numpy 2.4.2__cp313-cp313t-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (929) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +203 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp313t-win32.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp313t-win32.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp313t-win32.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp313t-win32.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp313t-win32.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp313t-win32.pyd +0 -0
  35. numpy/_core/_rational_tests.cp313t-win32.lib +0 -0
  36. numpy/_core/_rational_tests.cp313t-win32.pyd +0 -0
  37. numpy/_core/_simd.cp313t-win32.lib +0 -0
  38. numpy/_core/_simd.cp313t-win32.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp313t-win32.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp313t-win32.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp313t-win32.lib +0 -0
  49. numpy/_core/_umath_tests.cp313t-win32.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1328 -0
  101. numpy/_core/numeric.py +2771 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +374 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +15 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +63 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +95 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +406 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4301 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp313t-win32.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp313t-win32.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4756 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp313t-win32.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp313t-win32.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp313t-win32.lib +0 -0
  582. numpy/linalg/lapack_lite.cp313t-win32.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3733 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp313t-win32.lib +0 -0
  660. numpy/random/_bounded_integers.cp313t-win32.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp313t-win32.lib +0 -0
  664. numpy/random/_common.cp313t-win32.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp313t-win32.lib +0 -0
  675. numpy/random/_generator.cp313t-win32.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp313t-win32.lib +0 -0
  678. numpy/random/_mt19937.cp313t-win32.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp313t-win32.lib +0 -0
  681. numpy/random/_pcg64.cp313t-win32.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp313t-win32.lib +0 -0
  684. numpy/random/_philox.cp313t-win32.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp313t-win32.lib +0 -0
  689. numpy/random/_sfc64.cp313t-win32.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp313t-win32.lib +0 -0
  692. numpy/random/bit_generator.cp313t-win32.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp313t-win32.lib +0 -0
  698. numpy/random/mtrand.cp313t-win32.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +279 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.2.dist-info/METADATA +139 -0
  910. numpy-2.4.2.dist-info/RECORD +929 -0
  911. numpy-2.4.2.dist-info/WHEEL +4 -0
  912. numpy-2.4.2.dist-info/entry_points.txt +13 -0
  913. numpy-2.4.2.dist-info/licenses/LICENSE.txt +914 -0
  914. numpy-2.4.2.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  915. numpy-2.4.2.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  916. numpy-2.4.2.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  917. numpy-2.4.2.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  918. numpy-2.4.2.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  919. numpy-2.4.2.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  920. numpy-2.4.2.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  921. numpy-2.4.2.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  922. numpy-2.4.2.dist-info/licenses/numpy/ma/LICENSE +24 -0
  923. numpy-2.4.2.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  924. numpy-2.4.2.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  925. numpy-2.4.2.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  926. numpy-2.4.2.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  927. numpy-2.4.2.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  928. numpy-2.4.2.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  929. numpy-2.4.2.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,1085 @@
1
+ """
2
+ Histogram-related functions
3
+ """
4
+ import contextlib
5
+ import functools
6
+ import operator
7
+ import warnings
8
+
9
+ import numpy as np
10
+ from numpy._core import overrides
11
+
12
+ __all__ = ['histogram', 'histogramdd', 'histogram_bin_edges']
13
+
14
+ array_function_dispatch = functools.partial(
15
+ overrides.array_function_dispatch, module='numpy')
16
+
17
+ # range is a keyword argument to many functions, so save the builtin so they can
18
+ # use it.
19
+ _range = range
20
+
21
+
22
+ def _ptp(x):
23
+ """Peak-to-peak value of x.
24
+
25
+ This implementation avoids the problem of signed integer arrays having a
26
+ peak-to-peak value that cannot be represented with the array's data type.
27
+ This function returns an unsigned value for signed integer arrays.
28
+ """
29
+ return _unsigned_subtract(x.max(), x.min())
30
+
31
+
32
+ def _hist_bin_sqrt(x, range):
33
+ """
34
+ Square root histogram bin estimator.
35
+
36
+ Bin width is inversely proportional to the data size. Used by many
37
+ programs for its simplicity.
38
+
39
+ Parameters
40
+ ----------
41
+ x : array_like
42
+ Input data that is to be histogrammed, trimmed to range. May not
43
+ be empty.
44
+
45
+ Returns
46
+ -------
47
+ h : An estimate of the optimal bin width for the given data.
48
+ """
49
+ del range # unused
50
+ return _ptp(x) / np.sqrt(x.size)
51
+
52
+
53
+ def _hist_bin_sturges(x, range):
54
+ """
55
+ Sturges histogram bin estimator.
56
+
57
+ A very simplistic estimator based on the assumption of normality of
58
+ the data. This estimator has poor performance for non-normal data,
59
+ which becomes especially obvious for large data sets. The estimate
60
+ depends only on size of the data.
61
+
62
+ Parameters
63
+ ----------
64
+ x : array_like
65
+ Input data that is to be histogrammed, trimmed to range. May not
66
+ be empty.
67
+
68
+ Returns
69
+ -------
70
+ h : An estimate of the optimal bin width for the given data.
71
+ """
72
+ del range # unused
73
+ return _ptp(x) / (np.log2(x.size) + 1.0)
74
+
75
+
76
+ def _hist_bin_rice(x, range):
77
+ """
78
+ Rice histogram bin estimator.
79
+
80
+ Another simple estimator with no normality assumption. It has better
81
+ performance for large data than Sturges, but tends to overestimate
82
+ the number of bins. The number of bins is proportional to the cube
83
+ root of data size (asymptotically optimal). The estimate depends
84
+ only on size of the data.
85
+
86
+ Parameters
87
+ ----------
88
+ x : array_like
89
+ Input data that is to be histogrammed, trimmed to range. May not
90
+ be empty.
91
+
92
+ Returns
93
+ -------
94
+ h : An estimate of the optimal bin width for the given data.
95
+ """
96
+ del range # unused
97
+ return _ptp(x) / (2.0 * x.size ** (1.0 / 3))
98
+
99
+
100
+ def _hist_bin_scott(x, range):
101
+ """
102
+ Scott histogram bin estimator.
103
+
104
+ The binwidth is proportional to the standard deviation of the data
105
+ and inversely proportional to the cube root of data size
106
+ (asymptotically optimal).
107
+
108
+ Parameters
109
+ ----------
110
+ x : array_like
111
+ Input data that is to be histogrammed, trimmed to range. May not
112
+ be empty.
113
+
114
+ Returns
115
+ -------
116
+ h : An estimate of the optimal bin width for the given data.
117
+ """
118
+ del range # unused
119
+ return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x)
120
+
121
+
122
+ def _hist_bin_stone(x, range):
123
+ """
124
+ Histogram bin estimator based on minimizing the estimated integrated squared error (ISE).
125
+
126
+ The number of bins is chosen by minimizing the estimated ISE against the unknown
127
+ true distribution. The ISE is estimated using cross-validation and can be regarded
128
+ as a generalization of Scott's rule.
129
+ https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule
130
+
131
+ This paper by Stone appears to be the origination of this rule.
132
+ https://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf
133
+
134
+ Parameters
135
+ ----------
136
+ x : array_like
137
+ Input data that is to be histogrammed, trimmed to range. May not
138
+ be empty.
139
+ range : (float, float)
140
+ The lower and upper range of the bins.
141
+
142
+ Returns
143
+ -------
144
+ h : An estimate of the optimal bin width for the given data.
145
+ """ # noqa: E501
146
+
147
+ n = x.size
148
+ ptp_x = _ptp(x)
149
+ if n <= 1 or ptp_x == 0:
150
+ return 0
151
+
152
+ def jhat(nbins):
153
+ hh = ptp_x / nbins
154
+ p_k = np.histogram(x, bins=nbins, range=range)[0] / n
155
+ return (2 - (n + 1) * p_k.dot(p_k)) / hh
156
+
157
+ nbins_upper_bound = max(100, int(np.sqrt(n)))
158
+ nbins = min(_range(1, nbins_upper_bound + 1), key=jhat)
159
+ if nbins == nbins_upper_bound:
160
+ warnings.warn("The number of bins estimated may be suboptimal.",
161
+ RuntimeWarning, stacklevel=3)
162
+ return ptp_x / nbins
163
+
164
+
165
+ def _hist_bin_doane(x, range):
166
+ """
167
+ Doane's histogram bin estimator.
168
+
169
+ Improved version of Sturges' formula which works better for
170
+ non-normal data. See
171
+ stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning
172
+
173
+ Parameters
174
+ ----------
175
+ x : array_like
176
+ Input data that is to be histogrammed, trimmed to range. May not
177
+ be empty.
178
+
179
+ Returns
180
+ -------
181
+ h : An estimate of the optimal bin width for the given data.
182
+ """
183
+ del range # unused
184
+ if x.size > 2:
185
+ sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
186
+ sigma = np.std(x)
187
+ if sigma > 0.0:
188
+ # These three operations add up to
189
+ # g1 = np.mean(((x - np.mean(x)) / sigma)**3)
190
+ # but use only one temp array instead of three
191
+ temp = x - np.mean(x)
192
+ np.true_divide(temp, sigma, temp)
193
+ np.power(temp, 3, temp)
194
+ g1 = np.mean(temp)
195
+ return _ptp(x) / (1.0 + np.log2(x.size) +
196
+ np.log2(1.0 + np.absolute(g1) / sg1))
197
+ return 0.0
198
+
199
+
200
+ def _hist_bin_fd(x, range):
201
+ """
202
+ The Freedman-Diaconis histogram bin estimator.
203
+
204
+ The Freedman-Diaconis rule uses interquartile range (IQR) to
205
+ estimate binwidth. It is considered a variation of the Scott rule
206
+ with more robustness as the IQR is less affected by outliers than
207
+ the standard deviation. However, the IQR depends on fewer points
208
+ than the standard deviation, so it is less accurate, especially for
209
+ long tailed distributions.
210
+
211
+ If the IQR is 0, this function returns 0 for the bin width.
212
+ Binwidth is inversely proportional to the cube root of data size
213
+ (asymptotically optimal).
214
+
215
+ Parameters
216
+ ----------
217
+ x : array_like
218
+ Input data that is to be histogrammed, trimmed to range. May not
219
+ be empty.
220
+
221
+ Returns
222
+ -------
223
+ h : An estimate of the optimal bin width for the given data.
224
+ """
225
+ del range # unused
226
+ iqr = np.subtract(*np.percentile(x, [75, 25]))
227
+ return 2.0 * iqr * x.size ** (-1.0 / 3.0)
228
+
229
+
230
+ def _hist_bin_auto(x, range):
231
+ """
232
+ Histogram bin estimator that uses the minimum width of a relaxed
233
+ Freedman-Diaconis and Sturges estimators if the FD bin width does
234
+ not result in a large number of bins. The relaxed Freedman-Diaconis estimator
235
+ limits the bin width to half the sqrt estimated to avoid small bins.
236
+
237
+ The FD estimator is usually the most robust method, but its width
238
+ estimate tends to be too large for small `x` and bad for data with limited
239
+ variance. The Sturges estimator is quite good for small (<1000) datasets
240
+ and is the default in the R language. This method gives good off-the-shelf
241
+ behaviour.
242
+
243
+
244
+ Parameters
245
+ ----------
246
+ x : array_like
247
+ Input data that is to be histogrammed, trimmed to range. May not
248
+ be empty.
249
+ range : Tuple with range for the histogram
250
+
251
+ Returns
252
+ -------
253
+ h : An estimate of the optimal bin width for the given data.
254
+
255
+ See Also
256
+ --------
257
+ _hist_bin_fd, _hist_bin_sturges
258
+ """
259
+ fd_bw = _hist_bin_fd(x, range)
260
+ sturges_bw = _hist_bin_sturges(x, range)
261
+ sqrt_bw = _hist_bin_sqrt(x, range)
262
+ # heuristic to limit the maximal number of bins
263
+ fd_bw_corrected = max(fd_bw, sqrt_bw / 2)
264
+ return min(fd_bw_corrected, sturges_bw)
265
+
266
+
267
+ # Private dict initialized at module load time
268
+ _hist_bin_selectors = {'stone': _hist_bin_stone,
269
+ 'auto': _hist_bin_auto,
270
+ 'doane': _hist_bin_doane,
271
+ 'fd': _hist_bin_fd,
272
+ 'rice': _hist_bin_rice,
273
+ 'scott': _hist_bin_scott,
274
+ 'sqrt': _hist_bin_sqrt,
275
+ 'sturges': _hist_bin_sturges}
276
+
277
+
278
+ def _ravel_and_check_weights(a, weights):
279
+ """ Check a and weights have matching shapes, and ravel both """
280
+ a = np.asarray(a)
281
+
282
+ # Ensure that the array is a "subtractable" dtype
283
+ if a.dtype == np.bool:
284
+ msg = f"Converting input from {a.dtype} to {np.uint8} for compatibility."
285
+ warnings.warn(msg, RuntimeWarning, stacklevel=3)
286
+ a = a.astype(np.uint8)
287
+
288
+ if weights is not None:
289
+ weights = np.asarray(weights)
290
+ if weights.shape != a.shape:
291
+ raise ValueError(
292
+ 'weights should have the same shape as a.')
293
+ weights = weights.ravel()
294
+ a = a.ravel()
295
+ return a, weights
296
+
297
+
298
+ def _get_outer_edges(a, range):
299
+ """
300
+ Determine the outer bin edges to use, from either the data or the range
301
+ argument
302
+ """
303
+ if range is not None:
304
+ first_edge, last_edge = range
305
+ if first_edge > last_edge:
306
+ raise ValueError(
307
+ 'max must be larger than min in range parameter.')
308
+ if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
309
+ raise ValueError(
310
+ f"supplied range of [{first_edge}, {last_edge}] is not finite")
311
+ elif a.size == 0:
312
+ # handle empty arrays. Can't determine range, so use 0-1.
313
+ first_edge, last_edge = 0, 1
314
+ else:
315
+ first_edge, last_edge = a.min(), a.max()
316
+ if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
317
+ raise ValueError(
318
+ f"autodetected range of [{first_edge}, {last_edge}] is not finite")
319
+
320
+ # expand empty range to avoid divide by zero
321
+ if first_edge == last_edge:
322
+ first_edge = first_edge - 0.5
323
+ last_edge = last_edge + 0.5
324
+
325
+ return first_edge, last_edge
326
+
327
+
328
+ def _unsigned_subtract(a, b):
329
+ """
330
+ Subtract two values where a >= b, and produce an unsigned result
331
+
332
+ This is needed when finding the difference between the upper and lower
333
+ bound of an int16 histogram
334
+ """
335
+ # coerce to a single type
336
+ signed_to_unsigned = {
337
+ np.byte: np.ubyte,
338
+ np.short: np.ushort,
339
+ np.intc: np.uintc,
340
+ np.int_: np.uint,
341
+ np.longlong: np.ulonglong
342
+ }
343
+ dt = np.result_type(a, b)
344
+ try:
345
+ unsigned_dt = signed_to_unsigned[dt.type]
346
+ except KeyError:
347
+ return np.subtract(a, b, dtype=dt)
348
+ else:
349
+ # we know the inputs are integers, and we are deliberately casting
350
+ # signed to unsigned. The input may be negative python integers so
351
+ # ensure we pass in arrays with the initial dtype (related to NEP 50).
352
+ return np.subtract(np.asarray(a, dtype=dt), np.asarray(b, dtype=dt),
353
+ casting='unsafe', dtype=unsigned_dt)
354
+
355
+
356
+ def _get_bin_edges(a, bins, range, weights):
357
+ """
358
+ Computes the bins used internally by `histogram`.
359
+
360
+ Parameters
361
+ ==========
362
+ a : ndarray
363
+ Ravelled data array
364
+ bins, range
365
+ Forwarded arguments from `histogram`.
366
+ weights : ndarray, optional
367
+ Ravelled weights array, or None
368
+
369
+ Returns
370
+ =======
371
+ bin_edges : ndarray
372
+ Array of bin edges
373
+ uniform_bins : (Number, Number, int):
374
+ The upper bound, lowerbound, and number of bins, used in the optimized
375
+ implementation of `histogram` that works on uniform bins.
376
+ """
377
+ # parse the overloaded bins argument
378
+ n_equal_bins = None
379
+ bin_edges = None
380
+
381
+ if isinstance(bins, str):
382
+ bin_name = bins
383
+ # if `bins` is a string for an automatic method,
384
+ # this will replace it with the number of bins calculated
385
+ if bin_name not in _hist_bin_selectors:
386
+ raise ValueError(
387
+ f"{bin_name!r} is not a valid estimator for `bins`")
388
+ if weights is not None:
389
+ raise TypeError("Automated estimation of the number of "
390
+ "bins is not supported for weighted data")
391
+
392
+ first_edge, last_edge = _get_outer_edges(a, range)
393
+
394
+ # truncate the range if needed
395
+ if range is not None:
396
+ keep = (a >= first_edge)
397
+ keep &= (a <= last_edge)
398
+ if not np.logical_and.reduce(keep):
399
+ a = a[keep]
400
+
401
+ if a.size == 0:
402
+ n_equal_bins = 1
403
+ else:
404
+ # Do not call selectors on empty arrays
405
+ width = _hist_bin_selectors[bin_name](a, (first_edge, last_edge))
406
+ if width:
407
+ if np.issubdtype(a.dtype, np.integer) and width < 1:
408
+ width = 1
409
+ delta = _unsigned_subtract(last_edge, first_edge)
410
+ n_equal_bins = int(np.ceil(delta / width))
411
+ else:
412
+ # Width can be zero for some estimators, e.g. FD when
413
+ # the IQR of the data is zero.
414
+ n_equal_bins = 1
415
+
416
+ elif np.ndim(bins) == 0:
417
+ try:
418
+ n_equal_bins = operator.index(bins)
419
+ except TypeError as e:
420
+ raise TypeError(
421
+ '`bins` must be an integer, a string, or an array') from e
422
+ if n_equal_bins < 1:
423
+ raise ValueError('`bins` must be positive, when an integer')
424
+
425
+ first_edge, last_edge = _get_outer_edges(a, range)
426
+
427
+ elif np.ndim(bins) == 1:
428
+ bin_edges = np.asarray(bins)
429
+ if np.any(bin_edges[:-1] > bin_edges[1:]):
430
+ raise ValueError(
431
+ '`bins` must increase monotonically, when an array')
432
+
433
+ else:
434
+ raise ValueError('`bins` must be 1d, when an array')
435
+
436
+ if n_equal_bins is not None:
437
+ # gh-10322 means that type resolution rules are dependent on array
438
+ # shapes. To avoid this causing problems, we pick a type now and stick
439
+ # with it throughout.
440
+ bin_type = np.result_type(first_edge, last_edge, a)
441
+ if np.issubdtype(bin_type, np.integer):
442
+ bin_type = np.result_type(bin_type, float)
443
+
444
+ # bin edges must be computed
445
+ bin_edges = np.linspace(
446
+ first_edge, last_edge, n_equal_bins + 1,
447
+ endpoint=True, dtype=bin_type)
448
+ if np.any(bin_edges[:-1] >= bin_edges[1:]):
449
+ raise ValueError(
450
+ f'Too many bins for data range. Cannot create {n_equal_bins} '
451
+ f'finite-sized bins.')
452
+ return bin_edges, (first_edge, last_edge, n_equal_bins)
453
+ else:
454
+ return bin_edges, None
455
+
456
+
457
+ def _search_sorted_inclusive(a, v):
458
+ """
459
+ Like `searchsorted`, but where the last item in `v` is placed on the right.
460
+
461
+ In the context of a histogram, this makes the last bin edge inclusive
462
+ """
463
+ return np.concatenate((
464
+ a.searchsorted(v[:-1], 'left'),
465
+ a.searchsorted(v[-1:], 'right')
466
+ ))
467
+
468
+
469
+ def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None):
470
+ return (a, bins, weights)
471
+
472
+
473
+ @array_function_dispatch(_histogram_bin_edges_dispatcher)
474
+ def histogram_bin_edges(a, bins=10, range=None, weights=None):
475
+ r"""
476
+ Function to calculate only the edges of the bins used by the `histogram`
477
+ function.
478
+
479
+ Parameters
480
+ ----------
481
+ a : array_like
482
+ Input data. The histogram is computed over the flattened array.
483
+ bins : int or sequence of scalars or str, optional
484
+ If `bins` is an int, it defines the number of equal-width
485
+ bins in the given range (10, by default). If `bins` is a
486
+ sequence, it defines the bin edges, including the rightmost
487
+ edge, allowing for non-uniform bin widths.
488
+
489
+ If `bins` is a string from the list below, `histogram_bin_edges` will
490
+ use the method chosen to calculate the optimal bin width and
491
+ consequently the number of bins (see the Notes section for more detail
492
+ on the estimators) from the data that falls within the requested range.
493
+ While the bin width will be optimal for the actual data
494
+ in the range, the number of bins will be computed to fill the
495
+ entire range, including the empty portions. For visualisation,
496
+ using the 'auto' option is suggested. Weighted data is not
497
+ supported for automated bin size selection.
498
+
499
+ 'auto'
500
+ Minimum bin width between the 'sturges' and 'fd' estimators.
501
+ Provides good all-around performance.
502
+
503
+ 'fd' (Freedman Diaconis Estimator)
504
+ Robust (resilient to outliers) estimator that takes into
505
+ account data variability and data size.
506
+
507
+ 'doane'
508
+ An improved version of Sturges' estimator that works better
509
+ with non-normal datasets.
510
+
511
+ 'scott'
512
+ Less robust estimator that takes into account data variability
513
+ and data size.
514
+
515
+ 'stone'
516
+ Estimator based on leave-one-out cross-validation estimate of
517
+ the integrated squared error. Can be regarded as a generalization
518
+ of Scott's rule.
519
+
520
+ 'rice'
521
+ Estimator does not take variability into account, only data
522
+ size. Commonly overestimates number of bins required.
523
+
524
+ 'sturges'
525
+ R's default method, only accounts for data size. Only
526
+ optimal for gaussian data and underestimates number of bins
527
+ for large non-gaussian datasets.
528
+
529
+ 'sqrt'
530
+ Square root (of data size) estimator, used by Excel and
531
+ other programs for its speed and simplicity.
532
+
533
+ range : (float, float), optional
534
+ The lower and upper range of the bins. If not provided, range
535
+ is simply ``(a.min(), a.max())``. Values outside the range are
536
+ ignored. The first element of the range must be less than or
537
+ equal to the second. `range` affects the automatic bin
538
+ computation as well. While bin width is computed to be optimal
539
+ based on the actual data within `range`, the bin count will fill
540
+ the entire range including portions containing no data.
541
+
542
+ weights : array_like, optional
543
+ An array of weights, of the same shape as `a`. Each value in
544
+ `a` only contributes its associated weight towards the bin count
545
+ (instead of 1). This is currently not used by any of the bin estimators,
546
+ but may be in the future.
547
+
548
+ Returns
549
+ -------
550
+ bin_edges : array of dtype float
551
+ The edges to pass into `histogram`
552
+
553
+ See Also
554
+ --------
555
+ histogram
556
+
557
+ Notes
558
+ -----
559
+ The methods to estimate the optimal number of bins are well founded
560
+ in literature, and are inspired by the choices R provides for
561
+ histogram visualisation. Note that having the number of bins
562
+ proportional to :math:`n^{1/3}` is asymptotically optimal, which is
563
+ why it appears in most estimators. These are simply plug-in methods
564
+ that give good starting points for number of bins. In the equations
565
+ below, :math:`h` is the binwidth and :math:`n_h` is the number of
566
+ bins. All estimators that compute bin counts are recast to bin width
567
+ using the `ptp` of the data. The final bin count is obtained from
568
+ ``np.round(np.ceil(range / h))``. The final bin width is often less
569
+ than what is returned by the estimators below.
570
+
571
+ 'auto' (minimum bin width of the 'sturges' and 'fd' estimators)
572
+ A compromise to get a good value. For small datasets the Sturges
573
+ value will usually be chosen, while larger datasets will usually
574
+ default to FD. Avoids the overly conservative behaviour of FD
575
+ and Sturges for small and large datasets respectively.
576
+ Switchover point is usually :math:`a.size \approx 1000`.
577
+
578
+ 'fd' (Freedman Diaconis Estimator)
579
+ .. math:: h = 2 \frac{IQR}{n^{1/3}}
580
+
581
+ The binwidth is proportional to the interquartile range (IQR)
582
+ and inversely proportional to cube root of a.size. Can be too
583
+ conservative for small datasets, but is quite good for large
584
+ datasets. The IQR is very robust to outliers.
585
+
586
+ 'scott'
587
+ .. math:: h = \sigma \sqrt[3]{\frac{24 \sqrt{\pi}}{n}}
588
+
589
+ The binwidth is proportional to the standard deviation of the
590
+ data and inversely proportional to cube root of ``x.size``. Can
591
+ be too conservative for small datasets, but is quite good for
592
+ large datasets. The standard deviation is not very robust to
593
+ outliers. Values are very similar to the Freedman-Diaconis
594
+ estimator in the absence of outliers.
595
+
596
+ 'rice'
597
+ .. math:: n_h = 2n^{1/3}
598
+
599
+ The number of bins is only proportional to cube root of
600
+ ``a.size``. It tends to overestimate the number of bins and it
601
+ does not take into account data variability.
602
+
603
+ 'sturges'
604
+ .. math:: n_h = \log _{2}(n) + 1
605
+
606
+ The number of bins is the base 2 log of ``a.size``. This
607
+ estimator assumes normality of data and is too conservative for
608
+ larger, non-normal datasets. This is the default method in R's
609
+ ``hist`` method.
610
+
611
+ 'doane'
612
+ .. math:: n_h = 1 + \log_{2}(n) +
613
+ \log_{2}\left(1 + \frac{|g_1|}{\sigma_{g_1}}\right)
614
+
615
+ g_1 = mean\left[\left(\frac{x - \mu}{\sigma}\right)^3\right]
616
+
617
+ \sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}}
618
+
619
+ An improved version of Sturges' formula that produces better
620
+ estimates for non-normal datasets. This estimator attempts to
621
+ account for the skew of the data.
622
+
623
+ 'sqrt'
624
+ .. math:: n_h = \sqrt n
625
+
626
+ The simplest and fastest estimator. Only takes into account the
627
+ data size.
628
+
629
+ Additionally, if the data is of integer dtype, then the binwidth will never
630
+ be less than 1.
631
+
632
+ Examples
633
+ --------
634
+ >>> import numpy as np
635
+ >>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5])
636
+ >>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1))
637
+ array([0. , 0.25, 0.5 , 0.75, 1. ])
638
+ >>> np.histogram_bin_edges(arr, bins=2)
639
+ array([0. , 2.5, 5. ])
640
+
641
+ For consistency with histogram, an array of pre-computed bins is
642
+ passed through unmodified:
643
+
644
+ >>> np.histogram_bin_edges(arr, [1, 2])
645
+ array([1, 2])
646
+
647
+ This function allows one set of bins to be computed, and reused across
648
+ multiple histograms:
649
+
650
+ >>> shared_bins = np.histogram_bin_edges(arr, bins='auto')
651
+ >>> shared_bins
652
+ array([0., 1., 2., 3., 4., 5.])
653
+
654
+ >>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1])
655
+ >>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins)
656
+ >>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins)
657
+
658
+ >>> hist_0; hist_1
659
+ array([1, 1, 0, 1, 0])
660
+ array([2, 0, 1, 1, 2])
661
+
662
+ Which gives more easily comparable results than using separate bins for
663
+ each histogram:
664
+
665
+ >>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto')
666
+ >>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto')
667
+ >>> hist_0; hist_1
668
+ array([1, 1, 1])
669
+ array([2, 1, 1, 2])
670
+ >>> bins_0; bins_1
671
+ array([0., 1., 2., 3.])
672
+ array([0. , 1.25, 2.5 , 3.75, 5. ])
673
+
674
+ """
675
+ a, weights = _ravel_and_check_weights(a, weights)
676
+ bin_edges, _ = _get_bin_edges(a, bins, range, weights)
677
+ return bin_edges
678
+
679
+
680
+ def _histogram_dispatcher(
681
+ a, bins=None, range=None, density=None, weights=None):
682
+ return (a, bins, weights)
683
+
684
+
685
+ @array_function_dispatch(_histogram_dispatcher)
686
+ def histogram(a, bins=10, range=None, density=None, weights=None):
687
+ r"""
688
+ Compute the histogram of a dataset.
689
+
690
+ Parameters
691
+ ----------
692
+ a : array_like
693
+ Input data. The histogram is computed over the flattened array.
694
+ bins : int or sequence of scalars or str, optional
695
+ If `bins` is an int, it defines the number of equal-width
696
+ bins in the given range (10, by default). If `bins` is a
697
+ sequence, it defines a monotonically increasing array of bin edges,
698
+ including the rightmost edge, allowing for non-uniform bin widths.
699
+
700
+ If `bins` is a string, it defines the method used to calculate the
701
+ optimal bin width, as defined by `histogram_bin_edges`.
702
+
703
+ range : (float, float), optional
704
+ The lower and upper range of the bins. If not provided, range
705
+ is simply ``(a.min(), a.max())``. Values outside the range are
706
+ ignored. The first element of the range must be less than or
707
+ equal to the second. `range` affects the automatic bin
708
+ computation as well. While bin width is computed to be optimal
709
+ based on the actual data within `range`, the bin count will fill
710
+ the entire range including portions containing no data.
711
+ weights : array_like, optional
712
+ An array of weights, of the same shape as `a`. Each value in
713
+ `a` only contributes its associated weight towards the bin count
714
+ (instead of 1). If `density` is True, the weights are
715
+ normalized, so that the integral of the density over the range
716
+ remains 1.
717
+ Please note that the ``dtype`` of `weights` will also become the
718
+ ``dtype`` of the returned accumulator (`hist`), so it must be
719
+ large enough to hold accumulated values as well.
720
+ density : bool, optional
721
+ If ``False``, the result will contain the number of samples in
722
+ each bin. If ``True``, the result is the value of the
723
+ probability *density* function at the bin, normalized such that
724
+ the *integral* over the range is 1. Note that the sum of the
725
+ histogram values will not be equal to 1 unless bins of unity
726
+ width are chosen; it is not a probability *mass* function.
727
+
728
+ Returns
729
+ -------
730
+ hist : array
731
+ The values of the histogram. See `density` and `weights` for a
732
+ description of the possible semantics. If `weights` are given,
733
+ ``hist.dtype`` will be taken from `weights`.
734
+ bin_edges : array of dtype float
735
+ Return the bin edges ``(length(hist)+1)``.
736
+
737
+
738
+ See Also
739
+ --------
740
+ histogramdd, bincount, searchsorted, digitize, histogram_bin_edges
741
+
742
+ Notes
743
+ -----
744
+ All but the last (righthand-most) bin is half-open. In other words,
745
+ if `bins` is::
746
+
747
+ [1, 2, 3, 4]
748
+
749
+ then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
750
+ the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
751
+ *includes* 4.
752
+
753
+
754
+ Examples
755
+ --------
756
+ >>> import numpy as np
757
+ >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
758
+ (array([0, 2, 1]), array([0, 1, 2, 3]))
759
+ >>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
760
+ (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
761
+ >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
762
+ (array([1, 4, 1]), array([0, 1, 2, 3]))
763
+
764
+ >>> a = np.arange(5)
765
+ >>> hist, bin_edges = np.histogram(a, density=True)
766
+ >>> hist
767
+ array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
768
+ >>> hist.sum()
769
+ 2.4999999999999996
770
+ >>> np.sum(hist * np.diff(bin_edges))
771
+ 1.0
772
+
773
+ Automated Bin Selection Methods example, using 2 peak random data
774
+ with 2000 points.
775
+
776
+ .. plot::
777
+ :include-source:
778
+
779
+ import matplotlib.pyplot as plt
780
+ import numpy as np
781
+
782
+ rng = np.random.RandomState(10) # deterministic random data
783
+ a = np.hstack((rng.normal(size=1000),
784
+ rng.normal(loc=5, scale=2, size=1000)))
785
+ plt.hist(a, bins='auto') # arguments are passed to np.histogram
786
+ plt.title("Histogram with 'auto' bins")
787
+ plt.show()
788
+
789
+ """
790
+ a, weights = _ravel_and_check_weights(a, weights)
791
+
792
+ bin_edges, uniform_bins = _get_bin_edges(a, bins, range, weights)
793
+
794
+ # Histogram is an integer or a float array depending on the weights.
795
+ if weights is None:
796
+ ntype = np.dtype(np.intp)
797
+ else:
798
+ ntype = weights.dtype
799
+
800
+ # We set a block size, as this allows us to iterate over chunks when
801
+ # computing histograms, to minimize memory usage.
802
+ BLOCK = 65536
803
+
804
+ # The fast path uses bincount, but that only works for certain types
805
+ # of weight
806
+ simple_weights = (
807
+ weights is None or
808
+ np.can_cast(weights.dtype, np.double) or
809
+ np.can_cast(weights.dtype, complex)
810
+ )
811
+
812
+ if uniform_bins is not None and simple_weights:
813
+ # Fast algorithm for equal bins
814
+ # We now convert values of a to bin indices, under the assumption of
815
+ # equal bin widths (which is valid here).
816
+ first_edge, last_edge, n_equal_bins = uniform_bins
817
+
818
+ # Initialize empty histogram
819
+ n = np.zeros(n_equal_bins, ntype)
820
+
821
+ # Pre-compute histogram scaling factor
822
+ norm_numerator = n_equal_bins
823
+ norm_denom = _unsigned_subtract(last_edge, first_edge)
824
+
825
+ # We iterate over blocks here for two reasons: the first is that for
826
+ # large arrays, it is actually faster (for example for a 10^8 array it
827
+ # is 2x as fast) and it results in a memory footprint 3x lower in the
828
+ # limit of large arrays.
829
+ for i in _range(0, len(a), BLOCK):
830
+ tmp_a = a[i:i + BLOCK]
831
+ if weights is None:
832
+ tmp_w = None
833
+ else:
834
+ tmp_w = weights[i:i + BLOCK]
835
+
836
+ # Only include values in the right range
837
+ keep = (tmp_a >= first_edge)
838
+ keep &= (tmp_a <= last_edge)
839
+ if not np.logical_and.reduce(keep):
840
+ tmp_a = tmp_a[keep]
841
+ if tmp_w is not None:
842
+ tmp_w = tmp_w[keep]
843
+
844
+ # This cast ensures no type promotions occur below, which gh-10322
845
+ # make unpredictable. Getting it wrong leads to precision errors
846
+ # like gh-8123.
847
+ tmp_a = tmp_a.astype(bin_edges.dtype, copy=False)
848
+
849
+ # Compute the bin indices, and for values that lie exactly on
850
+ # last_edge we need to subtract one
851
+ f_indices = ((_unsigned_subtract(tmp_a, first_edge) / norm_denom)
852
+ * norm_numerator)
853
+ indices = f_indices.astype(np.intp)
854
+ indices[indices == n_equal_bins] -= 1
855
+
856
+ # The index computation is not guaranteed to give exactly
857
+ # consistent results within ~1 ULP of the bin edges.
858
+ decrement = tmp_a < bin_edges[indices]
859
+ indices[decrement] -= 1
860
+ # The last bin includes the right edge. The other bins do not.
861
+ increment = ((tmp_a >= bin_edges[indices + 1])
862
+ & (indices != n_equal_bins - 1))
863
+ indices[increment] += 1
864
+
865
+ # We now compute the histogram using bincount
866
+ if ntype.kind == 'c':
867
+ n.real += np.bincount(indices, weights=tmp_w.real,
868
+ minlength=n_equal_bins)
869
+ n.imag += np.bincount(indices, weights=tmp_w.imag,
870
+ minlength=n_equal_bins)
871
+ else:
872
+ n += np.bincount(indices, weights=tmp_w,
873
+ minlength=n_equal_bins).astype(ntype)
874
+ else:
875
+ # Compute via cumulative histogram
876
+ cum_n = np.zeros(bin_edges.shape, ntype)
877
+ if weights is None:
878
+ for i in _range(0, len(a), BLOCK):
879
+ sa = np.sort(a[i:i + BLOCK])
880
+ cum_n += _search_sorted_inclusive(sa, bin_edges)
881
+ else:
882
+ zero = np.zeros(1, dtype=ntype)
883
+ for i in _range(0, len(a), BLOCK):
884
+ tmp_a = a[i:i + BLOCK]
885
+ tmp_w = weights[i:i + BLOCK]
886
+ sorting_index = np.argsort(tmp_a)
887
+ sa = tmp_a[sorting_index]
888
+ sw = tmp_w[sorting_index]
889
+ cw = np.concatenate((zero, sw.cumsum()))
890
+ bin_index = _search_sorted_inclusive(sa, bin_edges)
891
+ cum_n += cw[bin_index]
892
+
893
+ n = np.diff(cum_n)
894
+
895
+ if density:
896
+ db = np.array(np.diff(bin_edges), float)
897
+ return n / db / n.sum(), bin_edges
898
+
899
+ return n, bin_edges
900
+
901
+
902
+ def _histogramdd_dispatcher(sample, bins=None, range=None, density=None,
903
+ weights=None):
904
+ if hasattr(sample, 'shape'): # same condition as used in histogramdd
905
+ yield sample
906
+ else:
907
+ yield from sample
908
+ with contextlib.suppress(TypeError):
909
+ yield from bins
910
+ yield weights
911
+
912
+
913
+ @array_function_dispatch(_histogramdd_dispatcher)
914
+ def histogramdd(sample, bins=10, range=None, density=None, weights=None):
915
+ """
916
+ Compute the multidimensional histogram of some data.
917
+
918
+ Parameters
919
+ ----------
920
+ sample : (N, D) array, or (N, D) array_like
921
+ The data to be histogrammed.
922
+
923
+ Note the unusual interpretation of sample when an array_like:
924
+
925
+ * When an array, each row is a coordinate in a D-dimensional space -
926
+ such as ``histogramdd(np.array([p1, p2, p3]))``.
927
+ * When an array_like, each element is the list of values for single
928
+ coordinate - such as ``histogramdd((X, Y, Z))``.
929
+
930
+ The first form should be preferred.
931
+
932
+ bins : sequence or int, optional
933
+ The bin specification:
934
+
935
+ * A sequence of arrays describing the monotonically increasing bin
936
+ edges along each dimension.
937
+ * The number of bins for each dimension (nx, ny, ... =bins)
938
+ * The number of bins for all dimensions (nx=ny=...=bins).
939
+
940
+ range : sequence, optional
941
+ A sequence of length D, each an optional (lower, upper) tuple giving
942
+ the outer bin edges to be used if the edges are not given explicitly in
943
+ `bins`.
944
+ An entry of None in the sequence results in the minimum and maximum
945
+ values being used for the corresponding dimension.
946
+ The default, None, is equivalent to passing a tuple of D None values.
947
+ density : bool, optional
948
+ If False, the default, returns the number of samples in each bin.
949
+ If True, returns the probability *density* function at the bin,
950
+ ``bin_count / sample_count / bin_volume``.
951
+ weights : (N,) array_like, optional
952
+ An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
953
+ Weights are normalized to 1 if density is True. If density is False,
954
+ the values of the returned histogram are equal to the sum of the
955
+ weights belonging to the samples falling into each bin.
956
+
957
+ Returns
958
+ -------
959
+ H : ndarray
960
+ The multidimensional histogram of sample x. See density and weights
961
+ for the different possible semantics.
962
+ edges : tuple of ndarrays
963
+ A tuple of D arrays describing the bin edges for each dimension.
964
+
965
+ See Also
966
+ --------
967
+ histogram: 1-D histogram
968
+ histogram2d: 2-D histogram
969
+
970
+ Examples
971
+ --------
972
+ >>> import numpy as np
973
+ >>> rng = np.random.default_rng()
974
+ >>> r = rng.normal(size=(100,3))
975
+ >>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
976
+ >>> H.shape, edges[0].size, edges[1].size, edges[2].size
977
+ ((5, 8, 4), 6, 9, 5)
978
+
979
+ """
980
+
981
+ try:
982
+ # Sample is an ND-array.
983
+ N, D = sample.shape
984
+ except (AttributeError, ValueError):
985
+ # Sample is a sequence of 1D arrays.
986
+ sample = np.atleast_2d(sample).T
987
+ N, D = sample.shape
988
+
989
+ nbin = np.empty(D, np.intp)
990
+ edges = D * [None]
991
+ dedges = D * [None]
992
+ if weights is not None:
993
+ weights = np.asarray(weights)
994
+
995
+ try:
996
+ M = len(bins)
997
+ if M != D:
998
+ raise ValueError(
999
+ 'The dimension of bins must be equal to the dimension of the '
1000
+ 'sample x.')
1001
+ except TypeError:
1002
+ # bins is an integer
1003
+ bins = D * [bins]
1004
+
1005
+ # normalize the range argument
1006
+ if range is None:
1007
+ range = (None,) * D
1008
+ elif len(range) != D:
1009
+ raise ValueError('range argument must have one entry per dimension')
1010
+
1011
+ # Create edge arrays
1012
+ for i in _range(D):
1013
+ if np.ndim(bins[i]) == 0:
1014
+ if bins[i] < 1:
1015
+ raise ValueError(
1016
+ f'`bins[{i}]` must be positive, when an integer')
1017
+ smin, smax = _get_outer_edges(sample[:, i], range[i])
1018
+ try:
1019
+ n = operator.index(bins[i])
1020
+
1021
+ except TypeError as e:
1022
+ raise TypeError(
1023
+ f"`bins[{i}]` must be an integer, when a scalar"
1024
+ ) from e
1025
+
1026
+ edges[i] = np.linspace(smin, smax, n + 1)
1027
+ elif np.ndim(bins[i]) == 1:
1028
+ edges[i] = np.asarray(bins[i])
1029
+ if np.any(edges[i][:-1] > edges[i][1:]):
1030
+ raise ValueError(
1031
+ f'`bins[{i}]` must be monotonically increasing, when an array')
1032
+ else:
1033
+ raise ValueError(
1034
+ f'`bins[{i}]` must be a scalar or 1d array')
1035
+
1036
+ nbin[i] = len(edges[i]) + 1 # includes an outlier on each end
1037
+ dedges[i] = np.diff(edges[i])
1038
+
1039
+ # Compute the bin number each sample falls into.
1040
+ Ncount = tuple(
1041
+ # avoid np.digitize to work around gh-11022
1042
+ np.searchsorted(edges[i], sample[:, i], side='right')
1043
+ for i in _range(D)
1044
+ )
1045
+
1046
+ # Using digitize, values that fall on an edge are put in the right bin.
1047
+ # For the rightmost bin, we want values equal to the right edge to be
1048
+ # counted in the last bin, and not as an outlier.
1049
+ for i in _range(D):
1050
+ # Find which points are on the rightmost edge.
1051
+ on_edge = (sample[:, i] == edges[i][-1])
1052
+ # Shift these points one bin to the left.
1053
+ Ncount[i][on_edge] -= 1
1054
+
1055
+ # Compute the sample indices in the flattened histogram matrix.
1056
+ # This raises an error if the array is too large.
1057
+ xy = np.ravel_multi_index(Ncount, nbin)
1058
+
1059
+ # Compute the number of repetitions in xy and assign it to the
1060
+ # flattened histmat.
1061
+ hist = np.bincount(xy, weights, minlength=nbin.prod())
1062
+
1063
+ # Shape into a proper matrix
1064
+ hist = hist.reshape(nbin)
1065
+
1066
+ # This preserves the (bad) behavior observed in gh-7845, for now.
1067
+ hist = hist.astype(float, casting='safe')
1068
+
1069
+ # Remove outliers (indices 0 and -1 for each dimension).
1070
+ core = D * (slice(1, -1),)
1071
+ hist = hist[core]
1072
+
1073
+ if density:
1074
+ # calculate the probability density function
1075
+ s = hist.sum()
1076
+ for i in _range(D):
1077
+ shape = np.ones(D, int)
1078
+ shape[i] = nbin[i] - 2
1079
+ hist = hist / dedges[i].reshape(shape)
1080
+ hist /= s
1081
+
1082
+ if (hist.shape != nbin - 2).any():
1083
+ raise RuntimeError(
1084
+ "Internal Shape Error")
1085
+ return hist, edges