double or np.cdouble and
1046
+ the h array is transposed to be FORTRAN compatible. No routines using
1047
+ the 'raw' return are currently exposed by numpy, but some are available
1048
+ in lapack_lite and just await the necessary work.
1049
+
1050
+ Examples
1051
+ --------
1052
+ >>> import numpy as np
1053
+ >>> rng = np.random.default_rng()
1054
+ >>> a = rng.normal(size=(9, 6))
1055
+ >>> Q, R = np.linalg.qr(a)
1056
+ >>> np.allclose(a, np.dot(Q, R)) # a does equal QR
1057
+ True
1058
+ >>> R2 = np.linalg.qr(a, mode='r')
1059
+ >>> np.allclose(R, R2) # mode='r' returns the same R as mode='full'
1060
+ True
1061
+ >>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input
1062
+ >>> Q, R = np.linalg.qr(a)
1063
+ >>> Q.shape
1064
+ (3, 2, 2)
1065
+ >>> R.shape
1066
+ (3, 2, 2)
1067
+ >>> np.allclose(a, np.matmul(Q, R))
1068
+ True
1069
+
1070
+ Example illustrating a common use of `qr`: solving of least squares
1071
+ problems
1072
+
1073
+ What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for
1074
+ the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points
1075
+ and you'll see that it should be y0 = 0, m = 1.) The answer is provided
1076
+ by solving the over-determined matrix equation ``Ax = b``, where::
1077
+
1078
+ A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
1079
+ x = array([[y0], [m]])
1080
+ b = array([[1], [0], [2], [1]])
1081
+
1082
+ If A = QR such that Q is orthonormal (which is always possible via
1083
+ Gram-Schmidt), then ``x = inv(R) * (Q.T) * b``. (In numpy practice,
1084
+ however, we simply use `lstsq`.)
1085
+
1086
+ >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
1087
+ >>> A
1088
+ array([[0, 1],
1089
+ [1, 1],
1090
+ [1, 1],
1091
+ [2, 1]])
1092
+ >>> b = np.array([1, 2, 2, 3])
1093
+ >>> Q, R = np.linalg.qr(A)
1094
+ >>> p = np.dot(Q.T, b)
1095
+ >>> np.dot(np.linalg.inv(R), p)
1096
+ array([ 1., 1.])
1097
+
1098
+ """
1099
+ if mode not in ('reduced', 'complete', 'r', 'raw'):
1100
+ if mode in ('f', 'full'):
1101
+ # 2013-04-01, 1.8
1102
+ msg = (
1103
+ "The 'full' option is deprecated in favor of 'reduced'.\n"
1104
+ "For backward compatibility let mode default."
1105
+ )
1106
+ warnings.warn(msg, DeprecationWarning, stacklevel=2)
1107
+ mode = 'reduced'
1108
+ elif mode in ('e', 'economic'):
1109
+ # 2013-04-01, 1.8
1110
+ msg = "The 'economic' option is deprecated."
1111
+ warnings.warn(msg, DeprecationWarning, stacklevel=2)
1112
+ mode = 'economic'
1113
+ else:
1114
+ raise ValueError(f"Unrecognized mode '{mode}'")
1115
+
1116
+ a, wrap = _makearray(a)
1117
+ _assert_stacked_2d(a)
1118
+ m, n = a.shape[-2:]
1119
+ t, result_t = _commonType(a)
1120
+ a = a.astype(t, copy=True)
1121
+ a = _to_native_byte_order(a)
1122
+ mn = min(m, n)
1123
+
1124
+ signature = 'D->D' if isComplexType(t) else 'd->d'
1125
+ with errstate(call=_raise_linalgerror_qr, invalid='call',
1126
+ over='ignore', divide='ignore', under='ignore'):
1127
+ tau = _umath_linalg.qr_r_raw(a, signature=signature)
1128
+
1129
+ # handle modes that don't return q
1130
+ if mode == 'r':
1131
+ r = triu(a[..., :mn, :])
1132
+ r = r.astype(result_t, copy=False)
1133
+ return wrap(r)
1134
+
1135
+ if mode == 'raw':
1136
+ q = transpose(a)
1137
+ q = q.astype(result_t, copy=False)
1138
+ tau = tau.astype(result_t, copy=False)
1139
+ return wrap(q), tau
1140
+
1141
+ if mode == 'economic':
1142
+ a = a.astype(result_t, copy=False)
1143
+ return wrap(a)
1144
+
1145
+ # mc is the number of columns in the resulting q
1146
+ # matrix. If the mode is complete then it is
1147
+ # same as number of rows, and if the mode is reduced,
1148
+ # then it is the minimum of number of rows and columns.
1149
+ if mode == 'complete' and m > n:
1150
+ mc = m
1151
+ gufunc = _umath_linalg.qr_complete
1152
+ else:
1153
+ mc = mn
1154
+ gufunc = _umath_linalg.qr_reduced
1155
+
1156
+ signature = 'DD->D' if isComplexType(t) else 'dd->d'
1157
+ with errstate(call=_raise_linalgerror_qr, invalid='call',
1158
+ over='ignore', divide='ignore', under='ignore'):
1159
+ q = gufunc(a, tau, signature=signature)
1160
+ r = triu(a[..., :mc, :])
1161
+
1162
+ q = q.astype(result_t, copy=False)
1163
+ r = r.astype(result_t, copy=False)
1164
+
1165
+ return QRResult(wrap(q), wrap(r))
1166
+
1167
+ # Eigenvalues
1168
+
1169
+
1170
+ @array_function_dispatch(_unary_dispatcher)
1171
+ def eigvals(a):
1172
+ """
1173
+ Compute the eigenvalues of a general matrix.
1174
+
1175
+ Main difference between `eigvals` and `eig`: the eigenvectors aren't
1176
+ returned.
1177
+
1178
+ Parameters
1179
+ ----------
1180
+ a : (..., M, M) array_like
1181
+ A complex- or real-valued matrix whose eigenvalues will be computed.
1182
+
1183
+ Returns
1184
+ -------
1185
+ w : (..., M,) ndarray
1186
+ The eigenvalues, each repeated according to its multiplicity.
1187
+ They are not necessarily ordered, nor are they necessarily
1188
+ real for real matrices.
1189
+
1190
+ Raises
1191
+ ------
1192
+ LinAlgError
1193
+ If the eigenvalue computation does not converge.
1194
+
1195
+ See Also
1196
+ --------
1197
+ eig : eigenvalues and right eigenvectors of general arrays
1198
+ eigvalsh : eigenvalues of real symmetric or complex Hermitian
1199
+ (conjugate symmetric) arrays.
1200
+ eigh : eigenvalues and eigenvectors of real symmetric or complex
1201
+ Hermitian (conjugate symmetric) arrays.
1202
+ scipy.linalg.eigvals : Similar function in SciPy.
1203
+
1204
+ Notes
1205
+ -----
1206
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
1207
+ details.
1208
+
1209
+ This is implemented using the ``_geev`` LAPACK routines which compute
1210
+ the eigenvalues and eigenvectors of general square arrays.
1211
+
1212
+ Examples
1213
+ --------
1214
+ Illustration, using the fact that the eigenvalues of a diagonal matrix
1215
+ are its diagonal elements, that multiplying a matrix on the left
1216
+ by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose
1217
+ of `Q`), preserves the eigenvalues of the "middle" matrix. In other words,
1218
+ if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as
1219
+ ``A``:
1220
+
1221
+ >>> import numpy as np
1222
+ >>> from numpy import linalg as LA
1223
+ >>> x = np.random.random()
1224
+ >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
1225
+ >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
1226
+ (1.0, 1.0, 0.0)
1227
+
1228
+ Now multiply a diagonal matrix by ``Q`` on one side and
1229
+ by ``Q.T`` on the other:
1230
+
1231
+ >>> D = np.diag((-1,1))
1232
+ >>> LA.eigvals(D)
1233
+ array([-1., 1.])
1234
+ >>> A = np.dot(Q, D)
1235
+ >>> A = np.dot(A, Q.T)
1236
+ >>> LA.eigvals(A)
1237
+ array([ 1., -1.]) # random
1238
+
1239
+ """
1240
+ a, wrap = _makearray(a)
1241
+ _assert_stacked_square(a)
1242
+ _assert_finite(a)
1243
+ t, result_t = _commonType(a)
1244
+
1245
+ signature = 'D->D' if isComplexType(t) else 'd->D'
1246
+ with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,
1247
+ invalid='call', over='ignore', divide='ignore',
1248
+ under='ignore'):
1249
+ w = _umath_linalg.eigvals(a, signature=signature)
1250
+
1251
+ if not isComplexType(t):
1252
+ if all(w.imag == 0):
1253
+ w = w.real
1254
+ result_t = _realType(result_t)
1255
+ else:
1256
+ result_t = _complexType(result_t)
1257
+
1258
+ return w.astype(result_t, copy=False)
1259
+
1260
+
1261
+ def _eigvalsh_dispatcher(a, UPLO=None):
1262
+ return (a,)
1263
+
1264
+
1265
+ @array_function_dispatch(_eigvalsh_dispatcher)
1266
+ def eigvalsh(a, UPLO='L'):
1267
+ """
1268
+ Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
1269
+
1270
+ Main difference from eigh: the eigenvectors are not computed.
1271
+
1272
+ Parameters
1273
+ ----------
1274
+ a : (..., M, M) array_like
1275
+ A complex- or real-valued matrix whose eigenvalues are to be
1276
+ computed.
1277
+ UPLO : {'L', 'U'}, optional
1278
+ Specifies whether the calculation is done with the lower triangular
1279
+ part of `a` ('L', default) or the upper triangular part ('U').
1280
+ Irrespective of this value only the real parts of the diagonal will
1281
+ be considered in the computation to preserve the notion of a Hermitian
1282
+ matrix. It therefore follows that the imaginary part of the diagonal
1283
+ will always be treated as zero.
1284
+
1285
+ Returns
1286
+ -------
1287
+ w : (..., M,) ndarray
1288
+ The eigenvalues in ascending order, each repeated according to
1289
+ its multiplicity.
1290
+
1291
+ Raises
1292
+ ------
1293
+ LinAlgError
1294
+ If the eigenvalue computation does not converge.
1295
+
1296
+ See Also
1297
+ --------
1298
+ eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian
1299
+ (conjugate symmetric) arrays.
1300
+ eigvals : eigenvalues of general real or complex arrays.
1301
+ eig : eigenvalues and right eigenvectors of general real or complex
1302
+ arrays.
1303
+ scipy.linalg.eigvalsh : Similar function in SciPy.
1304
+
1305
+ Notes
1306
+ -----
1307
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
1308
+ details.
1309
+
1310
+ The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``.
1311
+
1312
+ Examples
1313
+ --------
1314
+ >>> import numpy as np
1315
+ >>> from numpy import linalg as LA
1316
+ >>> a = np.array([[1, -2j], [2j, 5]])
1317
+ >>> LA.eigvalsh(a)
1318
+ array([ 0.17157288, 5.82842712]) # may vary
1319
+
1320
+ >>> # demonstrate the treatment of the imaginary part of the diagonal
1321
+ >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
1322
+ >>> a
1323
+ array([[5.+2.j, 9.-2.j],
1324
+ [0.+2.j, 2.-1.j]])
1325
+ >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
1326
+ >>> # with:
1327
+ >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
1328
+ >>> b
1329
+ array([[5.+0.j, 0.-2.j],
1330
+ [0.+2.j, 2.+0.j]])
1331
+ >>> wa = LA.eigvalsh(a)
1332
+ >>> wb = LA.eigvals(b)
1333
+ >>> wa
1334
+ array([1., 6.])
1335
+ >>> wb
1336
+ array([6.+0.j, 1.+0.j])
1337
+
1338
+ """
1339
+ UPLO = UPLO.upper()
1340
+ if UPLO not in ('L', 'U'):
1341
+ raise ValueError("UPLO argument must be 'L' or 'U'")
1342
+
1343
+ if UPLO == 'L':
1344
+ gufunc = _umath_linalg.eigvalsh_lo
1345
+ else:
1346
+ gufunc = _umath_linalg.eigvalsh_up
1347
+
1348
+ a, wrap = _makearray(a)
1349
+ _assert_stacked_square(a)
1350
+ t, result_t = _commonType(a)
1351
+ signature = 'D->d' if isComplexType(t) else 'd->d'
1352
+ with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,
1353
+ invalid='call', over='ignore', divide='ignore',
1354
+ under='ignore'):
1355
+ w = gufunc(a, signature=signature)
1356
+ return w.astype(_realType(result_t), copy=False)
1357
+
1358
+
1359
+ # Eigenvectors
1360
+
1361
+
1362
+ @array_function_dispatch(_unary_dispatcher)
1363
+ def eig(a):
1364
+ """
1365
+ Compute the eigenvalues and right eigenvectors of a square array.
1366
+
1367
+ Parameters
1368
+ ----------
1369
+ a : (..., M, M) array
1370
+ Matrices for which the eigenvalues and right eigenvectors will
1371
+ be computed
1372
+
1373
+ Returns
1374
+ -------
1375
+ A namedtuple with the following attributes:
1376
+
1377
+ eigenvalues : (..., M) array
1378
+ The eigenvalues, each repeated according to its multiplicity.
1379
+ The eigenvalues are not necessarily ordered. The resulting
1380
+ array will be of complex type, unless the imaginary part is
1381
+ zero in which case it will be cast to a real type. When `a`
1382
+ is real the resulting eigenvalues will be real (0 imaginary
1383
+ part) or occur in conjugate pairs
1384
+
1385
+ eigenvectors : (..., M, M) array
1386
+ The normalized (unit "length") eigenvectors, such that the
1387
+ column ``eigenvectors[:,i]`` is the eigenvector corresponding to the
1388
+ eigenvalue ``eigenvalues[i]``.
1389
+
1390
+ Raises
1391
+ ------
1392
+ LinAlgError
1393
+ If the eigenvalue computation does not converge.
1394
+
1395
+ See Also
1396
+ --------
1397
+ eigvals : eigenvalues of a non-symmetric array.
1398
+ eigh : eigenvalues and eigenvectors of a real symmetric or complex
1399
+ Hermitian (conjugate symmetric) array.
1400
+ eigvalsh : eigenvalues of a real symmetric or complex Hermitian
1401
+ (conjugate symmetric) array.
1402
+ scipy.linalg.eig : Similar function in SciPy that also solves the
1403
+ generalized eigenvalue problem.
1404
+ scipy.linalg.schur : Best choice for unitary and other non-Hermitian
1405
+ normal matrices.
1406
+
1407
+ Notes
1408
+ -----
1409
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
1410
+ details.
1411
+
1412
+ This is implemented using the ``_geev`` LAPACK routines which compute
1413
+ the eigenvalues and eigenvectors of general square arrays.
1414
+
1415
+ The number `w` is an eigenvalue of `a` if there exists a vector `v` such
1416
+ that ``a @ v = w * v``. Thus, the arrays `a`, `eigenvalues`, and
1417
+ `eigenvectors` satisfy the equations ``a @ eigenvectors[:,i] =
1418
+ eigenvalues[i] * eigenvectors[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`.
1419
+
1420
+ The array `eigenvectors` may not be of maximum rank, that is, some of the
1421
+ columns may be linearly dependent, although round-off error may obscure
1422
+ that fact. If the eigenvalues are all different, then theoretically the
1423
+ eigenvectors are linearly independent and `a` can be diagonalized by a
1424
+ similarity transformation using `eigenvectors`, i.e, ``inv(eigenvectors) @
1425
+ a @ eigenvectors`` is diagonal.
1426
+
1427
+ For non-Hermitian normal matrices the SciPy function `scipy.linalg.schur`
1428
+ is preferred because the matrix `eigenvectors` is guaranteed to be
1429
+ unitary, which is not the case when using `eig`. The Schur factorization
1430
+ produces an upper triangular matrix rather than a diagonal matrix, but for
1431
+ normal matrices only the diagonal of the upper triangular matrix is
1432
+ needed, the rest is roundoff error.
1433
+
1434
+ Finally, it is emphasized that `eigenvectors` consists of the *right* (as
1435
+ in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``y.T @ a
1436
+ = z * y.T`` for some number `z` is called a *left* eigenvector of `a`,
1437
+ and, in general, the left and right eigenvectors of a matrix are not
1438
+ necessarily the (perhaps conjugate) transposes of each other.
1439
+
1440
+ References
1441
+ ----------
1442
+ G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL,
1443
+ Academic Press, Inc., 1980, Various pp.
1444
+
1445
+ Examples
1446
+ --------
1447
+ >>> import numpy as np
1448
+ >>> from numpy import linalg as LA
1449
+
1450
+ (Almost) trivial example with real eigenvalues and eigenvectors.
1451
+
1452
+ >>> eigenvalues, eigenvectors = LA.eig(np.diag((1, 2, 3)))
1453
+ >>> eigenvalues
1454
+ array([1., 2., 3.])
1455
+ >>> eigenvectors
1456
+ array([[1., 0., 0.],
1457
+ [0., 1., 0.],
1458
+ [0., 0., 1.]])
1459
+
1460
+ Real matrix possessing complex eigenvalues and eigenvectors;
1461
+ note that the eigenvalues are complex conjugates of each other.
1462
+
1463
+ >>> eigenvalues, eigenvectors = LA.eig(np.array([[1, -1], [1, 1]]))
1464
+ >>> eigenvalues
1465
+ array([1.+1.j, 1.-1.j])
1466
+ >>> eigenvectors
1467
+ array([[0.70710678+0.j , 0.70710678-0.j ],
1468
+ [0. -0.70710678j, 0. +0.70710678j]])
1469
+
1470
+ Complex-valued matrix with real eigenvalues (but complex-valued
1471
+ eigenvectors); note that ``a.conj().T == a``, i.e., `a` is Hermitian.
1472
+
1473
+ >>> a = np.array([[1, 1j], [-1j, 1]])
1474
+ >>> eigenvalues, eigenvectors = LA.eig(a)
1475
+ >>> eigenvalues
1476
+ array([2.+0.j, 0.+0.j])
1477
+ >>> eigenvectors
1478
+ array([[ 0. +0.70710678j, 0.70710678+0.j ], # may vary
1479
+ [ 0.70710678+0.j , -0. +0.70710678j]])
1480
+
1481
+ Be careful about round-off error!
1482
+
1483
+ >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
1484
+ >>> # Theor. eigenvalues are 1 +/- 1e-9
1485
+ >>> eigenvalues, eigenvectors = LA.eig(a)
1486
+ >>> eigenvalues
1487
+ array([1., 1.])
1488
+ >>> eigenvectors
1489
+ array([[1., 0.],
1490
+ [0., 1.]])
1491
+
1492
+ """
1493
+ a, wrap = _makearray(a)
1494
+ _assert_stacked_square(a)
1495
+ _assert_finite(a)
1496
+ t, result_t = _commonType(a)
1497
+
1498
+ signature = 'D->DD' if isComplexType(t) else 'd->DD'
1499
+ with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,
1500
+ invalid='call', over='ignore', divide='ignore',
1501
+ under='ignore'):
1502
+ w, vt = _umath_linalg.eig(a, signature=signature)
1503
+
1504
+ if not isComplexType(t) and all(w.imag == 0.0):
1505
+ w = w.real
1506
+ vt = vt.real
1507
+ result_t = _realType(result_t)
1508
+ else:
1509
+ result_t = _complexType(result_t)
1510
+
1511
+ vt = vt.astype(result_t, copy=False)
1512
+ return EigResult(w.astype(result_t, copy=False), wrap(vt))
1513
+
1514
+
1515
+ @array_function_dispatch(_eigvalsh_dispatcher)
1516
+ def eigh(a, UPLO='L'):
1517
+ """
1518
+ Return the eigenvalues and eigenvectors of a complex Hermitian
1519
+ (conjugate symmetric) or a real symmetric matrix.
1520
+
1521
+ Returns two objects, a 1-D array containing the eigenvalues of `a`, and
1522
+ a 2-D square array or matrix (depending on the input type) of the
1523
+ corresponding eigenvectors (in columns).
1524
+
1525
+ Parameters
1526
+ ----------
1527
+ a : (..., M, M) array
1528
+ Hermitian or real symmetric matrices whose eigenvalues and
1529
+ eigenvectors are to be computed.
1530
+ UPLO : {'L', 'U'}, optional
1531
+ Specifies whether the calculation is done with the lower triangular
1532
+ part of `a` ('L', default) or the upper triangular part ('U').
1533
+ Irrespective of this value only the real parts of the diagonal will
1534
+ be considered in the computation to preserve the notion of a Hermitian
1535
+ matrix. It therefore follows that the imaginary part of the diagonal
1536
+ will always be treated as zero.
1537
+
1538
+ Returns
1539
+ -------
1540
+ A namedtuple with the following attributes:
1541
+
1542
+ eigenvalues : (..., M) ndarray
1543
+ The eigenvalues in ascending order, each repeated according to
1544
+ its multiplicity.
1545
+ eigenvectors : {(..., M, M) ndarray, (..., M, M) matrix}
1546
+ The column ``eigenvectors[:, i]`` is the normalized eigenvector
1547
+ corresponding to the eigenvalue ``eigenvalues[i]``. Will return a
1548
+ matrix object if `a` is a matrix object.
1549
+
1550
+ Raises
1551
+ ------
1552
+ LinAlgError
1553
+ If the eigenvalue computation does not converge.
1554
+
1555
+ See Also
1556
+ --------
1557
+ eigvalsh : eigenvalues of real symmetric or complex Hermitian
1558
+ (conjugate symmetric) arrays.
1559
+ eig : eigenvalues and right eigenvectors for non-symmetric arrays.
1560
+ eigvals : eigenvalues of non-symmetric arrays.
1561
+ scipy.linalg.eigh : Similar function in SciPy (but also solves the
1562
+ generalized eigenvalue problem).
1563
+
1564
+ Notes
1565
+ -----
1566
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
1567
+ details.
1568
+
1569
+ The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``,
1570
+ ``_heevd``.
1571
+
1572
+ The eigenvalues of real symmetric or complex Hermitian matrices are always
1573
+ real. [1]_ The array `eigenvalues` of (column) eigenvectors is unitary and
1574
+ `a`, `eigenvalues`, and `eigenvectors` satisfy the equations ``dot(a,
1575
+ eigenvectors[:, i]) = eigenvalues[i] * eigenvectors[:, i]``.
1576
+
1577
+ References
1578
+ ----------
1579
+ .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
1580
+ FL, Academic Press, Inc., 1980, pg. 222.
1581
+
1582
+ Examples
1583
+ --------
1584
+ >>> import numpy as np
1585
+ >>> from numpy import linalg as LA
1586
+ >>> a = np.array([[1, -2j], [2j, 5]])
1587
+ >>> a
1588
+ array([[ 1.+0.j, -0.-2.j],
1589
+ [ 0.+2.j, 5.+0.j]])
1590
+ >>> eigenvalues, eigenvectors = LA.eigh(a)
1591
+ >>> eigenvalues
1592
+ array([0.17157288, 5.82842712])
1593
+ >>> eigenvectors
1594
+ array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
1595
+ [ 0. +0.38268343j, 0. -0.92387953j]])
1596
+
1597
+ >>> (np.dot(a, eigenvectors[:, 0]) -
1598
+ ... eigenvalues[0] * eigenvectors[:, 0]) # verify 1st eigenval/vec pair
1599
+ array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
1600
+ >>> (np.dot(a, eigenvectors[:, 1]) -
1601
+ ... eigenvalues[1] * eigenvectors[:, 1]) # verify 2nd eigenval/vec pair
1602
+ array([0.+0.j, 0.+0.j])
1603
+
1604
+ >>> A = np.matrix(a) # what happens if input is a matrix object
1605
+ >>> A
1606
+ matrix([[ 1.+0.j, -0.-2.j],
1607
+ [ 0.+2.j, 5.+0.j]])
1608
+ >>> eigenvalues, eigenvectors = LA.eigh(A)
1609
+ >>> eigenvalues
1610
+ array([0.17157288, 5.82842712])
1611
+ >>> eigenvectors
1612
+ matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
1613
+ [ 0. +0.38268343j, 0. -0.92387953j]])
1614
+
1615
+ >>> # demonstrate the treatment of the imaginary part of the diagonal
1616
+ >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
1617
+ >>> a
1618
+ array([[5.+2.j, 9.-2.j],
1619
+ [0.+2.j, 2.-1.j]])
1620
+ >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
1621
+ >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
1622
+ >>> b
1623
+ array([[5.+0.j, 0.-2.j],
1624
+ [0.+2.j, 2.+0.j]])
1625
+ >>> wa, va = LA.eigh(a)
1626
+ >>> wb, vb = LA.eig(b)
1627
+ >>> wa
1628
+ array([1., 6.])
1629
+ >>> wb
1630
+ array([6.+0.j, 1.+0.j])
1631
+ >>> va
1632
+ array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary
1633
+ [ 0. +0.89442719j, 0. -0.4472136j ]])
1634
+ >>> vb
1635
+ array([[ 0.89442719+0.j , -0. +0.4472136j],
1636
+ [-0. +0.4472136j, 0.89442719+0.j ]])
1637
+
1638
+ """
1639
+ UPLO = UPLO.upper()
1640
+ if UPLO not in ('L', 'U'):
1641
+ raise ValueError("UPLO argument must be 'L' or 'U'")
1642
+
1643
+ a, wrap = _makearray(a)
1644
+ _assert_stacked_square(a)
1645
+ t, result_t = _commonType(a)
1646
+
1647
+ if UPLO == 'L':
1648
+ gufunc = _umath_linalg.eigh_lo
1649
+ else:
1650
+ gufunc = _umath_linalg.eigh_up
1651
+
1652
+ signature = 'D->dD' if isComplexType(t) else 'd->dd'
1653
+ with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,
1654
+ invalid='call', over='ignore', divide='ignore',
1655
+ under='ignore'):
1656
+ w, vt = gufunc(a, signature=signature)
1657
+ w = w.astype(_realType(result_t), copy=False)
1658
+ vt = vt.astype(result_t, copy=False)
1659
+ return EighResult(w, wrap(vt))
1660
+
1661
+
1662
+ # Singular value decomposition
1663
+
1664
+ def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None):
1665
+ return (a,)
1666
+
1667
+
1668
+ @array_function_dispatch(_svd_dispatcher)
1669
+ def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
1670
+ """
1671
+ Singular Value Decomposition.
1672
+
1673
+ When `a` is a 2D array, and ``full_matrices=False``, then it is
1674
+ factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where
1675
+ `u` and the Hermitian transpose of `vh` are 2D arrays with
1676
+ orthonormal columns and `s` is a 1D array of `a`'s singular
1677
+ values. When `a` is higher-dimensional, SVD is applied in
1678
+ stacked mode as explained below.
1679
+
1680
+ Parameters
1681
+ ----------
1682
+ a : (..., M, N) array_like
1683
+ A real or complex array with ``a.ndim >= 2``.
1684
+ full_matrices : bool, optional
1685
+ If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and
1686
+ ``(..., N, N)``, respectively. Otherwise, the shapes are
1687
+ ``(..., M, K)`` and ``(..., K, N)``, respectively, where
1688
+ ``K = min(M, N)``.
1689
+ compute_uv : bool, optional
1690
+ Whether or not to compute `u` and `vh` in addition to `s`. True
1691
+ by default.
1692
+ hermitian : bool, optional
1693
+ If True, `a` is assumed to be Hermitian (symmetric if real-valued),
1694
+ enabling a more efficient method for finding singular values.
1695
+ Defaults to False.
1696
+
1697
+ Returns
1698
+ -------
1699
+ U : { (..., M, M), (..., M, K) } array
1700
+ Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
1701
+ size as those of the input `a`. The size of the last two dimensions
1702
+ depends on the value of `full_matrices`. Only returned when
1703
+ `compute_uv` is True.
1704
+ S : (..., K) array
1705
+ Vector(s) with the singular values, within each vector sorted in
1706
+ descending order. The first ``a.ndim - 2`` dimensions have the same
1707
+ size as those of the input `a`.
1708
+ Vh : { (..., N, N), (..., K, N) } array
1709
+ Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
1710
+ size as those of the input `a`. The size of the last two dimensions
1711
+ depends on the value of `full_matrices`. Only returned when
1712
+ `compute_uv` is True.
1713
+
1714
+ Raises
1715
+ ------
1716
+ LinAlgError
1717
+ If SVD computation does not converge.
1718
+
1719
+ See Also
1720
+ --------
1721
+ scipy.linalg.svd : Similar function in SciPy.
1722
+ scipy.linalg.svdvals : Compute singular values of a matrix.
1723
+
1724
+ Notes
1725
+ -----
1726
+ When `compute_uv` is True, the result is a namedtuple with the following
1727
+ attribute names: `U`, `S`, and `Vh`.
1728
+
1729
+ The decomposition is performed using LAPACK routine ``_gesdd``.
1730
+
1731
+ SVD is usually described for the factorization of a 2D matrix :math:`A`.
1732
+ The higher-dimensional case will be discussed below. In the 2D case, SVD is
1733
+ written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`,
1734
+ :math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s`
1735
+ contains the singular values of `a` and `u` and `vh` are unitary. The rows
1736
+ of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are
1737
+ the eigenvectors of :math:`A A^H`. In both cases the corresponding
1738
+ (possibly non-zero) eigenvalues are given by ``s**2``.
1739
+
1740
+ If `a` has more than two dimensions, then broadcasting rules apply, as
1741
+ explained in :ref:`routines.linalg-broadcasting`. This means that SVD is
1742
+ working in "stacked" mode: it iterates over all indices of the first
1743
+ ``a.ndim - 2`` dimensions and for each combination SVD is applied to the
1744
+ last two indices. The matrix `a` can be reconstructed from the
1745
+ decomposition with either ``(u * s[..., None, :]) @ vh`` or
1746
+ ``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the
1747
+ function ``np.matmul`` for python versions below 3.5.)
1748
+
1749
+ If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are
1750
+ all the return values.
1751
+
1752
+ Examples
1753
+ --------
1754
+ >>> import numpy as np
1755
+ >>> rng = np.random.default_rng()
1756
+ >>> a = rng.normal(size=(9, 6)) + 1j*rng.normal(size=(9, 6))
1757
+ >>> b = rng.normal(size=(2, 7, 8, 3)) + 1j*rng.normal(size=(2, 7, 8, 3))
1758
+
1759
+
1760
+ Reconstruction based on full SVD, 2D case:
1761
+
1762
+ >>> U, S, Vh = np.linalg.svd(a, full_matrices=True)
1763
+ >>> U.shape, S.shape, Vh.shape
1764
+ ((9, 9), (6,), (6, 6))
1765
+ >>> np.allclose(a, np.dot(U[:, :6] * S, Vh))
1766
+ True
1767
+ >>> smat = np.zeros((9, 6), dtype=complex)
1768
+ >>> smat[:6, :6] = np.diag(S)
1769
+ >>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
1770
+ True
1771
+
1772
+ Reconstruction based on reduced SVD, 2D case:
1773
+
1774
+ >>> U, S, Vh = np.linalg.svd(a, full_matrices=False)
1775
+ >>> U.shape, S.shape, Vh.shape
1776
+ ((9, 6), (6,), (6, 6))
1777
+ >>> np.allclose(a, np.dot(U * S, Vh))
1778
+ True
1779
+ >>> smat = np.diag(S)
1780
+ >>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
1781
+ True
1782
+
1783
+ Reconstruction based on full SVD, 4D case:
1784
+
1785
+ >>> U, S, Vh = np.linalg.svd(b, full_matrices=True)
1786
+ >>> U.shape, S.shape, Vh.shape
1787
+ ((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
1788
+ >>> np.allclose(b, np.matmul(U[..., :3] * S[..., None, :], Vh))
1789
+ True
1790
+ >>> np.allclose(b, np.matmul(U[..., :3], S[..., None] * Vh))
1791
+ True
1792
+
1793
+ Reconstruction based on reduced SVD, 4D case:
1794
+
1795
+ >>> U, S, Vh = np.linalg.svd(b, full_matrices=False)
1796
+ >>> U.shape, S.shape, Vh.shape
1797
+ ((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
1798
+ >>> np.allclose(b, np.matmul(U * S[..., None, :], Vh))
1799
+ True
1800
+ >>> np.allclose(b, np.matmul(U, S[..., None] * Vh))
1801
+ True
1802
+
1803
+ """
1804
+ import numpy as np
1805
+ a, wrap = _makearray(a)
1806
+
1807
+ if hermitian:
1808
+ # note: lapack svd returns eigenvalues with s ** 2 sorted descending,
1809
+ # but eig returns s sorted ascending, so we re-order the eigenvalues
1810
+ # and related arrays to have the correct order
1811
+ if compute_uv:
1812
+ s, u = eigh(a)
1813
+ sgn = sign(s)
1814
+ s = abs(s)
1815
+ sidx = argsort(s)[..., ::-1]
1816
+ sgn = np.take_along_axis(sgn, sidx, axis=-1)
1817
+ s = np.take_along_axis(s, sidx, axis=-1)
1818
+ u = np.take_along_axis(u, sidx[..., None, :], axis=-1)
1819
+ # singular values are unsigned, move the sign into v
1820
+ vt = transpose(u * sgn[..., None, :]).conjugate()
1821
+ return SVDResult(wrap(u), s, wrap(vt))
1822
+ else:
1823
+ s = eigvalsh(a)
1824
+ s = abs(s)
1825
+ return sort(s)[..., ::-1]
1826
+
1827
+ _assert_stacked_2d(a)
1828
+ t, result_t = _commonType(a)
1829
+
1830
+ m, n = a.shape[-2:]
1831
+ if compute_uv:
1832
+ if full_matrices:
1833
+ gufunc = _umath_linalg.svd_f
1834
+ else:
1835
+ gufunc = _umath_linalg.svd_s
1836
+
1837
+ signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
1838
+ with errstate(call=_raise_linalgerror_svd_nonconvergence,
1839
+ invalid='call', over='ignore', divide='ignore',
1840
+ under='ignore'):
1841
+ u, s, vh = gufunc(a, signature=signature)
1842
+ u = u.astype(result_t, copy=False)
1843
+ s = s.astype(_realType(result_t), copy=False)
1844
+ vh = vh.astype(result_t, copy=False)
1845
+ return SVDResult(wrap(u), s, wrap(vh))
1846
+ else:
1847
+ signature = 'D->d' if isComplexType(t) else 'd->d'
1848
+ with errstate(call=_raise_linalgerror_svd_nonconvergence,
1849
+ invalid='call', over='ignore', divide='ignore',
1850
+ under='ignore'):
1851
+ s = _umath_linalg.svd(a, signature=signature)
1852
+ s = s.astype(_realType(result_t), copy=False)
1853
+ return s
1854
+
1855
+
1856
+ def _svdvals_dispatcher(x):
1857
+ return (x,)
1858
+
1859
+
1860
+ @array_function_dispatch(_svdvals_dispatcher)
1861
+ def svdvals(x, /):
1862
+ """
1863
+ Returns the singular values of a matrix (or a stack of matrices) ``x``.
1864
+ When x is a stack of matrices, the function will compute the singular
1865
+ values for each matrix in the stack.
1866
+
1867
+ This function is Array API compatible.
1868
+
1869
+ Calling ``np.svdvals(x)`` to get singular values is the same as
1870
+ ``np.svd(x, compute_uv=False, hermitian=False)``.
1871
+
1872
+ Parameters
1873
+ ----------
1874
+ x : (..., M, N) array_like
1875
+ Input array having shape (..., M, N) and whose last two
1876
+ dimensions form matrices on which to perform singular value
1877
+ decomposition. Should have a floating-point data type.
1878
+
1879
+ Returns
1880
+ -------
1881
+ out : ndarray
1882
+ An array with shape (..., K) that contains the vector(s)
1883
+ of singular values of length K, where K = min(M, N).
1884
+
1885
+ See Also
1886
+ --------
1887
+ scipy.linalg.svdvals : Compute singular values of a matrix.
1888
+
1889
+ Examples
1890
+ --------
1891
+
1892
+ >>> np.linalg.svdvals([[1, 2, 3, 4, 5],
1893
+ ... [1, 4, 9, 16, 25],
1894
+ ... [1, 8, 27, 64, 125]])
1895
+ array([146.68862757, 5.57510612, 0.60393245])
1896
+
1897
+ Determine the rank of a matrix using singular values:
1898
+
1899
+ >>> s = np.linalg.svdvals([[1, 2, 3],
1900
+ ... [2, 4, 6],
1901
+ ... [-1, 1, -1]]); s
1902
+ array([8.38434191e+00, 1.64402274e+00, 2.31534378e-16])
1903
+ >>> np.count_nonzero(s > 1e-10) # Matrix of rank 2
1904
+ 2
1905
+
1906
+ """
1907
+ return svd(x, compute_uv=False, hermitian=False)
1908
+
1909
+
1910
+ def _cond_dispatcher(x, p=None):
1911
+ return (x,)
1912
+
1913
+
1914
+ @array_function_dispatch(_cond_dispatcher)
1915
+ def cond(x, p=None):
1916
+ """
1917
+ Compute the condition number of a matrix.
1918
+
1919
+ This function is capable of returning the condition number using
1920
+ one of seven different norms, depending on the value of `p` (see
1921
+ Parameters below).
1922
+
1923
+ Parameters
1924
+ ----------
1925
+ x : (..., M, N) array_like
1926
+ The matrix whose condition number is sought.
1927
+ p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional
1928
+ Order of the norm used in the condition number computation:
1929
+
1930
+ ===== ============================
1931
+ p norm for matrices
1932
+ ===== ============================
1933
+ None 2-norm, computed directly using the ``SVD``
1934
+ 'fro' Frobenius norm
1935
+ inf max(sum(abs(x), axis=1))
1936
+ -inf min(sum(abs(x), axis=1))
1937
+ 1 max(sum(abs(x), axis=0))
1938
+ -1 min(sum(abs(x), axis=0))
1939
+ 2 2-norm (largest sing. value)
1940
+ -2 smallest singular value
1941
+ ===== ============================
1942
+
1943
+ inf means the `numpy.inf` object, and the Frobenius norm is
1944
+ the root-of-sum-of-squares norm.
1945
+
1946
+ Returns
1947
+ -------
1948
+ c : {float, inf}
1949
+ The condition number of the matrix. May be infinite.
1950
+
1951
+ See Also
1952
+ --------
1953
+ numpy.linalg.norm
1954
+
1955
+ Notes
1956
+ -----
1957
+ The condition number of `x` is defined as the norm of `x` times the
1958
+ norm of the inverse of `x` [1]_; the norm can be the usual L2-norm
1959
+ (root-of-sum-of-squares) or one of a number of other matrix norms.
1960
+
1961
+ References
1962
+ ----------
1963
+ .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL,
1964
+ Academic Press, Inc., 1980, pg. 285.
1965
+
1966
+ Examples
1967
+ --------
1968
+ >>> import numpy as np
1969
+ >>> from numpy import linalg as LA
1970
+ >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
1971
+ >>> a
1972
+ array([[ 1, 0, -1],
1973
+ [ 0, 1, 0],
1974
+ [ 1, 0, 1]])
1975
+ >>> LA.cond(a)
1976
+ 1.4142135623730951
1977
+ >>> LA.cond(a, 'fro')
1978
+ 3.1622776601683795
1979
+ >>> LA.cond(a, np.inf)
1980
+ 2.0
1981
+ >>> LA.cond(a, -np.inf)
1982
+ 1.0
1983
+ >>> LA.cond(a, 1)
1984
+ 2.0
1985
+ >>> LA.cond(a, -1)
1986
+ 1.0
1987
+ >>> LA.cond(a, 2)
1988
+ 1.4142135623730951
1989
+ >>> LA.cond(a, -2)
1990
+ 0.70710678118654746 # may vary
1991
+ >>> (min(LA.svd(a, compute_uv=False)) *
1992
+ ... min(LA.svd(LA.inv(a), compute_uv=False)))
1993
+ 0.70710678118654746 # may vary
1994
+
1995
+ """
1996
+ x = asarray(x) # in case we have a matrix
1997
+ if _is_empty_2d(x):
1998
+ raise LinAlgError("cond is not defined on empty arrays")
1999
+ if p is None or p in {2, -2}:
2000
+ s = svd(x, compute_uv=False)
2001
+ with errstate(all='ignore'):
2002
+ if p == -2:
2003
+ r = s[..., -1] / s[..., 0]
2004
+ else:
2005
+ r = s[..., 0] / s[..., -1]
2006
+ else:
2007
+ # Call inv(x) ignoring errors. The result array will
2008
+ # contain nans in the entries where inversion failed.
2009
+ _assert_stacked_square(x)
2010
+ t, result_t = _commonType(x)
2011
+ result_t = _realType(result_t) # condition number is always real
2012
+ signature = 'D->D' if isComplexType(t) else 'd->d'
2013
+ with errstate(all='ignore'):
2014
+ invx = _umath_linalg.inv(x, signature=signature)
2015
+ r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1))
2016
+ r = r.astype(result_t, copy=False)
2017
+
2018
+ # Convert nans to infs unless the original array had nan entries
2019
+ nan_mask = isnan(r)
2020
+ if nan_mask.any():
2021
+ nan_mask &= ~isnan(x).any(axis=(-2, -1))
2022
+ if r.ndim > 0:
2023
+ r[nan_mask] = inf
2024
+ elif nan_mask:
2025
+ # Convention is to return scalars instead of 0d arrays.
2026
+ r = r.dtype.type(inf)
2027
+
2028
+ return r
2029
+
2030
+
2031
+ def _matrix_rank_dispatcher(A, tol=None, hermitian=None, *, rtol=None):
2032
+ return (A,)
2033
+
2034
+
2035
+ @array_function_dispatch(_matrix_rank_dispatcher)
2036
+ def matrix_rank(A, tol=None, hermitian=False, *, rtol=None):
2037
+ """
2038
+ Return matrix rank of array using SVD method
2039
+
2040
+ Rank of the array is the number of singular values of the array that are
2041
+ greater than `tol`.
2042
+
2043
+ Parameters
2044
+ ----------
2045
+ A : {(M,), (..., M, N)} array_like
2046
+ Input vector or stack of matrices.
2047
+ tol : (...) array_like, float, optional
2048
+ Threshold below which SVD values are considered zero. If `tol` is
2049
+ None, and ``S`` is an array with singular values for `M`, and
2050
+ ``eps`` is the epsilon value for datatype of ``S``, then `tol` is
2051
+ set to ``S.max() * max(M, N) * eps``.
2052
+ hermitian : bool, optional
2053
+ If True, `A` is assumed to be Hermitian (symmetric if real-valued),
2054
+ enabling a more efficient method for finding singular values.
2055
+ Defaults to False.
2056
+ rtol : (...) array_like, float, optional
2057
+ Parameter for the relative tolerance component. Only ``tol`` or
2058
+ ``rtol`` can be set at a time. Defaults to ``max(M, N) * eps``.
2059
+
2060
+ .. versionadded:: 2.0.0
2061
+
2062
+ Returns
2063
+ -------
2064
+ rank : (...) array_like
2065
+ Rank of A.
2066
+
2067
+ Notes
2068
+ -----
2069
+ The default threshold to detect rank deficiency is a test on the magnitude
2070
+ of the singular values of `A`. By default, we identify singular values
2071
+ less than ``S.max() * max(M, N) * eps`` as indicating rank deficiency
2072
+ (with the symbols defined above). This is the algorithm MATLAB uses [1]_.
2073
+ It also appears in *Numerical recipes* in the discussion of SVD solutions
2074
+ for linear least squares [2]_.
2075
+
2076
+ This default threshold is designed to detect rank deficiency accounting
2077
+ for the numerical errors of the SVD computation. Imagine that there
2078
+ is a column in `A` that is an exact (in floating point) linear combination
2079
+ of other columns in `A`. Computing the SVD on `A` will not produce
2080
+ a singular value exactly equal to 0 in general: any difference of
2081
+ the smallest SVD value from 0 will be caused by numerical imprecision
2082
+ in the calculation of the SVD. Our threshold for small SVD values takes
2083
+ this numerical imprecision into account, and the default threshold will
2084
+ detect such numerical rank deficiency. The threshold may declare a matrix
2085
+ `A` rank deficient even if the linear combination of some columns of `A`
2086
+ is not exactly equal to another column of `A` but only numerically very
2087
+ close to another column of `A`.
2088
+
2089
+ We chose our default threshold because it is in wide use. Other thresholds
2090
+ are possible. For example, elsewhere in the 2007 edition of *Numerical
2091
+ recipes* there is an alternative threshold of ``S.max() *
2092
+ np.finfo(A.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe
2093
+ this threshold as being based on "expected roundoff error" (p 71).
2094
+
2095
+ The thresholds above deal with floating point roundoff error in the
2096
+ calculation of the SVD. However, you may have more information about
2097
+ the sources of error in `A` that would make you consider other tolerance
2098
+ values to detect *effective* rank deficiency. The most useful measure
2099
+ of the tolerance depends on the operations you intend to use on your
2100
+ matrix. For example, if your data come from uncertain measurements with
2101
+ uncertainties greater than floating point epsilon, choosing a tolerance
2102
+ near that uncertainty may be preferable. The tolerance may be absolute
2103
+ if the uncertainties are absolute rather than relative.
2104
+
2105
+ References
2106
+ ----------
2107
+ .. [1] MATLAB reference documentation, "Rank"
2108
+ https://www.mathworks.com/help/techdoc/ref/rank.html
2109
+ .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
2110
+ "Numerical Recipes (3rd edition)", Cambridge University Press, 2007,
2111
+ page 795.
2112
+
2113
+ Examples
2114
+ --------
2115
+ >>> import numpy as np
2116
+ >>> from numpy.linalg import matrix_rank
2117
+ >>> matrix_rank(np.eye(4)) # Full rank matrix
2118
+ 4
2119
+ >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
2120
+ >>> matrix_rank(I)
2121
+ 3
2122
+ >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
2123
+ 1
2124
+ >>> matrix_rank(np.zeros((4,)))
2125
+ 0
2126
+ """
2127
+ if rtol is not None and tol is not None:
2128
+ raise ValueError("`tol` and `rtol` can't be both set.")
2129
+
2130
+ A = asarray(A)
2131
+ if A.ndim < 2:
2132
+ return int(not all(A == 0))
2133
+ S = svd(A, compute_uv=False, hermitian=hermitian)
2134
+
2135
+ if tol is None:
2136
+ if rtol is None:
2137
+ rtol = max(A.shape[-2:]) * finfo(S.dtype).eps
2138
+ else:
2139
+ rtol = asarray(rtol)[..., newaxis]
2140
+ tol = S.max(axis=-1, keepdims=True) * rtol
2141
+ else:
2142
+ tol = asarray(tol)[..., newaxis]
2143
+
2144
+ return count_nonzero(S > tol, axis=-1)
2145
+
2146
+
2147
+ # Generalized inverse
2148
+
2149
+ def _pinv_dispatcher(a, rcond=None, hermitian=None, *, rtol=None):
2150
+ return (a,)
2151
+
2152
+
2153
+ @array_function_dispatch(_pinv_dispatcher)
2154
+ def pinv(a, rcond=None, hermitian=False, *, rtol=_NoValue):
2155
+ """
2156
+ Compute the (Moore-Penrose) pseudo-inverse of a matrix.
2157
+
2158
+ Calculate the generalized inverse of a matrix using its
2159
+ singular-value decomposition (SVD) and including all
2160
+ *large* singular values.
2161
+
2162
+ Parameters
2163
+ ----------
2164
+ a : (..., M, N) array_like
2165
+ Matrix or stack of matrices to be pseudo-inverted.
2166
+ rcond : (...) array_like of float, optional
2167
+ Cutoff for small singular values.
2168
+ Singular values less than or equal to
2169
+ ``rcond * largest_singular_value`` are set to zero.
2170
+ Broadcasts against the stack of matrices. Default: ``1e-15``.
2171
+ hermitian : bool, optional
2172
+ If True, `a` is assumed to be Hermitian (symmetric if real-valued),
2173
+ enabling a more efficient method for finding singular values.
2174
+ Defaults to False.
2175
+ rtol : (...) array_like of float, optional
2176
+ Same as `rcond`, but it's an Array API compatible parameter name.
2177
+ Only `rcond` or `rtol` can be set at a time. If none of them are
2178
+ provided then NumPy's ``1e-15`` default is used. If ``rtol=None``
2179
+ is passed then the API standard default is used.
2180
+
2181
+ .. versionadded:: 2.0.0
2182
+
2183
+ Returns
2184
+ -------
2185
+ B : (..., N, M) ndarray
2186
+ The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so
2187
+ is `B`.
2188
+
2189
+ Raises
2190
+ ------
2191
+ LinAlgError
2192
+ If the SVD computation does not converge.
2193
+
2194
+ See Also
2195
+ --------
2196
+ scipy.linalg.pinv : Similar function in SciPy.
2197
+ scipy.linalg.pinvh : Compute the (Moore-Penrose) pseudo-inverse of a
2198
+ Hermitian matrix.
2199
+
2200
+ Notes
2201
+ -----
2202
+ The pseudo-inverse of a matrix A, denoted :math:`A^+`, is
2203
+ defined as: "the matrix that 'solves' [the least-squares problem]
2204
+ :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then
2205
+ :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`.
2206
+
2207
+ It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular
2208
+ value decomposition of A, then
2209
+ :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are
2210
+ orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting
2211
+ of A's so-called singular values, (followed, typically, by
2212
+ zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix
2213
+ consisting of the reciprocals of A's singular values
2214
+ (again, followed by zeros). [1]_
2215
+
2216
+ References
2217
+ ----------
2218
+ .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
2219
+ FL, Academic Press, Inc., 1980, pp. 139-142.
2220
+
2221
+ Examples
2222
+ --------
2223
+ The following example checks that ``a * a+ * a == a`` and
2224
+ ``a+ * a * a+ == a+``:
2225
+
2226
+ >>> import numpy as np
2227
+ >>> rng = np.random.default_rng()
2228
+ >>> a = rng.normal(size=(9, 6))
2229
+ >>> B = np.linalg.pinv(a)
2230
+ >>> np.allclose(a, np.dot(a, np.dot(B, a)))
2231
+ True
2232
+ >>> np.allclose(B, np.dot(B, np.dot(a, B)))
2233
+ True
2234
+
2235
+ """
2236
+ a, wrap = _makearray(a)
2237
+ if rcond is None:
2238
+ if rtol is _NoValue:
2239
+ rcond = 1e-15
2240
+ elif rtol is None:
2241
+ rcond = max(a.shape[-2:]) * finfo(a.dtype).eps
2242
+ else:
2243
+ rcond = rtol
2244
+ elif rtol is not _NoValue:
2245
+ raise ValueError("`rtol` and `rcond` can't be both set.")
2246
+ else:
2247
+ # NOTE: Deprecate `rcond` in a few versions.
2248
+ pass
2249
+
2250
+ rcond = asarray(rcond)
2251
+ if _is_empty_2d(a):
2252
+ m, n = a.shape[-2:]
2253
+ res = empty(a.shape[:-2] + (n, m), dtype=a.dtype)
2254
+ return wrap(res)
2255
+ a = a.conjugate()
2256
+ u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
2257
+
2258
+ # discard small singular values
2259
+ cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True)
2260
+ large = s > cutoff
2261
+ s = divide(1, s, where=large, out=s)
2262
+ s[~large] = 0
2263
+
2264
+ res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u)))
2265
+ return wrap(res)
2266
+
2267
+
2268
+ # Determinant
2269
+
2270
+
2271
+ @array_function_dispatch(_unary_dispatcher)
2272
+ def slogdet(a):
2273
+ """
2274
+ Compute the sign and (natural) logarithm of the determinant of an array.
2275
+
2276
+ If an array has a very small or very large determinant, then a call to
2277
+ `det` may overflow or underflow. This routine is more robust against such
2278
+ issues, because it computes the logarithm of the determinant rather than
2279
+ the determinant itself.
2280
+
2281
+ Parameters
2282
+ ----------
2283
+ a : (..., M, M) array_like
2284
+ Input array, has to be a square 2-D array.
2285
+
2286
+ Returns
2287
+ -------
2288
+ A namedtuple with the following attributes:
2289
+
2290
+ sign : (...) array_like
2291
+ A number representing the sign of the determinant. For a real matrix,
2292
+ this is 1, 0, or -1. For a complex matrix, this is a complex number
2293
+ with absolute value 1 (i.e., it is on the unit circle), or else 0.
2294
+ logabsdet : (...) array_like
2295
+ The natural log of the absolute value of the determinant.
2296
+
2297
+ If the determinant is zero, then `sign` will be 0 and `logabsdet`
2298
+ will be -inf. In all cases, the determinant is equal to
2299
+ ``sign * np.exp(logabsdet)``.
2300
+
2301
+ See Also
2302
+ --------
2303
+ det
2304
+
2305
+ Notes
2306
+ -----
2307
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
2308
+ details.
2309
+
2310
+ The determinant is computed via LU factorization using the LAPACK
2311
+ routine ``z/dgetrf``.
2312
+
2313
+ Examples
2314
+ --------
2315
+ The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``:
2316
+
2317
+ >>> import numpy as np
2318
+ >>> a = np.array([[1, 2], [3, 4]])
2319
+ >>> (sign, logabsdet) = np.linalg.slogdet(a)
2320
+ >>> (sign, logabsdet)
2321
+ (-1, 0.69314718055994529) # may vary
2322
+ >>> sign * np.exp(logabsdet)
2323
+ -2.0
2324
+
2325
+ Computing log-determinants for a stack of matrices:
2326
+
2327
+ >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
2328
+ >>> a.shape
2329
+ (3, 2, 2)
2330
+ >>> sign, logabsdet = np.linalg.slogdet(a)
2331
+ >>> (sign, logabsdet)
2332
+ (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154]))
2333
+ >>> sign * np.exp(logabsdet)
2334
+ array([-2., -3., -8.])
2335
+
2336
+ This routine succeeds where ordinary `det` does not:
2337
+
2338
+ >>> np.linalg.det(np.eye(500) * 0.1)
2339
+ 0.0
2340
+ >>> np.linalg.slogdet(np.eye(500) * 0.1)
2341
+ (1, -1151.2925464970228)
2342
+
2343
+ """
2344
+ a = asarray(a)
2345
+ _assert_stacked_square(a)
2346
+ t, result_t = _commonType(a)
2347
+ real_t = _realType(result_t)
2348
+ signature = 'D->Dd' if isComplexType(t) else 'd->dd'
2349
+ sign, logdet = _umath_linalg.slogdet(a, signature=signature)
2350
+ sign = sign.astype(result_t, copy=False)
2351
+ logdet = logdet.astype(real_t, copy=False)
2352
+ return SlogdetResult(sign, logdet)
2353
+
2354
+
2355
+ @array_function_dispatch(_unary_dispatcher)
2356
+ def det(a):
2357
+ """
2358
+ Compute the determinant of an array.
2359
+
2360
+ Parameters
2361
+ ----------
2362
+ a : (..., M, M) array_like
2363
+ Input array to compute determinants for.
2364
+
2365
+ Returns
2366
+ -------
2367
+ det : (...) array_like
2368
+ Determinant of `a`.
2369
+
2370
+ See Also
2371
+ --------
2372
+ slogdet : Another way to represent the determinant, more suitable
2373
+ for large matrices where underflow/overflow may occur.
2374
+ scipy.linalg.det : Similar function in SciPy.
2375
+
2376
+ Notes
2377
+ -----
2378
+ Broadcasting rules apply, see the `numpy.linalg` documentation for
2379
+ details.
2380
+
2381
+ The determinant is computed via LU factorization using the LAPACK
2382
+ routine ``z/dgetrf``.
2383
+
2384
+ Examples
2385
+ --------
2386
+ The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
2387
+
2388
+ >>> import numpy as np
2389
+ >>> a = np.array([[1, 2], [3, 4]])
2390
+ >>> np.linalg.det(a)
2391
+ -2.0 # may vary
2392
+
2393
+ Computing determinants for a stack of matrices:
2394
+
2395
+ >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
2396
+ >>> a.shape
2397
+ (3, 2, 2)
2398
+ >>> np.linalg.det(a)
2399
+ array([-2., -3., -8.])
2400
+
2401
+ """
2402
+ a = asarray(a)
2403
+ _assert_stacked_square(a)
2404
+ t, result_t = _commonType(a)
2405
+ signature = 'D->D' if isComplexType(t) else 'd->d'
2406
+ r = _umath_linalg.det(a, signature=signature)
2407
+ r = r.astype(result_t, copy=False)
2408
+ return r
2409
+
2410
+
2411
+ # Linear Least Squares
2412
+
2413
+ def _lstsq_dispatcher(a, b, rcond=None):
2414
+ return (a, b)
2415
+
2416
+
2417
+ @array_function_dispatch(_lstsq_dispatcher)
2418
+ def lstsq(a, b, rcond=None):
2419
+ r"""
2420
+ Return the least-squares solution to a linear matrix equation.
2421
+
2422
+ Computes the vector `x` that approximately solves the equation
2423
+ ``a @ x = b``. The equation may be under-, well-, or over-determined
2424
+ (i.e., the number of linearly independent rows of `a` can be less than,
2425
+ equal to, or greater than its number of linearly independent columns).
2426
+ If `a` is square and of full rank, then `x` (but for round-off error)
2427
+ is the "exact" solution of the equation. Else, `x` minimizes the
2428
+ Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing
2429
+ solutions, the one with the smallest 2-norm :math:`||x||` is returned.
2430
+
2431
+ Parameters
2432
+ ----------
2433
+ a : (M, N) array_like
2434
+ "Coefficient" matrix.
2435
+ b : {(M,), (M, K)} array_like
2436
+ Ordinate or "dependent variable" values. If `b` is two-dimensional,
2437
+ the least-squares solution is calculated for each of the `K` columns
2438
+ of `b`.
2439
+ rcond : float, optional
2440
+ Cut-off ratio for small singular values of `a`.
2441
+ For the purposes of rank determination, singular values are treated
2442
+ as zero if they are smaller than `rcond` times the largest singular
2443
+ value of `a`.
2444
+ The default uses the machine precision times ``max(M, N)``. Passing
2445
+ ``-1`` will use machine precision.
2446
+
2447
+ .. versionchanged:: 2.0
2448
+ Previously, the default was ``-1``, but a warning was given that
2449
+ this would change.
2450
+
2451
+ Returns
2452
+ -------
2453
+ x : {(N,), (N, K)} ndarray
2454
+ Least-squares solution. If `b` is two-dimensional,
2455
+ the solutions are in the `K` columns of `x`.
2456
+ residuals : {(1,), (K,), (0,)} ndarray
2457
+ Sums of squared residuals: Squared Euclidean 2-norm for each column in
2458
+ ``b - a @ x``.
2459
+ If the rank of `a` is < N or M <= N, this is an empty array.
2460
+ If `b` is 1-dimensional, this is a (1,) shape array.
2461
+ Otherwise the shape is (K,).
2462
+ rank : int
2463
+ Rank of matrix `a`.
2464
+ s : (min(M, N),) ndarray
2465
+ Singular values of `a`.
2466
+
2467
+ Raises
2468
+ ------
2469
+ LinAlgError
2470
+ If computation does not converge.
2471
+
2472
+ See Also
2473
+ --------
2474
+ scipy.linalg.lstsq : Similar function in SciPy.
2475
+
2476
+ Notes
2477
+ -----
2478
+ If `b` is a matrix, then all array results are returned as matrices.
2479
+
2480
+ Examples
2481
+ --------
2482
+ Fit a line, ``y = mx + c``, through some noisy data-points:
2483
+
2484
+ >>> import numpy as np
2485
+ >>> x = np.array([0, 1, 2, 3])
2486
+ >>> y = np.array([-1, 0.2, 0.9, 2.1])
2487
+
2488
+ By examining the coefficients, we see that the line should have a
2489
+ gradient of roughly 1 and cut the y-axis at, more or less, -1.
2490
+
2491
+ We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
2492
+ and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`:
2493
+
2494
+ >>> A = np.vstack([x, np.ones(len(x))]).T
2495
+ >>> A
2496
+ array([[ 0., 1.],
2497
+ [ 1., 1.],
2498
+ [ 2., 1.],
2499
+ [ 3., 1.]])
2500
+
2501
+ >>> m, c = np.linalg.lstsq(A, y)[0]
2502
+ >>> m, c
2503
+ (1.0 -0.95) # may vary
2504
+
2505
+ Plot the data along with the fitted line:
2506
+
2507
+ >>> import matplotlib.pyplot as plt
2508
+ >>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
2509
+ >>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
2510
+ >>> _ = plt.legend()
2511
+ >>> plt.show()
2512
+
2513
+ """
2514
+ a, _ = _makearray(a)
2515
+ b, wrap = _makearray(b)
2516
+ is_1d = b.ndim == 1
2517
+ if is_1d:
2518
+ b = b[:, newaxis]
2519
+ _assert_2d(a, b)
2520
+ m, n = a.shape[-2:]
2521
+ m2, n_rhs = b.shape[-2:]
2522
+ if m != m2:
2523
+ raise LinAlgError('Incompatible dimensions')
2524
+
2525
+ t, result_t = _commonType(a, b)
2526
+ result_real_t = _realType(result_t)
2527
+
2528
+ if rcond is None:
2529
+ rcond = finfo(t).eps * max(n, m)
2530
+
2531
+ signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid'
2532
+ if n_rhs == 0:
2533
+ # lapack can't handle n_rhs = 0 - so allocate
2534
+ # the array one larger in that axis
2535
+ b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype)
2536
+
2537
+ with errstate(call=_raise_linalgerror_lstsq, invalid='call',
2538
+ over='ignore', divide='ignore', under='ignore'):
2539
+ x, resids, rank, s = _umath_linalg.lstsq(a, b, rcond,
2540
+ signature=signature)
2541
+ if m == 0:
2542
+ x[...] = 0
2543
+ if n_rhs == 0:
2544
+ # remove the item we added
2545
+ x = x[..., :n_rhs]
2546
+ resids = resids[..., :n_rhs]
2547
+
2548
+ # remove the axis we added
2549
+ if is_1d:
2550
+ x = x.squeeze(axis=-1)
2551
+ # we probably should squeeze resids too, but we can't
2552
+ # without breaking compatibility.
2553
+
2554
+ # as documented
2555
+ if rank != n or m <= n:
2556
+ resids = array([], result_real_t)
2557
+
2558
+ # coerce output arrays
2559
+ s = s.astype(result_real_t, copy=False)
2560
+ resids = resids.astype(result_real_t, copy=False)
2561
+ # Copying lets the memory in r_parts be freed
2562
+ x = x.astype(result_t, copy=True)
2563
+ return wrap(x), wrap(resids), rank, s
2564
+
2565
+
2566
+ def _multi_svd_norm(x, row_axis, col_axis, op, initial=None):
2567
+ """Compute a function of the singular values of the 2-D matrices in `x`.
2568
+
2569
+ This is a private utility function used by `numpy.linalg.norm()`.
2570
+
2571
+ Parameters
2572
+ ----------
2573
+ x : ndarray
2574
+ row_axis, col_axis : int
2575
+ The axes of `x` that hold the 2-D matrices.
2576
+ op : callable
2577
+ This should be either numpy.amin or `numpy.amax` or `numpy.sum`.
2578
+
2579
+ Returns
2580
+ -------
2581
+ result : float or ndarray
2582
+ If `x` is 2-D, the return values is a float.
2583
+ Otherwise, it is an array with ``x.ndim - 2`` dimensions.
2584
+ The return values are either the minimum or maximum or sum of the
2585
+ singular values of the matrices, depending on whether `op`
2586
+ is `numpy.amin` or `numpy.amax` or `numpy.sum`.
2587
+
2588
+ """
2589
+ y = moveaxis(x, (row_axis, col_axis), (-2, -1))
2590
+ result = op(svd(y, compute_uv=False), axis=-1, initial=initial)
2591
+ return result
2592
+
2593
+
2594
+ def _norm_dispatcher(x, ord=None, axis=None, keepdims=None):
2595
+ return (x,)
2596
+
2597
+
2598
+ @array_function_dispatch(_norm_dispatcher)
2599
+ def norm(x, ord=None, axis=None, keepdims=False):
2600
+ """
2601
+ Matrix or vector norm.
2602
+
2603
+ This function is able to return one of eight different matrix norms,
2604
+ or one of an infinite number of vector norms (described below), depending
2605
+ on the value of the ``ord`` parameter.
2606
+
2607
+ Parameters
2608
+ ----------
2609
+ x : array_like
2610
+ Input array. If `axis` is None, `x` must be 1-D or 2-D, unless `ord`
2611
+ is None. If both `axis` and `ord` are None, the 2-norm of
2612
+ ``x.ravel`` will be returned.
2613
+ ord : {int, float, inf, -inf, 'fro', 'nuc'}, optional
2614
+ Order of the norm (see table under ``Notes`` for what values are
2615
+ supported for matrices and vectors respectively). inf means numpy's
2616
+ `inf` object. The default is None.
2617
+ axis : {None, int, 2-tuple of ints}, optional.
2618
+ If `axis` is an integer, it specifies the axis of `x` along which to
2619
+ compute the vector norms. If `axis` is a 2-tuple, it specifies the
2620
+ axes that hold 2-D matrices, and the matrix norms of these matrices
2621
+ are computed. If `axis` is None then either a vector norm (when `x`
2622
+ is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default
2623
+ is None.
2624
+
2625
+ keepdims : bool, optional
2626
+ If this is set to True, the axes which are normed over are left in the
2627
+ result as dimensions with size one. With this option the result will
2628
+ broadcast correctly against the original `x`.
2629
+
2630
+ Returns
2631
+ -------
2632
+ n : float or ndarray
2633
+ Norm of the matrix or vector(s).
2634
+
2635
+ See Also
2636
+ --------
2637
+ scipy.linalg.norm : Similar function in SciPy.
2638
+
2639
+ Notes
2640
+ -----
2641
+ For values of ``ord < 1``, the result is, strictly speaking, not a
2642
+ mathematical 'norm', but it may still be useful for various numerical
2643
+ purposes.
2644
+
2645
+ The following norms can be calculated:
2646
+
2647
+ ===== ============================ ==========================
2648
+ ord norm for matrices norm for vectors
2649
+ ===== ============================ ==========================
2650
+ None Frobenius norm 2-norm
2651
+ 'fro' Frobenius norm --
2652
+ 'nuc' nuclear norm --
2653
+ inf max(sum(abs(x), axis=1)) max(abs(x))
2654
+ -inf min(sum(abs(x), axis=1)) min(abs(x))
2655
+ 0 -- sum(x != 0)
2656
+ 1 max(sum(abs(x), axis=0)) as below
2657
+ -1 min(sum(abs(x), axis=0)) as below
2658
+ 2 2-norm (largest sing. value) as below
2659
+ -2 smallest singular value as below
2660
+ other -- sum(abs(x)**ord)**(1./ord)
2661
+ ===== ============================ ==========================
2662
+
2663
+ The Frobenius norm is given by [1]_:
2664
+
2665
+ :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
2666
+
2667
+ The nuclear norm is the sum of the singular values.
2668
+
2669
+ Both the Frobenius and nuclear norm orders are only defined for
2670
+ matrices and raise a ValueError when ``x.ndim != 2``.
2671
+
2672
+ References
2673
+ ----------
2674
+ .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
2675
+ Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
2676
+
2677
+ Examples
2678
+ --------
2679
+
2680
+ >>> import numpy as np
2681
+ >>> from numpy import linalg as LA
2682
+ >>> a = np.arange(9) - 4
2683
+ >>> a
2684
+ array([-4, -3, -2, ..., 2, 3, 4])
2685
+ >>> b = a.reshape((3, 3))
2686
+ >>> b
2687
+ array([[-4, -3, -2],
2688
+ [-1, 0, 1],
2689
+ [ 2, 3, 4]])
2690
+
2691
+ >>> LA.norm(a)
2692
+ 7.745966692414834
2693
+ >>> LA.norm(b)
2694
+ 7.745966692414834
2695
+ >>> LA.norm(b, 'fro')
2696
+ 7.745966692414834
2697
+ >>> LA.norm(a, np.inf)
2698
+ 4.0
2699
+ >>> LA.norm(b, np.inf)
2700
+ 9.0
2701
+ >>> LA.norm(a, -np.inf)
2702
+ 0.0
2703
+ >>> LA.norm(b, -np.inf)
2704
+ 2.0
2705
+
2706
+ >>> LA.norm(a, 1)
2707
+ 20.0
2708
+ >>> LA.norm(b, 1)
2709
+ 7.0
2710
+ >>> LA.norm(a, -1)
2711
+ -4.6566128774142013e-010
2712
+ >>> LA.norm(b, -1)
2713
+ 6.0
2714
+ >>> LA.norm(a, 2)
2715
+ 7.745966692414834
2716
+ >>> LA.norm(b, 2)
2717
+ 7.3484692283495345
2718
+
2719
+ >>> LA.norm(a, -2)
2720
+ 0.0
2721
+ >>> LA.norm(b, -2)
2722
+ 1.8570331885190563e-016 # may vary
2723
+ >>> LA.norm(a, 3)
2724
+ 5.8480354764257312 # may vary
2725
+ >>> LA.norm(a, -3)
2726
+ 0.0
2727
+
2728
+ Using the `axis` argument to compute vector norms:
2729
+
2730
+ >>> c = np.array([[ 1, 2, 3],
2731
+ ... [-1, 1, 4]])
2732
+ >>> LA.norm(c, axis=0)
2733
+ array([ 1.41421356, 2.23606798, 5. ])
2734
+ >>> LA.norm(c, axis=1)
2735
+ array([ 3.74165739, 4.24264069])
2736
+ >>> LA.norm(c, ord=1, axis=1)
2737
+ array([ 6., 6.])
2738
+
2739
+ Using the `axis` argument to compute matrix norms:
2740
+
2741
+ >>> m = np.arange(8).reshape(2,2,2)
2742
+ >>> LA.norm(m, axis=(1,2))
2743
+ array([ 3.74165739, 11.22497216])
2744
+ >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
2745
+ (3.7416573867739413, 11.224972160321824)
2746
+
2747
+ """
2748
+ x = asarray(x)
2749
+
2750
+ if not issubclass(x.dtype.type, (inexact, object_)):
2751
+ x = x.astype(float)
2752
+
2753
+ # Immediately handle some default, simple, fast, and common cases.
2754
+ if axis is None:
2755
+ ndim = x.ndim
2756
+ if (
2757
+ (ord is None) or
2758
+ (ord in ('f', 'fro') and ndim == 2) or
2759
+ (ord == 2 and ndim == 1)
2760
+ ):
2761
+ x = x.ravel(order='K')
2762
+ if isComplexType(x.dtype.type):
2763
+ x_real = x.real
2764
+ x_imag = x.imag
2765
+ sqnorm = x_real.dot(x_real) + x_imag.dot(x_imag)
2766
+ else:
2767
+ sqnorm = x.dot(x)
2768
+ ret = sqrt(sqnorm)
2769
+ if keepdims:
2770
+ ret = ret.reshape(ndim * [1])
2771
+ return ret
2772
+
2773
+ # Normalize the `axis` argument to a tuple.
2774
+ nd = x.ndim
2775
+ if axis is None:
2776
+ axis = tuple(range(nd))
2777
+ elif not isinstance(axis, tuple):
2778
+ try:
2779
+ axis = int(axis)
2780
+ except Exception as e:
2781
+ raise TypeError(
2782
+ "'axis' must be None, an integer or a tuple of integers"
2783
+ ) from e
2784
+ axis = (axis,)
2785
+
2786
+ if len(axis) == 1:
2787
+ if ord == inf:
2788
+ return abs(x).max(axis=axis, keepdims=keepdims, initial=0)
2789
+ elif ord == -inf:
2790
+ return abs(x).min(axis=axis, keepdims=keepdims)
2791
+ elif ord == 0:
2792
+ # Zero norm
2793
+ return (
2794
+ (x != 0)
2795
+ .astype(x.real.dtype)
2796
+ .sum(axis=axis, keepdims=keepdims)
2797
+ )
2798
+ elif ord == 1:
2799
+ # special case for speedup
2800
+ return add.reduce(abs(x), axis=axis, keepdims=keepdims)
2801
+ elif ord is None or ord == 2:
2802
+ # special case for speedup
2803
+ s = (x.conj() * x).real
2804
+ return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
2805
+ # None of the str-type keywords for ord ('fro', 'nuc')
2806
+ # are valid for vectors
2807
+ elif isinstance(ord, str):
2808
+ raise ValueError(f"Invalid norm order '{ord}' for vectors")
2809
+ else:
2810
+ absx = abs(x)
2811
+ absx **= ord
2812
+ ret = add.reduce(absx, axis=axis, keepdims=keepdims)
2813
+ ret **= reciprocal(ord, dtype=ret.dtype)
2814
+ return ret
2815
+ elif len(axis) == 2:
2816
+ row_axis, col_axis = axis
2817
+ row_axis = normalize_axis_index(row_axis, nd)
2818
+ col_axis = normalize_axis_index(col_axis, nd)
2819
+ if row_axis == col_axis:
2820
+ raise ValueError('Duplicate axes given.')
2821
+ if ord == 2:
2822
+ ret = _multi_svd_norm(x, row_axis, col_axis, amax, 0)
2823
+ elif ord == -2:
2824
+ ret = _multi_svd_norm(x, row_axis, col_axis, amin)
2825
+ elif ord == 1:
2826
+ if col_axis > row_axis:
2827
+ col_axis -= 1
2828
+ ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis, initial=0)
2829
+ elif ord == inf:
2830
+ if row_axis > col_axis:
2831
+ row_axis -= 1
2832
+ ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis, initial=0)
2833
+ elif ord == -1:
2834
+ if col_axis > row_axis:
2835
+ col_axis -= 1
2836
+ ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
2837
+ elif ord == -inf:
2838
+ if row_axis > col_axis:
2839
+ row_axis -= 1
2840
+ ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
2841
+ elif ord in [None, 'fro', 'f']:
2842
+ ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
2843
+ elif ord == 'nuc':
2844
+ ret = _multi_svd_norm(x, row_axis, col_axis, sum, 0)
2845
+ else:
2846
+ raise ValueError("Invalid norm order for matrices.")
2847
+ if keepdims:
2848
+ ret_shape = list(x.shape)
2849
+ ret_shape[axis[0]] = 1
2850
+ ret_shape[axis[1]] = 1
2851
+ ret = ret.reshape(ret_shape)
2852
+ return ret
2853
+ else:
2854
+ raise ValueError("Improper number of dimensions to norm.")
2855
+
2856
+
2857
+ # multi_dot
2858
+
2859
+ def _multidot_dispatcher(arrays, *, out=None):
2860
+ yield from arrays
2861
+ yield out
2862
+
2863
+
2864
+ @array_function_dispatch(_multidot_dispatcher)
2865
+ def multi_dot(arrays, *, out=None):
2866
+ """
2867
+ Compute the dot product of two or more arrays in a single function call,
2868
+ while automatically selecting the fastest evaluation order.
2869
+
2870
+ `multi_dot` chains `numpy.dot` and uses optimal parenthesization
2871
+ of the matrices [1]_ [2]_. Depending on the shapes of the matrices,
2872
+ this can speed up the multiplication a lot.
2873
+
2874
+ If the first argument is 1-D it is treated as a row vector.
2875
+ If the last argument is 1-D it is treated as a column vector.
2876
+ The other arguments must be 2-D.
2877
+
2878
+ Think of `multi_dot` as::
2879
+
2880
+ def multi_dot(arrays): return functools.reduce(np.dot, arrays)
2881
+
2882
+
2883
+ Parameters
2884
+ ----------
2885
+ arrays : sequence of array_like
2886
+ If the first argument is 1-D it is treated as row vector.
2887
+ If the last argument is 1-D it is treated as column vector.
2888
+ The other arguments must be 2-D.
2889
+ out : ndarray, optional
2890
+ Output argument. This must have the exact kind that would be returned
2891
+ if it was not used. In particular, it must have the right type, must be
2892
+ C-contiguous, and its dtype must be the dtype that would be returned
2893
+ for `dot(a, b)`. This is a performance feature. Therefore, if these
2894
+ conditions are not met, an exception is raised, instead of attempting
2895
+ to be flexible.
2896
+
2897
+ Returns
2898
+ -------
2899
+ output : ndarray
2900
+ Returns the dot product of the supplied arrays.
2901
+
2902
+ See Also
2903
+ --------
2904
+ numpy.dot : dot multiplication with two arguments.
2905
+
2906
+ References
2907
+ ----------
2908
+
2909
+ .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378
2910
+ .. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication
2911
+
2912
+ Examples
2913
+ --------
2914
+ `multi_dot` allows you to write::
2915
+
2916
+ >>> import numpy as np
2917
+ >>> from numpy.linalg import multi_dot
2918
+ >>> # Prepare some data
2919
+ >>> A = np.random.random((10000, 100))
2920
+ >>> B = np.random.random((100, 1000))
2921
+ >>> C = np.random.random((1000, 5))
2922
+ >>> D = np.random.random((5, 333))
2923
+ >>> # the actual dot multiplication
2924
+ >>> _ = multi_dot([A, B, C, D])
2925
+
2926
+ instead of::
2927
+
2928
+ >>> _ = np.dot(np.dot(np.dot(A, B), C), D)
2929
+ >>> # or
2930
+ >>> _ = A.dot(B).dot(C).dot(D)
2931
+
2932
+ Notes
2933
+ -----
2934
+ The cost for a matrix multiplication can be calculated with the
2935
+ following function::
2936
+
2937
+ def cost(A, B):
2938
+ return A.shape[0] * A.shape[1] * B.shape[1]
2939
+
2940
+ Assume we have three matrices
2941
+ :math:`A_{10 \\times 100}, B_{100 \\times 5}, C_{5 \\times 50}`.
2942
+
2943
+ The costs for the two different parenthesizations are as follows::
2944
+
2945
+ cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500
2946
+ cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000
2947
+
2948
+ """
2949
+ n = len(arrays)
2950
+ # optimization only makes sense for len(arrays) > 2
2951
+ if n < 2:
2952
+ raise ValueError("Expecting at least two arrays.")
2953
+ elif n == 2:
2954
+ return dot(arrays[0], arrays[1], out=out)
2955
+
2956
+ arrays = [asanyarray(a) for a in arrays]
2957
+
2958
+ # save original ndim to reshape the result array into the proper form later
2959
+ ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim
2960
+ # Explicitly convert vectors to 2D arrays to keep the logic of the internal
2961
+ # _multi_dot_* functions as simple as possible.
2962
+ if arrays[0].ndim == 1:
2963
+ arrays[0] = atleast_2d(arrays[0])
2964
+ if arrays[-1].ndim == 1:
2965
+ arrays[-1] = atleast_2d(arrays[-1]).T
2966
+ _assert_2d(*arrays)
2967
+
2968
+ # _multi_dot_three is much faster than _multi_dot_matrix_chain_order
2969
+ if n == 3:
2970
+ result = _multi_dot_three(arrays[0], arrays[1], arrays[2], out=out)
2971
+ else:
2972
+ order = _multi_dot_matrix_chain_order(arrays)
2973
+ result = _multi_dot(arrays, order, 0, n - 1, out=out)
2974
+
2975
+ # return proper shape
2976
+ if ndim_first == 1 and ndim_last == 1:
2977
+ return result[0, 0] # scalar
2978
+ elif ndim_first == 1 or ndim_last == 1:
2979
+ return result.ravel() # 1-D
2980
+ else:
2981
+ return result
2982
+
2983
+
2984
+ def _multi_dot_three(A, B, C, out=None):
2985
+ """
2986
+ Find the best order for three arrays and do the multiplication.
2987
+
2988
+ For three arguments `_multi_dot_three` is approximately 15 times faster
2989
+ than `_multi_dot_matrix_chain_order`
2990
+
2991
+ """
2992
+ a0, a1b0 = A.shape
2993
+ b1c0, c1 = C.shape
2994
+ # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1
2995
+ cost1 = a0 * b1c0 * (a1b0 + c1)
2996
+ # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1
2997
+ cost2 = a1b0 * c1 * (a0 + b1c0)
2998
+
2999
+ if cost1 < cost2:
3000
+ return dot(dot(A, B), C, out=out)
3001
+ else:
3002
+ return dot(A, dot(B, C), out=out)
3003
+
3004
+
3005
+ def _multi_dot_matrix_chain_order(arrays, return_costs=False):
3006
+ """
3007
+ Return a np.array that encodes the optimal order of multiplications.
3008
+
3009
+ The optimal order array is then used by `_multi_dot()` to do the
3010
+ multiplication.
3011
+
3012
+ Also return the cost matrix if `return_costs` is `True`
3013
+
3014
+ The implementation CLOSELY follows Cormen, "Introduction to Algorithms",
3015
+ Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices.
3016
+
3017
+ cost[i, j] = min([
3018
+ cost[prefix] + cost[suffix] + cost_mult(prefix, suffix)
3019
+ for k in range(i, j)])
3020
+
3021
+ """
3022
+ n = len(arrays)
3023
+ # p stores the dimensions of the matrices
3024
+ # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50]
3025
+ p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]]
3026
+ # m is a matrix of costs of the subproblems
3027
+ # m[i,j]: min number of scalar multiplications needed to compute A_{i..j}
3028
+ m = zeros((n, n), dtype=double)
3029
+ # s is the actual ordering
3030
+ # s[i, j] is the value of k at which we split the product A_i..A_j
3031
+ s = empty((n, n), dtype=intp)
3032
+
3033
+ for l in range(1, n):
3034
+ for i in range(n - l):
3035
+ j = i + l
3036
+ m[i, j] = inf
3037
+ for k in range(i, j):
3038
+ q = m[i, k] + m[k + 1, j] + p[i] * p[k + 1] * p[j + 1]
3039
+ if q < m[i, j]:
3040
+ m[i, j] = q
3041
+ s[i, j] = k # Note that Cormen uses 1-based index
3042
+
3043
+ return (s, m) if return_costs else s
3044
+
3045
+
3046
+ def _multi_dot(arrays, order, i, j, out=None):
3047
+ """Actually do the multiplication with the given order."""
3048
+ if i == j:
3049
+ # the initial call with non-None out should never get here
3050
+ assert out is None
3051
+
3052
+ return arrays[i]
3053
+ else:
3054
+ return dot(_multi_dot(arrays, order, i, order[i, j]),
3055
+ _multi_dot(arrays, order, order[i, j] + 1, j),
3056
+ out=out)
3057
+
3058
+
3059
+ # diagonal
3060
+
3061
+ def _diagonal_dispatcher(x, /, *, offset=None):
3062
+ return (x,)
3063
+
3064
+
3065
+ @array_function_dispatch(_diagonal_dispatcher)
3066
+ def diagonal(x, /, *, offset=0):
3067
+ """
3068
+ Returns specified diagonals of a matrix (or a stack of matrices) ``x``.
3069
+
3070
+ This function is Array API compatible, contrary to
3071
+ :py:func:`numpy.diagonal`, the matrix is assumed
3072
+ to be defined by the last two dimensions.
3073
+
3074
+ Parameters
3075
+ ----------
3076
+ x : (...,M,N) array_like
3077
+ Input array having shape (..., M, N) and whose innermost two
3078
+ dimensions form MxN matrices.
3079
+ offset : int, optional
3080
+ Offset specifying the off-diagonal relative to the main diagonal,
3081
+ where::
3082
+
3083
+ * offset = 0: the main diagonal.
3084
+ * offset > 0: off-diagonal above the main diagonal.
3085
+ * offset < 0: off-diagonal below the main diagonal.
3086
+
3087
+ Returns
3088
+ -------
3089
+ out : (...,min(N,M)) ndarray
3090
+ An array containing the diagonals and whose shape is determined by
3091
+ removing the last two dimensions and appending a dimension equal to
3092
+ the size of the resulting diagonals. The returned array must have
3093
+ the same data type as ``x``.
3094
+
3095
+ See Also
3096
+ --------
3097
+ numpy.diagonal
3098
+
3099
+ Examples
3100
+ --------
3101
+ >>> a = np.arange(4).reshape(2, 2); a
3102
+ array([[0, 1],
3103
+ [2, 3]])
3104
+ >>> np.linalg.diagonal(a)
3105
+ array([0, 3])
3106
+
3107
+ A 3-D example:
3108
+
3109
+ >>> a = np.arange(8).reshape(2, 2, 2); a
3110
+ array([[[0, 1],
3111
+ [2, 3]],
3112
+ [[4, 5],
3113
+ [6, 7]]])
3114
+ >>> np.linalg.diagonal(a)
3115
+ array([[0, 3],
3116
+ [4, 7]])
3117
+
3118
+ Diagonals adjacent to the main diagonal can be obtained by using the
3119
+ `offset` argument:
3120
+
3121
+ >>> a = np.arange(9).reshape(3, 3)
3122
+ >>> a
3123
+ array([[0, 1, 2],
3124
+ [3, 4, 5],
3125
+ [6, 7, 8]])
3126
+ >>> np.linalg.diagonal(a, offset=1) # First superdiagonal
3127
+ array([1, 5])
3128
+ >>> np.linalg.diagonal(a, offset=2) # Second superdiagonal
3129
+ array([2])
3130
+ >>> np.linalg.diagonal(a, offset=-1) # First subdiagonal
3131
+ array([3, 7])
3132
+ >>> np.linalg.diagonal(a, offset=-2) # Second subdiagonal
3133
+ array([6])
3134
+
3135
+ The anti-diagonal can be obtained by reversing the order of elements
3136
+ using either `numpy.flipud` or `numpy.fliplr`.
3137
+
3138
+ >>> a = np.arange(9).reshape(3, 3)
3139
+ >>> a
3140
+ array([[0, 1, 2],
3141
+ [3, 4, 5],
3142
+ [6, 7, 8]])
3143
+ >>> np.linalg.diagonal(np.fliplr(a)) # Horizontal flip
3144
+ array([2, 4, 6])
3145
+ >>> np.linalg.diagonal(np.flipud(a)) # Vertical flip
3146
+ array([6, 4, 2])
3147
+
3148
+ Note that the order in which the diagonal is retrieved varies depending
3149
+ on the flip function.
3150
+
3151
+ """
3152
+ return _core_diagonal(x, offset, axis1=-2, axis2=-1)
3153
+
3154
+
3155
+ # trace
3156
+
3157
+ def _trace_dispatcher(x, /, *, offset=None, dtype=None):
3158
+ return (x,)
3159
+
3160
+
3161
+ @array_function_dispatch(_trace_dispatcher)
3162
+ def trace(x, /, *, offset=0, dtype=None):
3163
+ """
3164
+ Returns the sum along the specified diagonals of a matrix
3165
+ (or a stack of matrices) ``x``.
3166
+
3167
+ This function is Array API compatible, contrary to
3168
+ :py:func:`numpy.trace`.
3169
+
3170
+ Parameters
3171
+ ----------
3172
+ x : (...,M,N) array_like
3173
+ Input array having shape (..., M, N) and whose innermost two
3174
+ dimensions form MxN matrices.
3175
+ offset : int, optional
3176
+ Offset specifying the off-diagonal relative to the main diagonal,
3177
+ where::
3178
+
3179
+ * offset = 0: the main diagonal.
3180
+ * offset > 0: off-diagonal above the main diagonal.
3181
+ * offset < 0: off-diagonal below the main diagonal.
3182
+
3183
+ dtype : dtype, optional
3184
+ Data type of the returned array.
3185
+
3186
+ Returns
3187
+ -------
3188
+ out : ndarray
3189
+ An array containing the traces and whose shape is determined by
3190
+ removing the last two dimensions and storing the traces in the last
3191
+ array dimension. For example, if x has rank k and shape:
3192
+ (I, J, K, ..., L, M, N), then an output array has rank k-2 and shape:
3193
+ (I, J, K, ..., L) where::
3194
+
3195
+ out[i, j, k, ..., l] = trace(a[i, j, k, ..., l, :, :])
3196
+
3197
+ The returned array must have a data type as described by the dtype
3198
+ parameter above.
3199
+
3200
+ See Also
3201
+ --------
3202
+ numpy.trace
3203
+
3204
+ Examples
3205
+ --------
3206
+ >>> np.linalg.trace(np.eye(3))
3207
+ 3.0
3208
+ >>> a = np.arange(8).reshape((2, 2, 2))
3209
+ >>> np.linalg.trace(a)
3210
+ array([3, 11])
3211
+
3212
+ Trace is computed with the last two axes as the 2-d sub-arrays.
3213
+ This behavior differs from :py:func:`numpy.trace` which uses the first two
3214
+ axes by default.
3215
+
3216
+ >>> a = np.arange(24).reshape((3, 2, 2, 2))
3217
+ >>> np.linalg.trace(a).shape
3218
+ (3, 2)
3219
+
3220
+ Traces adjacent to the main diagonal can be obtained by using the
3221
+ `offset` argument:
3222
+
3223
+ >>> a = np.arange(9).reshape((3, 3)); a
3224
+ array([[0, 1, 2],
3225
+ [3, 4, 5],
3226
+ [6, 7, 8]])
3227
+ >>> np.linalg.trace(a, offset=1) # First superdiagonal
3228
+ 6
3229
+ >>> np.linalg.trace(a, offset=2) # Second superdiagonal
3230
+ 2
3231
+ >>> np.linalg.trace(a, offset=-1) # First subdiagonal
3232
+ 10
3233
+ >>> np.linalg.trace(a, offset=-2) # Second subdiagonal
3234
+ 6
3235
+
3236
+ """
3237
+ return _core_trace(x, offset, axis1=-2, axis2=-1, dtype=dtype)
3238
+
3239
+
3240
+ # cross
3241
+
3242
+ def _cross_dispatcher(x1, x2, /, *, axis=None):
3243
+ return (x1, x2,)
3244
+
3245
+
3246
+ @array_function_dispatch(_cross_dispatcher)
3247
+ def cross(x1, x2, /, *, axis=-1):
3248
+ """
3249
+ Returns the cross product of 3-element vectors.
3250
+
3251
+ If ``x1`` and/or ``x2`` are multi-dimensional arrays, then
3252
+ the cross-product of each pair of corresponding 3-element vectors
3253
+ is independently computed.
3254
+
3255
+ This function is Array API compatible, contrary to
3256
+ :func:`numpy.cross`.
3257
+
3258
+ Parameters
3259
+ ----------
3260
+ x1 : array_like
3261
+ The first input array.
3262
+ x2 : array_like
3263
+ The second input array. Must be compatible with ``x1`` for all
3264
+ non-compute axes. The size of the axis over which to compute
3265
+ the cross-product must be the same size as the respective axis
3266
+ in ``x1``.
3267
+ axis : int, optional
3268
+ The axis (dimension) of ``x1`` and ``x2`` containing the vectors for
3269
+ which to compute the cross-product. Default: ``-1``.
3270
+
3271
+ Returns
3272
+ -------
3273
+ out : ndarray
3274
+ An array containing the cross products.
3275
+
3276
+ See Also
3277
+ --------
3278
+ numpy.cross
3279
+
3280
+ Examples
3281
+ --------
3282
+ Vector cross-product.
3283
+
3284
+ >>> x = np.array([1, 2, 3])
3285
+ >>> y = np.array([4, 5, 6])
3286
+ >>> np.linalg.cross(x, y)
3287
+ array([-3, 6, -3])
3288
+
3289
+ Multiple vector cross-products. Note that the direction of the cross
3290
+ product vector is defined by the *right-hand rule*.
3291
+
3292
+ >>> x = np.array([[1,2,3], [4,5,6]])
3293
+ >>> y = np.array([[4,5,6], [1,2,3]])
3294
+ >>> np.linalg.cross(x, y)
3295
+ array([[-3, 6, -3],
3296
+ [ 3, -6, 3]])
3297
+
3298
+ >>> x = np.array([[1, 2], [3, 4], [5, 6]])
3299
+ >>> y = np.array([[4, 5], [6, 1], [2, 3]])
3300
+ >>> np.linalg.cross(x, y, axis=0)
3301
+ array([[-24, 6],
3302
+ [ 18, 24],
3303
+ [-6, -18]])
3304
+
3305
+ """
3306
+ x1 = asanyarray(x1)
3307
+ x2 = asanyarray(x2)
3308
+
3309
+ if x1.shape[axis] != 3 or x2.shape[axis] != 3:
3310
+ raise ValueError(
3311
+ "Both input arrays must be (arrays of) 3-dimensional vectors, "
3312
+ f"but they are {x1.shape[axis]} and {x2.shape[axis]} "
3313
+ "dimensional instead."
3314
+ )
3315
+
3316
+ return _core_cross(x1, x2, axis=axis)
3317
+
3318
+
3319
+ # matmul
3320
+
3321
+ def _matmul_dispatcher(x1, x2, /):
3322
+ return (x1, x2)
3323
+
3324
+
3325
+ @array_function_dispatch(_matmul_dispatcher)
3326
+ def matmul(x1, x2, /):
3327
+ """
3328
+ Computes the matrix product.
3329
+
3330
+ This function is Array API compatible, contrary to
3331
+ :func:`numpy.matmul`.
3332
+
3333
+ Parameters
3334
+ ----------
3335
+ x1 : array_like
3336
+ The first input array.
3337
+ x2 : array_like
3338
+ The second input array.
3339
+
3340
+ Returns
3341
+ -------
3342
+ out : ndarray
3343
+ The matrix product of the inputs.
3344
+ This is a scalar only when both ``x1``, ``x2`` are 1-d vectors.
3345
+
3346
+ Raises
3347
+ ------
3348
+ ValueError
3349
+ If the last dimension of ``x1`` is not the same size as
3350
+ the second-to-last dimension of ``x2``.
3351
+
3352
+ If a scalar value is passed in.
3353
+
3354
+ See Also
3355
+ --------
3356
+ numpy.matmul
3357
+
3358
+ Examples
3359
+ --------
3360
+ For 2-D arrays it is the matrix product:
3361
+
3362
+ >>> a = np.array([[1, 0],
3363
+ ... [0, 1]])
3364
+ >>> b = np.array([[4, 1],
3365
+ ... [2, 2]])
3366
+ >>> np.linalg.matmul(a, b)
3367
+ array([[4, 1],
3368
+ [2, 2]])
3369
+
3370
+ For 2-D mixed with 1-D, the result is the usual.
3371
+
3372
+ >>> a = np.array([[1, 0],
3373
+ ... [0, 1]])
3374
+ >>> b = np.array([1, 2])
3375
+ >>> np.linalg.matmul(a, b)
3376
+ array([1, 2])
3377
+ >>> np.linalg.matmul(b, a)
3378
+ array([1, 2])
3379
+
3380
+
3381
+ Broadcasting is conventional for stacks of arrays
3382
+
3383
+ >>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4))
3384
+ >>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2))
3385
+ >>> np.linalg.matmul(a,b).shape
3386
+ (2, 2, 2)
3387
+ >>> np.linalg.matmul(a, b)[0, 1, 1]
3388
+ 98
3389
+ >>> sum(a[0, 1, :] * b[0 , :, 1])
3390
+ 98
3391
+
3392
+ Vector, vector returns the scalar inner product, but neither argument
3393
+ is complex-conjugated:
3394
+
3395
+ >>> np.linalg.matmul([2j, 3j], [2j, 3j])
3396
+ (-13+0j)
3397
+
3398
+ Scalar multiplication raises an error.
3399
+
3400
+ >>> np.linalg.matmul([1,2], 3)
3401
+ Traceback (most recent call last):
3402
+ ...
3403
+ ValueError: matmul: Input operand 1 does not have enough dimensions ...
3404
+
3405
+ """
3406
+ return _core_matmul(x1, x2)
3407
+
3408
+
3409
+ # tensordot
3410
+
3411
+ def _tensordot_dispatcher(x1, x2, /, *, axes=None):
3412
+ return (x1, x2)
3413
+
3414
+
3415
+ @array_function_dispatch(_tensordot_dispatcher)
3416
+ def tensordot(x1, x2, /, *, axes=2):
3417
+ return _core_tensordot(x1, x2, axes=axes)
3418
+
3419
+
3420
+ tensordot.__doc__ = _core_tensordot.__doc__
3421
+
3422
+
3423
+ # matrix_transpose
3424
+
3425
+ def _matrix_transpose_dispatcher(x):
3426
+ return (x,)
3427
+
3428
+ @array_function_dispatch(_matrix_transpose_dispatcher)
3429
+ def matrix_transpose(x, /):
3430
+ return _core_matrix_transpose(x)
3431
+
3432
+
3433
+ matrix_transpose.__doc__ = f"""{_core_matrix_transpose.__doc__}
3434
+
3435
+ Notes
3436
+ -----
3437
+ This function is an alias of `numpy.matrix_transpose`.
3438
+ """
3439
+
3440
+
3441
+ # matrix_norm
3442
+
3443
+ def _matrix_norm_dispatcher(x, /, *, keepdims=None, ord=None):
3444
+ return (x,)
3445
+
3446
+ @array_function_dispatch(_matrix_norm_dispatcher)
3447
+ def matrix_norm(x, /, *, keepdims=False, ord="fro"):
3448
+ """
3449
+ Computes the matrix norm of a matrix (or a stack of matrices) ``x``.
3450
+
3451
+ This function is Array API compatible.
3452
+
3453
+ Parameters
3454
+ ----------
3455
+ x : array_like
3456
+ Input array having shape (..., M, N) and whose two innermost
3457
+ dimensions form ``MxN`` matrices.
3458
+ keepdims : bool, optional
3459
+ If this is set to True, the axes which are normed over are left in
3460
+ the result as dimensions with size one. Default: False.
3461
+ ord : {1, -1, 2, -2, inf, -inf, 'fro', 'nuc'}, optional
3462
+ The order of the norm. For details see the table under ``Notes``
3463
+ in `numpy.linalg.norm`.
3464
+
3465
+ See Also
3466
+ --------
3467
+ numpy.linalg.norm : Generic norm function
3468
+
3469
+ Examples
3470
+ --------
3471
+ >>> from numpy import linalg as LA
3472
+ >>> a = np.arange(9) - 4
3473
+ >>> a
3474
+ array([-4, -3, -2, ..., 2, 3, 4])
3475
+ >>> b = a.reshape((3, 3))
3476
+ >>> b
3477
+ array([[-4, -3, -2],
3478
+ [-1, 0, 1],
3479
+ [ 2, 3, 4]])
3480
+
3481
+ >>> LA.matrix_norm(b)
3482
+ 7.745966692414834
3483
+ >>> LA.matrix_norm(b, ord='fro')
3484
+ 7.745966692414834
3485
+ >>> LA.matrix_norm(b, ord=np.inf)
3486
+ 9.0
3487
+ >>> LA.matrix_norm(b, ord=-np.inf)
3488
+ 2.0
3489
+
3490
+ >>> LA.matrix_norm(b, ord=1)
3491
+ 7.0
3492
+ >>> LA.matrix_norm(b, ord=-1)
3493
+ 6.0
3494
+ >>> LA.matrix_norm(b, ord=2)
3495
+ 7.3484692283495345
3496
+ >>> LA.matrix_norm(b, ord=-2)
3497
+ 1.8570331885190563e-016 # may vary
3498
+
3499
+ """
3500
+ x = asanyarray(x)
3501
+ return norm(x, axis=(-2, -1), keepdims=keepdims, ord=ord)
3502
+
3503
+
3504
+ # vector_norm
3505
+
3506
+ def _vector_norm_dispatcher(x, /, *, axis=None, keepdims=None, ord=None):
3507
+ return (x,)
3508
+
3509
+ @array_function_dispatch(_vector_norm_dispatcher)
3510
+ def vector_norm(x, /, *, axis=None, keepdims=False, ord=2):
3511
+ """
3512
+ Computes the vector norm of a vector (or batch of vectors) ``x``.
3513
+
3514
+ This function is Array API compatible.
3515
+
3516
+ Parameters
3517
+ ----------
3518
+ x : array_like
3519
+ Input array.
3520
+ axis : {None, int, 2-tuple of ints}, optional
3521
+ If an integer, ``axis`` specifies the axis (dimension) along which
3522
+ to compute vector norms. If an n-tuple, ``axis`` specifies the axes
3523
+ (dimensions) along which to compute batched vector norms. If ``None``,
3524
+ the vector norm must be computed over all array values (i.e.,
3525
+ equivalent to computing the vector norm of a flattened array).
3526
+ Default: ``None``.
3527
+ keepdims : bool, optional
3528
+ If this is set to True, the axes which are normed over are left in
3529
+ the result as dimensions with size one. Default: False.
3530
+ ord : {int, float, inf, -inf}, optional
3531
+ The order of the norm. For details see the table under ``Notes``
3532
+ in `numpy.linalg.norm`.
3533
+
3534
+ See Also
3535
+ --------
3536
+ numpy.linalg.norm : Generic norm function
3537
+
3538
+ Examples
3539
+ --------
3540
+ >>> from numpy import linalg as LA
3541
+ >>> a = np.arange(9) + 1
3542
+ >>> a
3543
+ array([1, 2, 3, 4, 5, 6, 7, 8, 9])
3544
+ >>> b = a.reshape((3, 3))
3545
+ >>> b
3546
+ array([[1, 2, 3],
3547
+ [4, 5, 6],
3548
+ [7, 8, 9]])
3549
+
3550
+ >>> LA.vector_norm(b)
3551
+ 16.881943016134134
3552
+ >>> LA.vector_norm(b, ord=np.inf)
3553
+ 9.0
3554
+ >>> LA.vector_norm(b, ord=-np.inf)
3555
+ 1.0
3556
+
3557
+ >>> LA.vector_norm(b, ord=0)
3558
+ 9.0
3559
+ >>> LA.vector_norm(b, ord=1)
3560
+ 45.0
3561
+ >>> LA.vector_norm(b, ord=-1)
3562
+ 0.3534857623790153
3563
+ >>> LA.vector_norm(b, ord=2)
3564
+ 16.881943016134134
3565
+ >>> LA.vector_norm(b, ord=-2)
3566
+ 0.8058837395885292
3567
+
3568
+ """
3569
+ x = asanyarray(x)
3570
+ shape = list(x.shape)
3571
+ if axis is None:
3572
+ # Note: np.linalg.norm() doesn't handle 0-D arrays
3573
+ x = x.ravel()
3574
+ _axis = 0
3575
+ elif isinstance(axis, tuple):
3576
+ # Note: The axis argument supports any number of axes, whereas
3577
+ # np.linalg.norm() only supports a single axis for vector norm.
3578
+ normalized_axis = normalize_axis_tuple(axis, x.ndim)
3579
+ rest = tuple(i for i in range(x.ndim) if i not in normalized_axis)
3580
+ newshape = axis + rest
3581
+ x = _core_transpose(x, newshape).reshape(
3582
+ (
3583
+ prod([x.shape[i] for i in axis], dtype=int),
3584
+ *[x.shape[i] for i in rest]
3585
+ )
3586
+ )
3587
+ _axis = 0
3588
+ else:
3589
+ _axis = axis
3590
+
3591
+ res = norm(x, axis=_axis, ord=ord)
3592
+
3593
+ if keepdims:
3594
+ # We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
3595
+ # above to avoid matrix norm logic.
3596
+ _axis = normalize_axis_tuple(
3597
+ range(len(shape)) if axis is None else axis, len(shape)
3598
+ )
3599
+ for i in _axis:
3600
+ shape[i] = 1
3601
+ res = res.reshape(tuple(shape))
3602
+
3603
+ return res
3604
+
3605
+
3606
+ # vecdot
3607
+
3608
+ def _vecdot_dispatcher(x1, x2, /, *, axis=None):
3609
+ return (x1, x2)
3610
+
3611
+ @array_function_dispatch(_vecdot_dispatcher)
3612
+ def vecdot(x1, x2, /, *, axis=-1):
3613
+ """
3614
+ Computes the vector dot product.
3615
+
3616
+ This function is restricted to arguments compatible with the Array API,
3617
+ contrary to :func:`numpy.vecdot`.
3618
+
3619
+ Let :math:`\\mathbf{a}` be a vector in ``x1`` and :math:`\\mathbf{b}` be
3620
+ a corresponding vector in ``x2``. The dot product is defined as:
3621
+
3622
+ .. math::
3623
+ \\mathbf{a} \\cdot \\mathbf{b} = \\sum_{i=0}^{n-1} \\overline{a_i}b_i
3624
+
3625
+ over the dimension specified by ``axis`` and where :math:`\\overline{a_i}`
3626
+ denotes the complex conjugate if :math:`a_i` is complex and the identity
3627
+ otherwise.
3628
+
3629
+ Parameters
3630
+ ----------
3631
+ x1 : array_like
3632
+ First input array.
3633
+ x2 : array_like
3634
+ Second input array.
3635
+ axis : int, optional
3636
+ Axis over which to compute the dot product. Default: ``-1``.
3637
+
3638
+ Returns
3639
+ -------
3640
+ output : ndarray
3641
+ The vector dot product of the input.
3642
+
3643
+ See Also
3644
+ --------
3645
+ numpy.vecdot
3646
+
3647
+ Examples
3648
+ --------
3649
+ Get the projected size along a given normal for an array of vectors.
3650
+
3651
+ >>> v = np.array([[0., 5., 0.], [0., 0., 10.], [0., 6., 8.]])
3652
+ >>> n = np.array([0., 0.6, 0.8])
3653
+ >>> np.linalg.vecdot(v, n)
3654
+ array([ 3., 8., 10.])
3655
+
3656
+ """
3657
+ return _core_vecdot(x1, x2, axis=axis)