numpy 2.4.2__cp313-cp313t-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (929) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +203 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp313t-win32.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp313t-win32.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp313t-win32.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp313t-win32.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp313t-win32.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp313t-win32.pyd +0 -0
  35. numpy/_core/_rational_tests.cp313t-win32.lib +0 -0
  36. numpy/_core/_rational_tests.cp313t-win32.pyd +0 -0
  37. numpy/_core/_simd.cp313t-win32.lib +0 -0
  38. numpy/_core/_simd.cp313t-win32.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp313t-win32.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp313t-win32.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp313t-win32.lib +0 -0
  49. numpy/_core/_umath_tests.cp313t-win32.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1328 -0
  101. numpy/_core/numeric.py +2771 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +374 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +15 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +63 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +95 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +406 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4301 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp313t-win32.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp313t-win32.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4756 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp313t-win32.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp313t-win32.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp313t-win32.lib +0 -0
  582. numpy/linalg/lapack_lite.cp313t-win32.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3733 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp313t-win32.lib +0 -0
  660. numpy/random/_bounded_integers.cp313t-win32.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp313t-win32.lib +0 -0
  664. numpy/random/_common.cp313t-win32.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp313t-win32.lib +0 -0
  675. numpy/random/_generator.cp313t-win32.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp313t-win32.lib +0 -0
  678. numpy/random/_mt19937.cp313t-win32.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp313t-win32.lib +0 -0
  681. numpy/random/_pcg64.cp313t-win32.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp313t-win32.lib +0 -0
  684. numpy/random/_philox.cp313t-win32.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp313t-win32.lib +0 -0
  689. numpy/random/_sfc64.cp313t-win32.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp313t-win32.lib +0 -0
  692. numpy/random/bit_generator.cp313t-win32.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp313t-win32.lib +0 -0
  698. numpy/random/mtrand.cp313t-win32.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +279 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.2.dist-info/METADATA +139 -0
  910. numpy-2.4.2.dist-info/RECORD +929 -0
  911. numpy-2.4.2.dist-info/WHEEL +4 -0
  912. numpy-2.4.2.dist-info/entry_points.txt +13 -0
  913. numpy-2.4.2.dist-info/licenses/LICENSE.txt +914 -0
  914. numpy-2.4.2.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  915. numpy-2.4.2.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  916. numpy-2.4.2.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  917. numpy-2.4.2.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  918. numpy-2.4.2.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  919. numpy-2.4.2.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  920. numpy-2.4.2.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  921. numpy-2.4.2.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  922. numpy-2.4.2.dist-info/licenses/numpy/ma/LICENSE +24 -0
  923. numpy-2.4.2.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  924. numpy-2.4.2.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  925. numpy-2.4.2.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  926. numpy-2.4.2.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  927. numpy-2.4.2.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  928. numpy-2.4.2.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  929. numpy-2.4.2.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,2324 @@
1
+ from _typeshed import ConvertibleToInt, Incomplete
2
+ from collections.abc import Callable, Iterable, Sequence
3
+ from typing import (
4
+ Any,
5
+ Concatenate,
6
+ Literal as L,
7
+ Never,
8
+ ParamSpec,
9
+ Protocol,
10
+ SupportsIndex,
11
+ SupportsInt,
12
+ TypeAlias,
13
+ overload,
14
+ type_check_only,
15
+ )
16
+ from typing_extensions import TypeIs, TypeVar
17
+
18
+ import numpy as np
19
+ from numpy import _OrderKACF
20
+ from numpy._core.multiarray import bincount
21
+ from numpy._globals import _NoValueType
22
+ from numpy._typing import (
23
+ ArrayLike,
24
+ DTypeLike,
25
+ NDArray,
26
+ _ArrayLike,
27
+ _ArrayLikeBool_co,
28
+ _ArrayLikeComplex_co,
29
+ _ArrayLikeFloat_co,
30
+ _ArrayLikeInt_co,
31
+ _ArrayLikeNumber_co,
32
+ _ArrayLikeObject_co,
33
+ _ComplexLike_co,
34
+ _DTypeLike,
35
+ _FloatLike_co,
36
+ _NestedSequence as _SeqND,
37
+ _NumberLike_co,
38
+ _ScalarLike_co,
39
+ _ShapeLike,
40
+ _SupportsArray,
41
+ )
42
+
43
+ __all__ = [
44
+ "select",
45
+ "piecewise",
46
+ "trim_zeros",
47
+ "copy",
48
+ "iterable",
49
+ "percentile",
50
+ "diff",
51
+ "gradient",
52
+ "angle",
53
+ "unwrap",
54
+ "sort_complex",
55
+ "flip",
56
+ "rot90",
57
+ "extract",
58
+ "place",
59
+ "vectorize",
60
+ "asarray_chkfinite",
61
+ "average",
62
+ "bincount",
63
+ "digitize",
64
+ "cov",
65
+ "corrcoef",
66
+ "median",
67
+ "sinc",
68
+ "hamming",
69
+ "hanning",
70
+ "bartlett",
71
+ "blackman",
72
+ "kaiser",
73
+ "trapezoid",
74
+ "i0",
75
+ "meshgrid",
76
+ "delete",
77
+ "insert",
78
+ "append",
79
+ "interp",
80
+ "quantile",
81
+ ]
82
+
83
+ _T = TypeVar("_T")
84
+ _T_co = TypeVar("_T_co", covariant=True)
85
+ # The `{}ss` suffix refers to the PEP 695 (Python 3.12) `ParamSpec` syntax, `**P`.
86
+ _Tss = ParamSpec("_Tss")
87
+
88
+ _ScalarT = TypeVar("_ScalarT", bound=np.generic)
89
+ _ScalarT1 = TypeVar("_ScalarT1", bound=np.generic)
90
+ _ScalarT2 = TypeVar("_ScalarT2", bound=np.generic)
91
+ _FloatingT = TypeVar("_FloatingT", bound=np.floating)
92
+ _InexactT = TypeVar("_InexactT", bound=np.inexact)
93
+ _InexactTimeT = TypeVar("_InexactTimeT", bound=np.inexact | np.timedelta64)
94
+ _InexactDateTimeT = TypeVar("_InexactDateTimeT", bound=np.inexact | np.timedelta64 | np.datetime64)
95
+ _ScalarNumericT = TypeVar("_ScalarNumericT", bound=np.inexact | np.timedelta64 | np.object_)
96
+ _AnyDoubleT = TypeVar("_AnyDoubleT", bound=np.float64 | np.longdouble | np.complex128 | np.clongdouble)
97
+
98
+ _ArrayT = TypeVar("_ArrayT", bound=np.ndarray)
99
+ _ArrayFloatingT = TypeVar("_ArrayFloatingT", bound=NDArray[np.floating])
100
+ _ArrayFloatObjT = TypeVar("_ArrayFloatObjT", bound=NDArray[np.floating | np.object_])
101
+ _ArrayComplexT = TypeVar("_ArrayComplexT", bound=NDArray[np.complexfloating])
102
+ _ArrayInexactT = TypeVar("_ArrayInexactT", bound=NDArray[np.inexact])
103
+ _ArrayNumericT = TypeVar("_ArrayNumericT", bound=NDArray[np.inexact | np.timedelta64 | np.object_])
104
+
105
+ _ArrayLike1D: TypeAlias = _SupportsArray[np.dtype[_ScalarT]] | Sequence[_ScalarT]
106
+
107
+ _ShapeT = TypeVar("_ShapeT", bound=tuple[int, ...])
108
+
109
+ _integer_co: TypeAlias = np.integer | np.bool
110
+ _float64_co: TypeAlias = np.float64 | _integer_co
111
+ _floating_co: TypeAlias = np.floating | _integer_co
112
+
113
+ # non-trivial scalar-types that will become `complex128` in `sort_complex()`,
114
+ # i.e. all numeric scalar types except for `[u]int{8,16} | longdouble`
115
+ _SortsToComplex128: TypeAlias = (
116
+ np.bool
117
+ | np.int32
118
+ | np.uint32
119
+ | np.int64
120
+ | np.uint64
121
+ | np.float16
122
+ | np.float32
123
+ | np.float64
124
+ | np.timedelta64
125
+ | np.object_
126
+ )
127
+
128
+ _Array: TypeAlias = np.ndarray[_ShapeT, np.dtype[_ScalarT]]
129
+ _Array0D: TypeAlias = np.ndarray[tuple[()], np.dtype[_ScalarT]]
130
+ _Array1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]]
131
+ _Array2D: TypeAlias = np.ndarray[tuple[int, int], np.dtype[_ScalarT]]
132
+ _Array3D: TypeAlias = np.ndarray[tuple[int, int, int], np.dtype[_ScalarT]]
133
+ _ArrayMax2D: TypeAlias = np.ndarray[tuple[int] | tuple[int, int], np.dtype[_ScalarT]]
134
+ # workaround for mypy and pyright not following the typing spec for overloads
135
+ _ArrayNoD: TypeAlias = np.ndarray[tuple[Never, Never, Never, Never], np.dtype[_ScalarT]]
136
+
137
+ _Seq1D: TypeAlias = Sequence[_T]
138
+ _Seq2D: TypeAlias = Sequence[Sequence[_T]]
139
+ _Seq3D: TypeAlias = Sequence[Sequence[Sequence[_T]]]
140
+ _ListSeqND: TypeAlias = list[_T] | _SeqND[list[_T]]
141
+
142
+ _Tuple2: TypeAlias = tuple[_T, _T]
143
+ _Tuple3: TypeAlias = tuple[_T, _T, _T]
144
+ _Tuple4: TypeAlias = tuple[_T, _T, _T, _T]
145
+
146
+ _Mesh1: TypeAlias = tuple[_Array1D[_ScalarT]]
147
+ _Mesh2: TypeAlias = tuple[_Array2D[_ScalarT], _Array2D[_ScalarT1]]
148
+ _Mesh3: TypeAlias = tuple[_Array3D[_ScalarT], _Array3D[_ScalarT1], _Array3D[_ScalarT2]]
149
+
150
+ _IndexLike: TypeAlias = slice | _ArrayLikeInt_co
151
+
152
+ _Indexing: TypeAlias = L["ij", "xy"]
153
+ _InterpolationMethod = L[
154
+ "inverted_cdf",
155
+ "averaged_inverted_cdf",
156
+ "closest_observation",
157
+ "interpolated_inverted_cdf",
158
+ "hazen",
159
+ "weibull",
160
+ "linear",
161
+ "median_unbiased",
162
+ "normal_unbiased",
163
+ "lower",
164
+ "higher",
165
+ "midpoint",
166
+ "nearest",
167
+ ]
168
+
169
+ # The resulting value will be used as `y[cond] = func(vals, *args, **kw)`, so in can
170
+ # return any (usually 1d) array-like or scalar-like compatible with the input.
171
+ _PiecewiseFunction: TypeAlias = Callable[Concatenate[NDArray[_ScalarT], _Tss], ArrayLike]
172
+ _PiecewiseFunctions: TypeAlias = _SizedIterable[_PiecewiseFunction[_ScalarT, _Tss] | _ScalarLike_co]
173
+
174
+ @type_check_only
175
+ class _TrimZerosSequence(Protocol[_T_co]):
176
+ def __len__(self, /) -> int: ...
177
+ @overload
178
+ def __getitem__(self, key: int, /) -> object: ...
179
+ @overload
180
+ def __getitem__(self, key: slice, /) -> _T_co: ...
181
+
182
+ @type_check_only
183
+ class _SupportsRMulFloat(Protocol[_T_co]):
184
+ def __rmul__(self, other: float, /) -> _T_co: ...
185
+
186
+ @type_check_only
187
+ class _SizedIterable(Protocol[_T_co]):
188
+ def __iter__(self) -> Iterable[_T_co]: ...
189
+ def __len__(self) -> int: ...
190
+
191
+ ###
192
+
193
+ class vectorize:
194
+ __doc__: str | None
195
+ __module__: L["numpy"] = "numpy"
196
+ pyfunc: Callable[..., Incomplete]
197
+ cache: bool
198
+ signature: str | None
199
+ otypes: str | None
200
+ excluded: set[int | str]
201
+
202
+ def __init__(
203
+ self,
204
+ /,
205
+ pyfunc: Callable[..., Incomplete] | _NoValueType = ..., # = _NoValue
206
+ otypes: str | Iterable[DTypeLike] | None = None,
207
+ doc: str | None = None,
208
+ excluded: Iterable[int | str] | None = None,
209
+ cache: bool = False,
210
+ signature: str | None = None,
211
+ ) -> None: ...
212
+ def __call__(self, /, *args: Incomplete, **kwargs: Incomplete) -> Incomplete: ...
213
+
214
+ @overload
215
+ def rot90(m: _ArrayT, k: int = 1, axes: tuple[int, int] = (0, 1)) -> _ArrayT: ...
216
+ @overload
217
+ def rot90(m: _ArrayLike[_ScalarT], k: int = 1, axes: tuple[int, int] = (0, 1)) -> NDArray[_ScalarT]: ...
218
+ @overload
219
+ def rot90(m: ArrayLike, k: int = 1, axes: tuple[int, int] = (0, 1)) -> NDArray[Incomplete]: ...
220
+
221
+ # NOTE: Technically `flip` also accept scalars, but that has no effect and complicates
222
+ # the overloads significantly, so we ignore that case here.
223
+ @overload
224
+ def flip(m: _ArrayT, axis: int | tuple[int, ...] | None = None) -> _ArrayT: ...
225
+ @overload
226
+ def flip(m: _ArrayLike[_ScalarT], axis: int | tuple[int, ...] | None = None) -> NDArray[_ScalarT]: ...
227
+ @overload
228
+ def flip(m: ArrayLike, axis: int | tuple[int, ...] | None = None) -> NDArray[Incomplete]: ...
229
+
230
+ #
231
+ def iterable(y: object) -> TypeIs[Iterable[Any]]: ...
232
+
233
+ # NOTE: This assumes that if `axis` is given the input is at least 2d, and will
234
+ # therefore always return an array.
235
+ # NOTE: This assumes that if `keepdims=True` the input is at least 1d, and will
236
+ # therefore always return an array.
237
+ @overload # inexact array, keepdims=True
238
+ def average(
239
+ a: _ArrayInexactT,
240
+ axis: int | tuple[int, ...] | None = None,
241
+ weights: _ArrayLikeNumber_co | None = None,
242
+ returned: L[False] = False,
243
+ *,
244
+ keepdims: L[True],
245
+ ) -> _ArrayInexactT: ...
246
+ @overload # inexact array, returned=True keepdims=True
247
+ def average(
248
+ a: _ArrayInexactT,
249
+ axis: int | tuple[int, ...] | None = None,
250
+ weights: _ArrayLikeNumber_co | None = None,
251
+ *,
252
+ returned: L[True],
253
+ keepdims: L[True],
254
+ ) -> _Tuple2[_ArrayInexactT]: ...
255
+ @overload # inexact array-like, axis=None
256
+ def average(
257
+ a: _ArrayLike[_InexactT],
258
+ axis: None = None,
259
+ weights: _ArrayLikeNumber_co | None = None,
260
+ returned: L[False] = False,
261
+ *,
262
+ keepdims: L[False] | _NoValueType = ...,
263
+ ) -> _InexactT: ...
264
+ @overload # inexact array-like, axis=<given>
265
+ def average(
266
+ a: _ArrayLike[_InexactT],
267
+ axis: int | tuple[int, ...],
268
+ weights: _ArrayLikeNumber_co | None = None,
269
+ returned: L[False] = False,
270
+ *,
271
+ keepdims: L[False] | _NoValueType = ...,
272
+ ) -> NDArray[_InexactT]: ...
273
+ @overload # inexact array-like, keepdims=True
274
+ def average(
275
+ a: _ArrayLike[_InexactT],
276
+ axis: int | tuple[int, ...] | None = None,
277
+ weights: _ArrayLikeNumber_co | None = None,
278
+ returned: L[False] = False,
279
+ *,
280
+ keepdims: L[True],
281
+ ) -> NDArray[_InexactT]: ...
282
+ @overload # inexact array-like, axis=None, returned=True
283
+ def average(
284
+ a: _ArrayLike[_InexactT],
285
+ axis: None = None,
286
+ weights: _ArrayLikeNumber_co | None = None,
287
+ *,
288
+ returned: L[True],
289
+ keepdims: L[False] | _NoValueType = ...,
290
+ ) -> _Tuple2[_InexactT]: ...
291
+ @overload # inexact array-like, axis=<given>, returned=True
292
+ def average(
293
+ a: _ArrayLike[_InexactT],
294
+ axis: int | tuple[int, ...],
295
+ weights: _ArrayLikeNumber_co | None = None,
296
+ *,
297
+ returned: L[True],
298
+ keepdims: L[False] | _NoValueType = ...,
299
+ ) -> _Tuple2[NDArray[_InexactT]]: ...
300
+ @overload # inexact array-like, returned=True, keepdims=True
301
+ def average(
302
+ a: _ArrayLike[_InexactT],
303
+ axis: int | tuple[int, ...] | None = None,
304
+ weights: _ArrayLikeNumber_co | None = None,
305
+ *,
306
+ returned: L[True],
307
+ keepdims: L[True],
308
+ ) -> _Tuple2[NDArray[_InexactT]]: ...
309
+ @overload # bool or integer array-like, axis=None
310
+ def average(
311
+ a: _SeqND[float] | _ArrayLikeInt_co,
312
+ axis: None = None,
313
+ weights: _ArrayLikeFloat_co | None = None,
314
+ returned: L[False] = False,
315
+ *,
316
+ keepdims: L[False] | _NoValueType = ...,
317
+ ) -> np.float64: ...
318
+ @overload # bool or integer array-like, axis=<given>
319
+ def average(
320
+ a: _SeqND[float] | _ArrayLikeInt_co,
321
+ axis: int | tuple[int, ...],
322
+ weights: _ArrayLikeFloat_co | None = None,
323
+ returned: L[False] = False,
324
+ *,
325
+ keepdims: L[False] | _NoValueType = ...,
326
+ ) -> NDArray[np.float64]: ...
327
+ @overload # bool or integer array-like, keepdims=True
328
+ def average(
329
+ a: _SeqND[float] | _ArrayLikeInt_co,
330
+ axis: int | tuple[int, ...] | None = None,
331
+ weights: _ArrayLikeFloat_co | None = None,
332
+ returned: L[False] = False,
333
+ *,
334
+ keepdims: L[True],
335
+ ) -> NDArray[np.float64]: ...
336
+ @overload # bool or integer array-like, axis=None, returned=True
337
+ def average(
338
+ a: _SeqND[float] | _ArrayLikeInt_co,
339
+ axis: None = None,
340
+ weights: _ArrayLikeFloat_co | None = None,
341
+ *,
342
+ returned: L[True],
343
+ keepdims: L[False] | _NoValueType = ...,
344
+ ) -> _Tuple2[np.float64]: ...
345
+ @overload # bool or integer array-like, axis=<given>, returned=True
346
+ def average(
347
+ a: _SeqND[float] | _ArrayLikeInt_co,
348
+ axis: int | tuple[int, ...],
349
+ weights: _ArrayLikeFloat_co | None = None,
350
+ *,
351
+ returned: L[True],
352
+ keepdims: L[False] | _NoValueType = ...,
353
+ ) -> _Tuple2[NDArray[np.float64]]: ...
354
+ @overload # bool or integer array-like, returned=True, keepdims=True
355
+ def average(
356
+ a: _SeqND[float] | _ArrayLikeInt_co,
357
+ axis: int | tuple[int, ...] | None = None,
358
+ weights: _ArrayLikeFloat_co | None = None,
359
+ *,
360
+ returned: L[True],
361
+ keepdims: L[True],
362
+ ) -> _Tuple2[NDArray[np.float64]]: ...
363
+ @overload # complex array-like, axis=None
364
+ def average(
365
+ a: _ListSeqND[complex],
366
+ axis: None = None,
367
+ weights: _ArrayLikeComplex_co | None = None,
368
+ returned: L[False] = False,
369
+ *,
370
+ keepdims: L[False] | _NoValueType = ...,
371
+ ) -> np.complex128: ...
372
+ @overload # complex array-like, axis=<given>
373
+ def average(
374
+ a: _ListSeqND[complex],
375
+ axis: int | tuple[int, ...],
376
+ weights: _ArrayLikeComplex_co | None = None,
377
+ returned: L[False] = False,
378
+ *,
379
+ keepdims: L[False] | _NoValueType = ...,
380
+ ) -> NDArray[np.complex128]: ...
381
+ @overload # complex array-like, keepdims=True
382
+ def average(
383
+ a: _ListSeqND[complex],
384
+ axis: int | tuple[int, ...] | None = None,
385
+ weights: _ArrayLikeComplex_co | None = None,
386
+ returned: L[False] = False,
387
+ *,
388
+ keepdims: L[True],
389
+ ) -> NDArray[np.complex128]: ...
390
+ @overload # complex array-like, axis=None, returned=True
391
+ def average(
392
+ a: _ListSeqND[complex],
393
+ axis: None = None,
394
+ weights: _ArrayLikeComplex_co | None = None,
395
+ *,
396
+ returned: L[True],
397
+ keepdims: L[False] | _NoValueType = ...,
398
+ ) -> _Tuple2[np.complex128]: ...
399
+ @overload # complex array-like, axis=<given>, returned=True
400
+ def average(
401
+ a: _ListSeqND[complex],
402
+ axis: int | tuple[int, ...],
403
+ weights: _ArrayLikeComplex_co | None = None,
404
+ *,
405
+ returned: L[True],
406
+ keepdims: L[False] | _NoValueType = ...,
407
+ ) -> _Tuple2[NDArray[np.complex128]]: ...
408
+ @overload # complex array-like, keepdims=True, returned=True
409
+ def average(
410
+ a: _ListSeqND[complex],
411
+ axis: int | tuple[int, ...] | None = None,
412
+ weights: _ArrayLikeComplex_co | None = None,
413
+ *,
414
+ returned: L[True],
415
+ keepdims: L[True],
416
+ ) -> _Tuple2[NDArray[np.complex128]]: ...
417
+ @overload # unknown, axis=None
418
+ def average(
419
+ a: _ArrayLikeNumber_co | _ArrayLikeObject_co,
420
+ axis: None = None,
421
+ weights: _ArrayLikeNumber_co | None = None,
422
+ returned: L[False] = False,
423
+ *,
424
+ keepdims: L[False] | _NoValueType = ...,
425
+ ) -> Any: ...
426
+ @overload # unknown, axis=<given>
427
+ def average(
428
+ a: _ArrayLikeNumber_co | _ArrayLikeObject_co,
429
+ axis: int | tuple[int, ...],
430
+ weights: _ArrayLikeNumber_co | None = None,
431
+ returned: L[False] = False,
432
+ *,
433
+ keepdims: L[False] | _NoValueType = ...,
434
+ ) -> np.ndarray: ...
435
+ @overload # unknown, keepdims=True
436
+ def average(
437
+ a: _ArrayLikeNumber_co | _ArrayLikeObject_co,
438
+ axis: int | tuple[int, ...] | None = None,
439
+ weights: _ArrayLikeNumber_co | None = None,
440
+ returned: L[False] = False,
441
+ *,
442
+ keepdims: L[True],
443
+ ) -> np.ndarray: ...
444
+ @overload # unknown, axis=None, returned=True
445
+ def average(
446
+ a: _ArrayLikeNumber_co | _ArrayLikeObject_co,
447
+ axis: None = None,
448
+ weights: _ArrayLikeNumber_co | None = None,
449
+ *,
450
+ returned: L[True],
451
+ keepdims: L[False] | _NoValueType = ...,
452
+ ) -> _Tuple2[Any]: ...
453
+ @overload # unknown, axis=<given>, returned=True
454
+ def average(
455
+ a: _ArrayLikeNumber_co | _ArrayLikeObject_co,
456
+ axis: int | tuple[int, ...],
457
+ weights: _ArrayLikeNumber_co | None = None,
458
+ *,
459
+ returned: L[True],
460
+ keepdims: L[False] | _NoValueType = ...,
461
+ ) -> _Tuple2[np.ndarray]: ...
462
+ @overload # unknown, returned=True, keepdims=True
463
+ def average(
464
+ a: _ArrayLikeNumber_co | _ArrayLikeObject_co,
465
+ axis: int | tuple[int, ...] | None = None,
466
+ weights: _ArrayLikeNumber_co | None = None,
467
+ *,
468
+ returned: L[True],
469
+ keepdims: L[True],
470
+ ) -> _Tuple2[np.ndarray]: ...
471
+
472
+ #
473
+ @overload
474
+ def asarray_chkfinite(a: _ArrayT, dtype: None = None, order: _OrderKACF = None) -> _ArrayT: ...
475
+ @overload
476
+ def asarray_chkfinite(
477
+ a: np.ndarray[_ShapeT], dtype: _DTypeLike[_ScalarT], order: _OrderKACF = None
478
+ ) -> _Array[_ShapeT, _ScalarT]: ...
479
+ @overload
480
+ def asarray_chkfinite(a: _ArrayLike[_ScalarT], dtype: None = None, order: _OrderKACF = None) -> NDArray[_ScalarT]: ...
481
+ @overload
482
+ def asarray_chkfinite(a: object, dtype: _DTypeLike[_ScalarT], order: _OrderKACF = None) -> NDArray[_ScalarT]: ...
483
+ @overload
484
+ def asarray_chkfinite(a: object, dtype: DTypeLike | None = None, order: _OrderKACF = None) -> NDArray[Incomplete]: ...
485
+
486
+ # NOTE: Contrary to the documentation, scalars are also accepted and treated as
487
+ # `[condlist]`. And even though the documentation says these should be boolean, in
488
+ # practice anything that `np.array(condlist, dtype=bool)` accepts will work, i.e. any
489
+ # array-like.
490
+ @overload
491
+ def piecewise(
492
+ x: _Array[_ShapeT, _ScalarT],
493
+ condlist: ArrayLike,
494
+ funclist: _PiecewiseFunctions[Any, _Tss],
495
+ *args: _Tss.args,
496
+ **kw: _Tss.kwargs,
497
+ ) -> _Array[_ShapeT, _ScalarT]: ...
498
+ @overload
499
+ def piecewise(
500
+ x: _ArrayLike[_ScalarT],
501
+ condlist: ArrayLike,
502
+ funclist: _PiecewiseFunctions[Any, _Tss],
503
+ *args: _Tss.args,
504
+ **kw: _Tss.kwargs,
505
+ ) -> NDArray[_ScalarT]: ...
506
+ @overload
507
+ def piecewise(
508
+ x: ArrayLike,
509
+ condlist: ArrayLike,
510
+ funclist: _PiecewiseFunctions[_ScalarT, _Tss],
511
+ *args: _Tss.args,
512
+ **kw: _Tss.kwargs,
513
+ ) -> NDArray[_ScalarT]: ...
514
+
515
+ # NOTE: condition is usually boolean, but anything with zero/non-zero semantics works
516
+ @overload
517
+ def extract(condition: ArrayLike, arr: _ArrayLike[_ScalarT]) -> _Array1D[_ScalarT]: ...
518
+ @overload
519
+ def extract(condition: ArrayLike, arr: _SeqND[bool]) -> _Array1D[np.bool]: ...
520
+ @overload
521
+ def extract(condition: ArrayLike, arr: _ListSeqND[int]) -> _Array1D[np.int_]: ...
522
+ @overload
523
+ def extract(condition: ArrayLike, arr: _ListSeqND[float]) -> _Array1D[np.float64]: ...
524
+ @overload
525
+ def extract(condition: ArrayLike, arr: _ListSeqND[complex]) -> _Array1D[np.complex128]: ...
526
+ @overload
527
+ def extract(condition: ArrayLike, arr: _SeqND[bytes]) -> _Array1D[np.bytes_]: ...
528
+ @overload
529
+ def extract(condition: ArrayLike, arr: _SeqND[str]) -> _Array1D[np.str_]: ...
530
+ @overload
531
+ def extract(condition: ArrayLike, arr: ArrayLike) -> _Array1D[Incomplete]: ...
532
+
533
+ # NOTE: unlike `extract`, passing non-boolean conditions for `condlist` will raise an
534
+ # error at runtime
535
+ @overload
536
+ def select(
537
+ condlist: _SizedIterable[_ArrayLikeBool_co],
538
+ choicelist: Sequence[_ArrayT],
539
+ default: ArrayLike = 0,
540
+ ) -> _ArrayT: ...
541
+ @overload
542
+ def select(
543
+ condlist: _SizedIterable[_ArrayLikeBool_co],
544
+ choicelist: Sequence[_ArrayLike[_ScalarT]] | NDArray[_ScalarT],
545
+ default: ArrayLike = 0,
546
+ ) -> NDArray[_ScalarT]: ...
547
+ @overload
548
+ def select(
549
+ condlist: _SizedIterable[_ArrayLikeBool_co],
550
+ choicelist: Sequence[ArrayLike],
551
+ default: ArrayLike = 0,
552
+ ) -> np.ndarray: ...
553
+
554
+ # keep roughly in sync with `ma.core.copy`
555
+ @overload
556
+ def copy(a: _ArrayT, order: _OrderKACF, subok: L[True]) -> _ArrayT: ...
557
+ @overload
558
+ def copy(a: _ArrayT, order: _OrderKACF = "K", *, subok: L[True]) -> _ArrayT: ...
559
+ @overload
560
+ def copy(a: _ArrayLike[_ScalarT], order: _OrderKACF = "K", subok: L[False] = False) -> NDArray[_ScalarT]: ...
561
+ @overload
562
+ def copy(a: ArrayLike, order: _OrderKACF = "K", subok: L[False] = False) -> NDArray[Incomplete]: ...
563
+
564
+ #
565
+ @overload # ?d, known inexact scalar-type
566
+ def gradient(
567
+ f: _ArrayNoD[_InexactTimeT],
568
+ *varargs: _ArrayLikeNumber_co,
569
+ axis: _ShapeLike | None = None,
570
+ edge_order: L[1, 2] = 1,
571
+ # `| Any` instead of ` | tuple` is returned to avoid several mypy_primer errors
572
+ ) -> _Array1D[_InexactTimeT] | Any: ...
573
+ @overload # 1d, known inexact scalar-type
574
+ def gradient(
575
+ f: _Array1D[_InexactTimeT],
576
+ *varargs: _ArrayLikeNumber_co,
577
+ axis: _ShapeLike | None = None,
578
+ edge_order: L[1, 2] = 1,
579
+ ) -> _Array1D[_InexactTimeT]: ...
580
+ @overload # 2d, known inexact scalar-type
581
+ def gradient(
582
+ f: _Array2D[_InexactTimeT],
583
+ *varargs: _ArrayLikeNumber_co,
584
+ axis: _ShapeLike | None = None,
585
+ edge_order: L[1, 2] = 1,
586
+ ) -> _Mesh2[_InexactTimeT, _InexactTimeT]: ...
587
+ @overload # 3d, known inexact scalar-type
588
+ def gradient(
589
+ f: _Array3D[_InexactTimeT],
590
+ *varargs: _ArrayLikeNumber_co,
591
+ axis: _ShapeLike | None = None,
592
+ edge_order: L[1, 2] = 1,
593
+ ) -> _Mesh3[_InexactTimeT, _InexactTimeT, _InexactTimeT]: ...
594
+ @overload # ?d, datetime64 scalar-type
595
+ def gradient(
596
+ f: _ArrayNoD[np.datetime64],
597
+ *varargs: _ArrayLikeNumber_co,
598
+ axis: _ShapeLike | None = None,
599
+ edge_order: L[1, 2] = 1,
600
+ ) -> _Array1D[np.timedelta64] | tuple[NDArray[np.timedelta64], ...]: ...
601
+ @overload # 1d, datetime64 scalar-type
602
+ def gradient(
603
+ f: _Array1D[np.datetime64],
604
+ *varargs: _ArrayLikeNumber_co,
605
+ axis: _ShapeLike | None = None,
606
+ edge_order: L[1, 2] = 1,
607
+ ) -> _Array1D[np.timedelta64]: ...
608
+ @overload # 2d, datetime64 scalar-type
609
+ def gradient(
610
+ f: _Array2D[np.datetime64],
611
+ *varargs: _ArrayLikeNumber_co,
612
+ axis: _ShapeLike | None = None,
613
+ edge_order: L[1, 2] = 1,
614
+ ) -> _Mesh2[np.timedelta64, np.timedelta64]: ...
615
+ @overload # 3d, datetime64 scalar-type
616
+ def gradient(
617
+ f: _Array3D[np.datetime64],
618
+ *varargs: _ArrayLikeNumber_co,
619
+ axis: _ShapeLike | None = None,
620
+ edge_order: L[1, 2] = 1,
621
+ ) -> _Mesh3[np.timedelta64, np.timedelta64, np.timedelta64]: ...
622
+ @overload # 1d float-like
623
+ def gradient(
624
+ f: _Seq1D[float],
625
+ *varargs: _ArrayLikeNumber_co,
626
+ axis: _ShapeLike | None = None,
627
+ edge_order: L[1, 2] = 1,
628
+ ) -> _Array1D[np.float64]: ...
629
+ @overload # 2d float-like
630
+ def gradient(
631
+ f: _Seq2D[float],
632
+ *varargs: _ArrayLikeNumber_co,
633
+ axis: _ShapeLike | None = None,
634
+ edge_order: L[1, 2] = 1,
635
+ ) -> _Mesh2[np.float64, np.float64]: ...
636
+ @overload # 3d float-like
637
+ def gradient(
638
+ f: _Seq3D[float],
639
+ *varargs: _ArrayLikeNumber_co,
640
+ axis: _ShapeLike | None = None,
641
+ edge_order: L[1, 2] = 1,
642
+ ) -> _Mesh3[np.float64, np.float64, np.float64]: ...
643
+ @overload # 1d complex-like (the `list` avoids overlap with the float-like overload)
644
+ def gradient(
645
+ f: list[complex],
646
+ *varargs: _ArrayLikeNumber_co,
647
+ axis: _ShapeLike | None = None,
648
+ edge_order: L[1, 2] = 1,
649
+ ) -> _Array1D[np.complex128]: ...
650
+ @overload # 2d float-like
651
+ def gradient(
652
+ f: _Seq1D[list[complex]],
653
+ *varargs: _ArrayLikeNumber_co,
654
+ axis: _ShapeLike | None = None,
655
+ edge_order: L[1, 2] = 1,
656
+ ) -> _Mesh2[np.complex128, np.complex128]: ...
657
+ @overload # 3d float-like
658
+ def gradient(
659
+ f: _Seq2D[list[complex]],
660
+ *varargs: _ArrayLikeNumber_co,
661
+ axis: _ShapeLike | None = None,
662
+ edge_order: L[1, 2] = 1,
663
+ ) -> _Mesh3[np.complex128, np.complex128, np.complex128]: ...
664
+ @overload # fallback
665
+ def gradient(
666
+ f: ArrayLike,
667
+ *varargs: _ArrayLikeNumber_co,
668
+ axis: _ShapeLike | None = None,
669
+ edge_order: L[1, 2] = 1,
670
+ ) -> Incomplete: ...
671
+
672
+ #
673
+ @overload # n == 0; return input unchanged
674
+ def diff(
675
+ a: _T,
676
+ n: L[0],
677
+ axis: SupportsIndex = -1,
678
+ prepend: ArrayLike | _NoValueType = ..., # = _NoValue
679
+ append: ArrayLike | _NoValueType = ..., # = _NoValue
680
+ ) -> _T: ...
681
+ @overload # known array-type
682
+ def diff(
683
+ a: _ArrayNumericT,
684
+ n: int = 1,
685
+ axis: SupportsIndex = -1,
686
+ prepend: ArrayLike | _NoValueType = ...,
687
+ append: ArrayLike | _NoValueType = ...,
688
+ ) -> _ArrayNumericT: ...
689
+ @overload # known shape, datetime64
690
+ def diff(
691
+ a: _Array[_ShapeT, np.datetime64],
692
+ n: int = 1,
693
+ axis: SupportsIndex = -1,
694
+ prepend: ArrayLike | _NoValueType = ...,
695
+ append: ArrayLike | _NoValueType = ...,
696
+ ) -> _Array[_ShapeT, np.timedelta64]: ...
697
+ @overload # unknown shape, known scalar-type
698
+ def diff(
699
+ a: _ArrayLike[_ScalarNumericT],
700
+ n: int = 1,
701
+ axis: SupportsIndex = -1,
702
+ prepend: ArrayLike | _NoValueType = ...,
703
+ append: ArrayLike | _NoValueType = ...,
704
+ ) -> NDArray[_ScalarNumericT]: ...
705
+ @overload # unknown shape, datetime64
706
+ def diff(
707
+ a: _ArrayLike[np.datetime64],
708
+ n: int = 1,
709
+ axis: SupportsIndex = -1,
710
+ prepend: ArrayLike | _NoValueType = ...,
711
+ append: ArrayLike | _NoValueType = ...,
712
+ ) -> NDArray[np.timedelta64]: ...
713
+ @overload # 1d int
714
+ def diff(
715
+ a: _Seq1D[int],
716
+ n: int = 1,
717
+ axis: SupportsIndex = -1,
718
+ prepend: ArrayLike | _NoValueType = ...,
719
+ append: ArrayLike | _NoValueType = ...,
720
+ ) -> _Array1D[np.int_]: ...
721
+ @overload # 2d int
722
+ def diff(
723
+ a: _Seq2D[int],
724
+ n: int = 1,
725
+ axis: SupportsIndex = -1,
726
+ prepend: ArrayLike | _NoValueType = ...,
727
+ append: ArrayLike | _NoValueType = ...,
728
+ ) -> _Array2D[np.int_]: ...
729
+ @overload # 1d float (the `list` avoids overlap with the `int` overloads)
730
+ def diff(
731
+ a: list[float],
732
+ n: int = 1,
733
+ axis: SupportsIndex = -1,
734
+ prepend: ArrayLike | _NoValueType = ...,
735
+ append: ArrayLike | _NoValueType = ...,
736
+ ) -> _Array1D[np.float64]: ...
737
+ @overload # 2d float
738
+ def diff(
739
+ a: _Seq1D[list[float]],
740
+ n: int = 1,
741
+ axis: SupportsIndex = -1,
742
+ prepend: ArrayLike | _NoValueType = ...,
743
+ append: ArrayLike | _NoValueType = ...,
744
+ ) -> _Array2D[np.float64]: ...
745
+ @overload # 1d complex (the `list` avoids overlap with the `int` overloads)
746
+ def diff(
747
+ a: list[complex],
748
+ n: int = 1,
749
+ axis: SupportsIndex = -1,
750
+ prepend: ArrayLike | _NoValueType = ...,
751
+ append: ArrayLike | _NoValueType = ...,
752
+ ) -> _Array1D[np.complex128]: ...
753
+ @overload # 2d complex
754
+ def diff(
755
+ a: _Seq1D[list[complex]],
756
+ n: int = 1,
757
+ axis: SupportsIndex = -1,
758
+ prepend: ArrayLike | _NoValueType = ...,
759
+ append: ArrayLike | _NoValueType = ...,
760
+ ) -> _Array2D[np.complex128]: ...
761
+ @overload # unknown shape, unknown scalar-type
762
+ def diff(
763
+ a: ArrayLike,
764
+ n: int = 1,
765
+ axis: SupportsIndex = -1,
766
+ prepend: ArrayLike | _NoValueType = ...,
767
+ append: ArrayLike | _NoValueType = ...,
768
+ ) -> NDArray[Incomplete]: ...
769
+
770
+ #
771
+ @overload # float scalar
772
+ def interp(
773
+ x: _FloatLike_co,
774
+ xp: _ArrayLikeFloat_co,
775
+ fp: _ArrayLikeFloat_co,
776
+ left: _FloatLike_co | None = None,
777
+ right: _FloatLike_co | None = None,
778
+ period: _FloatLike_co | None = None,
779
+ ) -> np.float64: ...
780
+ @overload # complex scalar
781
+ def interp(
782
+ x: _FloatLike_co,
783
+ xp: _ArrayLikeFloat_co,
784
+ fp: _ArrayLike1D[np.complexfloating] | list[complex],
785
+ left: _NumberLike_co | None = None,
786
+ right: _NumberLike_co | None = None,
787
+ period: _FloatLike_co | None = None,
788
+ ) -> np.complex128: ...
789
+ @overload # float array
790
+ def interp(
791
+ x: _Array[_ShapeT, _floating_co],
792
+ xp: _ArrayLikeFloat_co,
793
+ fp: _ArrayLikeFloat_co,
794
+ left: _FloatLike_co | None = None,
795
+ right: _FloatLike_co | None = None,
796
+ period: _FloatLike_co | None = None,
797
+ ) -> _Array[_ShapeT, np.float64]: ...
798
+ @overload # complex array
799
+ def interp(
800
+ x: _Array[_ShapeT, _floating_co],
801
+ xp: _ArrayLikeFloat_co,
802
+ fp: _ArrayLike1D[np.complexfloating] | list[complex],
803
+ left: _NumberLike_co | None = None,
804
+ right: _NumberLike_co | None = None,
805
+ period: _FloatLike_co | None = None,
806
+ ) -> _Array[_ShapeT, np.complex128]: ...
807
+ @overload # float sequence
808
+ def interp(
809
+ x: _Seq1D[_FloatLike_co],
810
+ xp: _ArrayLikeFloat_co,
811
+ fp: _ArrayLikeFloat_co,
812
+ left: _FloatLike_co | None = None,
813
+ right: _FloatLike_co | None = None,
814
+ period: _FloatLike_co | None = None,
815
+ ) -> _Array1D[np.float64]: ...
816
+ @overload # complex sequence
817
+ def interp(
818
+ x: _Seq1D[_FloatLike_co],
819
+ xp: _ArrayLikeFloat_co,
820
+ fp: _ArrayLike1D[np.complexfloating] | list[complex],
821
+ left: _NumberLike_co | None = None,
822
+ right: _NumberLike_co | None = None,
823
+ period: _FloatLike_co | None = None,
824
+ ) -> _Array1D[np.complex128]: ...
825
+ @overload # float array-like
826
+ def interp(
827
+ x: _SeqND[_FloatLike_co],
828
+ xp: _ArrayLikeFloat_co,
829
+ fp: _ArrayLikeFloat_co,
830
+ left: _FloatLike_co | None = None,
831
+ right: _FloatLike_co | None = None,
832
+ period: _FloatLike_co | None = None,
833
+ ) -> NDArray[np.float64]: ...
834
+ @overload # complex array-like
835
+ def interp(
836
+ x: _SeqND[_FloatLike_co],
837
+ xp: _ArrayLikeFloat_co,
838
+ fp: _ArrayLike1D[np.complexfloating] | list[complex],
839
+ left: _NumberLike_co | None = None,
840
+ right: _NumberLike_co | None = None,
841
+ period: _FloatLike_co | None = None,
842
+ ) -> NDArray[np.complex128]: ...
843
+ @overload # float scalar/array-like
844
+ def interp(
845
+ x: _ArrayLikeFloat_co,
846
+ xp: _ArrayLikeFloat_co,
847
+ fp: _ArrayLikeFloat_co,
848
+ left: _FloatLike_co | None = None,
849
+ right: _FloatLike_co | None = None,
850
+ period: _FloatLike_co | None = None,
851
+ ) -> NDArray[np.float64] | np.float64: ...
852
+ @overload # complex scalar/array-like
853
+ def interp(
854
+ x: _ArrayLikeFloat_co,
855
+ xp: _ArrayLikeFloat_co,
856
+ fp: _ArrayLike1D[np.complexfloating],
857
+ left: _NumberLike_co | None = None,
858
+ right: _NumberLike_co | None = None,
859
+ period: _FloatLike_co | None = None,
860
+ ) -> NDArray[np.complex128] | np.complex128: ...
861
+ @overload # float/complex scalar/array-like
862
+ def interp(
863
+ x: _ArrayLikeFloat_co,
864
+ xp: _ArrayLikeFloat_co,
865
+ fp: _ArrayLikeNumber_co,
866
+ left: _NumberLike_co | None = None,
867
+ right: _NumberLike_co | None = None,
868
+ period: _FloatLike_co | None = None,
869
+ ) -> NDArray[np.complex128 | np.float64] | np.complex128 | np.float64: ...
870
+
871
+ #
872
+ @overload # 0d T: floating -> 0d T
873
+ def angle(z: _FloatingT, deg: bool = False) -> _FloatingT: ...
874
+ @overload # 0d complex | float | ~integer -> 0d float64
875
+ def angle(z: complex | _integer_co, deg: bool = False) -> np.float64: ...
876
+ @overload # 0d complex64 -> 0d float32
877
+ def angle(z: np.complex64, deg: bool = False) -> np.float32: ...
878
+ @overload # 0d clongdouble -> 0d longdouble
879
+ def angle(z: np.clongdouble, deg: bool = False) -> np.longdouble: ...
880
+ @overload # T: nd floating -> T
881
+ def angle(z: _ArrayFloatingT, deg: bool = False) -> _ArrayFloatingT: ...
882
+ @overload # nd T: complex128 | ~integer -> nd float64
883
+ def angle(z: _Array[_ShapeT, np.complex128 | _integer_co], deg: bool = False) -> _Array[_ShapeT, np.float64]: ...
884
+ @overload # nd T: complex64 -> nd float32
885
+ def angle(z: _Array[_ShapeT, np.complex64], deg: bool = False) -> _Array[_ShapeT, np.float32]: ...
886
+ @overload # nd T: clongdouble -> nd longdouble
887
+ def angle(z: _Array[_ShapeT, np.clongdouble], deg: bool = False) -> _Array[_ShapeT, np.longdouble]: ...
888
+ @overload # 1d complex -> 1d float64
889
+ def angle(z: _Seq1D[complex], deg: bool = False) -> _Array1D[np.float64]: ...
890
+ @overload # 2d complex -> 2d float64
891
+ def angle(z: _Seq2D[complex], deg: bool = False) -> _Array2D[np.float64]: ...
892
+ @overload # 3d complex -> 3d float64
893
+ def angle(z: _Seq3D[complex], deg: bool = False) -> _Array3D[np.float64]: ...
894
+ @overload # fallback
895
+ def angle(z: _ArrayLikeComplex_co, deg: bool = False) -> NDArray[np.floating] | Any: ...
896
+
897
+ #
898
+ @overload # known array-type
899
+ def unwrap(
900
+ p: _ArrayFloatObjT,
901
+ discont: float | None = None,
902
+ axis: int = -1,
903
+ *,
904
+ period: float = ..., # = τ
905
+ ) -> _ArrayFloatObjT: ...
906
+ @overload # known shape, float64
907
+ def unwrap(
908
+ p: _Array[_ShapeT, _float64_co],
909
+ discont: float | None = None,
910
+ axis: int = -1,
911
+ *,
912
+ period: float = ..., # = τ
913
+ ) -> _Array[_ShapeT, np.float64]: ...
914
+ @overload # 1d float64-like
915
+ def unwrap(
916
+ p: _Seq1D[float | _float64_co],
917
+ discont: float | None = None,
918
+ axis: int = -1,
919
+ *,
920
+ period: float = ..., # = τ
921
+ ) -> _Array1D[np.float64]: ...
922
+ @overload # 2d float64-like
923
+ def unwrap(
924
+ p: _Seq2D[float | _float64_co],
925
+ discont: float | None = None,
926
+ axis: int = -1,
927
+ *,
928
+ period: float = ..., # = τ
929
+ ) -> _Array2D[np.float64]: ...
930
+ @overload # 3d float64-like
931
+ def unwrap(
932
+ p: _Seq3D[float | _float64_co],
933
+ discont: float | None = None,
934
+ axis: int = -1,
935
+ *,
936
+ period: float = ..., # = τ
937
+ ) -> _Array3D[np.float64]: ...
938
+ @overload # ?d, float64
939
+ def unwrap(
940
+ p: _SeqND[float] | _ArrayLike[_float64_co],
941
+ discont: float | None = None,
942
+ axis: int = -1,
943
+ *,
944
+ period: float = ..., # = τ
945
+ ) -> NDArray[np.float64]: ...
946
+ @overload # fallback
947
+ def unwrap(
948
+ p: _ArrayLikeFloat_co | _ArrayLikeObject_co,
949
+ discont: float | None = None,
950
+ axis: int = -1,
951
+ *,
952
+ period: float = ..., # = τ
953
+ ) -> np.ndarray: ...
954
+
955
+ #
956
+ @overload
957
+ def sort_complex(a: _ArrayComplexT) -> _ArrayComplexT: ...
958
+ @overload # complex64, shape known
959
+ def sort_complex(a: _Array[_ShapeT, np.int8 | np.uint8 | np.int16 | np.uint16]) -> _Array[_ShapeT, np.complex64]: ...
960
+ @overload # complex64, shape unknown
961
+ def sort_complex(a: _ArrayLike[np.int8 | np.uint8 | np.int16 | np.uint16]) -> NDArray[np.complex64]: ...
962
+ @overload # complex128, shape known
963
+ def sort_complex(a: _Array[_ShapeT, _SortsToComplex128]) -> _Array[_ShapeT, np.complex128]: ...
964
+ @overload # complex128, shape unknown
965
+ def sort_complex(a: _ArrayLike[_SortsToComplex128]) -> NDArray[np.complex128]: ...
966
+ @overload # clongdouble, shape known
967
+ def sort_complex(a: _Array[_ShapeT, np.longdouble]) -> _Array[_ShapeT, np.clongdouble]: ...
968
+ @overload # clongdouble, shape unknown
969
+ def sort_complex(a: _ArrayLike[np.longdouble]) -> NDArray[np.clongdouble]: ...
970
+
971
+ #
972
+ def trim_zeros(filt: _TrimZerosSequence[_T], trim: L["f", "b", "fb", "bf"] = "fb", axis: _ShapeLike | None = None) -> _T: ...
973
+
974
+ # NOTE: keep in sync with `corrcoef`
975
+ @overload # ?d, known inexact scalar-type >=64 precision, y=<given>.
976
+ def cov(
977
+ m: _ArrayLike[_AnyDoubleT],
978
+ y: _ArrayLike[_AnyDoubleT],
979
+ rowvar: bool = True,
980
+ bias: bool = False,
981
+ ddof: SupportsIndex | SupportsInt | None = None,
982
+ fweights: _ArrayLikeInt_co | None = None,
983
+ aweights: _ArrayLikeFloat_co | None = None,
984
+ *,
985
+ dtype: None = None,
986
+ ) -> _Array2D[_AnyDoubleT]: ...
987
+ @overload # ?d, known inexact scalar-type >=64 precision, y=None -> 0d or 2d
988
+ def cov(
989
+ m: _ArrayNoD[_AnyDoubleT],
990
+ y: None = None,
991
+ rowvar: bool = True,
992
+ bias: bool = False,
993
+ ddof: SupportsIndex | SupportsInt | None = None,
994
+ fweights: _ArrayLikeInt_co | None = None,
995
+ aweights: _ArrayLikeFloat_co | None = None,
996
+ *,
997
+ dtype: _DTypeLike[_AnyDoubleT] | None = None,
998
+ ) -> NDArray[_AnyDoubleT]: ...
999
+ @overload # 1d, known inexact scalar-type >=64 precision, y=None
1000
+ def cov(
1001
+ m: _Array1D[_AnyDoubleT],
1002
+ y: None = None,
1003
+ rowvar: bool = True,
1004
+ bias: bool = False,
1005
+ ddof: SupportsIndex | SupportsInt | None = None,
1006
+ fweights: _ArrayLikeInt_co | None = None,
1007
+ aweights: _ArrayLikeFloat_co | None = None,
1008
+ *,
1009
+ dtype: _DTypeLike[_AnyDoubleT] | None = None,
1010
+ ) -> _Array0D[_AnyDoubleT]: ...
1011
+ @overload # nd, known inexact scalar-type >=64 precision, y=None -> 0d or 2d
1012
+ def cov(
1013
+ m: _ArrayLike[_AnyDoubleT],
1014
+ y: None = None,
1015
+ rowvar: bool = True,
1016
+ bias: bool = False,
1017
+ ddof: SupportsIndex | SupportsInt | None = None,
1018
+ fweights: _ArrayLikeInt_co | None = None,
1019
+ aweights: _ArrayLikeFloat_co | None = None,
1020
+ *,
1021
+ dtype: _DTypeLike[_AnyDoubleT] | None = None,
1022
+ ) -> NDArray[_AnyDoubleT]: ...
1023
+ @overload # nd, casts to float64, y=<given>
1024
+ def cov(
1025
+ m: NDArray[np.float32 | np.float16 | _integer_co] | _Seq1D[float] | _Seq2D[float],
1026
+ y: NDArray[np.float32 | np.float16 | _integer_co] | _Seq1D[float] | _Seq2D[float],
1027
+ rowvar: bool = True,
1028
+ bias: bool = False,
1029
+ ddof: SupportsIndex | SupportsInt | None = None,
1030
+ fweights: _ArrayLikeInt_co | None = None,
1031
+ aweights: _ArrayLikeFloat_co | None = None,
1032
+ *,
1033
+ dtype: _DTypeLike[np.float64] | None = None,
1034
+ ) -> _Array2D[np.float64]: ...
1035
+ @overload # ?d or 2d, casts to float64, y=None -> 0d or 2d
1036
+ def cov(
1037
+ m: _ArrayNoD[np.float32 | np.float16 | _integer_co] | _Seq2D[float],
1038
+ y: None = None,
1039
+ rowvar: bool = True,
1040
+ bias: bool = False,
1041
+ ddof: SupportsIndex | SupportsInt | None = None,
1042
+ fweights: _ArrayLikeInt_co | None = None,
1043
+ aweights: _ArrayLikeFloat_co | None = None,
1044
+ *,
1045
+ dtype: _DTypeLike[np.float64] | None = None,
1046
+ ) -> NDArray[np.float64]: ...
1047
+ @overload # 1d, casts to float64, y=None
1048
+ def cov(
1049
+ m: _Array1D[np.float32 | np.float16 | _integer_co] | _Seq1D[float],
1050
+ y: None = None,
1051
+ rowvar: bool = True,
1052
+ bias: bool = False,
1053
+ ddof: SupportsIndex | SupportsInt | None = None,
1054
+ fweights: _ArrayLikeInt_co | None = None,
1055
+ aweights: _ArrayLikeFloat_co | None = None,
1056
+ *,
1057
+ dtype: _DTypeLike[np.float64] | None = None,
1058
+ ) -> _Array0D[np.float64]: ...
1059
+ @overload # nd, casts to float64, y=None -> 0d or 2d
1060
+ def cov(
1061
+ m: _ArrayLike[np.float32 | np.float16 | _integer_co],
1062
+ y: None = None,
1063
+ rowvar: bool = True,
1064
+ bias: bool = False,
1065
+ ddof: SupportsIndex | SupportsInt | None = None,
1066
+ fweights: _ArrayLikeInt_co | None = None,
1067
+ aweights: _ArrayLikeFloat_co | None = None,
1068
+ *,
1069
+ dtype: _DTypeLike[np.float64] | None = None,
1070
+ ) -> NDArray[np.float64]: ...
1071
+ @overload # 1d complex, y=<given> (`list` avoids overlap with float overloads)
1072
+ def cov(
1073
+ m: list[complex] | _Seq1D[list[complex]],
1074
+ y: list[complex] | _Seq1D[list[complex]],
1075
+ rowvar: bool = True,
1076
+ bias: bool = False,
1077
+ ddof: SupportsIndex | SupportsInt | None = None,
1078
+ fweights: _ArrayLikeInt_co | None = None,
1079
+ aweights: _ArrayLikeFloat_co | None = None,
1080
+ *,
1081
+ dtype: _DTypeLike[np.complex128] | None = None,
1082
+ ) -> _Array2D[np.complex128]: ...
1083
+ @overload # 1d complex, y=None
1084
+ def cov(
1085
+ m: list[complex],
1086
+ y: None = None,
1087
+ rowvar: bool = True,
1088
+ bias: bool = False,
1089
+ ddof: SupportsIndex | SupportsInt | None = None,
1090
+ fweights: _ArrayLikeInt_co | None = None,
1091
+ aweights: _ArrayLikeFloat_co | None = None,
1092
+ *,
1093
+ dtype: _DTypeLike[np.complex128] | None = None,
1094
+ ) -> _Array0D[np.complex128]: ...
1095
+ @overload # 2d complex, y=None -> 0d or 2d
1096
+ def cov(
1097
+ m: _Seq1D[list[complex]],
1098
+ y: None = None,
1099
+ rowvar: bool = True,
1100
+ bias: bool = False,
1101
+ ddof: SupportsIndex | SupportsInt | None = None,
1102
+ fweights: _ArrayLikeInt_co | None = None,
1103
+ aweights: _ArrayLikeFloat_co | None = None,
1104
+ *,
1105
+ dtype: _DTypeLike[np.complex128] | None = None,
1106
+ ) -> NDArray[np.complex128]: ...
1107
+ @overload # 1d complex-like, y=None, dtype=<known>
1108
+ def cov(
1109
+ m: _Seq1D[_ComplexLike_co],
1110
+ y: None = None,
1111
+ rowvar: bool = True,
1112
+ bias: bool = False,
1113
+ ddof: SupportsIndex | SupportsInt | None = None,
1114
+ fweights: _ArrayLikeInt_co | None = None,
1115
+ aweights: _ArrayLikeFloat_co | None = None,
1116
+ *,
1117
+ dtype: _DTypeLike[_ScalarT],
1118
+ ) -> _Array0D[_ScalarT]: ...
1119
+ @overload # nd complex-like, y=<given>, dtype=<known>
1120
+ def cov(
1121
+ m: _ArrayLikeComplex_co,
1122
+ y: _ArrayLikeComplex_co,
1123
+ rowvar: bool = True,
1124
+ bias: bool = False,
1125
+ ddof: SupportsIndex | SupportsInt | None = None,
1126
+ fweights: _ArrayLikeInt_co | None = None,
1127
+ aweights: _ArrayLikeFloat_co | None = None,
1128
+ *,
1129
+ dtype: _DTypeLike[_ScalarT],
1130
+ ) -> _Array2D[_ScalarT]: ...
1131
+ @overload # nd complex-like, y=None, dtype=<known> -> 0d or 2d
1132
+ def cov(
1133
+ m: _ArrayLikeComplex_co,
1134
+ y: None = None,
1135
+ rowvar: bool = True,
1136
+ bias: bool = False,
1137
+ ddof: SupportsIndex | SupportsInt | None = None,
1138
+ fweights: _ArrayLikeInt_co | None = None,
1139
+ aweights: _ArrayLikeFloat_co | None = None,
1140
+ *,
1141
+ dtype: _DTypeLike[_ScalarT],
1142
+ ) -> NDArray[_ScalarT]: ...
1143
+ @overload # nd complex-like, y=<given>, dtype=?
1144
+ def cov(
1145
+ m: _ArrayLikeComplex_co,
1146
+ y: _ArrayLikeComplex_co,
1147
+ rowvar: bool = True,
1148
+ bias: bool = False,
1149
+ ddof: SupportsIndex | SupportsInt | None = None,
1150
+ fweights: _ArrayLikeInt_co | None = None,
1151
+ aweights: _ArrayLikeFloat_co | None = None,
1152
+ *,
1153
+ dtype: DTypeLike | None = None,
1154
+ ) -> _Array2D[Incomplete]: ...
1155
+ @overload # 1d complex-like, y=None, dtype=?
1156
+ def cov(
1157
+ m: _Seq1D[_ComplexLike_co],
1158
+ y: None = None,
1159
+ rowvar: bool = True,
1160
+ bias: bool = False,
1161
+ ddof: SupportsIndex | SupportsInt | None = None,
1162
+ fweights: _ArrayLikeInt_co | None = None,
1163
+ aweights: _ArrayLikeFloat_co | None = None,
1164
+ *,
1165
+ dtype: DTypeLike | None = None,
1166
+ ) -> _Array0D[Incomplete]: ...
1167
+ @overload # nd complex-like, dtype=?
1168
+ def cov(
1169
+ m: _ArrayLikeComplex_co,
1170
+ y: _ArrayLikeComplex_co | None = None,
1171
+ rowvar: bool = True,
1172
+ bias: bool = False,
1173
+ ddof: SupportsIndex | SupportsInt | None = None,
1174
+ fweights: _ArrayLikeInt_co | None = None,
1175
+ aweights: _ArrayLikeFloat_co | None = None,
1176
+ *,
1177
+ dtype: DTypeLike | None = None,
1178
+ ) -> NDArray[Incomplete]: ...
1179
+
1180
+ # NOTE: If only `x` is given and the resulting array has shape (1,1), a bare scalar
1181
+ # is returned instead of a 2D array. When y is given, a 2D array is always returned.
1182
+ # This differs from `cov`, which returns 0-D arrays instead of scalars in such cases.
1183
+ # NOTE: keep in sync with `cov`
1184
+ @overload # ?d, known inexact scalar-type >=64 precision, y=<given>.
1185
+ def corrcoef(
1186
+ x: _ArrayLike[_AnyDoubleT],
1187
+ y: _ArrayLike[_AnyDoubleT],
1188
+ rowvar: bool = True,
1189
+ *,
1190
+ dtype: _DTypeLike[_AnyDoubleT] | None = None,
1191
+ ) -> _Array2D[_AnyDoubleT]: ...
1192
+ @overload # ?d, known inexact scalar-type >=64 precision, y=None
1193
+ def corrcoef(
1194
+ x: _ArrayNoD[_AnyDoubleT],
1195
+ y: None = None,
1196
+ rowvar: bool = True,
1197
+ *,
1198
+ dtype: _DTypeLike[_AnyDoubleT] | None = None,
1199
+ ) -> _Array2D[_AnyDoubleT] | _AnyDoubleT: ...
1200
+ @overload # 1d, known inexact scalar-type >=64 precision, y=None
1201
+ def corrcoef(
1202
+ x: _Array1D[_AnyDoubleT],
1203
+ y: None = None,
1204
+ rowvar: bool = True,
1205
+ *,
1206
+ dtype: _DTypeLike[_AnyDoubleT] | None = None,
1207
+ ) -> _AnyDoubleT: ...
1208
+ @overload # nd, known inexact scalar-type >=64 precision, y=None
1209
+ def corrcoef(
1210
+ x: _ArrayLike[_AnyDoubleT],
1211
+ y: None = None,
1212
+ rowvar: bool = True,
1213
+ *,
1214
+ dtype: _DTypeLike[_AnyDoubleT] | None = None,
1215
+ ) -> _Array2D[_AnyDoubleT] | _AnyDoubleT: ...
1216
+ @overload # nd, casts to float64, y=<given>
1217
+ def corrcoef(
1218
+ x: NDArray[np.float32 | np.float16 | _integer_co] | _Seq1D[float] | _Seq2D[float],
1219
+ y: NDArray[np.float32 | np.float16 | _integer_co] | _Seq1D[float] | _Seq2D[float],
1220
+ rowvar: bool = True,
1221
+ *,
1222
+ dtype: _DTypeLike[np.float64] | None = None,
1223
+ ) -> _Array2D[np.float64]: ...
1224
+ @overload # ?d or 2d, casts to float64, y=None
1225
+ def corrcoef(
1226
+ x: _ArrayNoD[np.float32 | np.float16 | _integer_co] | _Seq2D[float],
1227
+ y: None = None,
1228
+ rowvar: bool = True,
1229
+ *,
1230
+ dtype: _DTypeLike[np.float64] | None = None,
1231
+ ) -> _Array2D[np.float64] | np.float64: ...
1232
+ @overload # 1d, casts to float64, y=None
1233
+ def corrcoef(
1234
+ x: _Array1D[np.float32 | np.float16 | _integer_co] | _Seq1D[float],
1235
+ y: None = None,
1236
+ rowvar: bool = True,
1237
+ *,
1238
+ dtype: _DTypeLike[np.float64] | None = None,
1239
+ ) -> np.float64: ...
1240
+ @overload # nd, casts to float64, y=None
1241
+ def corrcoef(
1242
+ x: _ArrayLike[np.float32 | np.float16 | _integer_co],
1243
+ y: None = None,
1244
+ rowvar: bool = True,
1245
+ *,
1246
+ dtype: _DTypeLike[np.float64] | None = None,
1247
+ ) -> _Array2D[np.float64] | np.float64: ...
1248
+ @overload # 1d complex, y=<given> (`list` avoids overlap with float overloads)
1249
+ def corrcoef(
1250
+ x: list[complex] | _Seq1D[list[complex]],
1251
+ y: list[complex] | _Seq1D[list[complex]],
1252
+ rowvar: bool = True,
1253
+ *,
1254
+ dtype: _DTypeLike[np.complex128] | None = None,
1255
+ ) -> _Array2D[np.complex128]: ...
1256
+ @overload # 1d complex, y=None
1257
+ def corrcoef(
1258
+ x: list[complex],
1259
+ y: None = None,
1260
+ rowvar: bool = True,
1261
+ *,
1262
+ dtype: _DTypeLike[np.complex128] | None = None,
1263
+ ) -> np.complex128: ...
1264
+ @overload # 2d complex, y=None
1265
+ def corrcoef(
1266
+ x: _Seq1D[list[complex]],
1267
+ y: None = None,
1268
+ rowvar: bool = True,
1269
+ *,
1270
+ dtype: _DTypeLike[np.complex128] | None = None,
1271
+ ) -> _Array2D[np.complex128] | np.complex128: ...
1272
+ @overload # 1d complex-like, y=None, dtype=<known>
1273
+ def corrcoef(
1274
+ x: _Seq1D[_ComplexLike_co],
1275
+ y: None = None,
1276
+ rowvar: bool = True,
1277
+ *,
1278
+ dtype: _DTypeLike[_ScalarT],
1279
+ ) -> _ScalarT: ...
1280
+ @overload # nd complex-like, y=<given>, dtype=<known>
1281
+ def corrcoef(
1282
+ x: _ArrayLikeComplex_co,
1283
+ y: _ArrayLikeComplex_co,
1284
+ rowvar: bool = True,
1285
+ *,
1286
+ dtype: _DTypeLike[_ScalarT],
1287
+ ) -> _Array2D[_ScalarT]: ...
1288
+ @overload # nd complex-like, y=None, dtype=<known>
1289
+ def corrcoef(
1290
+ x: _ArrayLikeComplex_co,
1291
+ y: None = None,
1292
+ rowvar: bool = True,
1293
+ *,
1294
+ dtype: _DTypeLike[_ScalarT],
1295
+ ) -> _Array2D[_ScalarT] | _ScalarT: ...
1296
+ @overload # nd complex-like, y=<given>, dtype=?
1297
+ def corrcoef(
1298
+ x: _ArrayLikeComplex_co,
1299
+ y: _ArrayLikeComplex_co,
1300
+ rowvar: bool = True,
1301
+ *,
1302
+ dtype: DTypeLike | None = None,
1303
+ ) -> _Array2D[Incomplete]: ...
1304
+ @overload # 1d complex-like, y=None, dtype=?
1305
+ def corrcoef(
1306
+ x: _Seq1D[_ComplexLike_co],
1307
+ y: None = None,
1308
+ rowvar: bool = True,
1309
+ *,
1310
+ dtype: DTypeLike | None = None,
1311
+ ) -> Incomplete: ...
1312
+ @overload # nd complex-like, dtype=?
1313
+ def corrcoef(
1314
+ x: _ArrayLikeComplex_co,
1315
+ y: _ArrayLikeComplex_co | None = None,
1316
+ rowvar: bool = True,
1317
+ *,
1318
+ dtype: DTypeLike | None = None,
1319
+ ) -> _Array2D[Incomplete] | Incomplete: ...
1320
+
1321
+ # note that floating `M` are accepted, but their fractional part is ignored
1322
+ def blackman(M: _FloatLike_co) -> _Array1D[np.float64]: ...
1323
+ def bartlett(M: _FloatLike_co) -> _Array1D[np.float64]: ...
1324
+ def hanning(M: _FloatLike_co) -> _Array1D[np.float64]: ...
1325
+ def hamming(M: _FloatLike_co) -> _Array1D[np.float64]: ...
1326
+ def kaiser(M: _FloatLike_co, beta: _FloatLike_co) -> _Array1D[np.float64]: ...
1327
+
1328
+ #
1329
+ @overload
1330
+ def i0(x: _Array[_ShapeT, np.floating | np.integer]) -> _Array[_ShapeT, np.float64]: ...
1331
+ @overload
1332
+ def i0(x: _FloatLike_co) -> _Array0D[np.float64]: ...
1333
+ @overload
1334
+ def i0(x: _Seq1D[_FloatLike_co]) -> _Array1D[np.float64]: ...
1335
+ @overload
1336
+ def i0(x: _Seq2D[_FloatLike_co]) -> _Array2D[np.float64]: ...
1337
+ @overload
1338
+ def i0(x: _Seq3D[_FloatLike_co]) -> _Array3D[np.float64]: ...
1339
+ @overload
1340
+ def i0(x: _ArrayLikeFloat_co) -> NDArray[np.float64]: ...
1341
+
1342
+ #
1343
+ @overload
1344
+ def sinc(x: _InexactT) -> _InexactT: ...
1345
+ @overload
1346
+ def sinc(x: float | _float64_co) -> np.float64: ...
1347
+ @overload
1348
+ def sinc(x: complex) -> np.complex128 | Any: ...
1349
+ @overload
1350
+ def sinc(x: _ArrayInexactT) -> _ArrayInexactT: ...
1351
+ @overload
1352
+ def sinc(x: _Array[_ShapeT, _integer_co]) -> _Array[_ShapeT, np.float64]: ...
1353
+ @overload
1354
+ def sinc(x: _Seq1D[float]) -> _Array1D[np.float64]: ...
1355
+ @overload
1356
+ def sinc(x: _Seq2D[float]) -> _Array2D[np.float64]: ...
1357
+ @overload
1358
+ def sinc(x: _Seq3D[float]) -> _Array3D[np.float64]: ...
1359
+ @overload
1360
+ def sinc(x: _SeqND[float]) -> NDArray[np.float64]: ...
1361
+ @overload
1362
+ def sinc(x: list[complex]) -> _Array1D[np.complex128]: ...
1363
+ @overload
1364
+ def sinc(x: _Seq1D[list[complex]]) -> _Array2D[np.complex128]: ...
1365
+ @overload
1366
+ def sinc(x: _Seq2D[list[complex]]) -> _Array3D[np.complex128]: ...
1367
+ @overload
1368
+ def sinc(x: _ArrayLikeComplex_co) -> np.ndarray | Any: ...
1369
+
1370
+ # NOTE: We assume that `axis` is only provided for >=1-D arrays because for <1-D arrays
1371
+ # it has no effect, and would complicate the overloads significantly.
1372
+ @overload # known scalar-type, keepdims=False (default)
1373
+ def median(
1374
+ a: _ArrayLike[_InexactTimeT],
1375
+ axis: None = None,
1376
+ out: None = None,
1377
+ overwrite_input: bool = False,
1378
+ keepdims: L[False] = False,
1379
+ ) -> _InexactTimeT: ...
1380
+ @overload # float array-like, keepdims=False (default)
1381
+ def median(
1382
+ a: _ArrayLikeInt_co | _SeqND[float] | float,
1383
+ axis: None = None,
1384
+ out: None = None,
1385
+ overwrite_input: bool = False,
1386
+ keepdims: L[False] = False,
1387
+ ) -> np.float64: ...
1388
+ @overload # complex array-like, keepdims=False (default)
1389
+ def median(
1390
+ a: _ListSeqND[complex],
1391
+ axis: None = None,
1392
+ out: None = None,
1393
+ overwrite_input: bool = False,
1394
+ keepdims: L[False] = False,
1395
+ ) -> np.complex128: ...
1396
+ @overload # complex scalar, keepdims=False (default)
1397
+ def median(
1398
+ a: complex,
1399
+ axis: None = None,
1400
+ out: None = None,
1401
+ overwrite_input: bool = False,
1402
+ keepdims: L[False] = False,
1403
+ ) -> np.complex128 | Any: ...
1404
+ @overload # known array-type, keepdims=True
1405
+ def median(
1406
+ a: _ArrayNumericT,
1407
+ axis: _ShapeLike | None = None,
1408
+ out: None = None,
1409
+ overwrite_input: bool = False,
1410
+ *,
1411
+ keepdims: L[True],
1412
+ ) -> _ArrayNumericT: ...
1413
+ @overload # known scalar-type, keepdims=True
1414
+ def median(
1415
+ a: _ArrayLike[_ScalarNumericT],
1416
+ axis: _ShapeLike | None = None,
1417
+ out: None = None,
1418
+ overwrite_input: bool = False,
1419
+ *,
1420
+ keepdims: L[True],
1421
+ ) -> NDArray[_ScalarNumericT]: ...
1422
+ @overload # known scalar-type, axis=<given>
1423
+ def median(
1424
+ a: _ArrayLike[_ScalarNumericT],
1425
+ axis: _ShapeLike,
1426
+ out: None = None,
1427
+ overwrite_input: bool = False,
1428
+ keepdims: bool = False,
1429
+ ) -> NDArray[_ScalarNumericT]: ...
1430
+ @overload # float array-like, keepdims=True
1431
+ def median(
1432
+ a: _SeqND[float],
1433
+ axis: _ShapeLike | None = None,
1434
+ out: None = None,
1435
+ overwrite_input: bool = False,
1436
+ *,
1437
+ keepdims: L[True],
1438
+ ) -> NDArray[np.float64]: ...
1439
+ @overload # float array-like, axis=<given>
1440
+ def median(
1441
+ a: _SeqND[float],
1442
+ axis: _ShapeLike,
1443
+ out: None = None,
1444
+ overwrite_input: bool = False,
1445
+ keepdims: bool = False,
1446
+ ) -> NDArray[np.float64]: ...
1447
+ @overload # complex array-like, keepdims=True
1448
+ def median(
1449
+ a: _ListSeqND[complex],
1450
+ axis: _ShapeLike | None = None,
1451
+ out: None = None,
1452
+ overwrite_input: bool = False,
1453
+ *,
1454
+ keepdims: L[True],
1455
+ ) -> NDArray[np.complex128]: ...
1456
+ @overload # complex array-like, axis=<given>
1457
+ def median(
1458
+ a: _ListSeqND[complex],
1459
+ axis: _ShapeLike,
1460
+ out: None = None,
1461
+ overwrite_input: bool = False,
1462
+ keepdims: bool = False,
1463
+ ) -> NDArray[np.complex128]: ...
1464
+ @overload # out=<given> (keyword)
1465
+ def median(
1466
+ a: _ArrayLikeComplex_co | _ArrayLike[np.timedelta64 | np.object_],
1467
+ axis: _ShapeLike | None = None,
1468
+ *,
1469
+ out: _ArrayT,
1470
+ overwrite_input: bool = False,
1471
+ keepdims: bool = False,
1472
+ ) -> _ArrayT: ...
1473
+ @overload # out=<given> (positional)
1474
+ def median(
1475
+ a: _ArrayLikeComplex_co | _ArrayLike[np.timedelta64 | np.object_],
1476
+ axis: _ShapeLike | None,
1477
+ out: _ArrayT,
1478
+ overwrite_input: bool = False,
1479
+ keepdims: bool = False,
1480
+ ) -> _ArrayT: ...
1481
+ @overload # fallback
1482
+ def median(
1483
+ a: _ArrayLikeComplex_co | _ArrayLike[np.timedelta64 | np.object_],
1484
+ axis: _ShapeLike | None = None,
1485
+ out: None = None,
1486
+ overwrite_input: bool = False,
1487
+ keepdims: bool = False,
1488
+ ) -> Incomplete: ...
1489
+
1490
+ # NOTE: keep in sync with `quantile`
1491
+ @overload # inexact, scalar, axis=None
1492
+ def percentile(
1493
+ a: _ArrayLike[_InexactDateTimeT],
1494
+ q: _FloatLike_co,
1495
+ axis: None = None,
1496
+ out: None = None,
1497
+ overwrite_input: bool = False,
1498
+ method: _InterpolationMethod = "linear",
1499
+ keepdims: L[False] = False,
1500
+ *,
1501
+ weights: _ArrayLikeFloat_co | None = None,
1502
+ ) -> _InexactDateTimeT: ...
1503
+ @overload # inexact, scalar, axis=<given>
1504
+ def percentile(
1505
+ a: _ArrayLike[_InexactDateTimeT],
1506
+ q: _FloatLike_co,
1507
+ axis: _ShapeLike,
1508
+ out: None = None,
1509
+ overwrite_input: bool = False,
1510
+ method: _InterpolationMethod = "linear",
1511
+ keepdims: L[False] = False,
1512
+ *,
1513
+ weights: _ArrayLikeFloat_co | None = None,
1514
+ ) -> NDArray[_InexactDateTimeT]: ...
1515
+ @overload # inexact, scalar, keepdims=True
1516
+ def percentile(
1517
+ a: _ArrayLike[_InexactDateTimeT],
1518
+ q: _FloatLike_co,
1519
+ axis: _ShapeLike | None = None,
1520
+ out: None = None,
1521
+ overwrite_input: bool = False,
1522
+ method: _InterpolationMethod = "linear",
1523
+ *,
1524
+ keepdims: L[True],
1525
+ weights: _ArrayLikeFloat_co | None = None,
1526
+ ) -> NDArray[_InexactDateTimeT]: ...
1527
+ @overload # inexact, array, axis=None
1528
+ def percentile(
1529
+ a: _ArrayLike[_InexactDateTimeT],
1530
+ q: _Array[_ShapeT, _floating_co],
1531
+ axis: None = None,
1532
+ out: None = None,
1533
+ overwrite_input: bool = False,
1534
+ method: _InterpolationMethod = "linear",
1535
+ keepdims: L[False] = False,
1536
+ *,
1537
+ weights: _ArrayLikeFloat_co | None = None,
1538
+ ) -> _Array[_ShapeT, _InexactDateTimeT]: ...
1539
+ @overload # inexact, array-like
1540
+ def percentile(
1541
+ a: _ArrayLike[_InexactDateTimeT],
1542
+ q: NDArray[_floating_co] | _SeqND[_FloatLike_co],
1543
+ axis: _ShapeLike | None = None,
1544
+ out: None = None,
1545
+ overwrite_input: bool = False,
1546
+ method: _InterpolationMethod = "linear",
1547
+ keepdims: bool = False,
1548
+ *,
1549
+ weights: _ArrayLikeFloat_co | None = None,
1550
+ ) -> NDArray[_InexactDateTimeT]: ...
1551
+ @overload # float, scalar, axis=None
1552
+ def percentile(
1553
+ a: _SeqND[float] | _ArrayLikeInt_co,
1554
+ q: _FloatLike_co,
1555
+ axis: None = None,
1556
+ out: None = None,
1557
+ overwrite_input: bool = False,
1558
+ method: _InterpolationMethod = "linear",
1559
+ keepdims: L[False] = False,
1560
+ *,
1561
+ weights: _ArrayLikeFloat_co | None = None,
1562
+ ) -> np.float64: ...
1563
+ @overload # float, scalar, axis=<given>
1564
+ def percentile(
1565
+ a: _SeqND[float] | _ArrayLikeInt_co,
1566
+ q: _FloatLike_co,
1567
+ axis: _ShapeLike,
1568
+ out: None = None,
1569
+ overwrite_input: bool = False,
1570
+ method: _InterpolationMethod = "linear",
1571
+ keepdims: L[False] = False,
1572
+ *,
1573
+ weights: _ArrayLikeFloat_co | None = None,
1574
+ ) -> NDArray[np.float64]: ...
1575
+ @overload # float, scalar, keepdims=True
1576
+ def percentile(
1577
+ a: _SeqND[float] | _ArrayLikeInt_co,
1578
+ q: _FloatLike_co,
1579
+ axis: _ShapeLike | None = None,
1580
+ out: None = None,
1581
+ overwrite_input: bool = False,
1582
+ method: _InterpolationMethod = "linear",
1583
+ *,
1584
+ keepdims: L[True],
1585
+ weights: _ArrayLikeFloat_co | None = None,
1586
+ ) -> NDArray[np.float64]: ...
1587
+ @overload # float, array, axis=None
1588
+ def percentile(
1589
+ a: _SeqND[float] | _ArrayLikeInt_co,
1590
+ q: _Array[_ShapeT, _floating_co],
1591
+ axis: None = None,
1592
+ out: None = None,
1593
+ overwrite_input: bool = False,
1594
+ method: _InterpolationMethod = "linear",
1595
+ keepdims: L[False] = False,
1596
+ *,
1597
+ weights: _ArrayLikeFloat_co | None = None,
1598
+ ) -> _Array[_ShapeT, np.float64]: ...
1599
+ @overload # float, array-like
1600
+ def percentile(
1601
+ a: _SeqND[float] | _ArrayLikeInt_co,
1602
+ q: NDArray[_floating_co] | _SeqND[_FloatLike_co],
1603
+ axis: _ShapeLike | None = None,
1604
+ out: None = None,
1605
+ overwrite_input: bool = False,
1606
+ method: _InterpolationMethod = "linear",
1607
+ keepdims: bool = False,
1608
+ *,
1609
+ weights: _ArrayLikeFloat_co | None = None,
1610
+ ) -> NDArray[np.float64]: ...
1611
+ @overload # complex, scalar, axis=None
1612
+ def percentile(
1613
+ a: _ListSeqND[complex],
1614
+ q: _FloatLike_co,
1615
+ axis: None = None,
1616
+ out: None = None,
1617
+ overwrite_input: bool = False,
1618
+ method: _InterpolationMethod = "linear",
1619
+ keepdims: L[False] = False,
1620
+ *,
1621
+ weights: _ArrayLikeFloat_co | None = None,
1622
+ ) -> np.complex128: ...
1623
+ @overload # complex, scalar, axis=<given>
1624
+ def percentile(
1625
+ a: _ListSeqND[complex],
1626
+ q: _FloatLike_co,
1627
+ axis: _ShapeLike,
1628
+ out: None = None,
1629
+ overwrite_input: bool = False,
1630
+ method: _InterpolationMethod = "linear",
1631
+ keepdims: L[False] = False,
1632
+ *,
1633
+ weights: _ArrayLikeFloat_co | None = None,
1634
+ ) -> NDArray[np.complex128]: ...
1635
+ @overload # complex, scalar, keepdims=True
1636
+ def percentile(
1637
+ a: _ListSeqND[complex],
1638
+ q: _FloatLike_co,
1639
+ axis: _ShapeLike | None = None,
1640
+ out: None = None,
1641
+ overwrite_input: bool = False,
1642
+ method: _InterpolationMethod = "linear",
1643
+ *,
1644
+ keepdims: L[True],
1645
+ weights: _ArrayLikeFloat_co | None = None,
1646
+ ) -> NDArray[np.complex128]: ...
1647
+ @overload # complex, array, axis=None
1648
+ def percentile(
1649
+ a: _ListSeqND[complex],
1650
+ q: _Array[_ShapeT, _floating_co],
1651
+ axis: None = None,
1652
+ out: None = None,
1653
+ overwrite_input: bool = False,
1654
+ method: _InterpolationMethod = "linear",
1655
+ keepdims: L[False] = False,
1656
+ *,
1657
+ weights: _ArrayLikeFloat_co | None = None,
1658
+ ) -> _Array[_ShapeT, np.complex128]: ...
1659
+ @overload # complex, array-like
1660
+ def percentile(
1661
+ a: _ListSeqND[complex],
1662
+ q: NDArray[_floating_co] | _SeqND[_FloatLike_co],
1663
+ axis: _ShapeLike | None = None,
1664
+ out: None = None,
1665
+ overwrite_input: bool = False,
1666
+ method: _InterpolationMethod = "linear",
1667
+ keepdims: bool = False,
1668
+ *,
1669
+ weights: _ArrayLikeFloat_co | None = None,
1670
+ ) -> NDArray[np.complex128]: ...
1671
+ @overload # object_, scalar, axis=None
1672
+ def percentile(
1673
+ a: _ArrayLikeObject_co,
1674
+ q: _FloatLike_co,
1675
+ axis: None = None,
1676
+ out: None = None,
1677
+ overwrite_input: bool = False,
1678
+ method: _InterpolationMethod = "linear",
1679
+ keepdims: L[False] = False,
1680
+ *,
1681
+ weights: _ArrayLikeFloat_co | None = None,
1682
+ ) -> Any: ...
1683
+ @overload # object_, scalar, axis=<given>
1684
+ def percentile(
1685
+ a: _ArrayLikeObject_co,
1686
+ q: _FloatLike_co,
1687
+ axis: _ShapeLike,
1688
+ out: None = None,
1689
+ overwrite_input: bool = False,
1690
+ method: _InterpolationMethod = "linear",
1691
+ keepdims: L[False] = False,
1692
+ *,
1693
+ weights: _ArrayLikeFloat_co | None = None,
1694
+ ) -> NDArray[np.object_]: ...
1695
+ @overload # object_, scalar, keepdims=True
1696
+ def percentile(
1697
+ a: _ArrayLikeObject_co,
1698
+ q: _FloatLike_co,
1699
+ axis: _ShapeLike | None = None,
1700
+ out: None = None,
1701
+ overwrite_input: bool = False,
1702
+ method: _InterpolationMethod = "linear",
1703
+ *,
1704
+ keepdims: L[True],
1705
+ weights: _ArrayLikeFloat_co | None = None,
1706
+ ) -> NDArray[np.object_]: ...
1707
+ @overload # object_, array, axis=None
1708
+ def percentile(
1709
+ a: _ArrayLikeObject_co,
1710
+ q: _Array[_ShapeT, _floating_co],
1711
+ axis: None = None,
1712
+ out: None = None,
1713
+ overwrite_input: bool = False,
1714
+ method: _InterpolationMethod = "linear",
1715
+ keepdims: L[False] = False,
1716
+ *,
1717
+ weights: _ArrayLikeFloat_co | None = None,
1718
+ ) -> _Array[_ShapeT, np.object_]: ...
1719
+ @overload # object_, array-like
1720
+ def percentile(
1721
+ a: _ArrayLikeObject_co,
1722
+ q: NDArray[_floating_co] | _SeqND[_FloatLike_co],
1723
+ axis: _ShapeLike | None = None,
1724
+ out: None = None,
1725
+ overwrite_input: bool = False,
1726
+ method: _InterpolationMethod = "linear",
1727
+ keepdims: bool = False,
1728
+ *,
1729
+ weights: _ArrayLikeFloat_co | None = None,
1730
+ ) -> NDArray[np.object_]: ...
1731
+ @overload # out=<given> (keyword)
1732
+ def percentile(
1733
+ a: ArrayLike,
1734
+ q: _ArrayLikeFloat_co,
1735
+ axis: _ShapeLike | None,
1736
+ out: _ArrayT,
1737
+ overwrite_input: bool = False,
1738
+ method: _InterpolationMethod = "linear",
1739
+ keepdims: bool = False,
1740
+ *,
1741
+ weights: _ArrayLikeFloat_co | None = None,
1742
+ ) -> _ArrayT: ...
1743
+ @overload # out=<given> (positional)
1744
+ def percentile(
1745
+ a: ArrayLike,
1746
+ q: _ArrayLikeFloat_co,
1747
+ axis: _ShapeLike | None = None,
1748
+ *,
1749
+ out: _ArrayT,
1750
+ overwrite_input: bool = False,
1751
+ method: _InterpolationMethod = "linear",
1752
+ keepdims: bool = False,
1753
+ weights: _ArrayLikeFloat_co | None = None,
1754
+ ) -> _ArrayT: ...
1755
+ @overload # fallback
1756
+ def percentile(
1757
+ a: _ArrayLikeNumber_co | _ArrayLikeObject_co,
1758
+ q: _ArrayLikeFloat_co,
1759
+ axis: _ShapeLike | None = None,
1760
+ out: None = None,
1761
+ overwrite_input: bool = False,
1762
+ method: _InterpolationMethod = "linear",
1763
+ keepdims: bool = False,
1764
+ *,
1765
+ weights: _ArrayLikeFloat_co | None = None,
1766
+ ) -> Incomplete: ...
1767
+
1768
+ # NOTE: keep in sync with `percentile`
1769
+ @overload # inexact, scalar, axis=None
1770
+ def quantile(
1771
+ a: _ArrayLike[_InexactDateTimeT],
1772
+ q: _FloatLike_co,
1773
+ axis: None = None,
1774
+ out: None = None,
1775
+ overwrite_input: bool = False,
1776
+ method: _InterpolationMethod = "linear",
1777
+ keepdims: L[False] = False,
1778
+ *,
1779
+ weights: _ArrayLikeFloat_co | None = None,
1780
+ ) -> _InexactDateTimeT: ...
1781
+ @overload # inexact, scalar, axis=<given>
1782
+ def quantile(
1783
+ a: _ArrayLike[_InexactDateTimeT],
1784
+ q: _FloatLike_co,
1785
+ axis: _ShapeLike,
1786
+ out: None = None,
1787
+ overwrite_input: bool = False,
1788
+ method: _InterpolationMethod = "linear",
1789
+ keepdims: L[False] = False,
1790
+ *,
1791
+ weights: _ArrayLikeFloat_co | None = None,
1792
+ ) -> NDArray[_InexactDateTimeT]: ...
1793
+ @overload # inexact, scalar, keepdims=True
1794
+ def quantile(
1795
+ a: _ArrayLike[_InexactDateTimeT],
1796
+ q: _FloatLike_co,
1797
+ axis: _ShapeLike | None = None,
1798
+ out: None = None,
1799
+ overwrite_input: bool = False,
1800
+ method: _InterpolationMethod = "linear",
1801
+ *,
1802
+ keepdims: L[True],
1803
+ weights: _ArrayLikeFloat_co | None = None,
1804
+ ) -> NDArray[_InexactDateTimeT]: ...
1805
+ @overload # inexact, array, axis=None
1806
+ def quantile(
1807
+ a: _ArrayLike[_InexactDateTimeT],
1808
+ q: _Array[_ShapeT, _floating_co],
1809
+ axis: None = None,
1810
+ out: None = None,
1811
+ overwrite_input: bool = False,
1812
+ method: _InterpolationMethod = "linear",
1813
+ keepdims: L[False] = False,
1814
+ *,
1815
+ weights: _ArrayLikeFloat_co | None = None,
1816
+ ) -> _Array[_ShapeT, _InexactDateTimeT]: ...
1817
+ @overload # inexact, array-like
1818
+ def quantile(
1819
+ a: _ArrayLike[_InexactDateTimeT],
1820
+ q: NDArray[_floating_co] | _SeqND[_FloatLike_co],
1821
+ axis: _ShapeLike | None = None,
1822
+ out: None = None,
1823
+ overwrite_input: bool = False,
1824
+ method: _InterpolationMethod = "linear",
1825
+ keepdims: bool = False,
1826
+ *,
1827
+ weights: _ArrayLikeFloat_co | None = None,
1828
+ ) -> NDArray[_InexactDateTimeT]: ...
1829
+ @overload # float, scalar, axis=None
1830
+ def quantile(
1831
+ a: _SeqND[float] | _ArrayLikeInt_co,
1832
+ q: _FloatLike_co,
1833
+ axis: None = None,
1834
+ out: None = None,
1835
+ overwrite_input: bool = False,
1836
+ method: _InterpolationMethod = "linear",
1837
+ keepdims: L[False] = False,
1838
+ *,
1839
+ weights: _ArrayLikeFloat_co | None = None,
1840
+ ) -> np.float64: ...
1841
+ @overload # float, scalar, axis=<given>
1842
+ def quantile(
1843
+ a: _SeqND[float] | _ArrayLikeInt_co,
1844
+ q: _FloatLike_co,
1845
+ axis: _ShapeLike,
1846
+ out: None = None,
1847
+ overwrite_input: bool = False,
1848
+ method: _InterpolationMethod = "linear",
1849
+ keepdims: L[False] = False,
1850
+ *,
1851
+ weights: _ArrayLikeFloat_co | None = None,
1852
+ ) -> NDArray[np.float64]: ...
1853
+ @overload # float, scalar, keepdims=True
1854
+ def quantile(
1855
+ a: _SeqND[float] | _ArrayLikeInt_co,
1856
+ q: _FloatLike_co,
1857
+ axis: _ShapeLike | None = None,
1858
+ out: None = None,
1859
+ overwrite_input: bool = False,
1860
+ method: _InterpolationMethod = "linear",
1861
+ *,
1862
+ keepdims: L[True],
1863
+ weights: _ArrayLikeFloat_co | None = None,
1864
+ ) -> NDArray[np.float64]: ...
1865
+ @overload # float, array, axis=None
1866
+ def quantile(
1867
+ a: _SeqND[float] | _ArrayLikeInt_co,
1868
+ q: _Array[_ShapeT, _floating_co],
1869
+ axis: None = None,
1870
+ out: None = None,
1871
+ overwrite_input: bool = False,
1872
+ method: _InterpolationMethod = "linear",
1873
+ keepdims: L[False] = False,
1874
+ *,
1875
+ weights: _ArrayLikeFloat_co | None = None,
1876
+ ) -> _Array[_ShapeT, np.float64]: ...
1877
+ @overload # float, array-like
1878
+ def quantile(
1879
+ a: _SeqND[float] | _ArrayLikeInt_co,
1880
+ q: NDArray[_floating_co] | _SeqND[_FloatLike_co],
1881
+ axis: _ShapeLike | None = None,
1882
+ out: None = None,
1883
+ overwrite_input: bool = False,
1884
+ method: _InterpolationMethod = "linear",
1885
+ keepdims: bool = False,
1886
+ *,
1887
+ weights: _ArrayLikeFloat_co | None = None,
1888
+ ) -> NDArray[np.float64]: ...
1889
+ @overload # complex, scalar, axis=None
1890
+ def quantile(
1891
+ a: _ListSeqND[complex],
1892
+ q: _FloatLike_co,
1893
+ axis: None = None,
1894
+ out: None = None,
1895
+ overwrite_input: bool = False,
1896
+ method: _InterpolationMethod = "linear",
1897
+ keepdims: L[False] = False,
1898
+ *,
1899
+ weights: _ArrayLikeFloat_co | None = None,
1900
+ ) -> np.complex128: ...
1901
+ @overload # complex, scalar, axis=<given>
1902
+ def quantile(
1903
+ a: _ListSeqND[complex],
1904
+ q: _FloatLike_co,
1905
+ axis: _ShapeLike,
1906
+ out: None = None,
1907
+ overwrite_input: bool = False,
1908
+ method: _InterpolationMethod = "linear",
1909
+ keepdims: L[False] = False,
1910
+ *,
1911
+ weights: _ArrayLikeFloat_co | None = None,
1912
+ ) -> NDArray[np.complex128]: ...
1913
+ @overload # complex, scalar, keepdims=True
1914
+ def quantile(
1915
+ a: _ListSeqND[complex],
1916
+ q: _FloatLike_co,
1917
+ axis: _ShapeLike | None = None,
1918
+ out: None = None,
1919
+ overwrite_input: bool = False,
1920
+ method: _InterpolationMethod = "linear",
1921
+ *,
1922
+ keepdims: L[True],
1923
+ weights: _ArrayLikeFloat_co | None = None,
1924
+ ) -> NDArray[np.complex128]: ...
1925
+ @overload # complex, array, axis=None
1926
+ def quantile(
1927
+ a: _ListSeqND[complex],
1928
+ q: _Array[_ShapeT, _floating_co],
1929
+ axis: None = None,
1930
+ out: None = None,
1931
+ overwrite_input: bool = False,
1932
+ method: _InterpolationMethod = "linear",
1933
+ keepdims: L[False] = False,
1934
+ *,
1935
+ weights: _ArrayLikeFloat_co | None = None,
1936
+ ) -> _Array[_ShapeT, np.complex128]: ...
1937
+ @overload # complex, array-like
1938
+ def quantile(
1939
+ a: _ListSeqND[complex],
1940
+ q: NDArray[_floating_co] | _SeqND[_FloatLike_co],
1941
+ axis: _ShapeLike | None = None,
1942
+ out: None = None,
1943
+ overwrite_input: bool = False,
1944
+ method: _InterpolationMethod = "linear",
1945
+ keepdims: bool = False,
1946
+ *,
1947
+ weights: _ArrayLikeFloat_co | None = None,
1948
+ ) -> NDArray[np.complex128]: ...
1949
+ @overload # object_, scalar, axis=None
1950
+ def quantile(
1951
+ a: _ArrayLikeObject_co,
1952
+ q: _FloatLike_co,
1953
+ axis: None = None,
1954
+ out: None = None,
1955
+ overwrite_input: bool = False,
1956
+ method: _InterpolationMethod = "linear",
1957
+ keepdims: L[False] = False,
1958
+ *,
1959
+ weights: _ArrayLikeFloat_co | None = None,
1960
+ ) -> Any: ...
1961
+ @overload # object_, scalar, axis=<given>
1962
+ def quantile(
1963
+ a: _ArrayLikeObject_co,
1964
+ q: _FloatLike_co,
1965
+ axis: _ShapeLike,
1966
+ out: None = None,
1967
+ overwrite_input: bool = False,
1968
+ method: _InterpolationMethod = "linear",
1969
+ keepdims: L[False] = False,
1970
+ *,
1971
+ weights: _ArrayLikeFloat_co | None = None,
1972
+ ) -> NDArray[np.object_]: ...
1973
+ @overload # object_, scalar, keepdims=True
1974
+ def quantile(
1975
+ a: _ArrayLikeObject_co,
1976
+ q: _FloatLike_co,
1977
+ axis: _ShapeLike | None = None,
1978
+ out: None = None,
1979
+ overwrite_input: bool = False,
1980
+ method: _InterpolationMethod = "linear",
1981
+ *,
1982
+ keepdims: L[True],
1983
+ weights: _ArrayLikeFloat_co | None = None,
1984
+ ) -> NDArray[np.object_]: ...
1985
+ @overload # object_, array, axis=None
1986
+ def quantile(
1987
+ a: _ArrayLikeObject_co,
1988
+ q: _Array[_ShapeT, _floating_co],
1989
+ axis: None = None,
1990
+ out: None = None,
1991
+ overwrite_input: bool = False,
1992
+ method: _InterpolationMethod = "linear",
1993
+ keepdims: L[False] = False,
1994
+ *,
1995
+ weights: _ArrayLikeFloat_co | None = None,
1996
+ ) -> _Array[_ShapeT, np.object_]: ...
1997
+ @overload # object_, array-like
1998
+ def quantile(
1999
+ a: _ArrayLikeObject_co,
2000
+ q: NDArray[_floating_co] | _SeqND[_FloatLike_co],
2001
+ axis: _ShapeLike | None = None,
2002
+ out: None = None,
2003
+ overwrite_input: bool = False,
2004
+ method: _InterpolationMethod = "linear",
2005
+ keepdims: bool = False,
2006
+ *,
2007
+ weights: _ArrayLikeFloat_co | None = None,
2008
+ ) -> NDArray[np.object_]: ...
2009
+ @overload # out=<given> (keyword)
2010
+ def quantile(
2011
+ a: ArrayLike,
2012
+ q: _ArrayLikeFloat_co,
2013
+ axis: _ShapeLike | None,
2014
+ out: _ArrayT,
2015
+ overwrite_input: bool = False,
2016
+ method: _InterpolationMethod = "linear",
2017
+ keepdims: bool = False,
2018
+ *,
2019
+ weights: _ArrayLikeFloat_co | None = None,
2020
+ ) -> _ArrayT: ...
2021
+ @overload # out=<given> (positional)
2022
+ def quantile(
2023
+ a: ArrayLike,
2024
+ q: _ArrayLikeFloat_co,
2025
+ axis: _ShapeLike | None = None,
2026
+ *,
2027
+ out: _ArrayT,
2028
+ overwrite_input: bool = False,
2029
+ method: _InterpolationMethod = "linear",
2030
+ keepdims: bool = False,
2031
+ weights: _ArrayLikeFloat_co | None = None,
2032
+ ) -> _ArrayT: ...
2033
+ @overload # fallback
2034
+ def quantile(
2035
+ a: _ArrayLikeNumber_co | _ArrayLikeObject_co,
2036
+ q: _ArrayLikeFloat_co,
2037
+ axis: _ShapeLike | None = None,
2038
+ out: None = None,
2039
+ overwrite_input: bool = False,
2040
+ method: _InterpolationMethod = "linear",
2041
+ keepdims: bool = False,
2042
+ *,
2043
+ weights: _ArrayLikeFloat_co | None = None,
2044
+ ) -> Incomplete: ...
2045
+
2046
+ #
2047
+ @overload # ?d, known inexact/timedelta64 scalar-type
2048
+ def trapezoid(
2049
+ y: _ArrayNoD[_InexactTimeT],
2050
+ x: _ArrayLike[_InexactTimeT] | _ArrayLikeFloat_co | None = None,
2051
+ dx: float = 1.0,
2052
+ axis: SupportsIndex = -1,
2053
+ ) -> NDArray[_InexactTimeT] | _InexactTimeT: ...
2054
+ @overload # ?d, casts to float64
2055
+ def trapezoid(
2056
+ y: _ArrayNoD[_integer_co],
2057
+ x: _ArrayLikeFloat_co | None = None,
2058
+ dx: float = 1.0,
2059
+ axis: SupportsIndex = -1,
2060
+ ) -> NDArray[np.float64] | np.float64: ...
2061
+ @overload # strict 1d, known inexact/timedelta64 scalar-type
2062
+ def trapezoid(
2063
+ y: _Array1D[_InexactTimeT],
2064
+ x: _Array1D[_InexactTimeT] | _Seq1D[float] | None = None,
2065
+ dx: float = 1.0,
2066
+ axis: SupportsIndex = -1,
2067
+ ) -> _InexactTimeT: ...
2068
+ @overload # strict 1d, casts to float64
2069
+ def trapezoid(
2070
+ y: _Array1D[_float64_co] | _Seq1D[float],
2071
+ x: _Array1D[_float64_co] | _Seq1D[float] | None = None,
2072
+ dx: float = 1.0,
2073
+ axis: SupportsIndex = -1,
2074
+ ) -> np.float64: ...
2075
+ @overload # strict 1d, casts to complex128 (`list` prevents overlapping overloads)
2076
+ def trapezoid(
2077
+ y: list[complex],
2078
+ x: _Seq1D[complex] | None = None,
2079
+ dx: complex = 1.0,
2080
+ axis: SupportsIndex = -1,
2081
+ ) -> np.complex128: ...
2082
+ @overload # strict 1d, casts to complex128
2083
+ def trapezoid(
2084
+ y: _Seq1D[complex],
2085
+ x: list[complex],
2086
+ dx: complex = 1.0,
2087
+ axis: SupportsIndex = -1,
2088
+ ) -> np.complex128: ...
2089
+ @overload # strict 2d, known inexact/timedelta64 scalar-type
2090
+ def trapezoid(
2091
+ y: _Array2D[_InexactTimeT],
2092
+ x: _ArrayMax2D[_InexactTimeT] | _Seq2D[float] | _Seq1D[float] | None = None,
2093
+ dx: float = 1.0,
2094
+ axis: SupportsIndex = -1,
2095
+ ) -> _InexactTimeT: ...
2096
+ @overload # strict 2d, casts to float64
2097
+ def trapezoid(
2098
+ y: _Array2D[_float64_co] | _Seq2D[float],
2099
+ x: _ArrayMax2D[_float64_co] | _Seq2D[float] | _Seq1D[float] | None = None,
2100
+ dx: float = 1.0,
2101
+ axis: SupportsIndex = -1,
2102
+ ) -> np.float64: ...
2103
+ @overload # strict 2d, casts to complex128 (`list` prevents overlapping overloads)
2104
+ def trapezoid(
2105
+ y: _Seq1D[list[complex]],
2106
+ x: _Seq2D[complex] | _Seq1D[complex] | None = None,
2107
+ dx: complex = 1.0,
2108
+ axis: SupportsIndex = -1,
2109
+ ) -> np.complex128: ...
2110
+ @overload # strict 2d, casts to complex128
2111
+ def trapezoid(
2112
+ y: _Seq2D[complex] | _Seq1D[complex],
2113
+ x: _Seq1D[list[complex]],
2114
+ dx: complex = 1.0,
2115
+ axis: SupportsIndex = -1,
2116
+ ) -> np.complex128: ...
2117
+ @overload
2118
+ def trapezoid(
2119
+ y: _ArrayLike[_InexactTimeT],
2120
+ x: _ArrayLike[_InexactTimeT] | _ArrayLikeInt_co | None = None,
2121
+ dx: complex = 1.0,
2122
+ axis: SupportsIndex = -1,
2123
+ ) -> NDArray[_InexactTimeT] | _InexactTimeT: ...
2124
+ @overload
2125
+ def trapezoid(
2126
+ y: _ArrayLike[_float64_co],
2127
+ x: _ArrayLikeFloat_co | None = None,
2128
+ dx: float = 1.0,
2129
+ axis: SupportsIndex = -1,
2130
+ ) -> NDArray[np.float64] | np.float64: ...
2131
+ @overload
2132
+ def trapezoid(
2133
+ y: _ArrayLike[np.complex128],
2134
+ x: _ArrayLikeComplex_co | None = None,
2135
+ dx: float = 1.0,
2136
+ axis: SupportsIndex = -1,
2137
+ ) -> NDArray[np.complex128] | np.complex128: ...
2138
+ @overload
2139
+ def trapezoid(
2140
+ y: _ArrayLikeComplex_co,
2141
+ x: _ArrayLike[np.complex128],
2142
+ dx: float = 1.0,
2143
+ axis: SupportsIndex = -1,
2144
+ ) -> NDArray[np.complex128] | np.complex128: ...
2145
+ @overload
2146
+ def trapezoid(
2147
+ y: _ArrayLikeObject_co,
2148
+ x: _ArrayLikeObject_co | _ArrayLikeFloat_co | None = None,
2149
+ dx: float = 1.0,
2150
+ axis: SupportsIndex = -1,
2151
+ ) -> NDArray[np.object_] | Any: ...
2152
+ @overload
2153
+ def trapezoid(
2154
+ y: _Seq1D[_SupportsRMulFloat[_T]],
2155
+ x: _Seq1D[_SupportsRMulFloat[_T] | _T] | None = None,
2156
+ dx: complex = 1.0,
2157
+ axis: SupportsIndex = -1,
2158
+ ) -> _T: ...
2159
+ @overload
2160
+ def trapezoid(
2161
+ y: _ArrayLikeComplex_co | _ArrayLike[np.timedelta64 | np.object_],
2162
+ x: _ArrayLikeComplex_co | _ArrayLike[np.timedelta64 | np.object_] | None = None,
2163
+ dx: complex = 1.0,
2164
+ axis: SupportsIndex = -1,
2165
+ ) -> Incomplete: ...
2166
+
2167
+ #
2168
+ @overload # 0d
2169
+ def meshgrid(*, copy: bool = True, sparse: bool = False, indexing: _Indexing = "xy") -> tuple[()]: ...
2170
+ @overload # 1d, known scalar-type
2171
+ def meshgrid(
2172
+ x1: _ArrayLike[_ScalarT],
2173
+ /,
2174
+ *,
2175
+ copy: bool = True,
2176
+ sparse: bool = False,
2177
+ indexing: _Indexing = "xy",
2178
+ ) -> _Mesh1[_ScalarT]: ...
2179
+ @overload # 1d, unknown scalar-type
2180
+ def meshgrid(
2181
+ x1: ArrayLike,
2182
+ /,
2183
+ *,
2184
+ copy: bool = True,
2185
+ sparse: bool = False,
2186
+ indexing: _Indexing = "xy",
2187
+ ) -> _Mesh1[Any]: ...
2188
+ @overload # 2d, known scalar-types
2189
+ def meshgrid(
2190
+ x1: _ArrayLike[_ScalarT],
2191
+ x2: _ArrayLike[_ScalarT1],
2192
+ /,
2193
+ *,
2194
+ copy: bool = True,
2195
+ sparse: bool = False,
2196
+ indexing: _Indexing = "xy",
2197
+ ) -> _Mesh2[_ScalarT, _ScalarT1]: ...
2198
+ @overload # 2d, known/unknown scalar-types
2199
+ def meshgrid(
2200
+ x1: _ArrayLike[_ScalarT],
2201
+ x2: ArrayLike,
2202
+ /,
2203
+ *,
2204
+ copy: bool = True,
2205
+ sparse: bool = False,
2206
+ indexing: _Indexing = "xy",
2207
+ ) -> _Mesh2[_ScalarT, Any]: ...
2208
+ @overload # 2d, unknown/known scalar-types
2209
+ def meshgrid(
2210
+ x1: ArrayLike,
2211
+ x2: _ArrayLike[_ScalarT],
2212
+ /,
2213
+ *,
2214
+ copy: bool = True,
2215
+ sparse: bool = False,
2216
+ indexing: _Indexing = "xy",
2217
+ ) -> _Mesh2[Any, _ScalarT]: ...
2218
+ @overload # 2d, unknown scalar-types
2219
+ def meshgrid(
2220
+ x1: ArrayLike,
2221
+ x2: ArrayLike,
2222
+ /,
2223
+ *,
2224
+ copy: bool = True,
2225
+ sparse: bool = False,
2226
+ indexing: _Indexing = "xy",
2227
+ ) -> _Mesh2[Any, Any]: ...
2228
+ @overload # 3d, known scalar-types
2229
+ def meshgrid(
2230
+ x1: _ArrayLike[_ScalarT],
2231
+ x2: _ArrayLike[_ScalarT1],
2232
+ x3: _ArrayLike[_ScalarT2],
2233
+ /,
2234
+ *,
2235
+ copy: bool = True,
2236
+ sparse: bool = False,
2237
+ indexing: _Indexing = "xy",
2238
+ ) -> _Mesh3[_ScalarT, _ScalarT1, _ScalarT2]: ...
2239
+ @overload # 3d, unknown scalar-types
2240
+ def meshgrid(
2241
+ x1: ArrayLike,
2242
+ x2: ArrayLike,
2243
+ x3: ArrayLike,
2244
+ /,
2245
+ *,
2246
+ copy: bool = True,
2247
+ sparse: bool = False,
2248
+ indexing: _Indexing = "xy",
2249
+ ) -> _Mesh3[Any, Any, Any]: ...
2250
+ @overload # ?d, known scalar-types
2251
+ def meshgrid(
2252
+ *xi: _ArrayLike[_ScalarT],
2253
+ copy: bool = True,
2254
+ sparse: bool = False,
2255
+ indexing: _Indexing = "xy",
2256
+ ) -> tuple[NDArray[_ScalarT], ...]: ...
2257
+ @overload # ?d, unknown scalar-types
2258
+ def meshgrid(
2259
+ *xi: ArrayLike,
2260
+ copy: bool = True,
2261
+ sparse: bool = False,
2262
+ indexing: _Indexing = "xy",
2263
+ ) -> tuple[NDArray[Any], ...]: ...
2264
+
2265
+ #
2266
+ def place(arr: np.ndarray, mask: ConvertibleToInt | Sequence[ConvertibleToInt], vals: ArrayLike) -> None: ...
2267
+
2268
+ # keep in sync with `insert`
2269
+ @overload # known scalar-type, axis=None (default)
2270
+ def delete(arr: _ArrayLike[_ScalarT], obj: _IndexLike, axis: None = None) -> _Array1D[_ScalarT]: ...
2271
+ @overload # known array-type, axis specified
2272
+ def delete(arr: _ArrayT, obj: _IndexLike, axis: SupportsIndex) -> _ArrayT: ...
2273
+ @overload # known scalar-type, axis specified
2274
+ def delete(arr: _ArrayLike[_ScalarT], obj: _IndexLike, axis: SupportsIndex) -> NDArray[_ScalarT]: ...
2275
+ @overload # known scalar-type, axis=None (default)
2276
+ def delete(arr: ArrayLike, obj: _IndexLike, axis: None = None) -> _Array1D[Any]: ...
2277
+ @overload # unknown scalar-type, axis specified
2278
+ def delete(arr: ArrayLike, obj: _IndexLike, axis: SupportsIndex) -> NDArray[Any]: ...
2279
+
2280
+ # keep in sync with `delete`
2281
+ @overload # known scalar-type, axis=None (default)
2282
+ def insert(arr: _ArrayLike[_ScalarT], obj: _IndexLike, values: ArrayLike, axis: None = None) -> _Array1D[_ScalarT]: ...
2283
+ @overload # known array-type, axis specified
2284
+ def insert(arr: _ArrayT, obj: _IndexLike, values: ArrayLike, axis: SupportsIndex) -> _ArrayT: ...
2285
+ @overload # known scalar-type, axis specified
2286
+ def insert(arr: _ArrayLike[_ScalarT], obj: _IndexLike, values: ArrayLike, axis: SupportsIndex) -> NDArray[_ScalarT]: ...
2287
+ @overload # known scalar-type, axis=None (default)
2288
+ def insert(arr: ArrayLike, obj: _IndexLike, values: ArrayLike, axis: None = None) -> _Array1D[Any]: ...
2289
+ @overload # unknown scalar-type, axis specified
2290
+ def insert(arr: ArrayLike, obj: _IndexLike, values: ArrayLike, axis: SupportsIndex) -> NDArray[Any]: ...
2291
+
2292
+ #
2293
+ @overload # known array type, axis specified
2294
+ def append(arr: _ArrayT, values: _ArrayT, axis: SupportsIndex) -> _ArrayT: ...
2295
+ @overload # 1d, known scalar type, axis specified
2296
+ def append(arr: _Seq1D[_ScalarT], values: _Seq1D[_ScalarT], axis: SupportsIndex) -> _Array1D[_ScalarT]: ...
2297
+ @overload # 2d, known scalar type, axis specified
2298
+ def append(arr: _Seq2D[_ScalarT], values: _Seq2D[_ScalarT], axis: SupportsIndex) -> _Array2D[_ScalarT]: ...
2299
+ @overload # 3d, known scalar type, axis specified
2300
+ def append(arr: _Seq3D[_ScalarT], values: _Seq3D[_ScalarT], axis: SupportsIndex) -> _Array3D[_ScalarT]: ...
2301
+ @overload # ?d, known scalar type, axis specified
2302
+ def append(arr: _SeqND[_ScalarT], values: _SeqND[_ScalarT], axis: SupportsIndex) -> NDArray[_ScalarT]: ...
2303
+ @overload # ?d, unknown scalar type, axis specified
2304
+ def append(arr: np.ndarray | _SeqND[_ScalarLike_co], values: _SeqND[_ScalarLike_co], axis: SupportsIndex) -> np.ndarray: ...
2305
+ @overload # known scalar type, axis=None
2306
+ def append(arr: _ArrayLike[_ScalarT], values: _ArrayLike[_ScalarT], axis: None = None) -> _Array1D[_ScalarT]: ...
2307
+ @overload # unknown scalar type, axis=None
2308
+ def append(arr: ArrayLike, values: ArrayLike, axis: None = None) -> _Array1D[Any]: ...
2309
+
2310
+ #
2311
+ @overload
2312
+ def digitize(
2313
+ x: _Array[_ShapeT, np.floating | np.integer], bins: _ArrayLikeFloat_co, right: bool = False
2314
+ ) -> _Array[_ShapeT, np.int_]: ...
2315
+ @overload
2316
+ def digitize(x: _FloatLike_co, bins: _ArrayLikeFloat_co, right: bool = False) -> np.int_: ...
2317
+ @overload
2318
+ def digitize(x: _Seq1D[_FloatLike_co], bins: _ArrayLikeFloat_co, right: bool = False) -> _Array1D[np.int_]: ...
2319
+ @overload
2320
+ def digitize(x: _Seq2D[_FloatLike_co], bins: _ArrayLikeFloat_co, right: bool = False) -> _Array2D[np.int_]: ...
2321
+ @overload
2322
+ def digitize(x: _Seq3D[_FloatLike_co], bins: _ArrayLikeFloat_co, right: bool = False) -> _Array3D[np.int_]: ...
2323
+ @overload
2324
+ def digitize(x: _ArrayLikeFloat_co, bins: _ArrayLikeFloat_co, right: bool = False) -> NDArray[np.int_] | Any: ...