numpy 2.4.1__cp314-cp314t-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (932) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +955 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp314t-win_arm64.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp314t-win_arm64.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp314t-win_arm64.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp314t-win_arm64.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp314t-win_arm64.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp314t-win_arm64.pyd +0 -0
  35. numpy/_core/_rational_tests.cp314t-win_arm64.lib +0 -0
  36. numpy/_core/_rational_tests.cp314t-win_arm64.pyd +0 -0
  37. numpy/_core/_simd.cp314t-win_arm64.lib +0 -0
  38. numpy/_core/_simd.cp314t-win_arm64.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp314t-win_arm64.lib +0 -0
  49. numpy/_core/_umath_tests.cp314t-win_arm64.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1316 -0
  101. numpy/_core/numeric.py +2758 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +75 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +377 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4295 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp314t-win_arm64.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp314t-win_arm64.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4750 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp314t-win_arm64.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp314t-win_arm64.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp314t-win_arm64.lib +0 -0
  582. numpy/linalg/lapack_lite.cp314t-win_arm64.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3720 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp314t-win_arm64.lib +0 -0
  660. numpy/random/_bounded_integers.cp314t-win_arm64.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp314t-win_arm64.lib +0 -0
  664. numpy/random/_common.cp314t-win_arm64.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp314t-win_arm64.lib +0 -0
  675. numpy/random/_generator.cp314t-win_arm64.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp314t-win_arm64.lib +0 -0
  678. numpy/random/_mt19937.cp314t-win_arm64.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp314t-win_arm64.lib +0 -0
  681. numpy/random/_pcg64.cp314t-win_arm64.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp314t-win_arm64.lib +0 -0
  684. numpy/random/_philox.cp314t-win_arm64.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp314t-win_arm64.lib +0 -0
  689. numpy/random/_sfc64.cp314t-win_arm64.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp314t-win_arm64.lib +0 -0
  692. numpy/random/bit_generator.cp314t-win_arm64.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp314t-win_arm64.lib +0 -0
  698. numpy/random/mtrand.cp314t-win_arm64.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.1.dist-info/DELVEWHEEL +2 -0
  910. numpy-2.4.1.dist-info/METADATA +139 -0
  911. numpy-2.4.1.dist-info/RECORD +932 -0
  912. numpy-2.4.1.dist-info/WHEEL +4 -0
  913. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  914. numpy-2.4.1.dist-info/licenses/LICENSE.txt +914 -0
  915. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  916. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  917. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  918. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  919. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  920. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  921. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  922. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  923. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  924. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  925. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  926. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  927. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  928. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  929. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  930. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
  931. numpy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  932. numpy.libs/scipy_openblas-7b69cbfd2599e6035f1310f2a72d59a6.dll +0 -0
@@ -0,0 +1,1740 @@
1
+ """
2
+ Create the numpy._core.multiarray namespace for backward compatibility.
3
+ In v1.16 the multiarray and umath c-extension modules were merged into
4
+ a single _multiarray_umath extension module. So we replicate the old
5
+ namespace by importing from the extension module.
6
+
7
+ """
8
+
9
+ import functools
10
+
11
+ from . import _multiarray_umath, overrides
12
+ from ._multiarray_umath import * # noqa: F403
13
+
14
+ # These imports are needed for backward compatibility,
15
+ # do not change them. issue gh-15518
16
+ # _get_ndarray_c_version is semi-public, on purpose not added to __all__
17
+ from ._multiarray_umath import ( # noqa: F401
18
+ _ARRAY_API,
19
+ _flagdict,
20
+ _get_madvise_hugepage,
21
+ _get_ndarray_c_version,
22
+ _monotonicity,
23
+ _place,
24
+ _reconstruct,
25
+ _set_madvise_hugepage,
26
+ _vec_string,
27
+ from_dlpack,
28
+ )
29
+
30
+ __all__ = [
31
+ '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS',
32
+ 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS',
33
+ 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI',
34
+ 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP',
35
+ '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string',
36
+ '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray',
37
+ 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount',
38
+ 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast',
39
+ 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2',
40
+ 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data',
41
+ 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype',
42
+ 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat',
43
+ 'frombuffer', 'fromfile', 'fromiter', 'fromstring',
44
+ 'get_handler_name', 'get_handler_version', 'inner', 'interp',
45
+ 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'vecdot',
46
+ 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters',
47
+ 'normalize_axis_index', 'packbits', 'promote_types', 'putmask',
48
+ 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function',
49
+ 'set_typeDict', 'shares_memory', 'typeinfo',
50
+ 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros']
51
+
52
+ # For backward compatibility, make sure pickle imports
53
+ # these functions from here
54
+ _reconstruct.__module__ = 'numpy._core.multiarray'
55
+ scalar.__module__ = 'numpy._core.multiarray'
56
+
57
+
58
+ from_dlpack.__module__ = 'numpy'
59
+ arange.__module__ = 'numpy'
60
+ array.__module__ = 'numpy'
61
+ asarray.__module__ = 'numpy'
62
+ asanyarray.__module__ = 'numpy'
63
+ ascontiguousarray.__module__ = 'numpy'
64
+ asfortranarray.__module__ = 'numpy'
65
+ datetime_data.__module__ = 'numpy'
66
+ empty.__module__ = 'numpy'
67
+ frombuffer.__module__ = 'numpy'
68
+ fromfile.__module__ = 'numpy'
69
+ fromiter.__module__ = 'numpy'
70
+ frompyfunc.__module__ = 'numpy'
71
+ fromstring.__module__ = 'numpy'
72
+ may_share_memory.__module__ = 'numpy'
73
+ nested_iters.__module__ = 'numpy'
74
+ promote_types.__module__ = 'numpy'
75
+ zeros.__module__ = 'numpy'
76
+ normalize_axis_index.__module__ = 'numpy.lib.array_utils'
77
+ add_docstring.__module__ = 'numpy.lib'
78
+ compare_chararrays.__module__ = 'numpy.char'
79
+
80
+
81
+ def _override___module__():
82
+ namespace_names = globals()
83
+ for ufunc_name in [
84
+ 'absolute', 'arccos', 'arccosh', 'add', 'arcsin', 'arcsinh', 'arctan',
85
+ 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_count', 'invert',
86
+ 'left_shift', 'bitwise_or', 'right_shift', 'bitwise_xor', 'cbrt',
87
+ 'ceil', 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees',
88
+ 'divide', 'divmod', 'equal', 'exp', 'exp2', 'expm1', 'fabs',
89
+ 'float_power', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod',
90
+ 'frexp', 'gcd', 'greater', 'greater_equal', 'heaviside', 'hypot',
91
+ 'isfinite', 'isinf', 'isnan', 'isnat', 'lcm', 'ldexp', 'less',
92
+ 'less_equal', 'log', 'log10', 'log1p', 'log2', 'logaddexp',
93
+ 'logaddexp2', 'logical_and', 'logical_not', 'logical_or',
94
+ 'logical_xor', 'matmul', 'matvec', 'maximum', 'minimum', 'remainder',
95
+ 'modf', 'multiply', 'negative', 'nextafter', 'not_equal', 'positive',
96
+ 'power', 'rad2deg', 'radians', 'reciprocal', 'rint', 'sign', 'signbit',
97
+ 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan', 'tanh',
98
+ 'trunc', 'vecdot', 'vecmat',
99
+ ]:
100
+ ufunc = namespace_names[ufunc_name]
101
+ ufunc.__module__ = "numpy"
102
+ ufunc.__qualname__ = ufunc_name
103
+
104
+
105
+ _override___module__()
106
+
107
+
108
+ # We can't verify dispatcher signatures because NumPy's C functions don't
109
+ # support introspection.
110
+ array_function_from_c_func_and_dispatcher = functools.partial(
111
+ overrides.array_function_from_dispatcher,
112
+ module='numpy', docs_from_dispatcher=True, verify=False)
113
+
114
+
115
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like)
116
+ def empty_like(
117
+ prototype, dtype=None, order="K", subok=True, shape=None, *, device=None
118
+ ):
119
+ """
120
+ empty_like(
121
+ prototype,
122
+ /,
123
+ dtype=None,
124
+ order='K',
125
+ subok=True,
126
+ shape=None,
127
+ *,
128
+ device=None,
129
+ )
130
+ --
131
+
132
+ Return a new array with the same shape and type as a given array.
133
+
134
+ Parameters
135
+ ----------
136
+ prototype : array_like
137
+ The shape and data-type of `prototype` define these same attributes
138
+ of the returned array.
139
+ dtype : data-type, optional
140
+ Overrides the data type of the result.
141
+ order : {'C', 'F', 'A', or 'K'}, optional
142
+ Overrides the memory layout of the result. 'C' means C-order,
143
+ 'F' means F-order, 'A' means 'F' if `prototype` is Fortran
144
+ contiguous, 'C' otherwise. 'K' means match the layout of `prototype`
145
+ as closely as possible.
146
+ subok : bool, optional.
147
+ If True, then the newly created array will use the sub-class
148
+ type of `prototype`, otherwise it will be a base-class array. Defaults
149
+ to True.
150
+ shape : int or sequence of ints, optional.
151
+ Overrides the shape of the result. If order='K' and the number of
152
+ dimensions is unchanged, will try to keep order, otherwise,
153
+ order='C' is implied.
154
+ device : str, optional
155
+ The device on which to place the created array. Default: None.
156
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
157
+
158
+ .. versionadded:: 2.0.0
159
+
160
+ Returns
161
+ -------
162
+ out : ndarray
163
+ Array of uninitialized (arbitrary) data with the same
164
+ shape and type as `prototype`.
165
+
166
+ See Also
167
+ --------
168
+ ones_like : Return an array of ones with shape and type of input.
169
+ zeros_like : Return an array of zeros with shape and type of input.
170
+ full_like : Return a new array with shape of input filled with value.
171
+ empty : Return a new uninitialized array.
172
+
173
+ Notes
174
+ -----
175
+ Unlike other array creation functions (e.g. `zeros_like`, `ones_like`,
176
+ `full_like`), `empty_like` does not initialize the values of the array,
177
+ and may therefore be marginally faster. However, the values stored in the
178
+ newly allocated array are arbitrary. For reproducible behavior, be sure
179
+ to set each element of the array before reading.
180
+
181
+ Examples
182
+ --------
183
+ >>> import numpy as np
184
+ >>> a = ([1,2,3], [4,5,6]) # a is array-like
185
+ >>> np.empty_like(a)
186
+ array([[-1073741821, -1073741821, 3], # uninitialized
187
+ [ 0, 0, -1073741821]])
188
+ >>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
189
+ >>> np.empty_like(a)
190
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized
191
+ [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
192
+
193
+ """
194
+ return (prototype,)
195
+
196
+
197
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate)
198
+ def concatenate(arrays, axis=0, out=None, *, dtype=None, casting="same_kind"):
199
+ """
200
+ concatenate(
201
+ arrays,
202
+ /,
203
+ axis=0,
204
+ out=None,
205
+ *,
206
+ dtype=None,
207
+ casting="same_kind",
208
+ )
209
+ --
210
+
211
+ Join a sequence of arrays along an existing axis.
212
+
213
+ Parameters
214
+ ----------
215
+ a1, a2, ... : sequence of array_like
216
+ The arrays must have the same shape, except in the dimension
217
+ corresponding to `axis` (the first, by default).
218
+ axis : int, optional
219
+ The axis along which the arrays will be joined. If axis is None,
220
+ arrays are flattened before use. Default is 0.
221
+ out : ndarray, optional
222
+ If provided, the destination to place the result. The shape must be
223
+ correct, matching that of what concatenate would have returned if no
224
+ out argument were specified.
225
+ dtype : str or dtype
226
+ If provided, the destination array will have this dtype. Cannot be
227
+ provided together with `out`.
228
+
229
+ .. versionadded:: 1.20.0
230
+
231
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
232
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
233
+ For a description of the options, please see :term:`casting`.
234
+
235
+ .. versionadded:: 1.20.0
236
+
237
+ Returns
238
+ -------
239
+ res : ndarray
240
+ The concatenated array.
241
+
242
+ See Also
243
+ --------
244
+ ma.concatenate : Concatenate function that preserves input masks.
245
+ array_split : Split an array into multiple sub-arrays of equal or
246
+ near-equal size.
247
+ split : Split array into a list of multiple sub-arrays of equal size.
248
+ hsplit : Split array into multiple sub-arrays horizontally (column wise).
249
+ vsplit : Split array into multiple sub-arrays vertically (row wise).
250
+ dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
251
+ stack : Stack a sequence of arrays along a new axis.
252
+ block : Assemble arrays from blocks.
253
+ hstack : Stack arrays in sequence horizontally (column wise).
254
+ vstack : Stack arrays in sequence vertically (row wise).
255
+ dstack : Stack arrays in sequence depth wise (along third dimension).
256
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
257
+
258
+ Notes
259
+ -----
260
+ When one or more of the arrays to be concatenated is a MaskedArray,
261
+ this function will return a MaskedArray object instead of an ndarray,
262
+ but the input masks are *not* preserved. In cases where a MaskedArray
263
+ is expected as input, use the ma.concatenate function from the masked
264
+ array module instead.
265
+
266
+ Examples
267
+ --------
268
+ >>> import numpy as np
269
+ >>> a = np.array([[1, 2], [3, 4]])
270
+ >>> b = np.array([[5, 6]])
271
+ >>> np.concatenate((a, b), axis=0)
272
+ array([[1, 2],
273
+ [3, 4],
274
+ [5, 6]])
275
+ >>> np.concatenate((a, b.T), axis=1)
276
+ array([[1, 2, 5],
277
+ [3, 4, 6]])
278
+ >>> np.concatenate((a, b), axis=None)
279
+ array([1, 2, 3, 4, 5, 6])
280
+
281
+ This function will not preserve masking of MaskedArray inputs.
282
+
283
+ >>> a = np.ma.arange(3)
284
+ >>> a[1] = np.ma.masked
285
+ >>> b = np.arange(2, 5)
286
+ >>> a
287
+ masked_array(data=[0, --, 2],
288
+ mask=[False, True, False],
289
+ fill_value=999999)
290
+ >>> b
291
+ array([2, 3, 4])
292
+ >>> np.concatenate([a, b])
293
+ masked_array(data=[0, 1, 2, 2, 3, 4],
294
+ mask=False,
295
+ fill_value=999999)
296
+ >>> np.ma.concatenate([a, b])
297
+ masked_array(data=[0, --, 2, 2, 3, 4],
298
+ mask=[False, True, False, False, False, False],
299
+ fill_value=999999)
300
+
301
+ """
302
+ if out is not None:
303
+ # optimize for the typical case where only arrays is provided
304
+ arrays = list(arrays)
305
+ arrays.append(out)
306
+ return arrays
307
+
308
+
309
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.inner)
310
+ def inner(a, b, /):
311
+ """
312
+ inner(a, b, /)
313
+
314
+ Inner product of two arrays.
315
+
316
+ Ordinary inner product of vectors for 1-D arrays (without complex
317
+ conjugation), in higher dimensions a sum product over the last axes.
318
+
319
+ Parameters
320
+ ----------
321
+ a, b : array_like
322
+ If `a` and `b` are nonscalar, their last dimensions must match.
323
+
324
+ Returns
325
+ -------
326
+ out : ndarray
327
+ If `a` and `b` are both
328
+ scalars or both 1-D arrays then a scalar is returned; otherwise
329
+ an array is returned.
330
+ ``out.shape = (*a.shape[:-1], *b.shape[:-1])``
331
+
332
+ Raises
333
+ ------
334
+ ValueError
335
+ If both `a` and `b` are nonscalar and their last dimensions have
336
+ different sizes.
337
+
338
+ See Also
339
+ --------
340
+ tensordot : Sum products over arbitrary axes.
341
+ dot : Generalised matrix product, using second last dimension of `b`.
342
+ vecdot : Vector dot product of two arrays.
343
+ einsum : Einstein summation convention.
344
+
345
+ Notes
346
+ -----
347
+ For vectors (1-D arrays) it computes the ordinary inner-product::
348
+
349
+ np.inner(a, b) = sum(a[:]*b[:])
350
+
351
+ More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``::
352
+
353
+ np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
354
+
355
+ or explicitly::
356
+
357
+ np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
358
+ = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])
359
+
360
+ In addition `a` or `b` may be scalars, in which case::
361
+
362
+ np.inner(a,b) = a*b
363
+
364
+ Examples
365
+ --------
366
+ Ordinary inner product for vectors:
367
+
368
+ >>> import numpy as np
369
+ >>> a = np.array([1,2,3])
370
+ >>> b = np.array([0,1,0])
371
+ >>> np.inner(a, b)
372
+ 2
373
+
374
+ Some multidimensional examples:
375
+
376
+ >>> a = np.arange(24).reshape((2,3,4))
377
+ >>> b = np.arange(4)
378
+ >>> c = np.inner(a, b)
379
+ >>> c.shape
380
+ (2, 3)
381
+ >>> c
382
+ array([[ 14, 38, 62],
383
+ [ 86, 110, 134]])
384
+
385
+ >>> a = np.arange(2).reshape((1,1,2))
386
+ >>> b = np.arange(6).reshape((3,2))
387
+ >>> c = np.inner(a, b)
388
+ >>> c.shape
389
+ (1, 1, 3)
390
+ >>> c
391
+ array([[[1, 3, 5]]])
392
+
393
+ An example where `b` is a scalar:
394
+
395
+ >>> np.inner(np.eye(2), 7)
396
+ array([[7., 0.],
397
+ [0., 7.]])
398
+
399
+ """
400
+ return (a, b)
401
+
402
+
403
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
404
+ def where(condition, x=None, y=None, /):
405
+ """
406
+ where(condition, [x, y], /)
407
+
408
+ Return elements chosen from `x` or `y` depending on `condition`.
409
+
410
+ .. note::
411
+ When only `condition` is provided, this function is a shorthand for
412
+ ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be
413
+ preferred, as it behaves correctly for subclasses. The rest of this
414
+ documentation covers only the case where all three arguments are
415
+ provided.
416
+
417
+ Parameters
418
+ ----------
419
+ condition : array_like, bool
420
+ Where True, yield `x`, otherwise yield `y`.
421
+ x, y : array_like
422
+ Values from which to choose. `x`, `y` and `condition` need to be
423
+ broadcastable to some shape.
424
+
425
+ Returns
426
+ -------
427
+ out : ndarray
428
+ An array with elements from `x` where `condition` is True, and elements
429
+ from `y` elsewhere.
430
+
431
+ See Also
432
+ --------
433
+ choose
434
+ nonzero : The function that is called when x and y are omitted
435
+
436
+ Notes
437
+ -----
438
+ If all the arrays are 1-D, `where` is equivalent to::
439
+
440
+ [xv if c else yv
441
+ for c, xv, yv in zip(condition, x, y)]
442
+
443
+ Examples
444
+ --------
445
+ >>> import numpy as np
446
+ >>> a = np.arange(10)
447
+ >>> a
448
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
449
+ >>> np.where(a < 5, a, 10*a)
450
+ array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90])
451
+
452
+ This can be used on multidimensional arrays too:
453
+
454
+ >>> np.where([[True, False], [True, True]],
455
+ ... [[1, 2], [3, 4]],
456
+ ... [[9, 8], [7, 6]])
457
+ array([[1, 8],
458
+ [3, 4]])
459
+
460
+ The shapes of x, y, and the condition are broadcast together:
461
+
462
+ >>> x, y = np.ogrid[:3, :4]
463
+ >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
464
+ array([[10, 0, 0, 0],
465
+ [10, 11, 1, 1],
466
+ [10, 11, 12, 2]])
467
+
468
+ >>> a = np.array([[0, 1, 2],
469
+ ... [0, 2, 4],
470
+ ... [0, 3, 6]])
471
+ >>> np.where(a < 4, a, -1) # -1 is broadcast
472
+ array([[ 0, 1, 2],
473
+ [ 0, 2, -1],
474
+ [ 0, 3, -1]])
475
+ """
476
+ return (condition, x, y)
477
+
478
+
479
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort)
480
+ def lexsort(keys, axis=-1):
481
+ """
482
+ lexsort(keys, axis=-1)
483
+
484
+ Perform an indirect stable sort using a sequence of keys.
485
+
486
+ Given multiple sorting keys, lexsort returns an array of integer indices
487
+ that describes the sort order by multiple keys. The last key in the
488
+ sequence is used for the primary sort order, ties are broken by the
489
+ second-to-last key, and so on.
490
+
491
+ Parameters
492
+ ----------
493
+ keys : (k, m, n, ...) array-like
494
+ The `k` keys to be sorted. The *last* key (e.g, the last
495
+ row if `keys` is a 2D array) is the primary sort key.
496
+ Each element of `keys` along the zeroth axis must be
497
+ an array-like object of the same shape.
498
+ axis : int, optional
499
+ Axis to be indirectly sorted. By default, sort over the last axis
500
+ of each sequence. Separate slices along `axis` sorted over
501
+ independently; see last example.
502
+
503
+ Returns
504
+ -------
505
+ indices : (m, n, ...) ndarray of ints
506
+ Array of indices that sort the keys along the specified axis.
507
+
508
+ See Also
509
+ --------
510
+ argsort : Indirect sort.
511
+ ndarray.sort : In-place sort.
512
+ sort : Return a sorted copy of an array.
513
+
514
+ Examples
515
+ --------
516
+ Sort names: first by surname, then by name.
517
+
518
+ >>> import numpy as np
519
+ >>> surnames = ('Hertz', 'Galilei', 'Hertz')
520
+ >>> first_names = ('Heinrich', 'Galileo', 'Gustav')
521
+ >>> ind = np.lexsort((first_names, surnames))
522
+ >>> ind
523
+ array([1, 2, 0])
524
+
525
+ >>> [surnames[i] + ", " + first_names[i] for i in ind]
526
+ ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
527
+
528
+ Sort according to two numerical keys, first by elements
529
+ of ``a``, then breaking ties according to elements of ``b``:
530
+
531
+ >>> a = [1, 5, 1, 4, 3, 4, 4] # First sequence
532
+ >>> b = [9, 4, 0, 4, 0, 2, 1] # Second sequence
533
+ >>> ind = np.lexsort((b, a)) # Sort by `a`, then by `b`
534
+ >>> ind
535
+ array([2, 0, 4, 6, 5, 3, 1])
536
+ >>> [(a[i], b[i]) for i in ind]
537
+ [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
538
+
539
+ Compare against `argsort`, which would sort each key independently.
540
+
541
+ >>> np.argsort((b, a), kind='stable')
542
+ array([[2, 4, 6, 5, 1, 3, 0],
543
+ [0, 2, 4, 3, 5, 6, 1]])
544
+
545
+ To sort lexicographically with `argsort`, we would need to provide a
546
+ structured array.
547
+
548
+ >>> x = np.array([(ai, bi) for ai, bi in zip(a, b)],
549
+ ... dtype = np.dtype([('x', int), ('y', int)]))
550
+ >>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
551
+ array([2, 0, 4, 6, 5, 3, 1])
552
+
553
+ The zeroth axis of `keys` always corresponds with the sequence of keys,
554
+ so 2D arrays are treated just like other sequences of keys.
555
+
556
+ >>> arr = np.asarray([b, a])
557
+ >>> ind2 = np.lexsort(arr)
558
+ >>> np.testing.assert_equal(ind2, ind)
559
+
560
+ Accordingly, the `axis` parameter refers to an axis of *each* key, not of
561
+ the `keys` argument itself. For instance, the array ``arr`` is treated as
562
+ a sequence of two 1-D keys, so specifying ``axis=0`` is equivalent to
563
+ using the default axis, ``axis=-1``.
564
+
565
+ >>> np.testing.assert_equal(np.lexsort(arr, axis=0),
566
+ ... np.lexsort(arr, axis=-1))
567
+
568
+ For higher-dimensional arrays, the axis parameter begins to matter. The
569
+ resulting array has the same shape as each key, and the values are what
570
+ we would expect if `lexsort` were performed on corresponding slices
571
+ of the keys independently. For instance,
572
+
573
+ >>> x = [[1, 2, 3, 4],
574
+ ... [4, 3, 2, 1],
575
+ ... [2, 1, 4, 3]]
576
+ >>> y = [[2, 2, 1, 1],
577
+ ... [1, 2, 1, 2],
578
+ ... [1, 1, 2, 1]]
579
+ >>> np.lexsort((x, y), axis=1)
580
+ array([[2, 3, 0, 1],
581
+ [2, 0, 3, 1],
582
+ [1, 0, 3, 2]])
583
+
584
+ Each row of the result is what we would expect if we were to perform
585
+ `lexsort` on the corresponding row of the keys:
586
+
587
+ >>> for i in range(3):
588
+ ... print(np.lexsort((x[i], y[i])))
589
+ [2 3 0 1]
590
+ [2 0 3 1]
591
+ [1 0 3 2]
592
+
593
+ """
594
+ if isinstance(keys, tuple):
595
+ return keys
596
+ else:
597
+ return (keys,)
598
+
599
+
600
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast)
601
+ def can_cast(from_, to, casting="safe"):
602
+ """
603
+ can_cast(from_, to, casting='safe')
604
+
605
+ Returns True if cast between data types can occur according to the
606
+ casting rule.
607
+
608
+ Parameters
609
+ ----------
610
+ from_ : dtype, dtype specifier, NumPy scalar, or array
611
+ Data type, NumPy scalar, or array to cast from.
612
+ to : dtype or dtype specifier
613
+ Data type to cast to.
614
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
615
+ Controls what kind of data casting may occur.
616
+
617
+ * 'no' means the data types should not be cast at all.
618
+ * 'equiv' means only byte-order changes are allowed.
619
+ * 'safe' means only casts which can preserve values are allowed.
620
+ * 'same_kind' means only safe casts or casts within a kind,
621
+ like float64 to float32, are allowed.
622
+ * 'unsafe' means any data conversions may be done.
623
+
624
+ Returns
625
+ -------
626
+ out : bool
627
+ True if cast can occur according to the casting rule.
628
+
629
+ Notes
630
+ -----
631
+ .. versionchanged:: 2.0
632
+ This function does not support Python scalars anymore and does not
633
+ apply any value-based logic for 0-D arrays and NumPy scalars.
634
+
635
+ See also
636
+ --------
637
+ dtype, result_type
638
+
639
+ Examples
640
+ --------
641
+ Basic examples
642
+
643
+ >>> import numpy as np
644
+ >>> np.can_cast(np.int32, np.int64)
645
+ True
646
+ >>> np.can_cast(np.float64, complex)
647
+ True
648
+ >>> np.can_cast(complex, float)
649
+ False
650
+
651
+ >>> np.can_cast('i8', 'f8')
652
+ True
653
+ >>> np.can_cast('i8', 'f4')
654
+ False
655
+ >>> np.can_cast('i4', 'S4')
656
+ False
657
+
658
+ """
659
+ return (from_,)
660
+
661
+
662
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type)
663
+ def min_scalar_type(a, /):
664
+ """
665
+ min_scalar_type(a, /)
666
+
667
+ For scalar ``a``, returns the data type with the smallest size
668
+ and smallest scalar kind which can hold its value. For non-scalar
669
+ array ``a``, returns the vector's dtype unmodified.
670
+
671
+ Floating point values are not demoted to integers,
672
+ and complex values are not demoted to floats.
673
+
674
+ Parameters
675
+ ----------
676
+ a : scalar or array_like
677
+ The value whose minimal data type is to be found.
678
+
679
+ Returns
680
+ -------
681
+ out : dtype
682
+ The minimal data type.
683
+
684
+ See Also
685
+ --------
686
+ result_type, promote_types, dtype, can_cast
687
+
688
+ Examples
689
+ --------
690
+ >>> import numpy as np
691
+ >>> np.min_scalar_type(10)
692
+ dtype('uint8')
693
+
694
+ >>> np.min_scalar_type(-260)
695
+ dtype('int16')
696
+
697
+ >>> np.min_scalar_type(3.1)
698
+ dtype('float16')
699
+
700
+ >>> np.min_scalar_type(1e50)
701
+ dtype('float64')
702
+
703
+ >>> np.min_scalar_type(np.arange(4,dtype='f8'))
704
+ dtype('float64')
705
+
706
+ """
707
+ return (a,)
708
+
709
+
710
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type)
711
+ def result_type(*arrays_and_dtypes):
712
+ """
713
+ result_type(*arrays_and_dtypes)
714
+
715
+ Returns the type that results from applying the NumPy
716
+ :ref:`type promotion <arrays.promotion>` rules to the arguments.
717
+
718
+ Parameters
719
+ ----------
720
+ arrays_and_dtypes : list of arrays and dtypes
721
+ The operands of some operation whose result type is needed.
722
+
723
+ Returns
724
+ -------
725
+ out : dtype
726
+ The result type.
727
+
728
+ See also
729
+ --------
730
+ dtype, promote_types, min_scalar_type, can_cast
731
+
732
+ Examples
733
+ --------
734
+ >>> import numpy as np
735
+ >>> np.result_type(3, np.arange(7, dtype='i1'))
736
+ dtype('int8')
737
+
738
+ >>> np.result_type('i4', 'c8')
739
+ dtype('complex128')
740
+
741
+ >>> np.result_type(3.0, -2)
742
+ dtype('float64')
743
+
744
+ """
745
+ return arrays_and_dtypes
746
+
747
+
748
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.dot)
749
+ def dot(a, b, out=None):
750
+ """
751
+ dot(a, b, out=None)
752
+
753
+ Dot product of two arrays. Specifically,
754
+
755
+ - If both `a` and `b` are 1-D arrays, it is inner product of vectors
756
+ (without complex conjugation).
757
+
758
+ - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
759
+ but using :func:`matmul` or ``a @ b`` is preferred.
760
+
761
+ - If either `a` or `b` is 0-D (scalar), it is equivalent to
762
+ :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is
763
+ preferred.
764
+
765
+ - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
766
+ the last axis of `a` and `b`.
767
+
768
+ - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
769
+ sum product over the last axis of `a` and the second-to-last axis of
770
+ `b`::
771
+
772
+ dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
773
+
774
+ It uses an optimized BLAS library when possible (see `numpy.linalg`).
775
+
776
+ Parameters
777
+ ----------
778
+ a : array_like
779
+ First argument.
780
+ b : array_like
781
+ Second argument.
782
+ out : ndarray, optional
783
+ Output argument. This must have the exact kind that would be returned
784
+ if it was not used. In particular, it must have the right type, must be
785
+ C-contiguous, and its dtype must be the dtype that would be returned
786
+ for `dot(a,b)`. This is a performance feature. Therefore, if these
787
+ conditions are not met, an exception is raised, instead of attempting
788
+ to be flexible.
789
+
790
+ Returns
791
+ -------
792
+ output : ndarray
793
+ Returns the dot product of `a` and `b`. If `a` and `b` are both
794
+ scalars or both 1-D arrays then a scalar is returned; otherwise
795
+ an array is returned.
796
+ If `out` is given, then it is returned.
797
+
798
+ Raises
799
+ ------
800
+ ValueError
801
+ If the last dimension of `a` is not the same size as
802
+ the second-to-last dimension of `b`.
803
+
804
+ See Also
805
+ --------
806
+ vdot : Complex-conjugating dot product.
807
+ vecdot : Vector dot product of two arrays.
808
+ tensordot : Sum products over arbitrary axes.
809
+ einsum : Einstein summation convention.
810
+ matmul : '@' operator as method with out parameter.
811
+ linalg.multi_dot : Chained dot product.
812
+
813
+ Examples
814
+ --------
815
+ >>> import numpy as np
816
+ >>> np.dot(3, 4)
817
+ 12
818
+
819
+ Neither argument is complex-conjugated:
820
+
821
+ >>> np.dot([2j, 3j], [2j, 3j])
822
+ (-13+0j)
823
+
824
+ For 2-D arrays it is the matrix product:
825
+
826
+ >>> a = [[1, 0], [0, 1]]
827
+ >>> b = [[4, 1], [2, 2]]
828
+ >>> np.dot(a, b)
829
+ array([[4, 1],
830
+ [2, 2]])
831
+
832
+ >>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
833
+ >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
834
+ >>> np.dot(a, b)[2,3,2,1,2,2]
835
+ 499128
836
+ >>> sum(a[2,3,2,:] * b[1,2,:,2])
837
+ 499128
838
+
839
+ """
840
+ return (a, b, out)
841
+
842
+
843
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot)
844
+ def vdot(a, b, /):
845
+ r"""
846
+ vdot(a, b, /)
847
+
848
+ Return the dot product of two vectors.
849
+
850
+ The `vdot` function handles complex numbers differently than `dot`:
851
+ if the first argument is complex, it is replaced by its complex conjugate
852
+ in the dot product calculation. `vdot` also handles multidimensional
853
+ arrays differently than `dot`: it does not perform a matrix product, but
854
+ flattens the arguments to 1-D arrays before taking a vector dot product.
855
+
856
+ Consequently, when the arguments are 2-D arrays of the same shape, this
857
+ function effectively returns their
858
+ `Frobenius inner product <https://en.wikipedia.org/wiki/Frobenius_inner_product>`_
859
+ (also known as the *trace inner product* or the *standard inner product*
860
+ on a vector space of matrices).
861
+
862
+ Parameters
863
+ ----------
864
+ a : array_like
865
+ If `a` is complex the complex conjugate is taken before calculation
866
+ of the dot product.
867
+ b : array_like
868
+ Second argument to the dot product.
869
+
870
+ Returns
871
+ -------
872
+ output : ndarray
873
+ Dot product of `a` and `b`. Can be an int, float, or
874
+ complex depending on the types of `a` and `b`.
875
+
876
+ See Also
877
+ --------
878
+ dot : Return the dot product without using the complex conjugate of the
879
+ first argument.
880
+
881
+ Examples
882
+ --------
883
+ >>> import numpy as np
884
+ >>> a = np.array([1+2j,3+4j])
885
+ >>> b = np.array([5+6j,7+8j])
886
+ >>> np.vdot(a, b)
887
+ (70-8j)
888
+ >>> np.vdot(b, a)
889
+ (70+8j)
890
+
891
+ Note that higher-dimensional arrays are flattened!
892
+
893
+ >>> a = np.array([[1, 4], [5, 6]])
894
+ >>> b = np.array([[4, 1], [2, 2]])
895
+ >>> np.vdot(a, b)
896
+ 30
897
+ >>> np.vdot(b, a)
898
+ 30
899
+ >>> 1*4 + 4*1 + 5*2 + 6*2
900
+ 30
901
+
902
+ """ # noqa: E501
903
+ return (a, b)
904
+
905
+
906
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount)
907
+ def bincount(x, /, weights=None, minlength=0):
908
+ """
909
+ bincount(x, /, weights=None, minlength=0)
910
+
911
+ Count number of occurrences of each value in array of non-negative ints.
912
+
913
+ The number of bins (of size 1) is one larger than the largest value in
914
+ `x`. If `minlength` is specified, there will be at least this number
915
+ of bins in the output array (though it will be longer if necessary,
916
+ depending on the contents of `x`).
917
+ Each bin gives the number of occurrences of its index value in `x`.
918
+ If `weights` is specified the input array is weighted by it, i.e. if a
919
+ value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
920
+ of ``out[n] += 1``.
921
+
922
+ Parameters
923
+ ----------
924
+ x : array_like, 1 dimension, nonnegative ints
925
+ Input array.
926
+ weights : array_like, optional
927
+ Weights, array of the same shape as `x`.
928
+ minlength : int, optional
929
+ A minimum number of bins for the output array.
930
+
931
+ Returns
932
+ -------
933
+ out : ndarray of ints
934
+ The result of binning the input array.
935
+ The length of `out` is equal to ``np.amax(x)+1``.
936
+
937
+ Raises
938
+ ------
939
+ ValueError
940
+ If the input is not 1-dimensional, or contains elements with negative
941
+ values, or if `minlength` is negative.
942
+ TypeError
943
+ If the type of the input is float or complex.
944
+
945
+ See Also
946
+ --------
947
+ histogram, digitize, unique
948
+
949
+ Examples
950
+ --------
951
+ >>> import numpy as np
952
+ >>> np.bincount(np.arange(5))
953
+ array([1, 1, 1, 1, 1])
954
+ >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
955
+ array([1, 3, 1, 1, 0, 0, 0, 1])
956
+
957
+ >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
958
+ >>> np.bincount(x).size == np.amax(x)+1
959
+ True
960
+
961
+ The input array needs to be of integer dtype, otherwise a
962
+ TypeError is raised:
963
+
964
+ >>> np.bincount(np.arange(5, dtype=float))
965
+ Traceback (most recent call last):
966
+ ...
967
+ TypeError: Cannot cast array data from dtype('float64') to dtype('int64')
968
+ according to the rule 'safe'
969
+
970
+ A possible use of ``bincount`` is to perform sums over
971
+ variable-size chunks of an array, using the ``weights`` keyword.
972
+
973
+ >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
974
+ >>> x = np.array([0, 1, 1, 2, 2, 2])
975
+ >>> np.bincount(x, weights=w)
976
+ array([ 0.3, 0.7, 1.1])
977
+
978
+ """
979
+ return (x, weights)
980
+
981
+
982
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index)
983
+ def ravel_multi_index(multi_index, dims, mode="raise", order="C"):
984
+ """
985
+ ravel_multi_index(multi_index, dims, mode='raise', order='C')
986
+
987
+ Converts a tuple of index arrays into an array of flat
988
+ indices, applying boundary modes to the multi-index.
989
+
990
+ Parameters
991
+ ----------
992
+ multi_index : tuple of array_like
993
+ A tuple of integer arrays, one array for each dimension.
994
+ dims : tuple of ints
995
+ The shape of array into which the indices from ``multi_index`` apply.
996
+ mode : {'raise', 'wrap', 'clip'}, optional
997
+ Specifies how out-of-bounds indices are handled. Can specify
998
+ either one mode or a tuple of modes, one mode per index.
999
+
1000
+ * 'raise' -- raise an error (default)
1001
+ * 'wrap' -- wrap around
1002
+ * 'clip' -- clip to the range
1003
+
1004
+ In 'clip' mode, a negative index which would normally
1005
+ wrap will clip to 0 instead.
1006
+ order : {'C', 'F'}, optional
1007
+ Determines whether the multi-index should be viewed as
1008
+ indexing in row-major (C-style) or column-major
1009
+ (Fortran-style) order.
1010
+
1011
+ Returns
1012
+ -------
1013
+ raveled_indices : ndarray
1014
+ An array of indices into the flattened version of an array
1015
+ of dimensions ``dims``.
1016
+
1017
+ See Also
1018
+ --------
1019
+ unravel_index
1020
+
1021
+ Examples
1022
+ --------
1023
+ >>> import numpy as np
1024
+ >>> arr = np.array([[3,6,6],[4,5,1]])
1025
+ >>> np.ravel_multi_index(arr, (7,6))
1026
+ array([22, 41, 37])
1027
+ >>> np.ravel_multi_index(arr, (7,6), order='F')
1028
+ array([31, 41, 13])
1029
+ >>> np.ravel_multi_index(arr, (4,6), mode='clip')
1030
+ array([22, 23, 19])
1031
+ >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
1032
+ array([12, 13, 13])
1033
+
1034
+ >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1035
+ 1621
1036
+ """
1037
+ return multi_index
1038
+
1039
+
1040
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index)
1041
+ def unravel_index(indices, shape, order="C"):
1042
+ """
1043
+ unravel_index(indices, shape, order='C')
1044
+
1045
+ Converts a flat index or array of flat indices into a tuple
1046
+ of coordinate arrays.
1047
+
1048
+ Parameters
1049
+ ----------
1050
+ indices : array_like
1051
+ An integer array whose elements are indices into the flattened
1052
+ version of an array of dimensions ``shape``. Before version 1.6.0,
1053
+ this function accepted just one index value.
1054
+ shape : tuple of ints
1055
+ The shape of the array to use for unraveling ``indices``.
1056
+ order : {'C', 'F'}, optional
1057
+ Determines whether the indices should be viewed as indexing in
1058
+ row-major (C-style) or column-major (Fortran-style) order.
1059
+
1060
+ Returns
1061
+ -------
1062
+ unraveled_coords : tuple of ndarray
1063
+ Each array in the tuple has the same shape as the ``indices``
1064
+ array.
1065
+
1066
+ See Also
1067
+ --------
1068
+ ravel_multi_index
1069
+
1070
+ Examples
1071
+ --------
1072
+ >>> import numpy as np
1073
+ >>> np.unravel_index([22, 41, 37], (7,6))
1074
+ (array([3, 6, 6]), array([4, 5, 1]))
1075
+ >>> np.unravel_index([31, 41, 13], (7,6), order='F')
1076
+ (array([3, 6, 6]), array([4, 5, 1]))
1077
+
1078
+ >>> np.unravel_index(1621, (6,7,8,9))
1079
+ (3, 1, 4, 1)
1080
+
1081
+ """
1082
+ return (indices,)
1083
+
1084
+
1085
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto)
1086
+ def copyto(dst, src, casting="same_kind", where=True):
1087
+ """
1088
+ copyto(dst, src, casting='same_kind', where=True)
1089
+
1090
+ Copies values from one array to another, broadcasting as necessary.
1091
+
1092
+ Raises a TypeError if the `casting` rule is violated, and if
1093
+ `where` is provided, it selects which elements to copy.
1094
+
1095
+ Parameters
1096
+ ----------
1097
+ dst : ndarray
1098
+ The array into which values are copied.
1099
+ src : array_like
1100
+ The array from which values are copied.
1101
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
1102
+ Controls what kind of data casting may occur when copying.
1103
+
1104
+ * 'no' means the data types should not be cast at all.
1105
+ * 'equiv' means only byte-order changes are allowed.
1106
+ * 'safe' means only casts which can preserve values are allowed.
1107
+ * 'same_kind' means only safe casts or casts within a kind,
1108
+ like float64 to float32, are allowed.
1109
+ * 'unsafe' means any data conversions may be done.
1110
+ where : array_like of bool, optional
1111
+ A boolean array which is broadcasted to match the dimensions
1112
+ of `dst`, and selects elements to copy from `src` to `dst`
1113
+ wherever it contains the value True.
1114
+
1115
+ Examples
1116
+ --------
1117
+ >>> import numpy as np
1118
+ >>> A = np.array([4, 5, 6])
1119
+ >>> B = [1, 2, 3]
1120
+ >>> np.copyto(A, B)
1121
+ >>> A
1122
+ array([1, 2, 3])
1123
+
1124
+ >>> A = np.array([[1, 2, 3], [4, 5, 6]])
1125
+ >>> B = [[4, 5, 6], [7, 8, 9]]
1126
+ >>> np.copyto(A, B)
1127
+ >>> A
1128
+ array([[4, 5, 6],
1129
+ [7, 8, 9]])
1130
+
1131
+ """
1132
+ return (dst, src, where)
1133
+
1134
+
1135
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask)
1136
+ def putmask(a, /, mask, values):
1137
+ """
1138
+ putmask(a, /, mask, values)
1139
+
1140
+ Changes elements of an array based on conditional and input values.
1141
+
1142
+ Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
1143
+
1144
+ If `values` is not the same size as `a` and `mask` then it will repeat.
1145
+ This gives behavior different from ``a[mask] = values``.
1146
+
1147
+ Parameters
1148
+ ----------
1149
+ a : ndarray
1150
+ Target array.
1151
+ mask : array_like
1152
+ Boolean mask array. It has to be the same shape as `a`.
1153
+ values : array_like
1154
+ Values to put into `a` where `mask` is True. If `values` is smaller
1155
+ than `a` it will be repeated.
1156
+
1157
+ See Also
1158
+ --------
1159
+ place, put, take, copyto
1160
+
1161
+ Examples
1162
+ --------
1163
+ >>> import numpy as np
1164
+ >>> x = np.arange(6).reshape(2, 3)
1165
+ >>> np.putmask(x, x>2, x**2)
1166
+ >>> x
1167
+ array([[ 0, 1, 2],
1168
+ [ 9, 16, 25]])
1169
+
1170
+ If `values` is smaller than `a` it is repeated:
1171
+
1172
+ >>> x = np.arange(5)
1173
+ >>> np.putmask(x, x>1, [-33, -44])
1174
+ >>> x
1175
+ array([ 0, 1, -33, -44, -33])
1176
+
1177
+ """
1178
+ return (a, mask, values)
1179
+
1180
+
1181
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits)
1182
+ def packbits(a, /, axis=None, bitorder="big"):
1183
+ """
1184
+ packbits(a, /, axis=None, bitorder='big')
1185
+
1186
+ Packs the elements of a binary-valued array into bits in a uint8 array.
1187
+
1188
+ The result is padded to full bytes by inserting zero bits at the end.
1189
+
1190
+ Parameters
1191
+ ----------
1192
+ a : array_like
1193
+ An array of integers or booleans whose elements should be packed to
1194
+ bits.
1195
+ axis : int, optional
1196
+ The dimension over which bit-packing is done.
1197
+ ``None`` implies packing the flattened array.
1198
+ bitorder : {'big', 'little'}, optional
1199
+ The order of the input bits. 'big' will mimic bin(val),
1200
+ ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will
1201
+ reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``.
1202
+ Defaults to 'big'.
1203
+
1204
+ Returns
1205
+ -------
1206
+ packed : ndarray
1207
+ Array of type uint8 whose elements represent bits corresponding to the
1208
+ logical (0 or nonzero) value of the input elements. The shape of
1209
+ `packed` has the same number of dimensions as the input (unless `axis`
1210
+ is None, in which case the output is 1-D).
1211
+
1212
+ See Also
1213
+ --------
1214
+ unpackbits: Unpacks elements of a uint8 array into a binary-valued output
1215
+ array.
1216
+
1217
+ Examples
1218
+ --------
1219
+ >>> import numpy as np
1220
+ >>> a = np.array([[[1,0,1],
1221
+ ... [0,1,0]],
1222
+ ... [[1,1,0],
1223
+ ... [0,0,1]]])
1224
+ >>> b = np.packbits(a, axis=-1)
1225
+ >>> b
1226
+ array([[[160],
1227
+ [ 64]],
1228
+ [[192],
1229
+ [ 32]]], dtype=uint8)
1230
+
1231
+ Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
1232
+ and 32 = 0010 0000.
1233
+
1234
+ """
1235
+ return (a,)
1236
+
1237
+
1238
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits)
1239
+ def unpackbits(a, /, axis=None, count=None, bitorder="big"):
1240
+ """
1241
+ unpackbits(a, /, axis=None, count=None, bitorder='big')
1242
+
1243
+ Unpacks elements of a uint8 array into a binary-valued output array.
1244
+
1245
+ Each element of `a` represents a bit-field that should be unpacked
1246
+ into a binary-valued output array. The shape of the output array is
1247
+ either 1-D (if `axis` is ``None``) or the same shape as the input
1248
+ array with unpacking done along the axis specified.
1249
+
1250
+ Parameters
1251
+ ----------
1252
+ a : ndarray, uint8 type
1253
+ Input array.
1254
+ axis : int, optional
1255
+ The dimension over which bit-unpacking is done.
1256
+ ``None`` implies unpacking the flattened array.
1257
+ count : int or None, optional
1258
+ The number of elements to unpack along `axis`, provided as a way
1259
+ of undoing the effect of packing a size that is not a multiple
1260
+ of eight. A non-negative number means to only unpack `count`
1261
+ bits. A negative number means to trim off that many bits from
1262
+ the end. ``None`` means to unpack the entire array (the
1263
+ default). Counts larger than the available number of bits will
1264
+ add zero padding to the output. Negative counts must not
1265
+ exceed the available number of bits.
1266
+ bitorder : {'big', 'little'}, optional
1267
+ The order of the returned bits. 'big' will mimic bin(val),
1268
+ ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse
1269
+ the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``.
1270
+ Defaults to 'big'.
1271
+
1272
+ Returns
1273
+ -------
1274
+ unpacked : ndarray, uint8 type
1275
+ The elements are binary-valued (0 or 1).
1276
+
1277
+ See Also
1278
+ --------
1279
+ packbits : Packs the elements of a binary-valued array into bits in
1280
+ a uint8 array.
1281
+
1282
+ Examples
1283
+ --------
1284
+ >>> import numpy as np
1285
+ >>> a = np.array([[2], [7], [23]], dtype=np.uint8)
1286
+ >>> a
1287
+ array([[ 2],
1288
+ [ 7],
1289
+ [23]], dtype=uint8)
1290
+ >>> b = np.unpackbits(a, axis=1)
1291
+ >>> b
1292
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
1293
+ [0, 0, 0, 0, 0, 1, 1, 1],
1294
+ [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
1295
+ >>> c = np.unpackbits(a, axis=1, count=-3)
1296
+ >>> c
1297
+ array([[0, 0, 0, 0, 0],
1298
+ [0, 0, 0, 0, 0],
1299
+ [0, 0, 0, 1, 0]], dtype=uint8)
1300
+
1301
+ >>> p = np.packbits(b, axis=0)
1302
+ >>> np.unpackbits(p, axis=0)
1303
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
1304
+ [0, 0, 0, 0, 0, 1, 1, 1],
1305
+ [0, 0, 0, 1, 0, 1, 1, 1],
1306
+ [0, 0, 0, 0, 0, 0, 0, 0],
1307
+ [0, 0, 0, 0, 0, 0, 0, 0],
1308
+ [0, 0, 0, 0, 0, 0, 0, 0],
1309
+ [0, 0, 0, 0, 0, 0, 0, 0],
1310
+ [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
1311
+ >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0]))
1312
+ True
1313
+
1314
+ """
1315
+ return (a,)
1316
+
1317
+
1318
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory)
1319
+ def shares_memory(a, b, /, max_work=-1):
1320
+ """
1321
+ shares_memory(a, b, /, max_work=-1)
1322
+
1323
+ Determine if two arrays share memory.
1324
+
1325
+ .. warning::
1326
+
1327
+ This function can be exponentially slow for some inputs, unless
1328
+ `max_work` is set to zero or a positive integer.
1329
+ If in doubt, use `numpy.may_share_memory` instead.
1330
+
1331
+ Parameters
1332
+ ----------
1333
+ a, b : ndarray
1334
+ Input arrays
1335
+ max_work : int, optional
1336
+ Effort to spend on solving the overlap problem (maximum number
1337
+ of candidate solutions to consider). The following special
1338
+ values are recognized:
1339
+
1340
+ max_work=-1 (default)
1341
+ The problem is solved exactly. In this case, the function returns
1342
+ True only if there is an element shared between the arrays. Finding
1343
+ the exact solution may take extremely long in some cases.
1344
+ max_work=0
1345
+ Only the memory bounds of a and b are checked.
1346
+ This is equivalent to using ``may_share_memory()``.
1347
+
1348
+ Raises
1349
+ ------
1350
+ numpy.exceptions.TooHardError
1351
+ Exceeded max_work.
1352
+
1353
+ Returns
1354
+ -------
1355
+ out : bool
1356
+
1357
+ See Also
1358
+ --------
1359
+ may_share_memory
1360
+
1361
+ Examples
1362
+ --------
1363
+ >>> import numpy as np
1364
+ >>> x = np.array([1, 2, 3, 4])
1365
+ >>> np.shares_memory(x, np.array([5, 6, 7]))
1366
+ False
1367
+ >>> np.shares_memory(x[::2], x)
1368
+ True
1369
+ >>> np.shares_memory(x[::2], x[1::2])
1370
+ False
1371
+
1372
+ Checking whether two arrays share memory is NP-complete, and
1373
+ runtime may increase exponentially in the number of
1374
+ dimensions. Hence, `max_work` should generally be set to a finite
1375
+ number, as it is possible to construct examples that take
1376
+ extremely long to run:
1377
+
1378
+ >>> from numpy.lib.stride_tricks import as_strided
1379
+ >>> x = np.zeros([192163377], dtype=np.int8)
1380
+ >>> x1 = as_strided(
1381
+ ... x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049))
1382
+ >>> x2 = as_strided(
1383
+ ... x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1))
1384
+ >>> np.shares_memory(x1, x2, max_work=1000)
1385
+ Traceback (most recent call last):
1386
+ ...
1387
+ numpy.exceptions.TooHardError: Exceeded max_work
1388
+
1389
+ Running ``np.shares_memory(x1, x2)`` without `max_work` set takes
1390
+ around 1 minute for this case. It is possible to find problems
1391
+ that take still significantly longer.
1392
+
1393
+ """
1394
+ return (a, b)
1395
+
1396
+
1397
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory)
1398
+ def may_share_memory(a, b, /, max_work=0):
1399
+ """
1400
+ may_share_memory(a, b, /, max_work=0)
1401
+
1402
+ Determine if two arrays might share memory
1403
+
1404
+ A return of True does not necessarily mean that the two arrays
1405
+ share any element. It just means that they *might*.
1406
+
1407
+ Only the memory bounds of a and b are checked by default.
1408
+
1409
+ Parameters
1410
+ ----------
1411
+ a, b : ndarray
1412
+ Input arrays
1413
+ max_work : int, optional
1414
+ Effort to spend on solving the overlap problem. See
1415
+ `shares_memory` for details. Default for ``may_share_memory``
1416
+ is to do a bounds check.
1417
+
1418
+ Returns
1419
+ -------
1420
+ out : bool
1421
+
1422
+ See Also
1423
+ --------
1424
+ shares_memory
1425
+
1426
+ Examples
1427
+ --------
1428
+ >>> import numpy as np
1429
+ >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
1430
+ False
1431
+ >>> x = np.zeros([3, 4])
1432
+ >>> np.may_share_memory(x[:,0], x[:,1])
1433
+ True
1434
+
1435
+ """
1436
+ return (a, b)
1437
+
1438
+
1439
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday)
1440
+ def is_busday(dates, weekmask="1111100", holidays=None, busdaycal=None, out=None):
1441
+ """
1442
+ is_busday(
1443
+ dates,
1444
+ weekmask='1111100',
1445
+ holidays=None,
1446
+ busdaycal=None,
1447
+ out=None,
1448
+ )
1449
+
1450
+ Calculates which of the given dates are valid days, and which are not.
1451
+
1452
+ Parameters
1453
+ ----------
1454
+ dates : array_like of datetime64[D]
1455
+ The array of dates to process.
1456
+ weekmask : str or array_like of bool, optional
1457
+ A seven-element array indicating which of Monday through Sunday are
1458
+ valid days. May be specified as a length-seven list or array, like
1459
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1460
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1461
+ weekdays, optionally separated by white space. Valid abbreviations
1462
+ are: Mon Tue Wed Thu Fri Sat Sun
1463
+ holidays : array_like of datetime64[D], optional
1464
+ An array of dates to consider as invalid dates. They may be
1465
+ specified in any order, and NaT (not-a-time) dates are ignored.
1466
+ This list is saved in a normalized form that is suited for
1467
+ fast calculations of valid days.
1468
+ busdaycal : busdaycalendar, optional
1469
+ A `busdaycalendar` object which specifies the valid days. If this
1470
+ parameter is provided, neither weekmask nor holidays may be
1471
+ provided.
1472
+ out : array of bool, optional
1473
+ If provided, this array is filled with the result.
1474
+
1475
+ Returns
1476
+ -------
1477
+ out : array of bool
1478
+ An array with the same shape as ``dates``, containing True for
1479
+ each valid day, and False for each invalid day.
1480
+
1481
+ See Also
1482
+ --------
1483
+ busdaycalendar : An object that specifies a custom set of valid days.
1484
+ busday_offset : Applies an offset counted in valid days.
1485
+ busday_count : Counts how many valid days are in a half-open date range.
1486
+
1487
+ Examples
1488
+ --------
1489
+ >>> import numpy as np
1490
+ >>> # The weekdays are Friday, Saturday, and Monday
1491
+ ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
1492
+ ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
1493
+ array([False, False, True])
1494
+ """
1495
+ return (dates, weekmask, holidays, out)
1496
+
1497
+
1498
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset)
1499
+ def busday_offset(dates, offsets, roll="raise", weekmask="1111100", holidays=None,
1500
+ busdaycal=None, out=None):
1501
+ """
1502
+ busday_offset(
1503
+ dates,
1504
+ offsets,
1505
+ roll='raise',
1506
+ weekmask='1111100',
1507
+ holidays=None,
1508
+ busdaycal=None,
1509
+ out=None,
1510
+ )
1511
+
1512
+ First adjusts the date to fall on a valid day according to
1513
+ the ``roll`` rule, then applies offsets to the given dates
1514
+ counted in valid days.
1515
+
1516
+ Parameters
1517
+ ----------
1518
+ dates : array_like of datetime64[D]
1519
+ The array of dates to process.
1520
+ offsets : array_like of int
1521
+ The array of offsets, which is broadcast with ``dates``.
1522
+ roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', \
1523
+ 'modifiedfollowing', 'modifiedpreceding'}, optional
1524
+ How to treat dates that do not fall on a valid day. The default
1525
+ is 'raise'.
1526
+
1527
+ * 'raise' means to raise an exception for an invalid day.
1528
+ * 'nat' means to return a NaT (not-a-time) for an invalid day.
1529
+ * 'forward' and 'following' mean to take the first valid day
1530
+ later in time.
1531
+ * 'backward' and 'preceding' mean to take the first valid day
1532
+ earlier in time.
1533
+ * 'modifiedfollowing' means to take the first valid day
1534
+ later in time unless it is across a Month boundary, in which
1535
+ case to take the first valid day earlier in time.
1536
+ * 'modifiedpreceding' means to take the first valid day
1537
+ earlier in time unless it is across a Month boundary, in which
1538
+ case to take the first valid day later in time.
1539
+ weekmask : str or array_like of bool, optional
1540
+ A seven-element array indicating which of Monday through Sunday are
1541
+ valid days. May be specified as a length-seven list or array, like
1542
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1543
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1544
+ weekdays, optionally separated by white space. Valid abbreviations
1545
+ are: Mon Tue Wed Thu Fri Sat Sun
1546
+ holidays : array_like of datetime64[D], optional
1547
+ An array of dates to consider as invalid dates. They may be
1548
+ specified in any order, and NaT (not-a-time) dates are ignored.
1549
+ This list is saved in a normalized form that is suited for
1550
+ fast calculations of valid days.
1551
+ busdaycal : busdaycalendar, optional
1552
+ A `busdaycalendar` object which specifies the valid days. If this
1553
+ parameter is provided, neither weekmask nor holidays may be
1554
+ provided.
1555
+ out : array of datetime64[D], optional
1556
+ If provided, this array is filled with the result.
1557
+
1558
+ Returns
1559
+ -------
1560
+ out : array of datetime64[D]
1561
+ An array with a shape from broadcasting ``dates`` and ``offsets``
1562
+ together, containing the dates with offsets applied.
1563
+
1564
+ See Also
1565
+ --------
1566
+ busdaycalendar : An object that specifies a custom set of valid days.
1567
+ is_busday : Returns a boolean array indicating valid days.
1568
+ busday_count : Counts how many valid days are in a half-open date range.
1569
+
1570
+ Examples
1571
+ --------
1572
+ >>> import numpy as np
1573
+ >>> # First business day in October 2011 (not accounting for holidays)
1574
+ ... np.busday_offset('2011-10', 0, roll='forward')
1575
+ np.datetime64('2011-10-03')
1576
+ >>> # Last business day in February 2012 (not accounting for holidays)
1577
+ ... np.busday_offset('2012-03', -1, roll='forward')
1578
+ np.datetime64('2012-02-29')
1579
+ >>> # Third Wednesday in January 2011
1580
+ ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
1581
+ np.datetime64('2011-01-19')
1582
+ >>> # 2012 Mother's Day in Canada and the U.S.
1583
+ ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
1584
+ np.datetime64('2012-05-13')
1585
+
1586
+ >>> # First business day on or after a date
1587
+ ... np.busday_offset('2011-03-20', 0, roll='forward')
1588
+ np.datetime64('2011-03-21')
1589
+ >>> np.busday_offset('2011-03-22', 0, roll='forward')
1590
+ np.datetime64('2011-03-22')
1591
+ >>> # First business day after a date
1592
+ ... np.busday_offset('2011-03-20', 1, roll='backward')
1593
+ np.datetime64('2011-03-21')
1594
+ >>> np.busday_offset('2011-03-22', 1, roll='backward')
1595
+ np.datetime64('2011-03-23')
1596
+ """
1597
+ return (dates, offsets, weekmask, holidays, out)
1598
+
1599
+
1600
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count)
1601
+ def busday_count(begindates, enddates, weekmask="1111100", holidays=(),
1602
+ busdaycal=None, out=None):
1603
+ """
1604
+ busday_count(
1605
+ begindates,
1606
+ enddates,
1607
+ weekmask='1111100',
1608
+ holidays=[],
1609
+ busdaycal=None,
1610
+ out=None
1611
+ )
1612
+
1613
+ Counts the number of valid days between `begindates` and
1614
+ `enddates`, not including the day of `enddates`.
1615
+
1616
+ If ``enddates`` specifies a date value that is earlier than the
1617
+ corresponding ``begindates`` date value, the count will be negative.
1618
+
1619
+ Parameters
1620
+ ----------
1621
+ begindates : array_like of datetime64[D]
1622
+ The array of the first dates for counting.
1623
+ enddates : array_like of datetime64[D]
1624
+ The array of the end dates for counting, which are excluded
1625
+ from the count themselves.
1626
+ weekmask : str or array_like of bool, optional
1627
+ A seven-element array indicating which of Monday through Sunday are
1628
+ valid days. May be specified as a length-seven list or array, like
1629
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1630
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1631
+ weekdays, optionally separated by white space. Valid abbreviations
1632
+ are: Mon Tue Wed Thu Fri Sat Sun
1633
+ holidays : array_like of datetime64[D], optional
1634
+ An array of dates to consider as invalid dates. They may be
1635
+ specified in any order, and NaT (not-a-time) dates are ignored.
1636
+ This list is saved in a normalized form that is suited for
1637
+ fast calculations of valid days.
1638
+ busdaycal : busdaycalendar, optional
1639
+ A `busdaycalendar` object which specifies the valid days. If this
1640
+ parameter is provided, neither weekmask nor holidays may be
1641
+ provided.
1642
+ out : array of int, optional
1643
+ If provided, this array is filled with the result.
1644
+
1645
+ Returns
1646
+ -------
1647
+ out : array of int
1648
+ An array with a shape from broadcasting ``begindates`` and ``enddates``
1649
+ together, containing the number of valid days between
1650
+ the begin and end dates.
1651
+
1652
+ See Also
1653
+ --------
1654
+ busdaycalendar : An object that specifies a custom set of valid days.
1655
+ is_busday : Returns a boolean array indicating valid days.
1656
+ busday_offset : Applies an offset counted in valid days.
1657
+
1658
+ Examples
1659
+ --------
1660
+ >>> import numpy as np
1661
+ >>> # Number of weekdays in January 2011
1662
+ ... np.busday_count('2011-01', '2011-02')
1663
+ 21
1664
+ >>> # Number of weekdays in 2011
1665
+ >>> np.busday_count('2011', '2012')
1666
+ 260
1667
+ >>> # Number of Saturdays in 2011
1668
+ ... np.busday_count('2011', '2012', weekmask='Sat')
1669
+ 53
1670
+ """
1671
+ return (begindates, enddates, weekmask, holidays, out)
1672
+
1673
+
1674
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.datetime_as_string)
1675
+ def datetime_as_string(arr, unit=None, timezone="naive", casting="same_kind"):
1676
+ """
1677
+ datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind')
1678
+
1679
+ Convert an array of datetimes into an array of strings.
1680
+
1681
+ Parameters
1682
+ ----------
1683
+ arr : array_like of datetime64
1684
+ The array of UTC timestamps to format.
1685
+ unit : str
1686
+ One of None, 'auto', or
1687
+ a :ref:`datetime unit <arrays.dtypes.dateunits>`.
1688
+ timezone : {'naive', 'UTC', 'local'} or tzinfo
1689
+ Timezone information to use when displaying the datetime. If 'UTC',
1690
+ end with a Z to indicate UTC time. If 'local', convert to the local
1691
+ timezone first, and suffix with a +-#### timezone offset. If a tzinfo
1692
+ object, then do as with 'local', but use the specified timezone.
1693
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}
1694
+ Casting to allow when changing between datetime units.
1695
+
1696
+ Returns
1697
+ -------
1698
+ str_arr : ndarray
1699
+ An array of strings the same shape as `arr`.
1700
+
1701
+ Examples
1702
+ --------
1703
+ >>> import numpy as np
1704
+ >>> from zoneinfo import ZoneInfo
1705
+ >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
1706
+ >>> d
1707
+ array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
1708
+ '2002-10-27T07:30'], dtype='datetime64[m]')
1709
+
1710
+ Setting the timezone to UTC shows the same information, but with a Z suffix
1711
+
1712
+ >>> np.datetime_as_string(d, timezone='UTC')
1713
+ array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',
1714
+ '2002-10-27T07:30Z'], dtype='<U35')
1715
+
1716
+ Note that we picked datetimes that cross a DST boundary. Passing in a
1717
+ ``ZoneInfo`` object will print the appropriate offset
1718
+
1719
+ >>> np.datetime_as_string(d, timezone=ZoneInfo('US/Eastern'))
1720
+ array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',
1721
+ '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39')
1722
+
1723
+ Passing in a unit will change the precision
1724
+
1725
+ >>> np.datetime_as_string(d, unit='h')
1726
+ array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],
1727
+ dtype='<U32')
1728
+ >>> np.datetime_as_string(d, unit='s')
1729
+ array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',
1730
+ '2002-10-27T07:30:00'], dtype='<U38')
1731
+
1732
+ 'casting' can be used to specify whether precision can be changed
1733
+
1734
+ >>> np.datetime_as_string(d, unit='h', casting='safe')
1735
+ Traceback (most recent call last):
1736
+ ...
1737
+ TypeError: Cannot create a datetime string as units 'h' from a NumPy
1738
+ datetime with units 'm' according to the rule 'safe'
1739
+ """
1740
+ return (arr,)