numpy 2.4.1__cp314-cp314t-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- numpy/__config__.py +170 -0
- numpy/__config__.pyi +108 -0
- numpy/__init__.cython-30.pxd +1242 -0
- numpy/__init__.pxd +1155 -0
- numpy/__init__.py +955 -0
- numpy/__init__.pyi +6202 -0
- numpy/_array_api_info.py +346 -0
- numpy/_array_api_info.pyi +206 -0
- numpy/_configtool.py +39 -0
- numpy/_configtool.pyi +1 -0
- numpy/_core/__init__.py +201 -0
- numpy/_core/__init__.pyi +666 -0
- numpy/_core/_add_newdocs.py +7151 -0
- numpy/_core/_add_newdocs.pyi +2 -0
- numpy/_core/_add_newdocs_scalars.py +381 -0
- numpy/_core/_add_newdocs_scalars.pyi +16 -0
- numpy/_core/_asarray.py +130 -0
- numpy/_core/_asarray.pyi +43 -0
- numpy/_core/_dtype.py +366 -0
- numpy/_core/_dtype.pyi +56 -0
- numpy/_core/_dtype_ctypes.py +120 -0
- numpy/_core/_dtype_ctypes.pyi +83 -0
- numpy/_core/_exceptions.py +162 -0
- numpy/_core/_exceptions.pyi +54 -0
- numpy/_core/_internal.py +968 -0
- numpy/_core/_internal.pyi +61 -0
- numpy/_core/_methods.py +252 -0
- numpy/_core/_methods.pyi +22 -0
- numpy/_core/_multiarray_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_multiarray_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_multiarray_umath.cp314t-win_arm64.lib +0 -0
- numpy/_core/_multiarray_umath.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_operand_flag_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_operand_flag_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_rational_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_rational_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_simd.cp314t-win_arm64.lib +0 -0
- numpy/_core/_simd.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_simd.pyi +35 -0
- numpy/_core/_string_helpers.py +100 -0
- numpy/_core/_string_helpers.pyi +12 -0
- numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_type_aliases.py +131 -0
- numpy/_core/_type_aliases.pyi +86 -0
- numpy/_core/_ufunc_config.py +515 -0
- numpy/_core/_ufunc_config.pyi +69 -0
- numpy/_core/_umath_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_umath_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_umath_tests.pyi +47 -0
- numpy/_core/arrayprint.py +1779 -0
- numpy/_core/arrayprint.pyi +158 -0
- numpy/_core/cversions.py +13 -0
- numpy/_core/defchararray.py +1414 -0
- numpy/_core/defchararray.pyi +1150 -0
- numpy/_core/einsumfunc.py +1650 -0
- numpy/_core/einsumfunc.pyi +184 -0
- numpy/_core/fromnumeric.py +4233 -0
- numpy/_core/fromnumeric.pyi +1735 -0
- numpy/_core/function_base.py +547 -0
- numpy/_core/function_base.pyi +276 -0
- numpy/_core/getlimits.py +462 -0
- numpy/_core/getlimits.pyi +124 -0
- numpy/_core/include/numpy/__multiarray_api.c +376 -0
- numpy/_core/include/numpy/__multiarray_api.h +1628 -0
- numpy/_core/include/numpy/__ufunc_api.c +55 -0
- numpy/_core/include/numpy/__ufunc_api.h +349 -0
- numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
- numpy/_core/include/numpy/_numpyconfig.h +33 -0
- numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
- numpy/_core/include/numpy/arrayobject.h +7 -0
- numpy/_core/include/numpy/arrayscalars.h +198 -0
- numpy/_core/include/numpy/dtype_api.h +547 -0
- numpy/_core/include/numpy/halffloat.h +70 -0
- numpy/_core/include/numpy/ndarrayobject.h +304 -0
- numpy/_core/include/numpy/ndarraytypes.h +1982 -0
- numpy/_core/include/numpy/npy_2_compat.h +249 -0
- numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
- numpy/_core/include/numpy/npy_3kcompat.h +374 -0
- numpy/_core/include/numpy/npy_common.h +989 -0
- numpy/_core/include/numpy/npy_cpu.h +126 -0
- numpy/_core/include/numpy/npy_endian.h +79 -0
- numpy/_core/include/numpy/npy_math.h +602 -0
- numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
- numpy/_core/include/numpy/npy_os.h +42 -0
- numpy/_core/include/numpy/numpyconfig.h +185 -0
- numpy/_core/include/numpy/random/LICENSE.txt +21 -0
- numpy/_core/include/numpy/random/bitgen.h +20 -0
- numpy/_core/include/numpy/random/distributions.h +209 -0
- numpy/_core/include/numpy/random/libdivide.h +2079 -0
- numpy/_core/include/numpy/ufuncobject.h +343 -0
- numpy/_core/include/numpy/utils.h +37 -0
- numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
- numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
- numpy/_core/lib/npymath.lib +0 -0
- numpy/_core/lib/pkgconfig/numpy.pc +7 -0
- numpy/_core/memmap.py +363 -0
- numpy/_core/memmap.pyi +3 -0
- numpy/_core/multiarray.py +1740 -0
- numpy/_core/multiarray.pyi +1316 -0
- numpy/_core/numeric.py +2758 -0
- numpy/_core/numeric.pyi +1276 -0
- numpy/_core/numerictypes.py +633 -0
- numpy/_core/numerictypes.pyi +196 -0
- numpy/_core/overrides.py +188 -0
- numpy/_core/overrides.pyi +47 -0
- numpy/_core/printoptions.py +32 -0
- numpy/_core/printoptions.pyi +28 -0
- numpy/_core/records.py +1088 -0
- numpy/_core/records.pyi +340 -0
- numpy/_core/shape_base.py +996 -0
- numpy/_core/shape_base.pyi +182 -0
- numpy/_core/strings.py +1813 -0
- numpy/_core/strings.pyi +536 -0
- numpy/_core/tests/_locales.py +72 -0
- numpy/_core/tests/_natype.py +144 -0
- numpy/_core/tests/data/astype_copy.pkl +0 -0
- numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
- numpy/_core/tests/data/recarray_from_file.fits +0 -0
- numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
- numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
- numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
- numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
- numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
- numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
- numpy/_core/tests/examples/cython/checks.pyx +373 -0
- numpy/_core/tests/examples/cython/meson.build +43 -0
- numpy/_core/tests/examples/cython/setup.py +39 -0
- numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
- numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
- numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
- numpy/_core/tests/examples/limited_api/meson.build +59 -0
- numpy/_core/tests/examples/limited_api/setup.py +24 -0
- numpy/_core/tests/test__exceptions.py +90 -0
- numpy/_core/tests/test_abc.py +54 -0
- numpy/_core/tests/test_api.py +655 -0
- numpy/_core/tests/test_argparse.py +90 -0
- numpy/_core/tests/test_array_api_info.py +113 -0
- numpy/_core/tests/test_array_coercion.py +928 -0
- numpy/_core/tests/test_array_interface.py +222 -0
- numpy/_core/tests/test_arraymethod.py +84 -0
- numpy/_core/tests/test_arrayobject.py +75 -0
- numpy/_core/tests/test_arrayprint.py +1324 -0
- numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
- numpy/_core/tests/test_casting_unittests.py +955 -0
- numpy/_core/tests/test_conversion_utils.py +209 -0
- numpy/_core/tests/test_cpu_dispatcher.py +48 -0
- numpy/_core/tests/test_cpu_features.py +450 -0
- numpy/_core/tests/test_custom_dtypes.py +393 -0
- numpy/_core/tests/test_cython.py +352 -0
- numpy/_core/tests/test_datetime.py +2792 -0
- numpy/_core/tests/test_defchararray.py +858 -0
- numpy/_core/tests/test_deprecations.py +460 -0
- numpy/_core/tests/test_dlpack.py +190 -0
- numpy/_core/tests/test_dtype.py +2110 -0
- numpy/_core/tests/test_einsum.py +1351 -0
- numpy/_core/tests/test_errstate.py +131 -0
- numpy/_core/tests/test_extint128.py +217 -0
- numpy/_core/tests/test_finfo.py +86 -0
- numpy/_core/tests/test_function_base.py +504 -0
- numpy/_core/tests/test_getlimits.py +171 -0
- numpy/_core/tests/test_half.py +593 -0
- numpy/_core/tests/test_hashtable.py +36 -0
- numpy/_core/tests/test_indexerrors.py +122 -0
- numpy/_core/tests/test_indexing.py +1692 -0
- numpy/_core/tests/test_item_selection.py +167 -0
- numpy/_core/tests/test_limited_api.py +102 -0
- numpy/_core/tests/test_longdouble.py +370 -0
- numpy/_core/tests/test_mem_overlap.py +933 -0
- numpy/_core/tests/test_mem_policy.py +453 -0
- numpy/_core/tests/test_memmap.py +248 -0
- numpy/_core/tests/test_multiarray.py +11008 -0
- numpy/_core/tests/test_multiprocessing.py +55 -0
- numpy/_core/tests/test_multithreading.py +377 -0
- numpy/_core/tests/test_nditer.py +3533 -0
- numpy/_core/tests/test_nep50_promotions.py +287 -0
- numpy/_core/tests/test_numeric.py +4295 -0
- numpy/_core/tests/test_numerictypes.py +650 -0
- numpy/_core/tests/test_overrides.py +800 -0
- numpy/_core/tests/test_print.py +202 -0
- numpy/_core/tests/test_protocols.py +46 -0
- numpy/_core/tests/test_records.py +544 -0
- numpy/_core/tests/test_regression.py +2677 -0
- numpy/_core/tests/test_scalar_ctors.py +203 -0
- numpy/_core/tests/test_scalar_methods.py +328 -0
- numpy/_core/tests/test_scalarbuffer.py +153 -0
- numpy/_core/tests/test_scalarinherit.py +105 -0
- numpy/_core/tests/test_scalarmath.py +1168 -0
- numpy/_core/tests/test_scalarprint.py +403 -0
- numpy/_core/tests/test_shape_base.py +904 -0
- numpy/_core/tests/test_simd.py +1345 -0
- numpy/_core/tests/test_simd_module.py +105 -0
- numpy/_core/tests/test_stringdtype.py +1855 -0
- numpy/_core/tests/test_strings.py +1523 -0
- numpy/_core/tests/test_ufunc.py +3405 -0
- numpy/_core/tests/test_umath.py +4962 -0
- numpy/_core/tests/test_umath_accuracy.py +132 -0
- numpy/_core/tests/test_umath_complex.py +631 -0
- numpy/_core/tests/test_unicode.py +369 -0
- numpy/_core/umath.py +60 -0
- numpy/_core/umath.pyi +232 -0
- numpy/_distributor_init.py +15 -0
- numpy/_distributor_init.pyi +1 -0
- numpy/_expired_attrs_2_0.py +78 -0
- numpy/_expired_attrs_2_0.pyi +61 -0
- numpy/_globals.py +121 -0
- numpy/_globals.pyi +17 -0
- numpy/_pyinstaller/__init__.py +0 -0
- numpy/_pyinstaller/__init__.pyi +0 -0
- numpy/_pyinstaller/hook-numpy.py +36 -0
- numpy/_pyinstaller/hook-numpy.pyi +6 -0
- numpy/_pyinstaller/tests/__init__.py +16 -0
- numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
- numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
- numpy/_pytesttester.py +201 -0
- numpy/_pytesttester.pyi +18 -0
- numpy/_typing/__init__.py +173 -0
- numpy/_typing/_add_docstring.py +153 -0
- numpy/_typing/_array_like.py +106 -0
- numpy/_typing/_char_codes.py +213 -0
- numpy/_typing/_dtype_like.py +114 -0
- numpy/_typing/_extended_precision.py +15 -0
- numpy/_typing/_nbit.py +19 -0
- numpy/_typing/_nbit_base.py +94 -0
- numpy/_typing/_nbit_base.pyi +39 -0
- numpy/_typing/_nested_sequence.py +79 -0
- numpy/_typing/_scalars.py +20 -0
- numpy/_typing/_shape.py +8 -0
- numpy/_typing/_ufunc.py +7 -0
- numpy/_typing/_ufunc.pyi +975 -0
- numpy/_utils/__init__.py +95 -0
- numpy/_utils/__init__.pyi +28 -0
- numpy/_utils/_convertions.py +18 -0
- numpy/_utils/_convertions.pyi +4 -0
- numpy/_utils/_inspect.py +192 -0
- numpy/_utils/_inspect.pyi +70 -0
- numpy/_utils/_pep440.py +486 -0
- numpy/_utils/_pep440.pyi +118 -0
- numpy/char/__init__.py +2 -0
- numpy/char/__init__.pyi +111 -0
- numpy/conftest.py +248 -0
- numpy/core/__init__.py +33 -0
- numpy/core/__init__.pyi +0 -0
- numpy/core/_dtype.py +10 -0
- numpy/core/_dtype.pyi +0 -0
- numpy/core/_dtype_ctypes.py +10 -0
- numpy/core/_dtype_ctypes.pyi +0 -0
- numpy/core/_internal.py +27 -0
- numpy/core/_multiarray_umath.py +57 -0
- numpy/core/_utils.py +21 -0
- numpy/core/arrayprint.py +10 -0
- numpy/core/defchararray.py +10 -0
- numpy/core/einsumfunc.py +10 -0
- numpy/core/fromnumeric.py +10 -0
- numpy/core/function_base.py +10 -0
- numpy/core/getlimits.py +10 -0
- numpy/core/multiarray.py +25 -0
- numpy/core/numeric.py +12 -0
- numpy/core/numerictypes.py +10 -0
- numpy/core/overrides.py +10 -0
- numpy/core/overrides.pyi +7 -0
- numpy/core/records.py +10 -0
- numpy/core/shape_base.py +10 -0
- numpy/core/umath.py +10 -0
- numpy/ctypeslib/__init__.py +13 -0
- numpy/ctypeslib/__init__.pyi +15 -0
- numpy/ctypeslib/_ctypeslib.py +603 -0
- numpy/ctypeslib/_ctypeslib.pyi +236 -0
- numpy/doc/ufuncs.py +138 -0
- numpy/dtypes.py +41 -0
- numpy/dtypes.pyi +630 -0
- numpy/exceptions.py +246 -0
- numpy/exceptions.pyi +27 -0
- numpy/f2py/__init__.py +86 -0
- numpy/f2py/__init__.pyi +5 -0
- numpy/f2py/__main__.py +5 -0
- numpy/f2py/__version__.py +1 -0
- numpy/f2py/__version__.pyi +1 -0
- numpy/f2py/_backends/__init__.py +9 -0
- numpy/f2py/_backends/__init__.pyi +5 -0
- numpy/f2py/_backends/_backend.py +44 -0
- numpy/f2py/_backends/_backend.pyi +46 -0
- numpy/f2py/_backends/_distutils.py +76 -0
- numpy/f2py/_backends/_distutils.pyi +13 -0
- numpy/f2py/_backends/_meson.py +244 -0
- numpy/f2py/_backends/_meson.pyi +62 -0
- numpy/f2py/_backends/meson.build.template +58 -0
- numpy/f2py/_isocbind.py +62 -0
- numpy/f2py/_isocbind.pyi +13 -0
- numpy/f2py/_src_pyf.py +247 -0
- numpy/f2py/_src_pyf.pyi +28 -0
- numpy/f2py/auxfuncs.py +1004 -0
- numpy/f2py/auxfuncs.pyi +262 -0
- numpy/f2py/capi_maps.py +811 -0
- numpy/f2py/capi_maps.pyi +33 -0
- numpy/f2py/cb_rules.py +665 -0
- numpy/f2py/cb_rules.pyi +17 -0
- numpy/f2py/cfuncs.py +1563 -0
- numpy/f2py/cfuncs.pyi +31 -0
- numpy/f2py/common_rules.py +143 -0
- numpy/f2py/common_rules.pyi +9 -0
- numpy/f2py/crackfortran.py +3725 -0
- numpy/f2py/crackfortran.pyi +266 -0
- numpy/f2py/diagnose.py +149 -0
- numpy/f2py/diagnose.pyi +1 -0
- numpy/f2py/f2py2e.py +788 -0
- numpy/f2py/f2py2e.pyi +74 -0
- numpy/f2py/f90mod_rules.py +269 -0
- numpy/f2py/f90mod_rules.pyi +16 -0
- numpy/f2py/func2subr.py +329 -0
- numpy/f2py/func2subr.pyi +7 -0
- numpy/f2py/rules.py +1629 -0
- numpy/f2py/rules.pyi +41 -0
- numpy/f2py/setup.cfg +3 -0
- numpy/f2py/src/fortranobject.c +1436 -0
- numpy/f2py/src/fortranobject.h +173 -0
- numpy/f2py/symbolic.py +1518 -0
- numpy/f2py/symbolic.pyi +219 -0
- numpy/f2py/tests/__init__.py +16 -0
- numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
- numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
- numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
- numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
- numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
- numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
- numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
- numpy/f2py/tests/src/block_docstring/foo.f +6 -0
- numpy/f2py/tests/src/callback/foo.f +62 -0
- numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
- numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
- numpy/f2py/tests/src/callback/gh25211.f +10 -0
- numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
- numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
- numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
- numpy/f2py/tests/src/cli/hi77.f +3 -0
- numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
- numpy/f2py/tests/src/common/block.f +11 -0
- numpy/f2py/tests/src/common/gh19161.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
- numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
- numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
- numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
- numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
- numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
- numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
- numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
- numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
- numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
- numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
- numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
- numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
- numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
- numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
- numpy/f2py/tests/src/kind/foo.f90 +20 -0
- numpy/f2py/tests/src/mixed/foo.f +5 -0
- numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
- numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
- numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
- numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
- numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
- numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
- numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
- numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
- numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
- numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
- numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
- numpy/f2py/tests/src/quoted_character/foo.f +14 -0
- numpy/f2py/tests/src/regression/AB.inc +1 -0
- numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
- numpy/f2py/tests/src/regression/datonly.f90 +17 -0
- numpy/f2py/tests/src/regression/f77comments.f +26 -0
- numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
- numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
- numpy/f2py/tests/src/regression/incfile.f90 +5 -0
- numpy/f2py/tests/src/regression/inout.f90 +9 -0
- numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
- numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
- numpy/f2py/tests/src/return_character/foo77.f +45 -0
- numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_complex/foo77.f +45 -0
- numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_integer/foo77.f +56 -0
- numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_logical/foo77.f +56 -0
- numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_real/foo77.f +45 -0
- numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
- numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
- numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
- numpy/f2py/tests/src/routines/subrout.f +4 -0
- numpy/f2py/tests/src/routines/subrout.pyf +10 -0
- numpy/f2py/tests/src/size/foo.f90 +44 -0
- numpy/f2py/tests/src/string/char.f90 +29 -0
- numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
- numpy/f2py/tests/src/string/gh24008.f +8 -0
- numpy/f2py/tests/src/string/gh24662.f90 +7 -0
- numpy/f2py/tests/src/string/gh25286.f90 +14 -0
- numpy/f2py/tests/src/string/gh25286.pyf +12 -0
- numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
- numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
- numpy/f2py/tests/src/string/string.f +12 -0
- numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
- numpy/f2py/tests/test_abstract_interface.py +26 -0
- numpy/f2py/tests/test_array_from_pyobj.py +678 -0
- numpy/f2py/tests/test_assumed_shape.py +50 -0
- numpy/f2py/tests/test_block_docstring.py +20 -0
- numpy/f2py/tests/test_callback.py +263 -0
- numpy/f2py/tests/test_character.py +641 -0
- numpy/f2py/tests/test_common.py +23 -0
- numpy/f2py/tests/test_crackfortran.py +421 -0
- numpy/f2py/tests/test_data.py +71 -0
- numpy/f2py/tests/test_docs.py +66 -0
- numpy/f2py/tests/test_f2cmap.py +17 -0
- numpy/f2py/tests/test_f2py2e.py +983 -0
- numpy/f2py/tests/test_isoc.py +56 -0
- numpy/f2py/tests/test_kind.py +52 -0
- numpy/f2py/tests/test_mixed.py +35 -0
- numpy/f2py/tests/test_modules.py +83 -0
- numpy/f2py/tests/test_parameter.py +129 -0
- numpy/f2py/tests/test_pyf_src.py +43 -0
- numpy/f2py/tests/test_quoted_character.py +18 -0
- numpy/f2py/tests/test_regression.py +187 -0
- numpy/f2py/tests/test_return_character.py +48 -0
- numpy/f2py/tests/test_return_complex.py +67 -0
- numpy/f2py/tests/test_return_integer.py +55 -0
- numpy/f2py/tests/test_return_logical.py +65 -0
- numpy/f2py/tests/test_return_real.py +109 -0
- numpy/f2py/tests/test_routines.py +29 -0
- numpy/f2py/tests/test_semicolon_split.py +75 -0
- numpy/f2py/tests/test_size.py +45 -0
- numpy/f2py/tests/test_string.py +100 -0
- numpy/f2py/tests/test_symbolic.py +500 -0
- numpy/f2py/tests/test_value_attrspec.py +15 -0
- numpy/f2py/tests/util.py +442 -0
- numpy/f2py/use_rules.py +99 -0
- numpy/f2py/use_rules.pyi +9 -0
- numpy/fft/__init__.py +213 -0
- numpy/fft/__init__.pyi +38 -0
- numpy/fft/_helper.py +235 -0
- numpy/fft/_helper.pyi +44 -0
- numpy/fft/_pocketfft.py +1693 -0
- numpy/fft/_pocketfft.pyi +137 -0
- numpy/fft/_pocketfft_umath.cp314t-win_arm64.lib +0 -0
- numpy/fft/_pocketfft_umath.cp314t-win_arm64.pyd +0 -0
- numpy/fft/tests/__init__.py +0 -0
- numpy/fft/tests/test_helper.py +167 -0
- numpy/fft/tests/test_pocketfft.py +589 -0
- numpy/lib/__init__.py +97 -0
- numpy/lib/__init__.pyi +52 -0
- numpy/lib/_array_utils_impl.py +62 -0
- numpy/lib/_array_utils_impl.pyi +10 -0
- numpy/lib/_arraypad_impl.py +926 -0
- numpy/lib/_arraypad_impl.pyi +88 -0
- numpy/lib/_arraysetops_impl.py +1158 -0
- numpy/lib/_arraysetops_impl.pyi +462 -0
- numpy/lib/_arrayterator_impl.py +224 -0
- numpy/lib/_arrayterator_impl.pyi +45 -0
- numpy/lib/_datasource.py +700 -0
- numpy/lib/_datasource.pyi +30 -0
- numpy/lib/_format_impl.py +1036 -0
- numpy/lib/_format_impl.pyi +56 -0
- numpy/lib/_function_base_impl.py +5760 -0
- numpy/lib/_function_base_impl.pyi +2324 -0
- numpy/lib/_histograms_impl.py +1085 -0
- numpy/lib/_histograms_impl.pyi +40 -0
- numpy/lib/_index_tricks_impl.py +1048 -0
- numpy/lib/_index_tricks_impl.pyi +267 -0
- numpy/lib/_iotools.py +900 -0
- numpy/lib/_iotools.pyi +116 -0
- numpy/lib/_nanfunctions_impl.py +2006 -0
- numpy/lib/_nanfunctions_impl.pyi +48 -0
- numpy/lib/_npyio_impl.py +2583 -0
- numpy/lib/_npyio_impl.pyi +299 -0
- numpy/lib/_polynomial_impl.py +1465 -0
- numpy/lib/_polynomial_impl.pyi +338 -0
- numpy/lib/_scimath_impl.py +642 -0
- numpy/lib/_scimath_impl.pyi +93 -0
- numpy/lib/_shape_base_impl.py +1289 -0
- numpy/lib/_shape_base_impl.pyi +236 -0
- numpy/lib/_stride_tricks_impl.py +582 -0
- numpy/lib/_stride_tricks_impl.pyi +73 -0
- numpy/lib/_twodim_base_impl.py +1201 -0
- numpy/lib/_twodim_base_impl.pyi +408 -0
- numpy/lib/_type_check_impl.py +710 -0
- numpy/lib/_type_check_impl.pyi +348 -0
- numpy/lib/_ufunclike_impl.py +199 -0
- numpy/lib/_ufunclike_impl.pyi +60 -0
- numpy/lib/_user_array_impl.py +310 -0
- numpy/lib/_user_array_impl.pyi +226 -0
- numpy/lib/_utils_impl.py +784 -0
- numpy/lib/_utils_impl.pyi +22 -0
- numpy/lib/_version.py +153 -0
- numpy/lib/_version.pyi +17 -0
- numpy/lib/array_utils.py +7 -0
- numpy/lib/array_utils.pyi +6 -0
- numpy/lib/format.py +24 -0
- numpy/lib/format.pyi +24 -0
- numpy/lib/introspect.py +94 -0
- numpy/lib/introspect.pyi +3 -0
- numpy/lib/mixins.py +180 -0
- numpy/lib/mixins.pyi +78 -0
- numpy/lib/npyio.py +1 -0
- numpy/lib/npyio.pyi +5 -0
- numpy/lib/recfunctions.py +1681 -0
- numpy/lib/recfunctions.pyi +444 -0
- numpy/lib/scimath.py +13 -0
- numpy/lib/scimath.pyi +12 -0
- numpy/lib/stride_tricks.py +1 -0
- numpy/lib/stride_tricks.pyi +4 -0
- numpy/lib/tests/__init__.py +0 -0
- numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npz +0 -0
- numpy/lib/tests/data/py3-objarr.npy +0 -0
- numpy/lib/tests/data/py3-objarr.npz +0 -0
- numpy/lib/tests/data/python3.npy +0 -0
- numpy/lib/tests/data/win64python2.npy +0 -0
- numpy/lib/tests/test__datasource.py +328 -0
- numpy/lib/tests/test__iotools.py +358 -0
- numpy/lib/tests/test__version.py +64 -0
- numpy/lib/tests/test_array_utils.py +32 -0
- numpy/lib/tests/test_arraypad.py +1427 -0
- numpy/lib/tests/test_arraysetops.py +1302 -0
- numpy/lib/tests/test_arrayterator.py +45 -0
- numpy/lib/tests/test_format.py +1054 -0
- numpy/lib/tests/test_function_base.py +4750 -0
- numpy/lib/tests/test_histograms.py +855 -0
- numpy/lib/tests/test_index_tricks.py +693 -0
- numpy/lib/tests/test_io.py +2857 -0
- numpy/lib/tests/test_loadtxt.py +1099 -0
- numpy/lib/tests/test_mixins.py +215 -0
- numpy/lib/tests/test_nanfunctions.py +1438 -0
- numpy/lib/tests/test_packbits.py +376 -0
- numpy/lib/tests/test_polynomial.py +325 -0
- numpy/lib/tests/test_recfunctions.py +1042 -0
- numpy/lib/tests/test_regression.py +231 -0
- numpy/lib/tests/test_shape_base.py +813 -0
- numpy/lib/tests/test_stride_tricks.py +655 -0
- numpy/lib/tests/test_twodim_base.py +559 -0
- numpy/lib/tests/test_type_check.py +473 -0
- numpy/lib/tests/test_ufunclike.py +97 -0
- numpy/lib/tests/test_utils.py +80 -0
- numpy/lib/user_array.py +1 -0
- numpy/lib/user_array.pyi +1 -0
- numpy/linalg/__init__.py +95 -0
- numpy/linalg/__init__.pyi +71 -0
- numpy/linalg/_linalg.py +3657 -0
- numpy/linalg/_linalg.pyi +548 -0
- numpy/linalg/_umath_linalg.cp314t-win_arm64.lib +0 -0
- numpy/linalg/_umath_linalg.cp314t-win_arm64.pyd +0 -0
- numpy/linalg/_umath_linalg.pyi +60 -0
- numpy/linalg/lapack_lite.cp314t-win_arm64.lib +0 -0
- numpy/linalg/lapack_lite.cp314t-win_arm64.pyd +0 -0
- numpy/linalg/lapack_lite.pyi +143 -0
- numpy/linalg/tests/__init__.py +0 -0
- numpy/linalg/tests/test_deprecations.py +21 -0
- numpy/linalg/tests/test_linalg.py +2442 -0
- numpy/linalg/tests/test_regression.py +182 -0
- numpy/ma/API_CHANGES.txt +135 -0
- numpy/ma/LICENSE +24 -0
- numpy/ma/README.rst +236 -0
- numpy/ma/__init__.py +53 -0
- numpy/ma/__init__.pyi +458 -0
- numpy/ma/core.py +8929 -0
- numpy/ma/core.pyi +3720 -0
- numpy/ma/extras.py +2266 -0
- numpy/ma/extras.pyi +297 -0
- numpy/ma/mrecords.py +762 -0
- numpy/ma/mrecords.pyi +96 -0
- numpy/ma/tests/__init__.py +0 -0
- numpy/ma/tests/test_arrayobject.py +40 -0
- numpy/ma/tests/test_core.py +6008 -0
- numpy/ma/tests/test_deprecations.py +65 -0
- numpy/ma/tests/test_extras.py +1945 -0
- numpy/ma/tests/test_mrecords.py +495 -0
- numpy/ma/tests/test_old_ma.py +939 -0
- numpy/ma/tests/test_regression.py +83 -0
- numpy/ma/tests/test_subclassing.py +469 -0
- numpy/ma/testutils.py +294 -0
- numpy/ma/testutils.pyi +69 -0
- numpy/matlib.py +380 -0
- numpy/matlib.pyi +580 -0
- numpy/matrixlib/__init__.py +12 -0
- numpy/matrixlib/__init__.pyi +3 -0
- numpy/matrixlib/defmatrix.py +1119 -0
- numpy/matrixlib/defmatrix.pyi +218 -0
- numpy/matrixlib/tests/__init__.py +0 -0
- numpy/matrixlib/tests/test_defmatrix.py +455 -0
- numpy/matrixlib/tests/test_interaction.py +360 -0
- numpy/matrixlib/tests/test_masked_matrix.py +240 -0
- numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
- numpy/matrixlib/tests/test_multiarray.py +17 -0
- numpy/matrixlib/tests/test_numeric.py +18 -0
- numpy/matrixlib/tests/test_regression.py +31 -0
- numpy/polynomial/__init__.py +187 -0
- numpy/polynomial/__init__.pyi +31 -0
- numpy/polynomial/_polybase.py +1191 -0
- numpy/polynomial/_polybase.pyi +262 -0
- numpy/polynomial/_polytypes.pyi +501 -0
- numpy/polynomial/chebyshev.py +2001 -0
- numpy/polynomial/chebyshev.pyi +180 -0
- numpy/polynomial/hermite.py +1738 -0
- numpy/polynomial/hermite.pyi +106 -0
- numpy/polynomial/hermite_e.py +1640 -0
- numpy/polynomial/hermite_e.pyi +106 -0
- numpy/polynomial/laguerre.py +1673 -0
- numpy/polynomial/laguerre.pyi +100 -0
- numpy/polynomial/legendre.py +1603 -0
- numpy/polynomial/legendre.pyi +100 -0
- numpy/polynomial/polynomial.py +1625 -0
- numpy/polynomial/polynomial.pyi +109 -0
- numpy/polynomial/polyutils.py +759 -0
- numpy/polynomial/polyutils.pyi +307 -0
- numpy/polynomial/tests/__init__.py +0 -0
- numpy/polynomial/tests/test_chebyshev.py +618 -0
- numpy/polynomial/tests/test_classes.py +613 -0
- numpy/polynomial/tests/test_hermite.py +553 -0
- numpy/polynomial/tests/test_hermite_e.py +554 -0
- numpy/polynomial/tests/test_laguerre.py +535 -0
- numpy/polynomial/tests/test_legendre.py +566 -0
- numpy/polynomial/tests/test_polynomial.py +691 -0
- numpy/polynomial/tests/test_polyutils.py +123 -0
- numpy/polynomial/tests/test_printing.py +557 -0
- numpy/polynomial/tests/test_symbol.py +217 -0
- numpy/py.typed +0 -0
- numpy/random/LICENSE.md +71 -0
- numpy/random/__init__.pxd +14 -0
- numpy/random/__init__.py +213 -0
- numpy/random/__init__.pyi +124 -0
- numpy/random/_bounded_integers.cp314t-win_arm64.lib +0 -0
- numpy/random/_bounded_integers.cp314t-win_arm64.pyd +0 -0
- numpy/random/_bounded_integers.pxd +38 -0
- numpy/random/_bounded_integers.pyi +1 -0
- numpy/random/_common.cp314t-win_arm64.lib +0 -0
- numpy/random/_common.cp314t-win_arm64.pyd +0 -0
- numpy/random/_common.pxd +110 -0
- numpy/random/_common.pyi +16 -0
- numpy/random/_examples/cffi/extending.py +44 -0
- numpy/random/_examples/cffi/parse.py +53 -0
- numpy/random/_examples/cython/extending.pyx +77 -0
- numpy/random/_examples/cython/extending_distributions.pyx +117 -0
- numpy/random/_examples/cython/meson.build +53 -0
- numpy/random/_examples/numba/extending.py +86 -0
- numpy/random/_examples/numba/extending_distributions.py +67 -0
- numpy/random/_generator.cp314t-win_arm64.lib +0 -0
- numpy/random/_generator.cp314t-win_arm64.pyd +0 -0
- numpy/random/_generator.pyi +862 -0
- numpy/random/_mt19937.cp314t-win_arm64.lib +0 -0
- numpy/random/_mt19937.cp314t-win_arm64.pyd +0 -0
- numpy/random/_mt19937.pyi +27 -0
- numpy/random/_pcg64.cp314t-win_arm64.lib +0 -0
- numpy/random/_pcg64.cp314t-win_arm64.pyd +0 -0
- numpy/random/_pcg64.pyi +41 -0
- numpy/random/_philox.cp314t-win_arm64.lib +0 -0
- numpy/random/_philox.cp314t-win_arm64.pyd +0 -0
- numpy/random/_philox.pyi +36 -0
- numpy/random/_pickle.py +88 -0
- numpy/random/_pickle.pyi +43 -0
- numpy/random/_sfc64.cp314t-win_arm64.lib +0 -0
- numpy/random/_sfc64.cp314t-win_arm64.pyd +0 -0
- numpy/random/_sfc64.pyi +25 -0
- numpy/random/bit_generator.cp314t-win_arm64.lib +0 -0
- numpy/random/bit_generator.cp314t-win_arm64.pyd +0 -0
- numpy/random/bit_generator.pxd +40 -0
- numpy/random/bit_generator.pyi +123 -0
- numpy/random/c_distributions.pxd +119 -0
- numpy/random/lib/npyrandom.lib +0 -0
- numpy/random/mtrand.cp314t-win_arm64.lib +0 -0
- numpy/random/mtrand.cp314t-win_arm64.pyd +0 -0
- numpy/random/mtrand.pyi +759 -0
- numpy/random/tests/__init__.py +0 -0
- numpy/random/tests/data/__init__.py +0 -0
- numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
- numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
- numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
- numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
- numpy/random/tests/data/philox-testset-1.csv +1001 -0
- numpy/random/tests/data/philox-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
- numpy/random/tests/test_direct.py +595 -0
- numpy/random/tests/test_extending.py +131 -0
- numpy/random/tests/test_generator_mt19937.py +2825 -0
- numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
- numpy/random/tests/test_random.py +1724 -0
- numpy/random/tests/test_randomstate.py +2099 -0
- numpy/random/tests/test_randomstate_regression.py +213 -0
- numpy/random/tests/test_regression.py +175 -0
- numpy/random/tests/test_seed_sequence.py +79 -0
- numpy/random/tests/test_smoke.py +882 -0
- numpy/rec/__init__.py +2 -0
- numpy/rec/__init__.pyi +23 -0
- numpy/strings/__init__.py +2 -0
- numpy/strings/__init__.pyi +97 -0
- numpy/testing/__init__.py +22 -0
- numpy/testing/__init__.pyi +107 -0
- numpy/testing/_private/__init__.py +0 -0
- numpy/testing/_private/__init__.pyi +0 -0
- numpy/testing/_private/extbuild.py +250 -0
- numpy/testing/_private/extbuild.pyi +25 -0
- numpy/testing/_private/utils.py +2830 -0
- numpy/testing/_private/utils.pyi +505 -0
- numpy/testing/overrides.py +84 -0
- numpy/testing/overrides.pyi +10 -0
- numpy/testing/print_coercion_tables.py +207 -0
- numpy/testing/print_coercion_tables.pyi +26 -0
- numpy/testing/tests/__init__.py +0 -0
- numpy/testing/tests/test_utils.py +2123 -0
- numpy/tests/__init__.py +0 -0
- numpy/tests/test__all__.py +10 -0
- numpy/tests/test_configtool.py +51 -0
- numpy/tests/test_ctypeslib.py +383 -0
- numpy/tests/test_lazyloading.py +42 -0
- numpy/tests/test_matlib.py +59 -0
- numpy/tests/test_numpy_config.py +47 -0
- numpy/tests/test_numpy_version.py +54 -0
- numpy/tests/test_public_api.py +807 -0
- numpy/tests/test_reloading.py +76 -0
- numpy/tests/test_scripts.py +48 -0
- numpy/tests/test_warnings.py +79 -0
- numpy/typing/__init__.py +233 -0
- numpy/typing/__init__.pyi +3 -0
- numpy/typing/mypy_plugin.py +200 -0
- numpy/typing/tests/__init__.py +0 -0
- numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
- numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
- numpy/typing/tests/data/fail/array_like.pyi +15 -0
- numpy/typing/tests/data/fail/array_pad.pyi +6 -0
- numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
- numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
- numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
- numpy/typing/tests/data/fail/char.pyi +63 -0
- numpy/typing/tests/data/fail/chararray.pyi +61 -0
- numpy/typing/tests/data/fail/comparisons.pyi +27 -0
- numpy/typing/tests/data/fail/constants.pyi +3 -0
- numpy/typing/tests/data/fail/datasource.pyi +16 -0
- numpy/typing/tests/data/fail/dtype.pyi +17 -0
- numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
- numpy/typing/tests/data/fail/flatiter.pyi +38 -0
- numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
- numpy/typing/tests/data/fail/histograms.pyi +12 -0
- numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
- numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
- numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
- numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
- numpy/typing/tests/data/fail/lib_version.pyi +6 -0
- numpy/typing/tests/data/fail/linalg.pyi +52 -0
- numpy/typing/tests/data/fail/ma.pyi +155 -0
- numpy/typing/tests/data/fail/memmap.pyi +5 -0
- numpy/typing/tests/data/fail/modules.pyi +17 -0
- numpy/typing/tests/data/fail/multiarray.pyi +52 -0
- numpy/typing/tests/data/fail/ndarray.pyi +11 -0
- numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
- numpy/typing/tests/data/fail/nditer.pyi +8 -0
- numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
- numpy/typing/tests/data/fail/npyio.pyi +24 -0
- numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
- numpy/typing/tests/data/fail/random.pyi +62 -0
- numpy/typing/tests/data/fail/rec.pyi +17 -0
- numpy/typing/tests/data/fail/scalars.pyi +86 -0
- numpy/typing/tests/data/fail/shape.pyi +7 -0
- numpy/typing/tests/data/fail/shape_base.pyi +8 -0
- numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
- numpy/typing/tests/data/fail/strings.pyi +52 -0
- numpy/typing/tests/data/fail/testing.pyi +28 -0
- numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
- numpy/typing/tests/data/fail/type_check.pyi +12 -0
- numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
- numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
- numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
- numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
- numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
- numpy/typing/tests/data/mypy.ini +8 -0
- numpy/typing/tests/data/pass/arithmetic.py +614 -0
- numpy/typing/tests/data/pass/array_constructors.py +138 -0
- numpy/typing/tests/data/pass/array_like.py +43 -0
- numpy/typing/tests/data/pass/arrayprint.py +37 -0
- numpy/typing/tests/data/pass/arrayterator.py +28 -0
- numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
- numpy/typing/tests/data/pass/comparisons.py +316 -0
- numpy/typing/tests/data/pass/dtype.py +57 -0
- numpy/typing/tests/data/pass/einsumfunc.py +36 -0
- numpy/typing/tests/data/pass/flatiter.py +26 -0
- numpy/typing/tests/data/pass/fromnumeric.py +272 -0
- numpy/typing/tests/data/pass/index_tricks.py +62 -0
- numpy/typing/tests/data/pass/lib_user_array.py +22 -0
- numpy/typing/tests/data/pass/lib_utils.py +19 -0
- numpy/typing/tests/data/pass/lib_version.py +18 -0
- numpy/typing/tests/data/pass/literal.py +52 -0
- numpy/typing/tests/data/pass/ma.py +199 -0
- numpy/typing/tests/data/pass/mod.py +149 -0
- numpy/typing/tests/data/pass/modules.py +45 -0
- numpy/typing/tests/data/pass/multiarray.py +77 -0
- numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
- numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
- numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
- numpy/typing/tests/data/pass/nditer.py +4 -0
- numpy/typing/tests/data/pass/numeric.py +90 -0
- numpy/typing/tests/data/pass/numerictypes.py +17 -0
- numpy/typing/tests/data/pass/random.py +1498 -0
- numpy/typing/tests/data/pass/recfunctions.py +164 -0
- numpy/typing/tests/data/pass/scalars.py +249 -0
- numpy/typing/tests/data/pass/shape.py +19 -0
- numpy/typing/tests/data/pass/simple.py +170 -0
- numpy/typing/tests/data/pass/ufunc_config.py +64 -0
- numpy/typing/tests/data/pass/ufunclike.py +52 -0
- numpy/typing/tests/data/pass/ufuncs.py +16 -0
- numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
- numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
- numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
- numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
- numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
- numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
- numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
- numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
- numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
- numpy/typing/tests/data/reveal/char.pyi +225 -0
- numpy/typing/tests/data/reveal/chararray.pyi +138 -0
- numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
- numpy/typing/tests/data/reveal/constants.pyi +14 -0
- numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
- numpy/typing/tests/data/reveal/datasource.pyi +23 -0
- numpy/typing/tests/data/reveal/dtype.pyi +132 -0
- numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
- numpy/typing/tests/data/reveal/emath.pyi +54 -0
- numpy/typing/tests/data/reveal/fft.pyi +37 -0
- numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
- numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
- numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
- numpy/typing/tests/data/reveal/histograms.pyi +25 -0
- numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
- numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
- numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
- numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
- numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
- numpy/typing/tests/data/reveal/linalg.pyi +154 -0
- numpy/typing/tests/data/reveal/ma.pyi +1098 -0
- numpy/typing/tests/data/reveal/matrix.pyi +73 -0
- numpy/typing/tests/data/reveal/memmap.pyi +19 -0
- numpy/typing/tests/data/reveal/mod.pyi +178 -0
- numpy/typing/tests/data/reveal/modules.pyi +51 -0
- numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
- numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
- numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
- numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
- numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
- numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
- numpy/typing/tests/data/reveal/nditer.pyi +49 -0
- numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
- numpy/typing/tests/data/reveal/npyio.pyi +83 -0
- numpy/typing/tests/data/reveal/numeric.pyi +170 -0
- numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
- numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
- numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
- numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
- numpy/typing/tests/data/reveal/random.pyi +1546 -0
- numpy/typing/tests/data/reveal/rec.pyi +171 -0
- numpy/typing/tests/data/reveal/scalars.pyi +191 -0
- numpy/typing/tests/data/reveal/shape.pyi +13 -0
- numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
- numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
- numpy/typing/tests/data/reveal/strings.pyi +196 -0
- numpy/typing/tests/data/reveal/testing.pyi +198 -0
- numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
- numpy/typing/tests/data/reveal/type_check.pyi +67 -0
- numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
- numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
- numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
- numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
- numpy/typing/tests/test_isfile.py +38 -0
- numpy/typing/tests/test_runtime.py +110 -0
- numpy/typing/tests/test_typing.py +205 -0
- numpy/version.py +11 -0
- numpy/version.pyi +9 -0
- numpy-2.4.1.dist-info/DELVEWHEEL +2 -0
- numpy-2.4.1.dist-info/METADATA +139 -0
- numpy-2.4.1.dist-info/RECORD +932 -0
- numpy-2.4.1.dist-info/WHEEL +4 -0
- numpy-2.4.1.dist-info/entry_points.txt +13 -0
- numpy-2.4.1.dist-info/licenses/LICENSE.txt +914 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
- numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
- numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
- numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
- numpy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- numpy.libs/scipy_openblas-7b69cbfd2599e6035f1310f2a72d59a6.dll +0 -0
numpy/ma/core.pyi
ADDED
|
@@ -0,0 +1,3720 @@
|
|
|
1
|
+
# pyright: reportIncompatibleMethodOverride=false
|
|
2
|
+
|
|
3
|
+
import datetime as dt
|
|
4
|
+
import types
|
|
5
|
+
from _typeshed import Incomplete
|
|
6
|
+
from collections.abc import Callable, Sequence
|
|
7
|
+
from typing import (
|
|
8
|
+
Any,
|
|
9
|
+
Concatenate,
|
|
10
|
+
Final,
|
|
11
|
+
Generic,
|
|
12
|
+
Literal,
|
|
13
|
+
Never,
|
|
14
|
+
NoReturn,
|
|
15
|
+
Self,
|
|
16
|
+
SupportsComplex,
|
|
17
|
+
SupportsFloat,
|
|
18
|
+
SupportsIndex,
|
|
19
|
+
SupportsInt,
|
|
20
|
+
TypeAlias,
|
|
21
|
+
Unpack,
|
|
22
|
+
final,
|
|
23
|
+
overload,
|
|
24
|
+
)
|
|
25
|
+
from typing_extensions import Buffer, ParamSpec, TypeIs, TypeVar, override
|
|
26
|
+
|
|
27
|
+
import numpy as np
|
|
28
|
+
from numpy import (
|
|
29
|
+
_AnyShapeT,
|
|
30
|
+
_HasDType,
|
|
31
|
+
_HasDTypeWithRealAndImag,
|
|
32
|
+
_ModeKind,
|
|
33
|
+
_OrderACF,
|
|
34
|
+
_OrderCF,
|
|
35
|
+
_OrderKACF,
|
|
36
|
+
_PartitionKind,
|
|
37
|
+
_SortKind,
|
|
38
|
+
_ToIndices,
|
|
39
|
+
amax,
|
|
40
|
+
amin,
|
|
41
|
+
bool_,
|
|
42
|
+
bytes_,
|
|
43
|
+
character,
|
|
44
|
+
complex128,
|
|
45
|
+
complexfloating,
|
|
46
|
+
datetime64,
|
|
47
|
+
dtype,
|
|
48
|
+
dtypes,
|
|
49
|
+
expand_dims,
|
|
50
|
+
flexible,
|
|
51
|
+
float16,
|
|
52
|
+
float32,
|
|
53
|
+
float64,
|
|
54
|
+
floating,
|
|
55
|
+
generic,
|
|
56
|
+
inexact,
|
|
57
|
+
int8,
|
|
58
|
+
int64,
|
|
59
|
+
int_,
|
|
60
|
+
integer,
|
|
61
|
+
intp,
|
|
62
|
+
ndarray,
|
|
63
|
+
number,
|
|
64
|
+
object_,
|
|
65
|
+
signedinteger,
|
|
66
|
+
str_,
|
|
67
|
+
timedelta64,
|
|
68
|
+
ufunc,
|
|
69
|
+
unsignedinteger,
|
|
70
|
+
void,
|
|
71
|
+
)
|
|
72
|
+
from numpy._core.fromnumeric import _UFuncKwargs # type-check only
|
|
73
|
+
from numpy._globals import _NoValueType
|
|
74
|
+
from numpy._typing import (
|
|
75
|
+
ArrayLike,
|
|
76
|
+
DTypeLike,
|
|
77
|
+
NDArray,
|
|
78
|
+
_32Bit,
|
|
79
|
+
_64Bit,
|
|
80
|
+
_AnyShape,
|
|
81
|
+
_ArrayLike,
|
|
82
|
+
_ArrayLikeBool_co,
|
|
83
|
+
_ArrayLikeBytes_co,
|
|
84
|
+
_ArrayLikeComplex128_co,
|
|
85
|
+
_ArrayLikeComplex_co,
|
|
86
|
+
_ArrayLikeDT64_co,
|
|
87
|
+
_ArrayLikeFloat64_co,
|
|
88
|
+
_ArrayLikeFloat_co,
|
|
89
|
+
_ArrayLikeInt,
|
|
90
|
+
_ArrayLikeInt_co,
|
|
91
|
+
_ArrayLikeNumber_co,
|
|
92
|
+
_ArrayLikeObject_co,
|
|
93
|
+
_ArrayLikeStr_co,
|
|
94
|
+
_ArrayLikeString_co,
|
|
95
|
+
_ArrayLikeTD64_co,
|
|
96
|
+
_ArrayLikeUInt_co,
|
|
97
|
+
_CharLike_co,
|
|
98
|
+
_DTypeLike,
|
|
99
|
+
_DTypeLikeBool,
|
|
100
|
+
_DTypeLikeVoid,
|
|
101
|
+
_FloatLike_co,
|
|
102
|
+
_IntLike_co,
|
|
103
|
+
_NestedSequence,
|
|
104
|
+
_ScalarLike_co,
|
|
105
|
+
_Shape,
|
|
106
|
+
_ShapeLike,
|
|
107
|
+
_SupportsArrayFunc,
|
|
108
|
+
_SupportsDType,
|
|
109
|
+
_TD64Like_co,
|
|
110
|
+
)
|
|
111
|
+
from numpy._typing._dtype_like import _VoidDTypeLike
|
|
112
|
+
|
|
113
|
+
__all__ = [
|
|
114
|
+
"MAError",
|
|
115
|
+
"MaskError",
|
|
116
|
+
"MaskType",
|
|
117
|
+
"MaskedArray",
|
|
118
|
+
"abs",
|
|
119
|
+
"absolute",
|
|
120
|
+
"add",
|
|
121
|
+
"all",
|
|
122
|
+
"allclose",
|
|
123
|
+
"allequal",
|
|
124
|
+
"alltrue",
|
|
125
|
+
"amax",
|
|
126
|
+
"amin",
|
|
127
|
+
"angle",
|
|
128
|
+
"anom",
|
|
129
|
+
"anomalies",
|
|
130
|
+
"any",
|
|
131
|
+
"append",
|
|
132
|
+
"arange",
|
|
133
|
+
"arccos",
|
|
134
|
+
"arccosh",
|
|
135
|
+
"arcsin",
|
|
136
|
+
"arcsinh",
|
|
137
|
+
"arctan",
|
|
138
|
+
"arctan2",
|
|
139
|
+
"arctanh",
|
|
140
|
+
"argmax",
|
|
141
|
+
"argmin",
|
|
142
|
+
"argsort",
|
|
143
|
+
"around",
|
|
144
|
+
"array",
|
|
145
|
+
"asanyarray",
|
|
146
|
+
"asarray",
|
|
147
|
+
"bitwise_and",
|
|
148
|
+
"bitwise_or",
|
|
149
|
+
"bitwise_xor",
|
|
150
|
+
"bool_",
|
|
151
|
+
"ceil",
|
|
152
|
+
"choose",
|
|
153
|
+
"clip",
|
|
154
|
+
"common_fill_value",
|
|
155
|
+
"compress",
|
|
156
|
+
"compressed",
|
|
157
|
+
"concatenate",
|
|
158
|
+
"conjugate",
|
|
159
|
+
"convolve",
|
|
160
|
+
"copy",
|
|
161
|
+
"correlate",
|
|
162
|
+
"cos",
|
|
163
|
+
"cosh",
|
|
164
|
+
"count",
|
|
165
|
+
"cumprod",
|
|
166
|
+
"cumsum",
|
|
167
|
+
"default_fill_value",
|
|
168
|
+
"diag",
|
|
169
|
+
"diagonal",
|
|
170
|
+
"diff",
|
|
171
|
+
"divide",
|
|
172
|
+
"empty",
|
|
173
|
+
"empty_like",
|
|
174
|
+
"equal",
|
|
175
|
+
"exp",
|
|
176
|
+
"expand_dims",
|
|
177
|
+
"fabs",
|
|
178
|
+
"filled",
|
|
179
|
+
"fix_invalid",
|
|
180
|
+
"flatten_mask",
|
|
181
|
+
"flatten_structured_array",
|
|
182
|
+
"floor",
|
|
183
|
+
"floor_divide",
|
|
184
|
+
"fmod",
|
|
185
|
+
"frombuffer",
|
|
186
|
+
"fromflex",
|
|
187
|
+
"fromfunction",
|
|
188
|
+
"getdata",
|
|
189
|
+
"getmask",
|
|
190
|
+
"getmaskarray",
|
|
191
|
+
"greater",
|
|
192
|
+
"greater_equal",
|
|
193
|
+
"harden_mask",
|
|
194
|
+
"hypot",
|
|
195
|
+
"identity",
|
|
196
|
+
"ids",
|
|
197
|
+
"indices",
|
|
198
|
+
"inner",
|
|
199
|
+
"innerproduct",
|
|
200
|
+
"isMA",
|
|
201
|
+
"isMaskedArray",
|
|
202
|
+
"is_mask",
|
|
203
|
+
"is_masked",
|
|
204
|
+
"isarray",
|
|
205
|
+
"left_shift",
|
|
206
|
+
"less",
|
|
207
|
+
"less_equal",
|
|
208
|
+
"log",
|
|
209
|
+
"log2",
|
|
210
|
+
"log10",
|
|
211
|
+
"logical_and",
|
|
212
|
+
"logical_not",
|
|
213
|
+
"logical_or",
|
|
214
|
+
"logical_xor",
|
|
215
|
+
"make_mask",
|
|
216
|
+
"make_mask_descr",
|
|
217
|
+
"make_mask_none",
|
|
218
|
+
"mask_or",
|
|
219
|
+
"masked",
|
|
220
|
+
"masked_array",
|
|
221
|
+
"masked_equal",
|
|
222
|
+
"masked_greater",
|
|
223
|
+
"masked_greater_equal",
|
|
224
|
+
"masked_inside",
|
|
225
|
+
"masked_invalid",
|
|
226
|
+
"masked_less",
|
|
227
|
+
"masked_less_equal",
|
|
228
|
+
"masked_not_equal",
|
|
229
|
+
"masked_object",
|
|
230
|
+
"masked_outside",
|
|
231
|
+
"masked_print_option",
|
|
232
|
+
"masked_singleton",
|
|
233
|
+
"masked_values",
|
|
234
|
+
"masked_where",
|
|
235
|
+
"max",
|
|
236
|
+
"maximum",
|
|
237
|
+
"maximum_fill_value",
|
|
238
|
+
"mean",
|
|
239
|
+
"min",
|
|
240
|
+
"minimum",
|
|
241
|
+
"minimum_fill_value",
|
|
242
|
+
"mod",
|
|
243
|
+
"multiply",
|
|
244
|
+
"mvoid",
|
|
245
|
+
"ndim",
|
|
246
|
+
"negative",
|
|
247
|
+
"nomask",
|
|
248
|
+
"nonzero",
|
|
249
|
+
"not_equal",
|
|
250
|
+
"ones",
|
|
251
|
+
"ones_like",
|
|
252
|
+
"outer",
|
|
253
|
+
"outerproduct",
|
|
254
|
+
"power",
|
|
255
|
+
"prod",
|
|
256
|
+
"product",
|
|
257
|
+
"ptp",
|
|
258
|
+
"put",
|
|
259
|
+
"putmask",
|
|
260
|
+
"ravel",
|
|
261
|
+
"remainder",
|
|
262
|
+
"repeat",
|
|
263
|
+
"reshape",
|
|
264
|
+
"resize",
|
|
265
|
+
"right_shift",
|
|
266
|
+
"round",
|
|
267
|
+
"round_",
|
|
268
|
+
"set_fill_value",
|
|
269
|
+
"shape",
|
|
270
|
+
"sin",
|
|
271
|
+
"sinh",
|
|
272
|
+
"size",
|
|
273
|
+
"soften_mask",
|
|
274
|
+
"sometrue",
|
|
275
|
+
"sort",
|
|
276
|
+
"sqrt",
|
|
277
|
+
"squeeze",
|
|
278
|
+
"std",
|
|
279
|
+
"subtract",
|
|
280
|
+
"sum",
|
|
281
|
+
"swapaxes",
|
|
282
|
+
"take",
|
|
283
|
+
"tan",
|
|
284
|
+
"tanh",
|
|
285
|
+
"trace",
|
|
286
|
+
"transpose",
|
|
287
|
+
"true_divide",
|
|
288
|
+
"var",
|
|
289
|
+
"where",
|
|
290
|
+
"zeros",
|
|
291
|
+
"zeros_like",
|
|
292
|
+
]
|
|
293
|
+
|
|
294
|
+
_ShapeT = TypeVar("_ShapeT", bound=_Shape)
|
|
295
|
+
_ShapeOrAnyT = TypeVar("_ShapeOrAnyT", bound=_Shape, default=_AnyShape)
|
|
296
|
+
_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, default=_AnyShape, covariant=True)
|
|
297
|
+
_DTypeT = TypeVar("_DTypeT", bound=dtype)
|
|
298
|
+
_DTypeT_co = TypeVar("_DTypeT_co", bound=dtype, default=dtype, covariant=True)
|
|
299
|
+
_ArrayT = TypeVar("_ArrayT", bound=ndarray[Any, Any])
|
|
300
|
+
_MArrayT = TypeVar("_MArrayT", bound=MaskedArray[Any, Any])
|
|
301
|
+
_ScalarT = TypeVar("_ScalarT", bound=generic)
|
|
302
|
+
_ScalarT_co = TypeVar("_ScalarT_co", bound=generic, covariant=True)
|
|
303
|
+
_NumberT = TypeVar("_NumberT", bound=number)
|
|
304
|
+
_RealNumberT = TypeVar("_RealNumberT", bound=floating | integer)
|
|
305
|
+
_ArangeScalarT = TypeVar("_ArangeScalarT", bound=_ArangeScalar)
|
|
306
|
+
_UFuncT_co = TypeVar(
|
|
307
|
+
"_UFuncT_co",
|
|
308
|
+
# the `| Callable` simplifies self-binding to the ufunc's callable signature
|
|
309
|
+
bound=np.ufunc | Callable[..., object],
|
|
310
|
+
default=np.ufunc,
|
|
311
|
+
covariant=True,
|
|
312
|
+
)
|
|
313
|
+
_Pss = ParamSpec("_Pss")
|
|
314
|
+
_T = TypeVar("_T")
|
|
315
|
+
|
|
316
|
+
_Ignored: TypeAlias = object
|
|
317
|
+
|
|
318
|
+
# A subset of `MaskedArray` that can be parametrized w.r.t. `np.generic`
|
|
319
|
+
_MaskedArray: TypeAlias = MaskedArray[_AnyShape, dtype[_ScalarT]]
|
|
320
|
+
_Masked1D: TypeAlias = MaskedArray[tuple[int], dtype[_ScalarT]]
|
|
321
|
+
|
|
322
|
+
_MaskedArrayUInt_co: TypeAlias = _MaskedArray[unsignedinteger | np.bool]
|
|
323
|
+
_MaskedArrayInt_co: TypeAlias = _MaskedArray[integer | np.bool]
|
|
324
|
+
_MaskedArrayFloat64_co: TypeAlias = _MaskedArray[floating[_64Bit] | float32 | float16 | integer | np.bool]
|
|
325
|
+
_MaskedArrayFloat_co: TypeAlias = _MaskedArray[floating | integer | np.bool]
|
|
326
|
+
_MaskedArrayComplex128_co: TypeAlias = _MaskedArray[number[_64Bit] | number[_32Bit] | float16 | integer | np.bool]
|
|
327
|
+
_MaskedArrayComplex_co: TypeAlias = _MaskedArray[inexact | integer | np.bool]
|
|
328
|
+
_MaskedArrayNumber_co: TypeAlias = _MaskedArray[number | np.bool]
|
|
329
|
+
_MaskedArrayTD64_co: TypeAlias = _MaskedArray[timedelta64 | integer | np.bool]
|
|
330
|
+
|
|
331
|
+
_ArrayInt_co: TypeAlias = NDArray[integer | bool_]
|
|
332
|
+
_Array1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]]
|
|
333
|
+
|
|
334
|
+
_ConvertibleToInt: TypeAlias = SupportsInt | SupportsIndex | _CharLike_co
|
|
335
|
+
_ConvertibleToFloat: TypeAlias = SupportsFloat | SupportsIndex | _CharLike_co
|
|
336
|
+
_ConvertibleToComplex: TypeAlias = SupportsComplex | SupportsFloat | SupportsIndex | _CharLike_co
|
|
337
|
+
_ConvertibleToTD64: TypeAlias = dt.timedelta | int | _CharLike_co | character | number | timedelta64 | np.bool | None
|
|
338
|
+
_ConvertibleToDT64: TypeAlias = dt.date | int | _CharLike_co | character | number | datetime64 | np.bool | None
|
|
339
|
+
_ArangeScalar: TypeAlias = floating | integer | datetime64 | timedelta64
|
|
340
|
+
|
|
341
|
+
_NoMaskType: TypeAlias = np.bool_[Literal[False]] # type of `np.False_`
|
|
342
|
+
_MaskArray: TypeAlias = np.ndarray[_ShapeOrAnyT, np.dtype[np.bool_]]
|
|
343
|
+
|
|
344
|
+
_FillValue: TypeAlias = complex | None # int | float | complex | None
|
|
345
|
+
_FillValueCallable: TypeAlias = Callable[[np.dtype | ArrayLike], _FillValue]
|
|
346
|
+
_DomainCallable: TypeAlias = Callable[..., NDArray[np.bool_]]
|
|
347
|
+
|
|
348
|
+
###
|
|
349
|
+
|
|
350
|
+
MaskType = np.bool_
|
|
351
|
+
|
|
352
|
+
nomask: Final[_NoMaskType] = ...
|
|
353
|
+
|
|
354
|
+
class MaskedArrayFutureWarning(FutureWarning): ...
|
|
355
|
+
class MAError(Exception): ...
|
|
356
|
+
class MaskError(MAError): ...
|
|
357
|
+
|
|
358
|
+
# not generic at runtime
|
|
359
|
+
class _MaskedUFunc(Generic[_UFuncT_co]):
|
|
360
|
+
f: _UFuncT_co # readonly
|
|
361
|
+
def __init__(self, /, ufunc: _UFuncT_co) -> None: ...
|
|
362
|
+
|
|
363
|
+
# not generic at runtime
|
|
364
|
+
class _MaskedUnaryOperation(_MaskedUFunc[_UFuncT_co], Generic[_UFuncT_co]):
|
|
365
|
+
fill: Final[_FillValue]
|
|
366
|
+
domain: Final[_DomainCallable | None]
|
|
367
|
+
|
|
368
|
+
def __init__(self, /, mufunc: _UFuncT_co, fill: _FillValue = 0, domain: _DomainCallable | None = None) -> None: ...
|
|
369
|
+
|
|
370
|
+
# NOTE: This might not work with overloaded callable signatures might not work on
|
|
371
|
+
# pyright, which is a long-standing issue, and is unique to pyright:
|
|
372
|
+
# https://github.com/microsoft/pyright/issues/9663
|
|
373
|
+
# https://github.com/microsoft/pyright/issues/10849
|
|
374
|
+
# https://github.com/microsoft/pyright/issues/10899
|
|
375
|
+
# https://github.com/microsoft/pyright/issues/11049
|
|
376
|
+
def __call__(
|
|
377
|
+
self: _MaskedUnaryOperation[Callable[Concatenate[Any, _Pss], _T]],
|
|
378
|
+
/,
|
|
379
|
+
a: ArrayLike,
|
|
380
|
+
*args: _Pss.args,
|
|
381
|
+
**kwargs: _Pss.kwargs,
|
|
382
|
+
) -> _T: ...
|
|
383
|
+
|
|
384
|
+
# not generic at runtime
|
|
385
|
+
class _MaskedBinaryOperation(_MaskedUFunc[_UFuncT_co], Generic[_UFuncT_co]):
|
|
386
|
+
fillx: Final[_FillValue]
|
|
387
|
+
filly: Final[_FillValue]
|
|
388
|
+
|
|
389
|
+
def __init__(self, /, mbfunc: _UFuncT_co, fillx: _FillValue = 0, filly: _FillValue = 0) -> None: ...
|
|
390
|
+
|
|
391
|
+
# NOTE: See the comment in `_MaskedUnaryOperation.__call__`
|
|
392
|
+
def __call__(
|
|
393
|
+
self: _MaskedBinaryOperation[Callable[Concatenate[Any, Any, _Pss], _T]],
|
|
394
|
+
/,
|
|
395
|
+
a: ArrayLike,
|
|
396
|
+
b: ArrayLike,
|
|
397
|
+
*args: _Pss.args,
|
|
398
|
+
**kwargs: _Pss.kwargs,
|
|
399
|
+
) -> _T: ...
|
|
400
|
+
|
|
401
|
+
# NOTE: We cannot meaningfully annotate the return (d)types of these methods until
|
|
402
|
+
# the signatures of the corresponding `numpy.ufunc` methods are specified.
|
|
403
|
+
def reduce(self, /, target: ArrayLike, axis: SupportsIndex = 0, dtype: DTypeLike | None = None) -> Incomplete: ...
|
|
404
|
+
def outer(self, /, a: ArrayLike, b: ArrayLike) -> _MaskedArray[Incomplete]: ...
|
|
405
|
+
def accumulate(self, /, target: ArrayLike, axis: SupportsIndex = 0) -> _MaskedArray[Incomplete]: ...
|
|
406
|
+
|
|
407
|
+
# not generic at runtime
|
|
408
|
+
class _DomainedBinaryOperation(_MaskedUFunc[_UFuncT_co], Generic[_UFuncT_co]):
|
|
409
|
+
domain: Final[_DomainCallable]
|
|
410
|
+
fillx: Final[_FillValue]
|
|
411
|
+
filly: Final[_FillValue]
|
|
412
|
+
|
|
413
|
+
def __init__(
|
|
414
|
+
self,
|
|
415
|
+
/,
|
|
416
|
+
dbfunc: _UFuncT_co,
|
|
417
|
+
domain: _DomainCallable,
|
|
418
|
+
fillx: _FillValue = 0,
|
|
419
|
+
filly: _FillValue = 0,
|
|
420
|
+
) -> None: ...
|
|
421
|
+
|
|
422
|
+
# NOTE: See the comment in `_MaskedUnaryOperation.__call__`
|
|
423
|
+
def __call__(
|
|
424
|
+
self: _DomainedBinaryOperation[Callable[Concatenate[Any, Any, _Pss], _T]],
|
|
425
|
+
/,
|
|
426
|
+
a: ArrayLike,
|
|
427
|
+
b: ArrayLike,
|
|
428
|
+
*args: _Pss.args,
|
|
429
|
+
**kwargs: _Pss.kwargs,
|
|
430
|
+
) -> _T: ...
|
|
431
|
+
|
|
432
|
+
# not generic at runtime
|
|
433
|
+
class _extrema_operation(_MaskedUFunc[_UFuncT_co], Generic[_UFuncT_co]):
|
|
434
|
+
compare: Final[_MaskedBinaryOperation]
|
|
435
|
+
fill_value_func: Final[_FillValueCallable]
|
|
436
|
+
|
|
437
|
+
def __init__(
|
|
438
|
+
self,
|
|
439
|
+
/,
|
|
440
|
+
ufunc: _UFuncT_co,
|
|
441
|
+
compare: _MaskedBinaryOperation,
|
|
442
|
+
fill_value: _FillValueCallable,
|
|
443
|
+
) -> None: ...
|
|
444
|
+
|
|
445
|
+
# NOTE: This class is only used internally for `maximum` and `minimum`, so we are
|
|
446
|
+
# able to annotate the `__call__` method specifically for those two functions.
|
|
447
|
+
@overload
|
|
448
|
+
def __call__(self, /, a: _ArrayLike[_ScalarT], b: _ArrayLike[_ScalarT]) -> _MaskedArray[_ScalarT]: ...
|
|
449
|
+
@overload
|
|
450
|
+
def __call__(self, /, a: ArrayLike, b: ArrayLike) -> _MaskedArray[Incomplete]: ...
|
|
451
|
+
|
|
452
|
+
# NOTE: We cannot meaningfully annotate the return (d)types of these methods until
|
|
453
|
+
# the signatures of the corresponding `numpy.ufunc` methods are specified.
|
|
454
|
+
def reduce(self, /, target: ArrayLike, axis: SupportsIndex | _NoValueType = ...) -> Incomplete: ...
|
|
455
|
+
def outer(self, /, a: ArrayLike, b: ArrayLike) -> _MaskedArray[Incomplete]: ...
|
|
456
|
+
|
|
457
|
+
@final
|
|
458
|
+
class _MaskedPrintOption:
|
|
459
|
+
_display: str
|
|
460
|
+
_enabled: bool | Literal[0, 1]
|
|
461
|
+
def __init__(self, /, display: str) -> None: ...
|
|
462
|
+
def display(self, /) -> str: ...
|
|
463
|
+
def set_display(self, /, s: str) -> None: ...
|
|
464
|
+
def enabled(self, /) -> bool: ...
|
|
465
|
+
def enable(self, /, shrink: bool | Literal[0, 1] = 1) -> None: ...
|
|
466
|
+
|
|
467
|
+
masked_print_option: Final[_MaskedPrintOption] = ...
|
|
468
|
+
|
|
469
|
+
exp: _MaskedUnaryOperation = ...
|
|
470
|
+
conjugate: _MaskedUnaryOperation = ...
|
|
471
|
+
sin: _MaskedUnaryOperation = ...
|
|
472
|
+
cos: _MaskedUnaryOperation = ...
|
|
473
|
+
arctan: _MaskedUnaryOperation = ...
|
|
474
|
+
arcsinh: _MaskedUnaryOperation = ...
|
|
475
|
+
sinh: _MaskedUnaryOperation = ...
|
|
476
|
+
cosh: _MaskedUnaryOperation = ...
|
|
477
|
+
tanh: _MaskedUnaryOperation = ...
|
|
478
|
+
abs: _MaskedUnaryOperation = ...
|
|
479
|
+
absolute: _MaskedUnaryOperation = ...
|
|
480
|
+
angle: _MaskedUnaryOperation = ...
|
|
481
|
+
fabs: _MaskedUnaryOperation = ...
|
|
482
|
+
negative: _MaskedUnaryOperation = ...
|
|
483
|
+
floor: _MaskedUnaryOperation = ...
|
|
484
|
+
ceil: _MaskedUnaryOperation = ...
|
|
485
|
+
around: _MaskedUnaryOperation = ...
|
|
486
|
+
logical_not: _MaskedUnaryOperation = ...
|
|
487
|
+
sqrt: _MaskedUnaryOperation = ...
|
|
488
|
+
log: _MaskedUnaryOperation = ...
|
|
489
|
+
log2: _MaskedUnaryOperation = ...
|
|
490
|
+
log10: _MaskedUnaryOperation = ...
|
|
491
|
+
tan: _MaskedUnaryOperation = ...
|
|
492
|
+
arcsin: _MaskedUnaryOperation = ...
|
|
493
|
+
arccos: _MaskedUnaryOperation = ...
|
|
494
|
+
arccosh: _MaskedUnaryOperation = ...
|
|
495
|
+
arctanh: _MaskedUnaryOperation = ...
|
|
496
|
+
|
|
497
|
+
add: _MaskedBinaryOperation = ...
|
|
498
|
+
subtract: _MaskedBinaryOperation = ...
|
|
499
|
+
multiply: _MaskedBinaryOperation = ...
|
|
500
|
+
arctan2: _MaskedBinaryOperation = ...
|
|
501
|
+
equal: _MaskedBinaryOperation = ...
|
|
502
|
+
not_equal: _MaskedBinaryOperation = ...
|
|
503
|
+
less_equal: _MaskedBinaryOperation = ...
|
|
504
|
+
greater_equal: _MaskedBinaryOperation = ...
|
|
505
|
+
less: _MaskedBinaryOperation = ...
|
|
506
|
+
greater: _MaskedBinaryOperation = ...
|
|
507
|
+
logical_and: _MaskedBinaryOperation = ...
|
|
508
|
+
def alltrue(target: ArrayLike, axis: SupportsIndex | None = 0, dtype: _DTypeLikeBool | None = None) -> Incomplete: ...
|
|
509
|
+
logical_or: _MaskedBinaryOperation = ...
|
|
510
|
+
def sometrue(target: ArrayLike, axis: SupportsIndex | None = 0, dtype: _DTypeLikeBool | None = None) -> Incomplete: ...
|
|
511
|
+
logical_xor: _MaskedBinaryOperation = ...
|
|
512
|
+
bitwise_and: _MaskedBinaryOperation = ...
|
|
513
|
+
bitwise_or: _MaskedBinaryOperation = ...
|
|
514
|
+
bitwise_xor: _MaskedBinaryOperation = ...
|
|
515
|
+
hypot: _MaskedBinaryOperation = ...
|
|
516
|
+
|
|
517
|
+
divide: _DomainedBinaryOperation = ...
|
|
518
|
+
true_divide: _DomainedBinaryOperation = ...
|
|
519
|
+
floor_divide: _DomainedBinaryOperation = ...
|
|
520
|
+
remainder: _DomainedBinaryOperation = ...
|
|
521
|
+
fmod: _DomainedBinaryOperation = ...
|
|
522
|
+
mod: _DomainedBinaryOperation = ...
|
|
523
|
+
|
|
524
|
+
# `obj` can be anything (even `object()`), and is too "flexible", so we can't
|
|
525
|
+
# meaningfully annotate it, or its return type.
|
|
526
|
+
def default_fill_value(obj: object) -> Any: ...
|
|
527
|
+
def minimum_fill_value(obj: object) -> Any: ...
|
|
528
|
+
def maximum_fill_value(obj: object) -> Any: ...
|
|
529
|
+
|
|
530
|
+
#
|
|
531
|
+
@overload # returns `a.fill_value` if `a` is a `MaskedArray`
|
|
532
|
+
def get_fill_value(a: _MaskedArray[_ScalarT]) -> _ScalarT: ...
|
|
533
|
+
@overload # otherwise returns `default_fill_value(a)`
|
|
534
|
+
def get_fill_value(a: object) -> Any: ...
|
|
535
|
+
|
|
536
|
+
# this is a noop if `a` isn't a `MaskedArray`, so we only accept `MaskedArray` input
|
|
537
|
+
def set_fill_value(a: MaskedArray, fill_value: _ScalarLike_co) -> None: ...
|
|
538
|
+
|
|
539
|
+
# the return type depends on the *values* of `a` and `b` (which cannot be known
|
|
540
|
+
# statically), which is why we need to return an awkward `_ | None`
|
|
541
|
+
@overload
|
|
542
|
+
def common_fill_value(a: _MaskedArray[_ScalarT], b: MaskedArray) -> _ScalarT | None: ...
|
|
543
|
+
@overload
|
|
544
|
+
def common_fill_value(a: object, b: object) -> Any: ...
|
|
545
|
+
|
|
546
|
+
# keep in sync with `fix_invalid`, but return `ndarray` instead of `MaskedArray`
|
|
547
|
+
@overload
|
|
548
|
+
def filled(a: ndarray[_ShapeT, _DTypeT], fill_value: _ScalarLike_co | None = None) -> ndarray[_ShapeT, _DTypeT]: ...
|
|
549
|
+
@overload
|
|
550
|
+
def filled(a: _ArrayLike[_ScalarT], fill_value: _ScalarLike_co | None = None) -> NDArray[_ScalarT]: ...
|
|
551
|
+
@overload
|
|
552
|
+
def filled(a: ArrayLike, fill_value: _ScalarLike_co | None = None) -> NDArray[Incomplete]: ...
|
|
553
|
+
|
|
554
|
+
# keep in sync with `filled`, but return `MaskedArray` instead of `ndarray`
|
|
555
|
+
@overload
|
|
556
|
+
def fix_invalid(
|
|
557
|
+
a: np.ndarray[_ShapeT, _DTypeT],
|
|
558
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
559
|
+
copy: bool = True,
|
|
560
|
+
fill_value: _ScalarLike_co | None = None,
|
|
561
|
+
) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
562
|
+
@overload
|
|
563
|
+
def fix_invalid(
|
|
564
|
+
a: _ArrayLike[_ScalarT],
|
|
565
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
566
|
+
copy: bool = True,
|
|
567
|
+
fill_value: _ScalarLike_co | None = None,
|
|
568
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
569
|
+
@overload
|
|
570
|
+
def fix_invalid(
|
|
571
|
+
a: ArrayLike,
|
|
572
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
573
|
+
copy: bool = True,
|
|
574
|
+
fill_value: _ScalarLike_co | None = None,
|
|
575
|
+
) -> _MaskedArray[Incomplete]: ...
|
|
576
|
+
|
|
577
|
+
#
|
|
578
|
+
def get_masked_subclass(*arrays: object) -> type[MaskedArray]: ...
|
|
579
|
+
|
|
580
|
+
#
|
|
581
|
+
@overload
|
|
582
|
+
def getdata(a: np.ndarray[_ShapeT, _DTypeT], subok: bool = True) -> np.ndarray[_ShapeT, _DTypeT]: ...
|
|
583
|
+
@overload
|
|
584
|
+
def getdata(a: _ArrayLike[_ScalarT], subok: bool = True) -> NDArray[_ScalarT]: ...
|
|
585
|
+
@overload
|
|
586
|
+
def getdata(a: ArrayLike, subok: bool = True) -> NDArray[Incomplete]: ...
|
|
587
|
+
|
|
588
|
+
get_data = getdata
|
|
589
|
+
|
|
590
|
+
#
|
|
591
|
+
@overload
|
|
592
|
+
def getmask(a: _ScalarLike_co) -> _NoMaskType: ...
|
|
593
|
+
@overload
|
|
594
|
+
def getmask(a: MaskedArray[_ShapeT, Any]) -> _MaskArray[_ShapeT] | _NoMaskType: ...
|
|
595
|
+
@overload
|
|
596
|
+
def getmask(a: ArrayLike) -> _MaskArray | _NoMaskType: ...
|
|
597
|
+
|
|
598
|
+
get_mask = getmask
|
|
599
|
+
|
|
600
|
+
# like `getmask`, but instead of `nomask` returns `make_mask_none(arr, arr.dtype?)`
|
|
601
|
+
@overload
|
|
602
|
+
def getmaskarray(arr: _ScalarLike_co) -> _MaskArray[tuple[()]]: ...
|
|
603
|
+
@overload
|
|
604
|
+
def getmaskarray(arr: np.ndarray[_ShapeT, Any]) -> _MaskArray[_ShapeT]: ...
|
|
605
|
+
|
|
606
|
+
# It's sufficient for `m` to have dtype with type: `type[np.bool_]`,
|
|
607
|
+
# which isn't necessarily a ndarray. Please open an issue if this causes issues.
|
|
608
|
+
def is_mask(m: object) -> TypeIs[NDArray[bool_]]: ...
|
|
609
|
+
|
|
610
|
+
#
|
|
611
|
+
@overload
|
|
612
|
+
def make_mask_descr(ndtype: _VoidDTypeLike) -> np.dtype[np.void]: ...
|
|
613
|
+
@overload
|
|
614
|
+
def make_mask_descr(ndtype: _DTypeLike[np.generic] | str | type) -> np.dtype[np.bool_]: ...
|
|
615
|
+
|
|
616
|
+
#
|
|
617
|
+
@overload # m is nomask
|
|
618
|
+
def make_mask(
|
|
619
|
+
m: _NoMaskType,
|
|
620
|
+
copy: bool = False,
|
|
621
|
+
shrink: bool = True,
|
|
622
|
+
dtype: _DTypeLikeBool = ...,
|
|
623
|
+
) -> _NoMaskType: ...
|
|
624
|
+
@overload # m: ndarray, shrink=True (default), dtype: bool-like (default)
|
|
625
|
+
def make_mask(
|
|
626
|
+
m: np.ndarray[_ShapeT],
|
|
627
|
+
copy: bool = False,
|
|
628
|
+
shrink: Literal[True] = True,
|
|
629
|
+
dtype: _DTypeLikeBool = ...,
|
|
630
|
+
) -> _MaskArray[_ShapeT] | _NoMaskType: ...
|
|
631
|
+
@overload # m: ndarray, shrink=False (kwarg), dtype: bool-like (default)
|
|
632
|
+
def make_mask(
|
|
633
|
+
m: np.ndarray[_ShapeT],
|
|
634
|
+
copy: bool = False,
|
|
635
|
+
*,
|
|
636
|
+
shrink: Literal[False],
|
|
637
|
+
dtype: _DTypeLikeBool = ...,
|
|
638
|
+
) -> _MaskArray[_ShapeT]: ...
|
|
639
|
+
@overload # m: ndarray, dtype: void-like
|
|
640
|
+
def make_mask(
|
|
641
|
+
m: np.ndarray[_ShapeT],
|
|
642
|
+
copy: bool = False,
|
|
643
|
+
shrink: bool = True,
|
|
644
|
+
*,
|
|
645
|
+
dtype: _DTypeLikeVoid,
|
|
646
|
+
) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ...
|
|
647
|
+
@overload # m: array-like, shrink=True (default), dtype: bool-like (default)
|
|
648
|
+
def make_mask(
|
|
649
|
+
m: ArrayLike,
|
|
650
|
+
copy: bool = False,
|
|
651
|
+
shrink: Literal[True] = True,
|
|
652
|
+
dtype: _DTypeLikeBool = ...,
|
|
653
|
+
) -> _MaskArray | _NoMaskType: ...
|
|
654
|
+
@overload # m: array-like, shrink=False (kwarg), dtype: bool-like (default)
|
|
655
|
+
def make_mask(
|
|
656
|
+
m: ArrayLike,
|
|
657
|
+
copy: bool = False,
|
|
658
|
+
*,
|
|
659
|
+
shrink: Literal[False],
|
|
660
|
+
dtype: _DTypeLikeBool = ...,
|
|
661
|
+
) -> _MaskArray: ...
|
|
662
|
+
@overload # m: array-like, dtype: void-like
|
|
663
|
+
def make_mask(
|
|
664
|
+
m: ArrayLike,
|
|
665
|
+
copy: bool = False,
|
|
666
|
+
shrink: bool = True,
|
|
667
|
+
*,
|
|
668
|
+
dtype: _DTypeLikeVoid,
|
|
669
|
+
) -> NDArray[np.void]: ...
|
|
670
|
+
@overload # fallback
|
|
671
|
+
def make_mask(
|
|
672
|
+
m: ArrayLike,
|
|
673
|
+
copy: bool = False,
|
|
674
|
+
shrink: bool = True,
|
|
675
|
+
*,
|
|
676
|
+
dtype: DTypeLike = ...,
|
|
677
|
+
) -> NDArray[Incomplete] | _NoMaskType: ...
|
|
678
|
+
|
|
679
|
+
#
|
|
680
|
+
@overload # known shape, dtype: unstructured (default)
|
|
681
|
+
def make_mask_none(newshape: _ShapeT, dtype: np.dtype | type | str | None = None) -> _MaskArray[_ShapeT]: ...
|
|
682
|
+
@overload # known shape, dtype: structured
|
|
683
|
+
def make_mask_none(newshape: _ShapeT, dtype: _VoidDTypeLike) -> np.ndarray[_ShapeT, dtype[np.void]]: ...
|
|
684
|
+
@overload # unknown shape, dtype: unstructured (default)
|
|
685
|
+
def make_mask_none(newshape: _ShapeLike, dtype: np.dtype | type | str | None = None) -> _MaskArray: ...
|
|
686
|
+
@overload # unknown shape, dtype: structured
|
|
687
|
+
def make_mask_none(newshape: _ShapeLike, dtype: _VoidDTypeLike) -> NDArray[np.void]: ...
|
|
688
|
+
|
|
689
|
+
#
|
|
690
|
+
@overload # nomask, scalar-like, shrink=True (default)
|
|
691
|
+
def mask_or(
|
|
692
|
+
m1: _NoMaskType | Literal[False],
|
|
693
|
+
m2: _ScalarLike_co,
|
|
694
|
+
copy: bool = False,
|
|
695
|
+
shrink: Literal[True] = True,
|
|
696
|
+
) -> _NoMaskType: ...
|
|
697
|
+
@overload # nomask, scalar-like, shrink=False (kwarg)
|
|
698
|
+
def mask_or(
|
|
699
|
+
m1: _NoMaskType | Literal[False],
|
|
700
|
+
m2: _ScalarLike_co,
|
|
701
|
+
copy: bool = False,
|
|
702
|
+
*,
|
|
703
|
+
shrink: Literal[False],
|
|
704
|
+
) -> _MaskArray[tuple[()]]: ...
|
|
705
|
+
@overload # scalar-like, nomask, shrink=True (default)
|
|
706
|
+
def mask_or(
|
|
707
|
+
m1: _ScalarLike_co,
|
|
708
|
+
m2: _NoMaskType | Literal[False],
|
|
709
|
+
copy: bool = False,
|
|
710
|
+
shrink: Literal[True] = True,
|
|
711
|
+
) -> _NoMaskType: ...
|
|
712
|
+
@overload # scalar-like, nomask, shrink=False (kwarg)
|
|
713
|
+
def mask_or(
|
|
714
|
+
m1: _ScalarLike_co,
|
|
715
|
+
m2: _NoMaskType | Literal[False],
|
|
716
|
+
copy: bool = False,
|
|
717
|
+
*,
|
|
718
|
+
shrink: Literal[False],
|
|
719
|
+
) -> _MaskArray[tuple[()]]: ...
|
|
720
|
+
@overload # ndarray, ndarray | nomask, shrink=True (default)
|
|
721
|
+
def mask_or(
|
|
722
|
+
m1: np.ndarray[_ShapeT, np.dtype[_ScalarT]],
|
|
723
|
+
m2: np.ndarray[_ShapeT, np.dtype[_ScalarT]] | _NoMaskType | Literal[False],
|
|
724
|
+
copy: bool = False,
|
|
725
|
+
shrink: Literal[True] = True,
|
|
726
|
+
) -> _MaskArray[_ShapeT] | _NoMaskType: ...
|
|
727
|
+
@overload # ndarray, ndarray | nomask, shrink=False (kwarg)
|
|
728
|
+
def mask_or(
|
|
729
|
+
m1: np.ndarray[_ShapeT, np.dtype[_ScalarT]],
|
|
730
|
+
m2: np.ndarray[_ShapeT, np.dtype[_ScalarT]] | _NoMaskType | Literal[False],
|
|
731
|
+
copy: bool = False,
|
|
732
|
+
*,
|
|
733
|
+
shrink: Literal[False],
|
|
734
|
+
) -> _MaskArray[_ShapeT]: ...
|
|
735
|
+
@overload # ndarray | nomask, ndarray, shrink=True (default)
|
|
736
|
+
def mask_or(
|
|
737
|
+
m1: np.ndarray[_ShapeT, np.dtype[_ScalarT]] | _NoMaskType | Literal[False],
|
|
738
|
+
m2: np.ndarray[_ShapeT, np.dtype[_ScalarT]],
|
|
739
|
+
copy: bool = False,
|
|
740
|
+
shrink: Literal[True] = True,
|
|
741
|
+
) -> _MaskArray[_ShapeT] | _NoMaskType: ...
|
|
742
|
+
@overload # ndarray | nomask, ndarray, shrink=False (kwarg)
|
|
743
|
+
def mask_or(
|
|
744
|
+
m1: np.ndarray[_ShapeT, np.dtype[_ScalarT]] | _NoMaskType | Literal[False],
|
|
745
|
+
m2: np.ndarray[_ShapeT, np.dtype[_ScalarT]],
|
|
746
|
+
copy: bool = False,
|
|
747
|
+
*,
|
|
748
|
+
shrink: Literal[False],
|
|
749
|
+
) -> _MaskArray[_ShapeT]: ...
|
|
750
|
+
|
|
751
|
+
#
|
|
752
|
+
@overload
|
|
753
|
+
def flatten_mask(mask: np.ndarray[_ShapeT]) -> _MaskArray[_ShapeT]: ...
|
|
754
|
+
@overload
|
|
755
|
+
def flatten_mask(mask: ArrayLike) -> _MaskArray: ...
|
|
756
|
+
|
|
757
|
+
# NOTE: we currently don't know the field types of `void` dtypes, so it's not possible
|
|
758
|
+
# to know the output dtype of the returned array.
|
|
759
|
+
@overload
|
|
760
|
+
def flatten_structured_array(a: MaskedArray[_ShapeT, np.dtype[np.void]]) -> MaskedArray[_ShapeT]: ...
|
|
761
|
+
@overload
|
|
762
|
+
def flatten_structured_array(a: np.ndarray[_ShapeT, np.dtype[np.void]]) -> np.ndarray[_ShapeT]: ...
|
|
763
|
+
@overload # for some reason this accepts unstructured array-likes, hence this fallback overload
|
|
764
|
+
def flatten_structured_array(a: ArrayLike) -> np.ndarray: ...
|
|
765
|
+
|
|
766
|
+
# keep in sync with other the `masked_*` functions
|
|
767
|
+
@overload # known array with known shape and dtype
|
|
768
|
+
def masked_invalid(a: ndarray[_ShapeT, _DTypeT], copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
769
|
+
@overload # array-like of known scalar-type
|
|
770
|
+
def masked_invalid(a: _ArrayLike[_ScalarT], copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
771
|
+
@overload # unknown array-like
|
|
772
|
+
def masked_invalid(a: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
773
|
+
|
|
774
|
+
# keep in sync with other the `masked_*` functions
|
|
775
|
+
@overload # array-like of known scalar-type
|
|
776
|
+
def masked_where(
|
|
777
|
+
condition: _ArrayLikeBool_co, a: ndarray[_ShapeT, _DTypeT], copy: bool = True
|
|
778
|
+
) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
779
|
+
@overload # array-like of known scalar-type
|
|
780
|
+
def masked_where(condition: _ArrayLikeBool_co, a: _ArrayLike[_ScalarT], copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
781
|
+
@overload # unknown array-like
|
|
782
|
+
def masked_where(condition: _ArrayLikeBool_co, a: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
783
|
+
|
|
784
|
+
# keep in sync with other the `masked_*` functions
|
|
785
|
+
@overload # known array with known shape and dtype
|
|
786
|
+
def masked_greater(x: ndarray[_ShapeT, _DTypeT], value: ArrayLike, copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
787
|
+
@overload # array-like of known scalar-type
|
|
788
|
+
def masked_greater(x: _ArrayLike[_ScalarT], value: ArrayLike, copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
789
|
+
@overload # unknown array-like
|
|
790
|
+
def masked_greater(x: ArrayLike, value: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
791
|
+
|
|
792
|
+
# keep in sync with other the `masked_*` functions
|
|
793
|
+
@overload # known array with known shape and dtype
|
|
794
|
+
def masked_greater_equal(x: ndarray[_ShapeT, _DTypeT], value: ArrayLike, copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
795
|
+
@overload # array-like of known scalar-type
|
|
796
|
+
def masked_greater_equal(x: _ArrayLike[_ScalarT], value: ArrayLike, copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
797
|
+
@overload # unknown array-like
|
|
798
|
+
def masked_greater_equal(x: ArrayLike, value: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
799
|
+
|
|
800
|
+
# keep in sync with other the `masked_*` functions
|
|
801
|
+
@overload # known array with known shape and dtype
|
|
802
|
+
def masked_less(x: ndarray[_ShapeT, _DTypeT], value: ArrayLike, copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
803
|
+
@overload # array-like of known scalar-type
|
|
804
|
+
def masked_less(x: _ArrayLike[_ScalarT], value: ArrayLike, copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
805
|
+
@overload # unknown array-like
|
|
806
|
+
def masked_less(x: ArrayLike, value: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
807
|
+
|
|
808
|
+
# keep in sync with other the `masked_*` functions
|
|
809
|
+
@overload # known array with known shape and dtype
|
|
810
|
+
def masked_less_equal(x: ndarray[_ShapeT, _DTypeT], value: ArrayLike, copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
811
|
+
@overload # array-like of known scalar-type
|
|
812
|
+
def masked_less_equal(x: _ArrayLike[_ScalarT], value: ArrayLike, copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
813
|
+
@overload # unknown array-like
|
|
814
|
+
def masked_less_equal(x: ArrayLike, value: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
815
|
+
|
|
816
|
+
# keep in sync with other the `masked_*` functions
|
|
817
|
+
@overload # known array with known shape and dtype
|
|
818
|
+
def masked_not_equal(x: ndarray[_ShapeT, _DTypeT], value: ArrayLike, copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
819
|
+
@overload # array-like of known scalar-type
|
|
820
|
+
def masked_not_equal(x: _ArrayLike[_ScalarT], value: ArrayLike, copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
821
|
+
@overload # unknown array-like
|
|
822
|
+
def masked_not_equal(x: ArrayLike, value: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
823
|
+
|
|
824
|
+
# keep in sync with other the `masked_*` functions
|
|
825
|
+
@overload # known array with known shape and dtype
|
|
826
|
+
def masked_equal(x: ndarray[_ShapeT, _DTypeT], value: ArrayLike, copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
827
|
+
@overload # array-like of known scalar-type
|
|
828
|
+
def masked_equal(x: _ArrayLike[_ScalarT], value: ArrayLike, copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
829
|
+
@overload # unknown array-like
|
|
830
|
+
def masked_equal(x: ArrayLike, value: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
831
|
+
|
|
832
|
+
# keep in sync with other the `masked_*` functions
|
|
833
|
+
@overload # known array with known shape and dtype
|
|
834
|
+
def masked_inside(x: ndarray[_ShapeT, _DTypeT], v1: ArrayLike, v2: ArrayLike, copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
835
|
+
@overload # array-like of known scalar-type
|
|
836
|
+
def masked_inside(x: _ArrayLike[_ScalarT], v1: ArrayLike, v2: ArrayLike, copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
837
|
+
@overload # unknown array-like
|
|
838
|
+
def masked_inside(x: ArrayLike, v1: ArrayLike, v2: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
839
|
+
|
|
840
|
+
# keep in sync with other the `masked_*` functions
|
|
841
|
+
@overload # known array with known shape and dtype
|
|
842
|
+
def masked_outside(x: ndarray[_ShapeT, _DTypeT], v1: ArrayLike, v2: ArrayLike, copy: bool = True) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
843
|
+
@overload # array-like of known scalar-type
|
|
844
|
+
def masked_outside(x: _ArrayLike[_ScalarT], v1: ArrayLike, v2: ArrayLike, copy: bool = True) -> _MaskedArray[_ScalarT]: ...
|
|
845
|
+
@overload # unknown array-like
|
|
846
|
+
def masked_outside(x: ArrayLike, v1: ArrayLike, v2: ArrayLike, copy: bool = True) -> _MaskedArray[Incomplete]: ...
|
|
847
|
+
|
|
848
|
+
# only intended for object arrays, so we assume that's how it's always used in practice
|
|
849
|
+
@overload
|
|
850
|
+
def masked_object(
|
|
851
|
+
x: np.ndarray[_ShapeT, np.dtype[np.object_]],
|
|
852
|
+
value: object,
|
|
853
|
+
copy: bool = True,
|
|
854
|
+
shrink: bool = True,
|
|
855
|
+
) -> MaskedArray[_ShapeT, np.dtype[np.object_]]: ...
|
|
856
|
+
@overload
|
|
857
|
+
def masked_object(
|
|
858
|
+
x: _ArrayLikeObject_co,
|
|
859
|
+
value: object,
|
|
860
|
+
copy: bool = True,
|
|
861
|
+
shrink: bool = True,
|
|
862
|
+
) -> _MaskedArray[np.object_]: ...
|
|
863
|
+
|
|
864
|
+
# keep roughly in sync with `filled`
|
|
865
|
+
@overload
|
|
866
|
+
def masked_values(
|
|
867
|
+
x: np.ndarray[_ShapeT, _DTypeT],
|
|
868
|
+
value: _ScalarLike_co,
|
|
869
|
+
rtol: float = 1e-5,
|
|
870
|
+
atol: float = 1e-8,
|
|
871
|
+
copy: bool = True,
|
|
872
|
+
shrink: bool = True
|
|
873
|
+
) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
874
|
+
@overload
|
|
875
|
+
def masked_values(
|
|
876
|
+
x: _ArrayLike[_ScalarT],
|
|
877
|
+
value: _ScalarLike_co,
|
|
878
|
+
rtol: float = 1e-5,
|
|
879
|
+
atol: float = 1e-8,
|
|
880
|
+
copy: bool = True,
|
|
881
|
+
shrink: bool = True
|
|
882
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
883
|
+
@overload
|
|
884
|
+
def masked_values(
|
|
885
|
+
x: ArrayLike,
|
|
886
|
+
value: _ScalarLike_co,
|
|
887
|
+
rtol: float = 1e-5,
|
|
888
|
+
atol: float = 1e-8,
|
|
889
|
+
copy: bool = True,
|
|
890
|
+
shrink: bool = True
|
|
891
|
+
) -> _MaskedArray[Incomplete]: ...
|
|
892
|
+
|
|
893
|
+
# TODO: Support non-boolean mask dtypes, such as `np.void`. This will require adding an
|
|
894
|
+
# additional generic type parameter to (at least) `MaskedArray` and `MaskedIterator` to
|
|
895
|
+
# hold the dtype of the mask.
|
|
896
|
+
|
|
897
|
+
class MaskedIterator(Generic[_ShapeT_co, _DTypeT_co]):
|
|
898
|
+
ma: MaskedArray[_ShapeT_co, _DTypeT_co] # readonly
|
|
899
|
+
dataiter: np.flatiter[ndarray[_ShapeT_co, _DTypeT_co]] # readonly
|
|
900
|
+
maskiter: Final[np.flatiter[NDArray[np.bool]]]
|
|
901
|
+
|
|
902
|
+
def __init__(self, ma: MaskedArray[_ShapeT_co, _DTypeT_co]) -> None: ...
|
|
903
|
+
def __iter__(self) -> Self: ...
|
|
904
|
+
|
|
905
|
+
# Similar to `MaskedArray.__getitem__` but without the `void` case.
|
|
906
|
+
@overload
|
|
907
|
+
def __getitem__(self, indx: _ArrayInt_co | tuple[_ArrayInt_co, ...], /) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
908
|
+
@overload
|
|
909
|
+
def __getitem__(self, indx: SupportsIndex | tuple[SupportsIndex, ...], /) -> Incomplete: ...
|
|
910
|
+
@overload
|
|
911
|
+
def __getitem__(self, indx: _ToIndices, /) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
912
|
+
|
|
913
|
+
# Similar to `ndarray.__setitem__` but without the `void` case.
|
|
914
|
+
@overload # flexible | object_ | bool
|
|
915
|
+
def __setitem__(
|
|
916
|
+
self: MaskedIterator[Any, dtype[flexible | object_ | np.bool] | dtypes.StringDType],
|
|
917
|
+
index: _ToIndices,
|
|
918
|
+
value: object,
|
|
919
|
+
/,
|
|
920
|
+
) -> None: ...
|
|
921
|
+
@overload # integer
|
|
922
|
+
def __setitem__(
|
|
923
|
+
self: MaskedIterator[Any, dtype[integer]],
|
|
924
|
+
index: _ToIndices,
|
|
925
|
+
value: _ConvertibleToInt | _NestedSequence[_ConvertibleToInt] | _ArrayLikeInt_co,
|
|
926
|
+
/,
|
|
927
|
+
) -> None: ...
|
|
928
|
+
@overload # floating
|
|
929
|
+
def __setitem__(
|
|
930
|
+
self: MaskedIterator[Any, dtype[floating]],
|
|
931
|
+
index: _ToIndices,
|
|
932
|
+
value: _ConvertibleToFloat | _NestedSequence[_ConvertibleToFloat | None] | _ArrayLikeFloat_co | None,
|
|
933
|
+
/,
|
|
934
|
+
) -> None: ...
|
|
935
|
+
@overload # complexfloating
|
|
936
|
+
def __setitem__(
|
|
937
|
+
self: MaskedIterator[Any, dtype[complexfloating]],
|
|
938
|
+
index: _ToIndices,
|
|
939
|
+
value: _ConvertibleToComplex | _NestedSequence[_ConvertibleToComplex | None] | _ArrayLikeNumber_co | None,
|
|
940
|
+
/,
|
|
941
|
+
) -> None: ...
|
|
942
|
+
@overload # timedelta64
|
|
943
|
+
def __setitem__(
|
|
944
|
+
self: MaskedIterator[Any, dtype[timedelta64]],
|
|
945
|
+
index: _ToIndices,
|
|
946
|
+
value: _ConvertibleToTD64 | _NestedSequence[_ConvertibleToTD64],
|
|
947
|
+
/,
|
|
948
|
+
) -> None: ...
|
|
949
|
+
@overload # datetime64
|
|
950
|
+
def __setitem__(
|
|
951
|
+
self: MaskedIterator[Any, dtype[datetime64]],
|
|
952
|
+
index: _ToIndices,
|
|
953
|
+
value: _ConvertibleToDT64 | _NestedSequence[_ConvertibleToDT64],
|
|
954
|
+
/,
|
|
955
|
+
) -> None: ...
|
|
956
|
+
@overload # catch-all
|
|
957
|
+
def __setitem__(self, index: _ToIndices, value: ArrayLike, /) -> None: ...
|
|
958
|
+
|
|
959
|
+
# TODO: Returns `mvoid[(), _DTypeT_co]` for masks with `np.void` dtype.
|
|
960
|
+
def __next__(self: MaskedIterator[Any, np.dtype[_ScalarT]]) -> _ScalarT: ...
|
|
961
|
+
|
|
962
|
+
class MaskedArray(ndarray[_ShapeT_co, _DTypeT_co]):
|
|
963
|
+
__array_priority__: Final[Literal[15]] = 15
|
|
964
|
+
|
|
965
|
+
@overload
|
|
966
|
+
def __new__(
|
|
967
|
+
cls,
|
|
968
|
+
data: _ArrayLike[_ScalarT],
|
|
969
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
970
|
+
dtype: None = None,
|
|
971
|
+
copy: bool = False,
|
|
972
|
+
subok: bool = True,
|
|
973
|
+
ndmin: int = 0,
|
|
974
|
+
fill_value: _ScalarLike_co | None = None,
|
|
975
|
+
keep_mask: bool = True,
|
|
976
|
+
hard_mask: bool | None = None,
|
|
977
|
+
shrink: bool = True,
|
|
978
|
+
order: _OrderKACF | None = None,
|
|
979
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
980
|
+
@overload
|
|
981
|
+
def __new__(
|
|
982
|
+
cls,
|
|
983
|
+
data: object,
|
|
984
|
+
mask: _ArrayLikeBool_co,
|
|
985
|
+
dtype: _DTypeLike[_ScalarT],
|
|
986
|
+
copy: bool = False,
|
|
987
|
+
subok: bool = True,
|
|
988
|
+
ndmin: int = 0,
|
|
989
|
+
fill_value: _ScalarLike_co | None = None,
|
|
990
|
+
keep_mask: bool = True,
|
|
991
|
+
hard_mask: bool | None = None,
|
|
992
|
+
shrink: bool = True,
|
|
993
|
+
order: _OrderKACF | None = None,
|
|
994
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
995
|
+
@overload
|
|
996
|
+
def __new__(
|
|
997
|
+
cls,
|
|
998
|
+
data: object,
|
|
999
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
1000
|
+
*,
|
|
1001
|
+
dtype: _DTypeLike[_ScalarT],
|
|
1002
|
+
copy: bool = False,
|
|
1003
|
+
subok: bool = True,
|
|
1004
|
+
ndmin: int = 0,
|
|
1005
|
+
fill_value: _ScalarLike_co | None = None,
|
|
1006
|
+
keep_mask: bool = True,
|
|
1007
|
+
hard_mask: bool | None = None,
|
|
1008
|
+
shrink: bool = True,
|
|
1009
|
+
order: _OrderKACF | None = None,
|
|
1010
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
1011
|
+
@overload
|
|
1012
|
+
def __new__(
|
|
1013
|
+
cls,
|
|
1014
|
+
data: object = None,
|
|
1015
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
1016
|
+
dtype: DTypeLike | None = None,
|
|
1017
|
+
copy: bool = False,
|
|
1018
|
+
subok: bool = True,
|
|
1019
|
+
ndmin: int = 0,
|
|
1020
|
+
fill_value: _ScalarLike_co | None = None,
|
|
1021
|
+
keep_mask: bool = True,
|
|
1022
|
+
hard_mask: bool | None = None,
|
|
1023
|
+
shrink: bool = True,
|
|
1024
|
+
order: _OrderKACF | None = None,
|
|
1025
|
+
) -> _MaskedArray[Any]: ...
|
|
1026
|
+
|
|
1027
|
+
def __array_wrap__(
|
|
1028
|
+
self,
|
|
1029
|
+
obj: ndarray[_ShapeT, _DTypeT],
|
|
1030
|
+
context: tuple[ufunc, tuple[Any, ...], int] | None = None,
|
|
1031
|
+
return_scalar: bool = False,
|
|
1032
|
+
) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
1033
|
+
|
|
1034
|
+
@overload # type: ignore[override] # ()
|
|
1035
|
+
def view(self, /, dtype: None = None, type: None = None, fill_value: _ScalarLike_co | None = None) -> Self: ...
|
|
1036
|
+
@overload # (dtype: DTypeT)
|
|
1037
|
+
def view(
|
|
1038
|
+
self,
|
|
1039
|
+
/,
|
|
1040
|
+
dtype: _DTypeT | _HasDType[_DTypeT],
|
|
1041
|
+
type: None = None,
|
|
1042
|
+
fill_value: _ScalarLike_co | None = None
|
|
1043
|
+
) -> MaskedArray[_ShapeT_co, _DTypeT]: ...
|
|
1044
|
+
@overload # (dtype: dtype[ScalarT])
|
|
1045
|
+
def view(
|
|
1046
|
+
self,
|
|
1047
|
+
/,
|
|
1048
|
+
dtype: _DTypeLike[_ScalarT],
|
|
1049
|
+
type: None = None,
|
|
1050
|
+
fill_value: _ScalarLike_co | None = None
|
|
1051
|
+
) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ...
|
|
1052
|
+
@overload # ([dtype: _, ]*, type: ArrayT)
|
|
1053
|
+
def view(
|
|
1054
|
+
self,
|
|
1055
|
+
/,
|
|
1056
|
+
dtype: DTypeLike | None = None,
|
|
1057
|
+
*,
|
|
1058
|
+
type: type[_ArrayT],
|
|
1059
|
+
fill_value: _ScalarLike_co | None = None
|
|
1060
|
+
) -> _ArrayT: ...
|
|
1061
|
+
@overload # (dtype: _, type: ArrayT)
|
|
1062
|
+
def view(self, /, dtype: DTypeLike | None, type: type[_ArrayT], fill_value: _ScalarLike_co | None = None) -> _ArrayT: ...
|
|
1063
|
+
@overload # (dtype: ArrayT, /)
|
|
1064
|
+
def view(self, /, dtype: type[_ArrayT], type: None = None, fill_value: _ScalarLike_co | None = None) -> _ArrayT: ...
|
|
1065
|
+
@overload # (dtype: ?)
|
|
1066
|
+
def view(
|
|
1067
|
+
self,
|
|
1068
|
+
/,
|
|
1069
|
+
# `_VoidDTypeLike | str | None` is like `DTypeLike` but without `_DTypeLike[Any]` to avoid
|
|
1070
|
+
# overlaps with previous overloads.
|
|
1071
|
+
dtype: _VoidDTypeLike | str | None,
|
|
1072
|
+
type: None = None,
|
|
1073
|
+
fill_value: _ScalarLike_co | None = None
|
|
1074
|
+
) -> MaskedArray[_ShapeT_co, dtype]: ...
|
|
1075
|
+
|
|
1076
|
+
# Keep in sync with `ndarray.__getitem__`
|
|
1077
|
+
@overload
|
|
1078
|
+
def __getitem__(self, key: _ArrayInt_co | tuple[_ArrayInt_co, ...], /) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
1079
|
+
@overload
|
|
1080
|
+
def __getitem__(self, key: SupportsIndex | tuple[SupportsIndex, ...], /) -> Any: ...
|
|
1081
|
+
@overload
|
|
1082
|
+
def __getitem__(self, key: _ToIndices, /) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
1083
|
+
@overload
|
|
1084
|
+
def __getitem__(self: _MaskedArray[void], indx: str, /) -> MaskedArray[_ShapeT_co, dtype]: ...
|
|
1085
|
+
@overload
|
|
1086
|
+
def __getitem__(self: _MaskedArray[void], indx: list[str], /) -> MaskedArray[_ShapeT_co, dtype[void]]: ...
|
|
1087
|
+
|
|
1088
|
+
@property
|
|
1089
|
+
def shape(self) -> _ShapeT_co: ...
|
|
1090
|
+
@shape.setter # type: ignore[override]
|
|
1091
|
+
def shape(self: MaskedArray[_ShapeT, Any], shape: _ShapeT, /) -> None: ...
|
|
1092
|
+
|
|
1093
|
+
def __setmask__(self, mask: _ArrayLikeBool_co, copy: bool = False) -> None: ...
|
|
1094
|
+
@property
|
|
1095
|
+
def mask(self) -> np.ndarray[_ShapeT_co, dtype[MaskType]] | MaskType: ...
|
|
1096
|
+
@mask.setter
|
|
1097
|
+
def mask(self, value: _ArrayLikeBool_co, /) -> None: ...
|
|
1098
|
+
@property
|
|
1099
|
+
def recordmask(self) -> np.ndarray[_ShapeT_co, dtype[MaskType]] | MaskType: ...
|
|
1100
|
+
@recordmask.setter
|
|
1101
|
+
def recordmask(self, mask: Never, /) -> NoReturn: ...
|
|
1102
|
+
def harden_mask(self) -> Self: ...
|
|
1103
|
+
def soften_mask(self) -> Self: ...
|
|
1104
|
+
@property
|
|
1105
|
+
def hardmask(self) -> bool: ...
|
|
1106
|
+
def unshare_mask(self) -> Self: ...
|
|
1107
|
+
@property
|
|
1108
|
+
def sharedmask(self) -> bool: ...
|
|
1109
|
+
def shrink_mask(self) -> Self: ...
|
|
1110
|
+
|
|
1111
|
+
@property
|
|
1112
|
+
def baseclass(self) -> type[ndarray]: ...
|
|
1113
|
+
|
|
1114
|
+
@property
|
|
1115
|
+
def _data(self) -> ndarray[_ShapeT_co, _DTypeT_co]: ...
|
|
1116
|
+
@property
|
|
1117
|
+
def data(self) -> ndarray[_ShapeT_co, _DTypeT_co]: ... # type: ignore[override]
|
|
1118
|
+
|
|
1119
|
+
@property # type: ignore[override]
|
|
1120
|
+
def flat(self) -> MaskedIterator[_ShapeT_co, _DTypeT_co]: ...
|
|
1121
|
+
@flat.setter
|
|
1122
|
+
def flat(self, value: ArrayLike, /) -> None: ...
|
|
1123
|
+
|
|
1124
|
+
@property
|
|
1125
|
+
def fill_value(self: _MaskedArray[_ScalarT]) -> _ScalarT: ...
|
|
1126
|
+
@fill_value.setter
|
|
1127
|
+
def fill_value(self, value: _ScalarLike_co | None = None, /) -> None: ...
|
|
1128
|
+
|
|
1129
|
+
def get_fill_value(self: _MaskedArray[_ScalarT]) -> _ScalarT: ...
|
|
1130
|
+
def set_fill_value(self, /, value: _ScalarLike_co | None = None) -> None: ...
|
|
1131
|
+
|
|
1132
|
+
def filled(self, /, fill_value: _ScalarLike_co | None = None) -> ndarray[_ShapeT_co, _DTypeT_co]: ...
|
|
1133
|
+
def compressed(self) -> ndarray[tuple[int], _DTypeT_co]: ...
|
|
1134
|
+
|
|
1135
|
+
# keep roughly in sync with `ma.core.compress`, but swap the first two arguments
|
|
1136
|
+
@overload # type: ignore[override]
|
|
1137
|
+
def compress(
|
|
1138
|
+
self,
|
|
1139
|
+
condition: _ArrayLikeBool_co,
|
|
1140
|
+
axis: _ShapeLike | None,
|
|
1141
|
+
out: _ArrayT
|
|
1142
|
+
) -> _ArrayT: ...
|
|
1143
|
+
@overload
|
|
1144
|
+
def compress(
|
|
1145
|
+
self,
|
|
1146
|
+
condition: _ArrayLikeBool_co,
|
|
1147
|
+
axis: _ShapeLike | None = None,
|
|
1148
|
+
*,
|
|
1149
|
+
out: _ArrayT
|
|
1150
|
+
) -> _ArrayT: ...
|
|
1151
|
+
@overload
|
|
1152
|
+
def compress(
|
|
1153
|
+
self,
|
|
1154
|
+
condition: _ArrayLikeBool_co,
|
|
1155
|
+
axis: None = None,
|
|
1156
|
+
out: None = None
|
|
1157
|
+
) -> MaskedArray[tuple[int], _DTypeT_co]: ...
|
|
1158
|
+
@overload
|
|
1159
|
+
def compress(
|
|
1160
|
+
self,
|
|
1161
|
+
condition: _ArrayLikeBool_co,
|
|
1162
|
+
axis: _ShapeLike | None = None,
|
|
1163
|
+
out: None = None
|
|
1164
|
+
) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
1165
|
+
|
|
1166
|
+
# TODO: How to deal with the non-commutative nature of `==` and `!=`?
|
|
1167
|
+
# xref numpy/numpy#17368
|
|
1168
|
+
def __eq__(self, other: Incomplete, /) -> Incomplete: ...
|
|
1169
|
+
def __ne__(self, other: Incomplete, /) -> Incomplete: ...
|
|
1170
|
+
|
|
1171
|
+
def __ge__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ... # type: ignore[override]
|
|
1172
|
+
def __gt__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ... # type: ignore[override]
|
|
1173
|
+
def __le__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ... # type: ignore[override]
|
|
1174
|
+
def __lt__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ... # type: ignore[override]
|
|
1175
|
+
|
|
1176
|
+
# Keep in sync with `ndarray.__add__`
|
|
1177
|
+
@overload # type: ignore[override]
|
|
1178
|
+
def __add__(self: _MaskedArray[_NumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_NumberT]]: ...
|
|
1179
|
+
@overload
|
|
1180
|
+
def __add__(self: _MaskedArray[_NumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1181
|
+
@overload
|
|
1182
|
+
def __add__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> _MaskedArray[np.bool]: ... # type: ignore[overload-overlap]
|
|
1183
|
+
@overload
|
|
1184
|
+
def __add__(self: _MaskedArray[np.bool], other: _ArrayLike[_NumberT], /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1185
|
+
@overload
|
|
1186
|
+
def __add__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1187
|
+
@overload
|
|
1188
|
+
def __add__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1189
|
+
@overload
|
|
1190
|
+
def __add__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1191
|
+
@overload
|
|
1192
|
+
def __add__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1193
|
+
@overload
|
|
1194
|
+
def __add__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1195
|
+
@overload
|
|
1196
|
+
def __add__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1197
|
+
@overload
|
|
1198
|
+
def __add__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1199
|
+
@overload
|
|
1200
|
+
def __add__(self: _MaskedArrayComplex_co, other: _ArrayLikeComplex_co, /) -> _MaskedArray[complexfloating]: ... # type: ignore[overload-overlap]
|
|
1201
|
+
@overload
|
|
1202
|
+
def __add__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ... # type: ignore[overload-overlap]
|
|
1203
|
+
@overload
|
|
1204
|
+
def __add__(self: _MaskedArrayTD64_co, other: _ArrayLikeTD64_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1205
|
+
@overload
|
|
1206
|
+
def __add__(self: _MaskedArrayTD64_co, other: _ArrayLikeDT64_co, /) -> _MaskedArray[datetime64]: ...
|
|
1207
|
+
@overload
|
|
1208
|
+
def __add__(self: _MaskedArray[datetime64], other: _ArrayLikeTD64_co, /) -> _MaskedArray[datetime64]: ...
|
|
1209
|
+
@overload
|
|
1210
|
+
def __add__(self: _MaskedArray[bytes_], other: _ArrayLikeBytes_co, /) -> _MaskedArray[bytes_]: ...
|
|
1211
|
+
@overload
|
|
1212
|
+
def __add__(self: _MaskedArray[str_], other: _ArrayLikeStr_co, /) -> _MaskedArray[str_]: ...
|
|
1213
|
+
@overload
|
|
1214
|
+
def __add__(
|
|
1215
|
+
self: MaskedArray[Any, dtypes.StringDType],
|
|
1216
|
+
other: _ArrayLikeStr_co | _ArrayLikeString_co,
|
|
1217
|
+
/,
|
|
1218
|
+
) -> MaskedArray[_AnyShape, dtypes.StringDType]: ...
|
|
1219
|
+
@overload
|
|
1220
|
+
def __add__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1221
|
+
@overload
|
|
1222
|
+
def __add__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1223
|
+
|
|
1224
|
+
# Keep in sync with `ndarray.__radd__`
|
|
1225
|
+
@overload # type: ignore[override] # signature equivalent to __add__
|
|
1226
|
+
def __radd__(self: _MaskedArray[_NumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_NumberT]]: ...
|
|
1227
|
+
@overload
|
|
1228
|
+
def __radd__(self: _MaskedArray[_NumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1229
|
+
@overload
|
|
1230
|
+
def __radd__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> _MaskedArray[np.bool]: ... # type: ignore[overload-overlap]
|
|
1231
|
+
@overload
|
|
1232
|
+
def __radd__(self: _MaskedArray[np.bool], other: _ArrayLike[_NumberT], /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1233
|
+
@overload
|
|
1234
|
+
def __radd__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1235
|
+
@overload
|
|
1236
|
+
def __radd__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1237
|
+
@overload
|
|
1238
|
+
def __radd__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1239
|
+
@overload
|
|
1240
|
+
def __radd__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1241
|
+
@overload
|
|
1242
|
+
def __radd__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1243
|
+
@overload
|
|
1244
|
+
def __radd__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1245
|
+
@overload
|
|
1246
|
+
def __radd__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1247
|
+
@overload
|
|
1248
|
+
def __radd__(self: _MaskedArrayComplex_co, other: _ArrayLikeComplex_co, /) -> _MaskedArray[complexfloating]: ... # type: ignore[overload-overlap]
|
|
1249
|
+
@overload
|
|
1250
|
+
def __radd__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ... # type: ignore[overload-overlap]
|
|
1251
|
+
@overload
|
|
1252
|
+
def __radd__(self: _MaskedArrayTD64_co, other: _ArrayLikeTD64_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1253
|
+
@overload
|
|
1254
|
+
def __radd__(self: _MaskedArrayTD64_co, other: _ArrayLikeDT64_co, /) -> _MaskedArray[datetime64]: ...
|
|
1255
|
+
@overload
|
|
1256
|
+
def __radd__(self: _MaskedArray[datetime64], other: _ArrayLikeTD64_co, /) -> _MaskedArray[datetime64]: ...
|
|
1257
|
+
@overload
|
|
1258
|
+
def __radd__(self: _MaskedArray[bytes_], other: _ArrayLikeBytes_co, /) -> _MaskedArray[bytes_]: ...
|
|
1259
|
+
@overload
|
|
1260
|
+
def __radd__(self: _MaskedArray[str_], other: _ArrayLikeStr_co, /) -> _MaskedArray[str_]: ...
|
|
1261
|
+
@overload
|
|
1262
|
+
def __radd__(
|
|
1263
|
+
self: MaskedArray[Any, dtypes.StringDType],
|
|
1264
|
+
other: _ArrayLikeStr_co | _ArrayLikeString_co,
|
|
1265
|
+
/,
|
|
1266
|
+
) -> MaskedArray[_AnyShape, dtypes.StringDType]: ...
|
|
1267
|
+
@overload
|
|
1268
|
+
def __radd__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1269
|
+
@overload
|
|
1270
|
+
def __radd__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1271
|
+
|
|
1272
|
+
# Keep in sync with `ndarray.__sub__`
|
|
1273
|
+
@overload # type: ignore[override]
|
|
1274
|
+
def __sub__(self: _MaskedArray[_NumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_NumberT]]: ...
|
|
1275
|
+
@overload
|
|
1276
|
+
def __sub__(self: _MaskedArray[_NumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1277
|
+
@overload
|
|
1278
|
+
def __sub__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> NoReturn: ...
|
|
1279
|
+
@overload
|
|
1280
|
+
def __sub__(self: _MaskedArray[np.bool], other: _ArrayLike[_NumberT], /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1281
|
+
@overload
|
|
1282
|
+
def __sub__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1283
|
+
@overload
|
|
1284
|
+
def __sub__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1285
|
+
@overload
|
|
1286
|
+
def __sub__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1287
|
+
@overload
|
|
1288
|
+
def __sub__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1289
|
+
@overload
|
|
1290
|
+
def __sub__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1291
|
+
@overload
|
|
1292
|
+
def __sub__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1293
|
+
@overload
|
|
1294
|
+
def __sub__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1295
|
+
@overload
|
|
1296
|
+
def __sub__(self: _MaskedArrayComplex_co, other: _ArrayLikeComplex_co, /) -> _MaskedArray[complexfloating]: ... # type: ignore[overload-overlap]
|
|
1297
|
+
@overload
|
|
1298
|
+
def __sub__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ... # type: ignore[overload-overlap]
|
|
1299
|
+
@overload
|
|
1300
|
+
def __sub__(self: _MaskedArrayTD64_co, other: _ArrayLikeTD64_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1301
|
+
@overload
|
|
1302
|
+
def __sub__(self: _MaskedArray[datetime64], other: _ArrayLikeTD64_co, /) -> _MaskedArray[datetime64]: ...
|
|
1303
|
+
@overload
|
|
1304
|
+
def __sub__(self: _MaskedArray[datetime64], other: _ArrayLikeDT64_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1305
|
+
@overload
|
|
1306
|
+
def __sub__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1307
|
+
@overload
|
|
1308
|
+
def __sub__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1309
|
+
|
|
1310
|
+
# Keep in sync with `ndarray.__rsub__`
|
|
1311
|
+
@overload # type: ignore[override]
|
|
1312
|
+
def __rsub__(self: _MaskedArray[_NumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_NumberT]]: ...
|
|
1313
|
+
@overload
|
|
1314
|
+
def __rsub__(self: _MaskedArray[_NumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1315
|
+
@overload
|
|
1316
|
+
def __rsub__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> NoReturn: ...
|
|
1317
|
+
@overload
|
|
1318
|
+
def __rsub__(self: _MaskedArray[np.bool], other: _ArrayLike[_NumberT], /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1319
|
+
@overload
|
|
1320
|
+
def __rsub__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1321
|
+
@overload
|
|
1322
|
+
def __rsub__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1323
|
+
@overload
|
|
1324
|
+
def __rsub__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1325
|
+
@overload
|
|
1326
|
+
def __rsub__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1327
|
+
@overload
|
|
1328
|
+
def __rsub__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1329
|
+
@overload
|
|
1330
|
+
def __rsub__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1331
|
+
@overload
|
|
1332
|
+
def __rsub__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1333
|
+
@overload
|
|
1334
|
+
def __rsub__(self: _MaskedArrayComplex_co, other: _ArrayLikeComplex_co, /) -> _MaskedArray[complexfloating]: ... # type: ignore[overload-overlap]
|
|
1335
|
+
@overload
|
|
1336
|
+
def __rsub__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ... # type: ignore[overload-overlap]
|
|
1337
|
+
@overload
|
|
1338
|
+
def __rsub__(self: _MaskedArrayTD64_co, other: _ArrayLikeTD64_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1339
|
+
@overload
|
|
1340
|
+
def __rsub__(self: _MaskedArrayTD64_co, other: _ArrayLikeDT64_co, /) -> _MaskedArray[datetime64]: ...
|
|
1341
|
+
@overload
|
|
1342
|
+
def __rsub__(self: _MaskedArray[datetime64], other: _ArrayLikeDT64_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1343
|
+
@overload
|
|
1344
|
+
def __rsub__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1345
|
+
@overload
|
|
1346
|
+
def __rsub__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1347
|
+
|
|
1348
|
+
# Keep in sync with `ndarray.__mul__`
|
|
1349
|
+
@overload # type: ignore[override]
|
|
1350
|
+
def __mul__(self: _MaskedArray[_NumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_NumberT]]: ...
|
|
1351
|
+
@overload
|
|
1352
|
+
def __mul__(self: _MaskedArray[_NumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1353
|
+
@overload
|
|
1354
|
+
def __mul__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> _MaskedArray[np.bool]: ... # type: ignore[overload-overlap]
|
|
1355
|
+
@overload
|
|
1356
|
+
def __mul__(self: _MaskedArray[np.bool], other: _ArrayLike[_NumberT], /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1357
|
+
@overload
|
|
1358
|
+
def __mul__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1359
|
+
@overload
|
|
1360
|
+
def __mul__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1361
|
+
@overload
|
|
1362
|
+
def __mul__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1363
|
+
@overload
|
|
1364
|
+
def __mul__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1365
|
+
@overload
|
|
1366
|
+
def __mul__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1367
|
+
@overload
|
|
1368
|
+
def __mul__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1369
|
+
@overload
|
|
1370
|
+
def __mul__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1371
|
+
@overload
|
|
1372
|
+
def __mul__(self: _MaskedArrayComplex_co, other: _ArrayLikeComplex_co, /) -> _MaskedArray[complexfloating]: ... # type: ignore[overload-overlap]
|
|
1373
|
+
@overload
|
|
1374
|
+
def __mul__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ...
|
|
1375
|
+
@overload
|
|
1376
|
+
def __mul__(self: _MaskedArray[timedelta64], other: _ArrayLikeFloat_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1377
|
+
@overload
|
|
1378
|
+
def __mul__(self: _MaskedArrayFloat_co, other: _ArrayLike[timedelta64], /) -> _MaskedArray[timedelta64]: ...
|
|
1379
|
+
@overload
|
|
1380
|
+
def __mul__(
|
|
1381
|
+
self: MaskedArray[Any, dtype[character] | dtypes.StringDType],
|
|
1382
|
+
other: _ArrayLikeInt,
|
|
1383
|
+
/,
|
|
1384
|
+
) -> MaskedArray[tuple[Any, ...], _DTypeT_co]: ...
|
|
1385
|
+
@overload
|
|
1386
|
+
def __mul__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1387
|
+
@overload
|
|
1388
|
+
def __mul__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1389
|
+
|
|
1390
|
+
# Keep in sync with `ndarray.__rmul__`
|
|
1391
|
+
@overload # type: ignore[override] # signature equivalent to __mul__
|
|
1392
|
+
def __rmul__(self: _MaskedArray[_NumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_NumberT]]: ...
|
|
1393
|
+
@overload
|
|
1394
|
+
def __rmul__(self: _MaskedArray[_NumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1395
|
+
@overload
|
|
1396
|
+
def __rmul__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> _MaskedArray[np.bool]: ... # type: ignore[overload-overlap]
|
|
1397
|
+
@overload
|
|
1398
|
+
def __rmul__(self: _MaskedArray[np.bool], other: _ArrayLike[_NumberT], /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1399
|
+
@overload
|
|
1400
|
+
def __rmul__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1401
|
+
@overload
|
|
1402
|
+
def __rmul__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1403
|
+
@overload
|
|
1404
|
+
def __rmul__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1405
|
+
@overload
|
|
1406
|
+
def __rmul__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1407
|
+
@overload
|
|
1408
|
+
def __rmul__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1409
|
+
@overload
|
|
1410
|
+
def __rmul__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1411
|
+
@overload
|
|
1412
|
+
def __rmul__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1413
|
+
@overload
|
|
1414
|
+
def __rmul__(self: _MaskedArrayComplex_co, other: _ArrayLikeComplex_co, /) -> _MaskedArray[complexfloating]: ... # type: ignore[overload-overlap]
|
|
1415
|
+
@overload
|
|
1416
|
+
def __rmul__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ...
|
|
1417
|
+
@overload
|
|
1418
|
+
def __rmul__(self: _MaskedArray[timedelta64], other: _ArrayLikeFloat_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1419
|
+
@overload
|
|
1420
|
+
def __rmul__(self: _MaskedArrayFloat_co, other: _ArrayLike[timedelta64], /) -> _MaskedArray[timedelta64]: ...
|
|
1421
|
+
@overload
|
|
1422
|
+
def __rmul__(
|
|
1423
|
+
self: MaskedArray[Any, dtype[character] | dtypes.StringDType],
|
|
1424
|
+
other: _ArrayLikeInt,
|
|
1425
|
+
/,
|
|
1426
|
+
) -> MaskedArray[tuple[Any, ...], _DTypeT_co]: ...
|
|
1427
|
+
@overload
|
|
1428
|
+
def __rmul__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1429
|
+
@overload
|
|
1430
|
+
def __rmul__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1431
|
+
|
|
1432
|
+
# Keep in sync with `ndarray.__truediv__`
|
|
1433
|
+
@overload # type: ignore[override]
|
|
1434
|
+
def __truediv__(self: _MaskedArrayInt_co | _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1435
|
+
@overload
|
|
1436
|
+
def __truediv__(self: _MaskedArrayFloat64_co, other: _ArrayLikeInt_co | _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1437
|
+
@overload
|
|
1438
|
+
def __truediv__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1439
|
+
@overload
|
|
1440
|
+
def __truediv__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1441
|
+
@overload
|
|
1442
|
+
def __truediv__(self: _MaskedArray[floating], other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ...
|
|
1443
|
+
@overload
|
|
1444
|
+
def __truediv__(self: _MaskedArrayFloat_co, other: _ArrayLike[floating], /) -> _MaskedArray[floating]: ...
|
|
1445
|
+
@overload
|
|
1446
|
+
def __truediv__(self: _MaskedArray[complexfloating], other: _ArrayLikeNumber_co, /) -> _MaskedArray[complexfloating]: ...
|
|
1447
|
+
@overload
|
|
1448
|
+
def __truediv__(self: _MaskedArrayNumber_co, other: _ArrayLike[complexfloating], /) -> _MaskedArray[complexfloating]: ...
|
|
1449
|
+
@overload
|
|
1450
|
+
def __truediv__(self: _MaskedArray[inexact], other: _ArrayLikeNumber_co, /) -> _MaskedArray[inexact]: ...
|
|
1451
|
+
@overload
|
|
1452
|
+
def __truediv__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ...
|
|
1453
|
+
@overload
|
|
1454
|
+
def __truediv__(self: _MaskedArray[timedelta64], other: _ArrayLike[timedelta64], /) -> _MaskedArray[float64]: ...
|
|
1455
|
+
@overload
|
|
1456
|
+
def __truediv__(self: _MaskedArray[timedelta64], other: _ArrayLikeBool_co, /) -> NoReturn: ...
|
|
1457
|
+
@overload
|
|
1458
|
+
def __truediv__(self: _MaskedArray[timedelta64], other: _ArrayLikeFloat_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1459
|
+
@overload
|
|
1460
|
+
def __truediv__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1461
|
+
@overload
|
|
1462
|
+
def __truediv__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1463
|
+
|
|
1464
|
+
# Keep in sync with `ndarray.__rtruediv__`
|
|
1465
|
+
@overload # type: ignore[override]
|
|
1466
|
+
def __rtruediv__(self: _MaskedArrayInt_co | _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1467
|
+
@overload
|
|
1468
|
+
def __rtruediv__(self: _MaskedArrayFloat64_co, other: _ArrayLikeInt_co | _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1469
|
+
@overload
|
|
1470
|
+
def __rtruediv__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1471
|
+
@overload
|
|
1472
|
+
def __rtruediv__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1473
|
+
@overload
|
|
1474
|
+
def __rtruediv__(self: _MaskedArray[floating], other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ...
|
|
1475
|
+
@overload
|
|
1476
|
+
def __rtruediv__(self: _MaskedArrayFloat_co, other: _ArrayLike[floating], /) -> _MaskedArray[floating]: ...
|
|
1477
|
+
@overload
|
|
1478
|
+
def __rtruediv__(self: _MaskedArray[complexfloating], other: _ArrayLikeNumber_co, /) -> _MaskedArray[complexfloating]: ...
|
|
1479
|
+
@overload
|
|
1480
|
+
def __rtruediv__(self: _MaskedArrayNumber_co, other: _ArrayLike[complexfloating], /) -> _MaskedArray[complexfloating]: ...
|
|
1481
|
+
@overload
|
|
1482
|
+
def __rtruediv__(self: _MaskedArray[inexact], other: _ArrayLikeNumber_co, /) -> _MaskedArray[inexact]: ...
|
|
1483
|
+
@overload
|
|
1484
|
+
def __rtruediv__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ...
|
|
1485
|
+
@overload
|
|
1486
|
+
def __rtruediv__(self: _MaskedArray[timedelta64], other: _ArrayLike[timedelta64], /) -> _MaskedArray[float64]: ...
|
|
1487
|
+
@overload
|
|
1488
|
+
def __rtruediv__(self: _MaskedArray[integer | floating], other: _ArrayLike[timedelta64], /) -> _MaskedArray[timedelta64]: ...
|
|
1489
|
+
@overload
|
|
1490
|
+
def __rtruediv__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1491
|
+
@overload
|
|
1492
|
+
def __rtruediv__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1493
|
+
|
|
1494
|
+
# Keep in sync with `ndarray.__floordiv__`
|
|
1495
|
+
@overload # type: ignore[override]
|
|
1496
|
+
def __floordiv__(self: _MaskedArray[_RealNumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_RealNumberT]]: ...
|
|
1497
|
+
@overload
|
|
1498
|
+
def __floordiv__(self: _MaskedArray[_RealNumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_RealNumberT]: ... # type: ignore[overload-overlap]
|
|
1499
|
+
@overload
|
|
1500
|
+
def __floordiv__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> _MaskedArray[int8]: ... # type: ignore[overload-overlap]
|
|
1501
|
+
@overload
|
|
1502
|
+
def __floordiv__(self: _MaskedArray[np.bool], other: _ArrayLike[_RealNumberT], /) -> _MaskedArray[_RealNumberT]: ... # type: ignore[overload-overlap]
|
|
1503
|
+
@overload
|
|
1504
|
+
def __floordiv__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1505
|
+
@overload
|
|
1506
|
+
def __floordiv__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1507
|
+
@overload
|
|
1508
|
+
def __floordiv__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1509
|
+
@overload
|
|
1510
|
+
def __floordiv__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1511
|
+
@overload
|
|
1512
|
+
def __floordiv__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ...
|
|
1513
|
+
@overload
|
|
1514
|
+
def __floordiv__(self: _MaskedArray[timedelta64], other: _ArrayLike[timedelta64], /) -> _MaskedArray[int64]: ...
|
|
1515
|
+
@overload
|
|
1516
|
+
def __floordiv__(self: _MaskedArray[timedelta64], other: _ArrayLikeBool_co, /) -> NoReturn: ...
|
|
1517
|
+
@overload
|
|
1518
|
+
def __floordiv__(self: _MaskedArray[timedelta64], other: _ArrayLikeFloat_co, /) -> _MaskedArray[timedelta64]: ...
|
|
1519
|
+
@overload
|
|
1520
|
+
def __floordiv__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1521
|
+
@overload
|
|
1522
|
+
def __floordiv__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1523
|
+
|
|
1524
|
+
# Keep in sync with `ndarray.__rfloordiv__`
|
|
1525
|
+
@overload # type: ignore[override]
|
|
1526
|
+
def __rfloordiv__(self: _MaskedArray[_RealNumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_RealNumberT]]: ...
|
|
1527
|
+
@overload
|
|
1528
|
+
def __rfloordiv__(self: _MaskedArray[_RealNumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_RealNumberT]: ... # type: ignore[overload-overlap]
|
|
1529
|
+
@overload
|
|
1530
|
+
def __rfloordiv__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> _MaskedArray[int8]: ... # type: ignore[overload-overlap]
|
|
1531
|
+
@overload
|
|
1532
|
+
def __rfloordiv__(self: _MaskedArray[np.bool], other: _ArrayLike[_RealNumberT], /) -> _MaskedArray[_RealNumberT]: ... # type: ignore[overload-overlap]
|
|
1533
|
+
@overload
|
|
1534
|
+
def __rfloordiv__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1535
|
+
@overload
|
|
1536
|
+
def __rfloordiv__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1537
|
+
@overload
|
|
1538
|
+
def __rfloordiv__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1539
|
+
@overload
|
|
1540
|
+
def __rfloordiv__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1541
|
+
@overload
|
|
1542
|
+
def __rfloordiv__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1543
|
+
@overload
|
|
1544
|
+
def __rfloordiv__(self: _MaskedArray[timedelta64], other: _ArrayLike[timedelta64], /) -> _MaskedArray[int64]: ...
|
|
1545
|
+
@overload
|
|
1546
|
+
def __rfloordiv__(self: _MaskedArray[floating | integer], other: _ArrayLike[timedelta64], /) -> _MaskedArray[timedelta64]: ...
|
|
1547
|
+
@overload
|
|
1548
|
+
def __rfloordiv__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1549
|
+
@overload
|
|
1550
|
+
def __rfloordiv__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1551
|
+
|
|
1552
|
+
# Keep in sync with `ndarray.__pow__` (minus the `mod` parameter)
|
|
1553
|
+
@overload # type: ignore[override]
|
|
1554
|
+
def __pow__(self: _MaskedArray[_NumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_NumberT]]: ...
|
|
1555
|
+
@overload
|
|
1556
|
+
def __pow__(self: _MaskedArray[_NumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1557
|
+
@overload
|
|
1558
|
+
def __pow__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> _MaskedArray[int8]: ... # type: ignore[overload-overlap]
|
|
1559
|
+
@overload
|
|
1560
|
+
def __pow__(self: _MaskedArray[np.bool], other: _ArrayLike[_NumberT], /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1561
|
+
@overload
|
|
1562
|
+
def __pow__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1563
|
+
@overload
|
|
1564
|
+
def __pow__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1565
|
+
@overload
|
|
1566
|
+
def __pow__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1567
|
+
@overload
|
|
1568
|
+
def __pow__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1569
|
+
@overload
|
|
1570
|
+
def __pow__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1571
|
+
@overload
|
|
1572
|
+
def __pow__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1573
|
+
@overload
|
|
1574
|
+
def __pow__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1575
|
+
@overload
|
|
1576
|
+
def __pow__(self: _MaskedArrayComplex_co, other: _ArrayLikeComplex_co, /) -> _MaskedArray[complexfloating]: ...
|
|
1577
|
+
@overload
|
|
1578
|
+
def __pow__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ...
|
|
1579
|
+
@overload
|
|
1580
|
+
def __pow__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1581
|
+
@overload
|
|
1582
|
+
def __pow__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1583
|
+
|
|
1584
|
+
# Keep in sync with `ndarray.__rpow__` (minus the `mod` parameter)
|
|
1585
|
+
@overload # type: ignore[override]
|
|
1586
|
+
def __rpow__(self: _MaskedArray[_NumberT], other: int | np.bool, /) -> MaskedArray[_ShapeT_co, dtype[_NumberT]]: ...
|
|
1587
|
+
@overload
|
|
1588
|
+
def __rpow__(self: _MaskedArray[_NumberT], other: _ArrayLikeBool_co, /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1589
|
+
@overload
|
|
1590
|
+
def __rpow__(self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /) -> _MaskedArray[int8]: ... # type: ignore[overload-overlap]
|
|
1591
|
+
@overload
|
|
1592
|
+
def __rpow__(self: _MaskedArray[np.bool], other: _ArrayLike[_NumberT], /) -> _MaskedArray[_NumberT]: ... # type: ignore[overload-overlap]
|
|
1593
|
+
@overload
|
|
1594
|
+
def __rpow__(self: _MaskedArray[float64], other: _ArrayLikeFloat64_co, /) -> _MaskedArray[float64]: ...
|
|
1595
|
+
@overload
|
|
1596
|
+
def __rpow__(self: _MaskedArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> _MaskedArray[float64]: ...
|
|
1597
|
+
@overload
|
|
1598
|
+
def __rpow__(self: _MaskedArray[complex128], other: _ArrayLikeComplex128_co, /) -> _MaskedArray[complex128]: ...
|
|
1599
|
+
@overload
|
|
1600
|
+
def __rpow__(self: _MaskedArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> _MaskedArray[complex128]: ...
|
|
1601
|
+
@overload
|
|
1602
|
+
def __rpow__(self: _MaskedArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _MaskedArray[unsignedinteger]: ... # type: ignore[overload-overlap]
|
|
1603
|
+
@overload
|
|
1604
|
+
def __rpow__(self: _MaskedArrayInt_co, other: _ArrayLikeInt_co, /) -> _MaskedArray[signedinteger]: ... # type: ignore[overload-overlap]
|
|
1605
|
+
@overload
|
|
1606
|
+
def __rpow__(self: _MaskedArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _MaskedArray[floating]: ... # type: ignore[overload-overlap]
|
|
1607
|
+
@overload
|
|
1608
|
+
def __rpow__(self: _MaskedArrayComplex_co, other: _ArrayLikeComplex_co, /) -> _MaskedArray[complexfloating]: ...
|
|
1609
|
+
@overload
|
|
1610
|
+
def __rpow__(self: _MaskedArray[number], other: _ArrayLikeNumber_co, /) -> _MaskedArray[number]: ...
|
|
1611
|
+
@overload
|
|
1612
|
+
def __rpow__(self: _MaskedArray[object_], other: Any, /) -> Any: ...
|
|
1613
|
+
@overload
|
|
1614
|
+
def __rpow__(self: _MaskedArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
|
|
1615
|
+
|
|
1616
|
+
#
|
|
1617
|
+
@property # type: ignore[misc]
|
|
1618
|
+
def imag(self: _HasDTypeWithRealAndImag[object, _ScalarT], /) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ... # type: ignore[override]
|
|
1619
|
+
def get_imag(self: _HasDTypeWithRealAndImag[object, _ScalarT], /) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ...
|
|
1620
|
+
|
|
1621
|
+
#
|
|
1622
|
+
@property # type: ignore[misc]
|
|
1623
|
+
def real(self: _HasDTypeWithRealAndImag[_ScalarT, object], /) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ... # type: ignore[override]
|
|
1624
|
+
def get_real(self: _HasDTypeWithRealAndImag[_ScalarT, object], /) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ...
|
|
1625
|
+
|
|
1626
|
+
# keep in sync with `np.ma.count`
|
|
1627
|
+
@overload
|
|
1628
|
+
def count(self, axis: None = None, keepdims: Literal[False] | _NoValueType = ...) -> int: ...
|
|
1629
|
+
@overload
|
|
1630
|
+
def count(self, axis: _ShapeLike, keepdims: bool | _NoValueType = ...) -> NDArray[int_]: ...
|
|
1631
|
+
@overload
|
|
1632
|
+
def count(self, axis: _ShapeLike | None = None, *, keepdims: Literal[True]) -> NDArray[int_]: ...
|
|
1633
|
+
@overload
|
|
1634
|
+
def count(self, axis: _ShapeLike | None, keepdims: Literal[True]) -> NDArray[int_]: ...
|
|
1635
|
+
|
|
1636
|
+
# Keep in sync with `ndarray.reshape`
|
|
1637
|
+
# NOTE: reshape also accepts negative integers, so we can't use integer literals
|
|
1638
|
+
@overload # (None)
|
|
1639
|
+
def reshape(self, shape: None, /, *, order: _OrderACF = "C", copy: bool | None = None) -> Self: ...
|
|
1640
|
+
@overload # (empty_sequence)
|
|
1641
|
+
def reshape( # type: ignore[overload-overlap] # mypy false positive
|
|
1642
|
+
self,
|
|
1643
|
+
shape: Sequence[Never],
|
|
1644
|
+
/,
|
|
1645
|
+
*,
|
|
1646
|
+
order: _OrderACF = "C",
|
|
1647
|
+
copy: bool | None = None,
|
|
1648
|
+
) -> MaskedArray[tuple[()], _DTypeT_co]: ...
|
|
1649
|
+
@overload # (() | (int) | (int, int) | ....) # up to 8-d
|
|
1650
|
+
def reshape(
|
|
1651
|
+
self,
|
|
1652
|
+
shape: _AnyShapeT,
|
|
1653
|
+
/,
|
|
1654
|
+
*,
|
|
1655
|
+
order: _OrderACF = "C",
|
|
1656
|
+
copy: bool | None = None,
|
|
1657
|
+
) -> MaskedArray[_AnyShapeT, _DTypeT_co]: ...
|
|
1658
|
+
@overload # (index)
|
|
1659
|
+
def reshape(
|
|
1660
|
+
self,
|
|
1661
|
+
size1: SupportsIndex,
|
|
1662
|
+
/,
|
|
1663
|
+
*,
|
|
1664
|
+
order: _OrderACF = "C",
|
|
1665
|
+
copy: bool | None = None,
|
|
1666
|
+
) -> MaskedArray[tuple[int], _DTypeT_co]: ...
|
|
1667
|
+
@overload # (index, index)
|
|
1668
|
+
def reshape(
|
|
1669
|
+
self,
|
|
1670
|
+
size1: SupportsIndex,
|
|
1671
|
+
size2: SupportsIndex,
|
|
1672
|
+
/,
|
|
1673
|
+
*,
|
|
1674
|
+
order: _OrderACF = "C",
|
|
1675
|
+
copy: bool | None = None,
|
|
1676
|
+
) -> MaskedArray[tuple[int, int], _DTypeT_co]: ...
|
|
1677
|
+
@overload # (index, index, index)
|
|
1678
|
+
def reshape(
|
|
1679
|
+
self,
|
|
1680
|
+
size1: SupportsIndex,
|
|
1681
|
+
size2: SupportsIndex,
|
|
1682
|
+
size3: SupportsIndex,
|
|
1683
|
+
/,
|
|
1684
|
+
*,
|
|
1685
|
+
order: _OrderACF = "C",
|
|
1686
|
+
copy: bool | None = None,
|
|
1687
|
+
) -> MaskedArray[tuple[int, int, int], _DTypeT_co]: ...
|
|
1688
|
+
@overload # (index, index, index, index)
|
|
1689
|
+
def reshape(
|
|
1690
|
+
self,
|
|
1691
|
+
size1: SupportsIndex,
|
|
1692
|
+
size2: SupportsIndex,
|
|
1693
|
+
size3: SupportsIndex,
|
|
1694
|
+
size4: SupportsIndex,
|
|
1695
|
+
/,
|
|
1696
|
+
*,
|
|
1697
|
+
order: _OrderACF = "C",
|
|
1698
|
+
copy: bool | None = None,
|
|
1699
|
+
) -> MaskedArray[tuple[int, int, int, int], _DTypeT_co]: ...
|
|
1700
|
+
@overload # (int, *(index, ...))
|
|
1701
|
+
def reshape(
|
|
1702
|
+
self,
|
|
1703
|
+
size0: SupportsIndex,
|
|
1704
|
+
/,
|
|
1705
|
+
*shape: SupportsIndex,
|
|
1706
|
+
order: _OrderACF = "C",
|
|
1707
|
+
copy: bool | None = None,
|
|
1708
|
+
) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
1709
|
+
@overload # (sequence[index])
|
|
1710
|
+
def reshape(
|
|
1711
|
+
self,
|
|
1712
|
+
shape: Sequence[SupportsIndex],
|
|
1713
|
+
/,
|
|
1714
|
+
*,
|
|
1715
|
+
order: _OrderACF = "C",
|
|
1716
|
+
copy: bool | None = None,
|
|
1717
|
+
) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
1718
|
+
|
|
1719
|
+
def resize(self, newshape: Never, refcheck: bool = True, order: bool = False) -> NoReturn: ... # type: ignore[override]
|
|
1720
|
+
def put(self, indices: _ArrayLikeInt_co, values: ArrayLike, mode: _ModeKind = "raise") -> None: ...
|
|
1721
|
+
def ids(self) -> tuple[int, int]: ...
|
|
1722
|
+
def iscontiguous(self) -> bool: ...
|
|
1723
|
+
|
|
1724
|
+
# Keep in sync with `ma.core.all`
|
|
1725
|
+
@overload # type: ignore[override]
|
|
1726
|
+
def all(
|
|
1727
|
+
self,
|
|
1728
|
+
axis: None = None,
|
|
1729
|
+
out: None = None,
|
|
1730
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
1731
|
+
) -> bool_: ...
|
|
1732
|
+
@overload
|
|
1733
|
+
def all(
|
|
1734
|
+
self,
|
|
1735
|
+
axis: _ShapeLike | None = None,
|
|
1736
|
+
out: None = None,
|
|
1737
|
+
*,
|
|
1738
|
+
keepdims: Literal[True],
|
|
1739
|
+
) -> _MaskedArray[bool_]: ...
|
|
1740
|
+
@overload
|
|
1741
|
+
def all(
|
|
1742
|
+
self,
|
|
1743
|
+
axis: _ShapeLike | None,
|
|
1744
|
+
out: None,
|
|
1745
|
+
keepdims: Literal[True],
|
|
1746
|
+
) -> _MaskedArray[bool_]: ...
|
|
1747
|
+
@overload
|
|
1748
|
+
def all(
|
|
1749
|
+
self,
|
|
1750
|
+
axis: _ShapeLike | None = None,
|
|
1751
|
+
out: None = None,
|
|
1752
|
+
keepdims: bool | _NoValueType = ...,
|
|
1753
|
+
) -> bool_ | _MaskedArray[bool_]: ...
|
|
1754
|
+
@overload
|
|
1755
|
+
def all(
|
|
1756
|
+
self,
|
|
1757
|
+
axis: _ShapeLike | None = None,
|
|
1758
|
+
*,
|
|
1759
|
+
out: _ArrayT,
|
|
1760
|
+
keepdims: bool | _NoValueType = ...,
|
|
1761
|
+
) -> _ArrayT: ...
|
|
1762
|
+
@overload
|
|
1763
|
+
def all(
|
|
1764
|
+
self,
|
|
1765
|
+
axis: _ShapeLike | None,
|
|
1766
|
+
out: _ArrayT,
|
|
1767
|
+
keepdims: bool | _NoValueType = ...,
|
|
1768
|
+
) -> _ArrayT: ...
|
|
1769
|
+
|
|
1770
|
+
# Keep in sync with `ma.core.any`
|
|
1771
|
+
@overload # type: ignore[override]
|
|
1772
|
+
def any(
|
|
1773
|
+
self,
|
|
1774
|
+
axis: None = None,
|
|
1775
|
+
out: None = None,
|
|
1776
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
1777
|
+
) -> bool_: ...
|
|
1778
|
+
@overload
|
|
1779
|
+
def any(
|
|
1780
|
+
self,
|
|
1781
|
+
axis: _ShapeLike | None = None,
|
|
1782
|
+
out: None = None,
|
|
1783
|
+
*,
|
|
1784
|
+
keepdims: Literal[True],
|
|
1785
|
+
) -> _MaskedArray[bool_]: ...
|
|
1786
|
+
@overload
|
|
1787
|
+
def any(
|
|
1788
|
+
self,
|
|
1789
|
+
axis: _ShapeLike | None,
|
|
1790
|
+
out: None,
|
|
1791
|
+
keepdims: Literal[True],
|
|
1792
|
+
) -> _MaskedArray[bool_]: ...
|
|
1793
|
+
@overload
|
|
1794
|
+
def any(
|
|
1795
|
+
self,
|
|
1796
|
+
axis: _ShapeLike | None = None,
|
|
1797
|
+
out: None = None,
|
|
1798
|
+
keepdims: bool | _NoValueType = ...,
|
|
1799
|
+
) -> bool_ | _MaskedArray[bool_]: ...
|
|
1800
|
+
@overload
|
|
1801
|
+
def any(
|
|
1802
|
+
self,
|
|
1803
|
+
axis: _ShapeLike | None = None,
|
|
1804
|
+
*,
|
|
1805
|
+
out: _ArrayT,
|
|
1806
|
+
keepdims: bool | _NoValueType = ...,
|
|
1807
|
+
) -> _ArrayT: ...
|
|
1808
|
+
@overload
|
|
1809
|
+
def any(
|
|
1810
|
+
self,
|
|
1811
|
+
axis: _ShapeLike | None,
|
|
1812
|
+
out: _ArrayT,
|
|
1813
|
+
keepdims: bool | _NoValueType = ...,
|
|
1814
|
+
) -> _ArrayT: ...
|
|
1815
|
+
|
|
1816
|
+
# Keep in sync with `ndarray.trace` and `ma.core.trace`
|
|
1817
|
+
@overload
|
|
1818
|
+
def trace(
|
|
1819
|
+
self, # >= 2D MaskedArray
|
|
1820
|
+
offset: SupportsIndex = 0,
|
|
1821
|
+
axis1: SupportsIndex = 0,
|
|
1822
|
+
axis2: SupportsIndex = 1,
|
|
1823
|
+
dtype: DTypeLike | None = None,
|
|
1824
|
+
out: None = None,
|
|
1825
|
+
) -> Any: ...
|
|
1826
|
+
@overload
|
|
1827
|
+
def trace(
|
|
1828
|
+
self, # >= 2D MaskedArray
|
|
1829
|
+
offset: SupportsIndex = 0,
|
|
1830
|
+
axis1: SupportsIndex = 0,
|
|
1831
|
+
axis2: SupportsIndex = 1,
|
|
1832
|
+
dtype: DTypeLike | None = None,
|
|
1833
|
+
*,
|
|
1834
|
+
out: _ArrayT,
|
|
1835
|
+
) -> _ArrayT: ...
|
|
1836
|
+
@overload
|
|
1837
|
+
def trace(
|
|
1838
|
+
self, # >= 2D MaskedArray
|
|
1839
|
+
offset: SupportsIndex,
|
|
1840
|
+
axis1: SupportsIndex,
|
|
1841
|
+
axis2: SupportsIndex,
|
|
1842
|
+
dtype: DTypeLike | None,
|
|
1843
|
+
out: _ArrayT,
|
|
1844
|
+
) -> _ArrayT: ...
|
|
1845
|
+
|
|
1846
|
+
# This differs from `ndarray.dot`, in that 1D dot 1D returns a 0D array.
|
|
1847
|
+
@overload
|
|
1848
|
+
def dot(self, b: ArrayLike, out: None = None, strict: bool = False) -> _MaskedArray[Any]: ...
|
|
1849
|
+
@overload
|
|
1850
|
+
def dot(self, b: ArrayLike, out: _ArrayT, strict: bool = False) -> _ArrayT: ...
|
|
1851
|
+
|
|
1852
|
+
# Keep in sync with `ma.core.sum`
|
|
1853
|
+
@overload # type: ignore[override]
|
|
1854
|
+
def sum(
|
|
1855
|
+
self,
|
|
1856
|
+
/,
|
|
1857
|
+
axis: _ShapeLike | None = None,
|
|
1858
|
+
dtype: DTypeLike | None = None,
|
|
1859
|
+
out: None = None,
|
|
1860
|
+
keepdims: bool | _NoValueType = ...,
|
|
1861
|
+
) -> Any: ...
|
|
1862
|
+
@overload
|
|
1863
|
+
def sum(
|
|
1864
|
+
self,
|
|
1865
|
+
/,
|
|
1866
|
+
axis: _ShapeLike | None,
|
|
1867
|
+
dtype: DTypeLike | None,
|
|
1868
|
+
out: _ArrayT,
|
|
1869
|
+
keepdims: bool | _NoValueType = ...,
|
|
1870
|
+
) -> _ArrayT: ...
|
|
1871
|
+
@overload
|
|
1872
|
+
def sum(
|
|
1873
|
+
self,
|
|
1874
|
+
/,
|
|
1875
|
+
axis: _ShapeLike | None = None,
|
|
1876
|
+
dtype: DTypeLike | None = None,
|
|
1877
|
+
*,
|
|
1878
|
+
out: _ArrayT,
|
|
1879
|
+
keepdims: bool | _NoValueType = ...,
|
|
1880
|
+
) -> _ArrayT: ...
|
|
1881
|
+
|
|
1882
|
+
# Keep in sync with `ndarray.cumsum` and `ma.core.cumsum`
|
|
1883
|
+
@overload # out: None (default)
|
|
1884
|
+
def cumsum(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None) -> _MaskedArray[Any]: ...
|
|
1885
|
+
@overload # out: ndarray
|
|
1886
|
+
def cumsum(self, /, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ...
|
|
1887
|
+
@overload
|
|
1888
|
+
def cumsum(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...
|
|
1889
|
+
|
|
1890
|
+
# Keep in sync with `ma.core.prod`
|
|
1891
|
+
@overload # type: ignore[override]
|
|
1892
|
+
def prod(
|
|
1893
|
+
self,
|
|
1894
|
+
/,
|
|
1895
|
+
axis: _ShapeLike | None = None,
|
|
1896
|
+
dtype: DTypeLike | None = None,
|
|
1897
|
+
out: None = None,
|
|
1898
|
+
keepdims: bool | _NoValueType = ...,
|
|
1899
|
+
) -> Any: ...
|
|
1900
|
+
@overload
|
|
1901
|
+
def prod(
|
|
1902
|
+
self,
|
|
1903
|
+
/,
|
|
1904
|
+
axis: _ShapeLike | None,
|
|
1905
|
+
dtype: DTypeLike | None,
|
|
1906
|
+
out: _ArrayT,
|
|
1907
|
+
keepdims: bool | _NoValueType = ...,
|
|
1908
|
+
) -> _ArrayT: ...
|
|
1909
|
+
@overload
|
|
1910
|
+
def prod(
|
|
1911
|
+
self,
|
|
1912
|
+
/,
|
|
1913
|
+
axis: _ShapeLike | None = None,
|
|
1914
|
+
dtype: DTypeLike | None = None,
|
|
1915
|
+
*,
|
|
1916
|
+
out: _ArrayT,
|
|
1917
|
+
keepdims: bool | _NoValueType = ...,
|
|
1918
|
+
) -> _ArrayT: ...
|
|
1919
|
+
|
|
1920
|
+
product = prod
|
|
1921
|
+
|
|
1922
|
+
# Keep in sync with `ndarray.cumprod` and `ma.core.cumprod`
|
|
1923
|
+
@overload # out: None (default)
|
|
1924
|
+
def cumprod(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None) -> _MaskedArray[Any]: ...
|
|
1925
|
+
@overload # out: ndarray
|
|
1926
|
+
def cumprod(self, /, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ...
|
|
1927
|
+
@overload
|
|
1928
|
+
def cumprod(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...
|
|
1929
|
+
|
|
1930
|
+
# Keep in sync with `ma.core.mean`
|
|
1931
|
+
@overload # type: ignore[override]
|
|
1932
|
+
def mean(
|
|
1933
|
+
self,
|
|
1934
|
+
axis: _ShapeLike | None = None,
|
|
1935
|
+
dtype: DTypeLike | None = None,
|
|
1936
|
+
out: None = None,
|
|
1937
|
+
keepdims: bool | _NoValueType = ...,
|
|
1938
|
+
) -> Any: ...
|
|
1939
|
+
@overload
|
|
1940
|
+
def mean(
|
|
1941
|
+
self,
|
|
1942
|
+
/,
|
|
1943
|
+
axis: _ShapeLike | None,
|
|
1944
|
+
dtype: DTypeLike | None,
|
|
1945
|
+
out: _ArrayT,
|
|
1946
|
+
keepdims: bool | _NoValueType = ...,
|
|
1947
|
+
) -> _ArrayT: ...
|
|
1948
|
+
@overload
|
|
1949
|
+
def mean(
|
|
1950
|
+
self,
|
|
1951
|
+
/,
|
|
1952
|
+
axis: _ShapeLike | None = None,
|
|
1953
|
+
dtype: DTypeLike | None = None,
|
|
1954
|
+
*,
|
|
1955
|
+
out: _ArrayT,
|
|
1956
|
+
keepdims: bool | _NoValueType = ...,
|
|
1957
|
+
) -> _ArrayT: ...
|
|
1958
|
+
|
|
1959
|
+
# keep roughly in sync with `ma.core.anom`
|
|
1960
|
+
@overload
|
|
1961
|
+
def anom(self, axis: SupportsIndex | None = None, dtype: None = None) -> Self: ...
|
|
1962
|
+
@overload
|
|
1963
|
+
def anom(self, axis: SupportsIndex | None = None, *, dtype: DTypeLike) -> MaskedArray[_ShapeT_co, dtype]: ...
|
|
1964
|
+
@overload
|
|
1965
|
+
def anom(self, axis: SupportsIndex | None, dtype: DTypeLike) -> MaskedArray[_ShapeT_co, dtype]: ...
|
|
1966
|
+
|
|
1967
|
+
# keep in sync with `std` and `ma.core.var`
|
|
1968
|
+
@overload # type: ignore[override]
|
|
1969
|
+
def var(
|
|
1970
|
+
self,
|
|
1971
|
+
axis: _ShapeLike | None = None,
|
|
1972
|
+
dtype: DTypeLike | None = None,
|
|
1973
|
+
out: None = None,
|
|
1974
|
+
ddof: float = 0,
|
|
1975
|
+
keepdims: bool | _NoValueType = ...,
|
|
1976
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
1977
|
+
) -> Any: ...
|
|
1978
|
+
@overload
|
|
1979
|
+
def var(
|
|
1980
|
+
self,
|
|
1981
|
+
axis: _ShapeLike | None,
|
|
1982
|
+
dtype: DTypeLike | None,
|
|
1983
|
+
out: _ArrayT,
|
|
1984
|
+
ddof: float = 0,
|
|
1985
|
+
keepdims: bool | _NoValueType = ...,
|
|
1986
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
1987
|
+
) -> _ArrayT: ...
|
|
1988
|
+
@overload
|
|
1989
|
+
def var(
|
|
1990
|
+
self,
|
|
1991
|
+
axis: _ShapeLike | None = None,
|
|
1992
|
+
dtype: DTypeLike | None = None,
|
|
1993
|
+
*,
|
|
1994
|
+
out: _ArrayT,
|
|
1995
|
+
ddof: float = 0,
|
|
1996
|
+
keepdims: bool | _NoValueType = ...,
|
|
1997
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
1998
|
+
) -> _ArrayT: ...
|
|
1999
|
+
|
|
2000
|
+
# keep in sync with `var` and `ma.core.std`
|
|
2001
|
+
@overload # type: ignore[override]
|
|
2002
|
+
def std(
|
|
2003
|
+
self,
|
|
2004
|
+
axis: _ShapeLike | None = None,
|
|
2005
|
+
dtype: DTypeLike | None = None,
|
|
2006
|
+
out: None = None,
|
|
2007
|
+
ddof: float = 0,
|
|
2008
|
+
keepdims: bool | _NoValueType = ...,
|
|
2009
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2010
|
+
) -> Any: ...
|
|
2011
|
+
@overload
|
|
2012
|
+
def std(
|
|
2013
|
+
self,
|
|
2014
|
+
axis: _ShapeLike | None,
|
|
2015
|
+
dtype: DTypeLike | None,
|
|
2016
|
+
out: _ArrayT,
|
|
2017
|
+
ddof: float = 0,
|
|
2018
|
+
keepdims: bool | _NoValueType = ...,
|
|
2019
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2020
|
+
) -> _ArrayT: ...
|
|
2021
|
+
@overload
|
|
2022
|
+
def std(
|
|
2023
|
+
self,
|
|
2024
|
+
axis: _ShapeLike | None = None,
|
|
2025
|
+
dtype: DTypeLike | None = None,
|
|
2026
|
+
*,
|
|
2027
|
+
out: _ArrayT,
|
|
2028
|
+
ddof: float = 0,
|
|
2029
|
+
keepdims: bool | _NoValueType = ...,
|
|
2030
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2031
|
+
) -> _ArrayT: ...
|
|
2032
|
+
|
|
2033
|
+
# Keep in sync with `ndarray.round`
|
|
2034
|
+
@overload # out=None (default)
|
|
2035
|
+
def round(self, /, decimals: SupportsIndex = 0, out: None = None) -> Self: ...
|
|
2036
|
+
@overload # out=ndarray
|
|
2037
|
+
def round(self, /, decimals: SupportsIndex, out: _ArrayT) -> _ArrayT: ...
|
|
2038
|
+
@overload
|
|
2039
|
+
def round(self, /, decimals: SupportsIndex = 0, *, out: _ArrayT) -> _ArrayT: ...
|
|
2040
|
+
|
|
2041
|
+
def argsort( # type: ignore[override]
|
|
2042
|
+
self,
|
|
2043
|
+
axis: SupportsIndex | _NoValueType = ...,
|
|
2044
|
+
kind: _SortKind | None = None,
|
|
2045
|
+
order: str | Sequence[str] | None = None,
|
|
2046
|
+
endwith: bool = True,
|
|
2047
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2048
|
+
*,
|
|
2049
|
+
stable: bool = False,
|
|
2050
|
+
) -> _MaskedArray[intp]: ...
|
|
2051
|
+
|
|
2052
|
+
# Keep in-sync with np.ma.argmin
|
|
2053
|
+
@overload # type: ignore[override]
|
|
2054
|
+
def argmin(
|
|
2055
|
+
self,
|
|
2056
|
+
axis: None = None,
|
|
2057
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2058
|
+
out: None = None,
|
|
2059
|
+
*,
|
|
2060
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
2061
|
+
) -> intp: ...
|
|
2062
|
+
@overload
|
|
2063
|
+
def argmin(
|
|
2064
|
+
self,
|
|
2065
|
+
axis: SupportsIndex | None = None,
|
|
2066
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2067
|
+
out: None = None,
|
|
2068
|
+
*,
|
|
2069
|
+
keepdims: bool | _NoValueType = ...,
|
|
2070
|
+
) -> Any: ...
|
|
2071
|
+
@overload
|
|
2072
|
+
def argmin(
|
|
2073
|
+
self,
|
|
2074
|
+
axis: SupportsIndex | None = None,
|
|
2075
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2076
|
+
*,
|
|
2077
|
+
out: _ArrayT,
|
|
2078
|
+
keepdims: bool | _NoValueType = ...,
|
|
2079
|
+
) -> _ArrayT: ...
|
|
2080
|
+
@overload
|
|
2081
|
+
def argmin(
|
|
2082
|
+
self,
|
|
2083
|
+
axis: SupportsIndex | None,
|
|
2084
|
+
fill_value: _ScalarLike_co | None,
|
|
2085
|
+
out: _ArrayT,
|
|
2086
|
+
*,
|
|
2087
|
+
keepdims: bool | _NoValueType = ...,
|
|
2088
|
+
) -> _ArrayT: ...
|
|
2089
|
+
|
|
2090
|
+
# Keep in-sync with np.ma.argmax
|
|
2091
|
+
@overload # type: ignore[override]
|
|
2092
|
+
def argmax(
|
|
2093
|
+
self,
|
|
2094
|
+
axis: None = None,
|
|
2095
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2096
|
+
out: None = None,
|
|
2097
|
+
*,
|
|
2098
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
2099
|
+
) -> intp: ...
|
|
2100
|
+
@overload
|
|
2101
|
+
def argmax(
|
|
2102
|
+
self,
|
|
2103
|
+
axis: SupportsIndex | None = None,
|
|
2104
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2105
|
+
out: None = None,
|
|
2106
|
+
*,
|
|
2107
|
+
keepdims: bool | _NoValueType = ...,
|
|
2108
|
+
) -> Any: ...
|
|
2109
|
+
@overload
|
|
2110
|
+
def argmax(
|
|
2111
|
+
self,
|
|
2112
|
+
axis: SupportsIndex | None = None,
|
|
2113
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2114
|
+
*,
|
|
2115
|
+
out: _ArrayT,
|
|
2116
|
+
keepdims: bool | _NoValueType = ...,
|
|
2117
|
+
) -> _ArrayT: ...
|
|
2118
|
+
@overload
|
|
2119
|
+
def argmax(
|
|
2120
|
+
self,
|
|
2121
|
+
axis: SupportsIndex | None,
|
|
2122
|
+
fill_value: _ScalarLike_co | None,
|
|
2123
|
+
out: _ArrayT,
|
|
2124
|
+
*,
|
|
2125
|
+
keepdims: bool | _NoValueType = ...,
|
|
2126
|
+
) -> _ArrayT: ...
|
|
2127
|
+
|
|
2128
|
+
#
|
|
2129
|
+
def sort( # type: ignore[override]
|
|
2130
|
+
self,
|
|
2131
|
+
axis: SupportsIndex = -1,
|
|
2132
|
+
kind: _SortKind | None = None,
|
|
2133
|
+
order: str | Sequence[str] | None = None,
|
|
2134
|
+
endwith: bool | None = True,
|
|
2135
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2136
|
+
*,
|
|
2137
|
+
stable: Literal[False] | None = False,
|
|
2138
|
+
) -> None: ...
|
|
2139
|
+
|
|
2140
|
+
#
|
|
2141
|
+
@overload # type: ignore[override]
|
|
2142
|
+
def min(
|
|
2143
|
+
self: _MaskedArray[_ScalarT],
|
|
2144
|
+
axis: None = None,
|
|
2145
|
+
out: None = None,
|
|
2146
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2147
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
2148
|
+
) -> _ScalarT: ...
|
|
2149
|
+
@overload
|
|
2150
|
+
def min(
|
|
2151
|
+
self,
|
|
2152
|
+
axis: _ShapeLike | None = None,
|
|
2153
|
+
out: None = None,
|
|
2154
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2155
|
+
keepdims: bool | _NoValueType = ...
|
|
2156
|
+
) -> Any: ...
|
|
2157
|
+
@overload
|
|
2158
|
+
def min(
|
|
2159
|
+
self,
|
|
2160
|
+
axis: _ShapeLike | None,
|
|
2161
|
+
out: _ArrayT,
|
|
2162
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2163
|
+
keepdims: bool | _NoValueType = ...,
|
|
2164
|
+
) -> _ArrayT: ...
|
|
2165
|
+
@overload
|
|
2166
|
+
def min(
|
|
2167
|
+
self,
|
|
2168
|
+
axis: _ShapeLike | None = None,
|
|
2169
|
+
*,
|
|
2170
|
+
out: _ArrayT,
|
|
2171
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2172
|
+
keepdims: bool | _NoValueType = ...,
|
|
2173
|
+
) -> _ArrayT: ...
|
|
2174
|
+
|
|
2175
|
+
#
|
|
2176
|
+
@overload # type: ignore[override]
|
|
2177
|
+
def max(
|
|
2178
|
+
self: _MaskedArray[_ScalarT],
|
|
2179
|
+
axis: None = None,
|
|
2180
|
+
out: None = None,
|
|
2181
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2182
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
2183
|
+
) -> _ScalarT: ...
|
|
2184
|
+
@overload
|
|
2185
|
+
def max(
|
|
2186
|
+
self,
|
|
2187
|
+
axis: _ShapeLike | None = None,
|
|
2188
|
+
out: None = None,
|
|
2189
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2190
|
+
keepdims: bool | _NoValueType = ...
|
|
2191
|
+
) -> Any: ...
|
|
2192
|
+
@overload
|
|
2193
|
+
def max(
|
|
2194
|
+
self,
|
|
2195
|
+
axis: _ShapeLike | None,
|
|
2196
|
+
out: _ArrayT,
|
|
2197
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2198
|
+
keepdims: bool | _NoValueType = ...,
|
|
2199
|
+
) -> _ArrayT: ...
|
|
2200
|
+
@overload
|
|
2201
|
+
def max(
|
|
2202
|
+
self,
|
|
2203
|
+
axis: _ShapeLike | None = None,
|
|
2204
|
+
*,
|
|
2205
|
+
out: _ArrayT,
|
|
2206
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2207
|
+
keepdims: bool | _NoValueType = ...,
|
|
2208
|
+
) -> _ArrayT: ...
|
|
2209
|
+
|
|
2210
|
+
#
|
|
2211
|
+
@overload
|
|
2212
|
+
def ptp(
|
|
2213
|
+
self: _MaskedArray[_ScalarT],
|
|
2214
|
+
axis: None = None,
|
|
2215
|
+
out: None = None,
|
|
2216
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2217
|
+
keepdims: Literal[False] = False,
|
|
2218
|
+
) -> _ScalarT: ...
|
|
2219
|
+
@overload
|
|
2220
|
+
def ptp(
|
|
2221
|
+
self,
|
|
2222
|
+
axis: _ShapeLike | None = None,
|
|
2223
|
+
out: None = None,
|
|
2224
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2225
|
+
keepdims: bool = False,
|
|
2226
|
+
) -> Any: ...
|
|
2227
|
+
@overload
|
|
2228
|
+
def ptp(
|
|
2229
|
+
self,
|
|
2230
|
+
axis: _ShapeLike | None,
|
|
2231
|
+
out: _ArrayT,
|
|
2232
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2233
|
+
keepdims: bool = False,
|
|
2234
|
+
) -> _ArrayT: ...
|
|
2235
|
+
@overload
|
|
2236
|
+
def ptp(
|
|
2237
|
+
self,
|
|
2238
|
+
axis: _ShapeLike | None = None,
|
|
2239
|
+
*,
|
|
2240
|
+
out: _ArrayT,
|
|
2241
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2242
|
+
keepdims: bool = False,
|
|
2243
|
+
) -> _ArrayT: ...
|
|
2244
|
+
|
|
2245
|
+
#
|
|
2246
|
+
@overload
|
|
2247
|
+
def partition(
|
|
2248
|
+
self,
|
|
2249
|
+
/,
|
|
2250
|
+
kth: _ArrayLikeInt,
|
|
2251
|
+
axis: SupportsIndex = -1,
|
|
2252
|
+
kind: _PartitionKind = "introselect",
|
|
2253
|
+
order: None = None
|
|
2254
|
+
) -> None: ...
|
|
2255
|
+
@overload
|
|
2256
|
+
def partition(
|
|
2257
|
+
self: _MaskedArray[np.void],
|
|
2258
|
+
/,
|
|
2259
|
+
kth: _ArrayLikeInt,
|
|
2260
|
+
axis: SupportsIndex = -1,
|
|
2261
|
+
kind: _PartitionKind = "introselect",
|
|
2262
|
+
order: str | Sequence[str] | None = None,
|
|
2263
|
+
) -> None: ...
|
|
2264
|
+
|
|
2265
|
+
#
|
|
2266
|
+
@overload
|
|
2267
|
+
def argpartition(
|
|
2268
|
+
self,
|
|
2269
|
+
/,
|
|
2270
|
+
kth: _ArrayLikeInt,
|
|
2271
|
+
axis: SupportsIndex | None = -1,
|
|
2272
|
+
kind: _PartitionKind = "introselect",
|
|
2273
|
+
order: None = None,
|
|
2274
|
+
) -> _MaskedArray[intp]: ...
|
|
2275
|
+
@overload
|
|
2276
|
+
def argpartition(
|
|
2277
|
+
self: _MaskedArray[np.void],
|
|
2278
|
+
/,
|
|
2279
|
+
kth: _ArrayLikeInt,
|
|
2280
|
+
axis: SupportsIndex | None = -1,
|
|
2281
|
+
kind: _PartitionKind = "introselect",
|
|
2282
|
+
order: str | Sequence[str] | None = None,
|
|
2283
|
+
) -> _MaskedArray[intp]: ...
|
|
2284
|
+
|
|
2285
|
+
# Keep in-sync with np.ma.take
|
|
2286
|
+
@overload # type: ignore[override]
|
|
2287
|
+
def take( # type: ignore[overload-overlap]
|
|
2288
|
+
self: _MaskedArray[_ScalarT],
|
|
2289
|
+
indices: _IntLike_co,
|
|
2290
|
+
axis: None = None,
|
|
2291
|
+
out: None = None,
|
|
2292
|
+
mode: _ModeKind = "raise"
|
|
2293
|
+
) -> _ScalarT: ...
|
|
2294
|
+
@overload
|
|
2295
|
+
def take(
|
|
2296
|
+
self: _MaskedArray[_ScalarT],
|
|
2297
|
+
indices: _ArrayLikeInt_co,
|
|
2298
|
+
axis: SupportsIndex | None = None,
|
|
2299
|
+
out: None = None,
|
|
2300
|
+
mode: _ModeKind = "raise",
|
|
2301
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
2302
|
+
@overload
|
|
2303
|
+
def take(
|
|
2304
|
+
self,
|
|
2305
|
+
indices: _ArrayLikeInt_co,
|
|
2306
|
+
axis: SupportsIndex | None,
|
|
2307
|
+
out: _ArrayT,
|
|
2308
|
+
mode: _ModeKind = "raise",
|
|
2309
|
+
) -> _ArrayT: ...
|
|
2310
|
+
@overload
|
|
2311
|
+
def take(
|
|
2312
|
+
self,
|
|
2313
|
+
indices: _ArrayLikeInt_co,
|
|
2314
|
+
axis: SupportsIndex | None = None,
|
|
2315
|
+
*,
|
|
2316
|
+
out: _ArrayT,
|
|
2317
|
+
mode: _ModeKind = "raise",
|
|
2318
|
+
) -> _ArrayT: ...
|
|
2319
|
+
|
|
2320
|
+
# keep in sync with `ndarray.diagonal`
|
|
2321
|
+
@override
|
|
2322
|
+
def diagonal(
|
|
2323
|
+
self,
|
|
2324
|
+
/,
|
|
2325
|
+
offset: SupportsIndex = 0,
|
|
2326
|
+
axis1: SupportsIndex = 0,
|
|
2327
|
+
axis2: SupportsIndex = 1,
|
|
2328
|
+
) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
2329
|
+
|
|
2330
|
+
# keep in sync with `ndarray.repeat`
|
|
2331
|
+
@override
|
|
2332
|
+
@overload
|
|
2333
|
+
def repeat(
|
|
2334
|
+
self,
|
|
2335
|
+
/,
|
|
2336
|
+
repeats: _ArrayLikeInt_co,
|
|
2337
|
+
axis: None = None,
|
|
2338
|
+
) -> MaskedArray[tuple[int], _DTypeT_co]: ...
|
|
2339
|
+
@overload
|
|
2340
|
+
def repeat(
|
|
2341
|
+
self,
|
|
2342
|
+
/,
|
|
2343
|
+
repeats: _ArrayLikeInt_co,
|
|
2344
|
+
axis: SupportsIndex,
|
|
2345
|
+
) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
2346
|
+
|
|
2347
|
+
# keep in sync with `ndarray.flatten` and `ndarray.ravel`
|
|
2348
|
+
@override
|
|
2349
|
+
def flatten(self, /, order: _OrderKACF = "C") -> MaskedArray[tuple[int], _DTypeT_co]: ...
|
|
2350
|
+
@override
|
|
2351
|
+
def ravel(self, order: _OrderKACF = "C") -> MaskedArray[tuple[int], _DTypeT_co]: ...
|
|
2352
|
+
|
|
2353
|
+
# keep in sync with `ndarray.squeeze`
|
|
2354
|
+
@override
|
|
2355
|
+
def squeeze(
|
|
2356
|
+
self,
|
|
2357
|
+
/,
|
|
2358
|
+
axis: SupportsIndex | tuple[SupportsIndex, ...] | None = None,
|
|
2359
|
+
) -> MaskedArray[_AnyShape, _DTypeT_co]: ...
|
|
2360
|
+
|
|
2361
|
+
#
|
|
2362
|
+
def toflex(self) -> MaskedArray[_ShapeT_co, np.dtype[np.void]]: ...
|
|
2363
|
+
def torecords(self) -> MaskedArray[_ShapeT_co, np.dtype[np.void]]: ...
|
|
2364
|
+
|
|
2365
|
+
#
|
|
2366
|
+
@override
|
|
2367
|
+
def tobytes(self, /, fill_value: Incomplete | None = None, order: _OrderKACF = "C") -> bytes: ... # type: ignore[override]
|
|
2368
|
+
|
|
2369
|
+
# keep in sync with `ndarray.tolist`
|
|
2370
|
+
@override
|
|
2371
|
+
@overload
|
|
2372
|
+
def tolist(self: MaskedArray[tuple[Never], dtype[generic[_T]]], /, fill_value: _ScalarLike_co | None = None) -> Any: ...
|
|
2373
|
+
@overload
|
|
2374
|
+
def tolist(self: MaskedArray[tuple[()], dtype[generic[_T]]], /, fill_value: _ScalarLike_co | None = None) -> _T: ...
|
|
2375
|
+
@overload
|
|
2376
|
+
def tolist(self: MaskedArray[tuple[int], dtype[generic[_T]]], /, fill_value: _ScalarLike_co | None = None) -> list[_T]: ...
|
|
2377
|
+
@overload
|
|
2378
|
+
def tolist(
|
|
2379
|
+
self: MaskedArray[tuple[int, int], dtype[generic[_T]]], /, fill_value: _ScalarLike_co | None = None
|
|
2380
|
+
) -> list[list[_T]]: ...
|
|
2381
|
+
@overload
|
|
2382
|
+
def tolist(
|
|
2383
|
+
self: MaskedArray[tuple[int, int, int], dtype[generic[_T]]], /, fill_value: _ScalarLike_co | None = None
|
|
2384
|
+
) -> list[list[list[_T]]]: ...
|
|
2385
|
+
@overload
|
|
2386
|
+
def tolist(self, /, fill_value: _ScalarLike_co | None = None) -> Any: ...
|
|
2387
|
+
|
|
2388
|
+
# NOTE: will raise `NotImplementedError`
|
|
2389
|
+
@override
|
|
2390
|
+
def tofile(self, /, fid: Never, sep: str = "", format: str = "%s") -> NoReturn: ... # type: ignore[override]
|
|
2391
|
+
|
|
2392
|
+
#
|
|
2393
|
+
@override
|
|
2394
|
+
def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self: ...
|
|
2395
|
+
|
|
2396
|
+
# Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
|
|
2397
|
+
@property
|
|
2398
|
+
def dtype(self) -> _DTypeT_co: ...
|
|
2399
|
+
@dtype.setter
|
|
2400
|
+
def dtype(self: MaskedArray[_AnyShape, _DTypeT], dtype: _DTypeT, /) -> None: ...
|
|
2401
|
+
|
|
2402
|
+
class mvoid(MaskedArray[_ShapeT_co, _DTypeT_co]):
|
|
2403
|
+
def __new__(
|
|
2404
|
+
self, # pyright: ignore[reportSelfClsParameterName]
|
|
2405
|
+
data,
|
|
2406
|
+
mask=...,
|
|
2407
|
+
dtype=...,
|
|
2408
|
+
fill_value=...,
|
|
2409
|
+
hardmask=...,
|
|
2410
|
+
copy=...,
|
|
2411
|
+
subok=...,
|
|
2412
|
+
): ...
|
|
2413
|
+
def __getitem__(self, indx): ...
|
|
2414
|
+
def __setitem__(self, indx, value): ...
|
|
2415
|
+
def __iter__(self): ...
|
|
2416
|
+
def __len__(self): ...
|
|
2417
|
+
def filled(self, fill_value=None): ...
|
|
2418
|
+
def tolist(self): ... # type: ignore[override]
|
|
2419
|
+
|
|
2420
|
+
def isMaskedArray(x: object) -> TypeIs[MaskedArray]: ...
|
|
2421
|
+
def isarray(x: object) -> TypeIs[MaskedArray]: ... # alias to isMaskedArray
|
|
2422
|
+
def isMA(x: object) -> TypeIs[MaskedArray]: ... # alias to isMaskedArray
|
|
2423
|
+
|
|
2424
|
+
# 0D float64 array
|
|
2425
|
+
class MaskedConstant(MaskedArray[tuple[()], dtype[float64]]):
|
|
2426
|
+
def __new__(cls) -> Self: ...
|
|
2427
|
+
|
|
2428
|
+
# these overrides are no-ops
|
|
2429
|
+
@override
|
|
2430
|
+
def __iadd__(self, other: _Ignored, /) -> Self: ... # type: ignore[override]
|
|
2431
|
+
@override
|
|
2432
|
+
def __isub__(self, other: _Ignored, /) -> Self: ... # type: ignore[override]
|
|
2433
|
+
@override
|
|
2434
|
+
def __imul__(self, other: _Ignored, /) -> Self: ... # type: ignore[override]
|
|
2435
|
+
@override
|
|
2436
|
+
def __ifloordiv__(self, other: _Ignored, /) -> Self: ...
|
|
2437
|
+
@override
|
|
2438
|
+
def __itruediv__(self, other: _Ignored, /) -> Self: ... # type: ignore[override]
|
|
2439
|
+
@override
|
|
2440
|
+
def __ipow__(self, other: _Ignored, /) -> Self: ... # type: ignore[override]
|
|
2441
|
+
@override
|
|
2442
|
+
def __deepcopy__(self, /, memo: _Ignored) -> Self: ... # type: ignore[override]
|
|
2443
|
+
@override
|
|
2444
|
+
def copy(self, /, *args: _Ignored, **kwargs: _Ignored) -> Self: ...
|
|
2445
|
+
|
|
2446
|
+
masked: Final[MaskedConstant] = ...
|
|
2447
|
+
masked_singleton: Final[MaskedConstant] = ...
|
|
2448
|
+
|
|
2449
|
+
masked_array: TypeAlias = MaskedArray
|
|
2450
|
+
|
|
2451
|
+
# keep in sync with `MaskedArray.__new__`
|
|
2452
|
+
@overload
|
|
2453
|
+
def array(
|
|
2454
|
+
data: _ArrayLike[_ScalarT],
|
|
2455
|
+
dtype: None = None,
|
|
2456
|
+
copy: bool = False,
|
|
2457
|
+
order: _OrderKACF | None = None,
|
|
2458
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
2459
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2460
|
+
keep_mask: bool = True,
|
|
2461
|
+
hard_mask: bool = False,
|
|
2462
|
+
shrink: bool = True,
|
|
2463
|
+
subok: bool = True,
|
|
2464
|
+
ndmin: int = 0,
|
|
2465
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
2466
|
+
@overload
|
|
2467
|
+
def array(
|
|
2468
|
+
data: object,
|
|
2469
|
+
dtype: _DTypeLike[_ScalarT],
|
|
2470
|
+
copy: bool = False,
|
|
2471
|
+
order: _OrderKACF | None = None,
|
|
2472
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
2473
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2474
|
+
keep_mask: bool = True,
|
|
2475
|
+
hard_mask: bool = False,
|
|
2476
|
+
shrink: bool = True,
|
|
2477
|
+
subok: bool = True,
|
|
2478
|
+
ndmin: int = 0,
|
|
2479
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
2480
|
+
@overload
|
|
2481
|
+
def array(
|
|
2482
|
+
data: object,
|
|
2483
|
+
dtype: DTypeLike | None = None,
|
|
2484
|
+
copy: bool = False,
|
|
2485
|
+
order: _OrderKACF | None = None,
|
|
2486
|
+
mask: _ArrayLikeBool_co = nomask,
|
|
2487
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2488
|
+
keep_mask: bool = True,
|
|
2489
|
+
hard_mask: bool = False,
|
|
2490
|
+
shrink: bool = True,
|
|
2491
|
+
subok: bool = True,
|
|
2492
|
+
ndmin: int = 0,
|
|
2493
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
2494
|
+
|
|
2495
|
+
# keep in sync with `array`
|
|
2496
|
+
@overload
|
|
2497
|
+
def asarray(a: _ArrayLike[_ScalarT], dtype: None = None, order: _OrderKACF | None = None) -> _MaskedArray[_ScalarT]: ...
|
|
2498
|
+
@overload
|
|
2499
|
+
def asarray(a: object, dtype: _DTypeLike[_ScalarT], order: _OrderKACF | None = None) -> _MaskedArray[_ScalarT]: ...
|
|
2500
|
+
@overload
|
|
2501
|
+
def asarray(a: object, dtype: DTypeLike | None = None, order: _OrderKACF | None = None) -> _MaskedArray[_ScalarT]: ...
|
|
2502
|
+
|
|
2503
|
+
# keep in sync with `asarray` (but note the additional first overload)
|
|
2504
|
+
@overload
|
|
2505
|
+
def asanyarray(a: _MArrayT, dtype: None = None, order: _OrderKACF | None = None) -> _MArrayT: ...
|
|
2506
|
+
@overload
|
|
2507
|
+
def asanyarray(a: _ArrayLike[_ScalarT], dtype: None = None, order: _OrderKACF | None = None) -> _MaskedArray[_ScalarT]: ...
|
|
2508
|
+
@overload
|
|
2509
|
+
def asanyarray(a: object, dtype: _DTypeLike[_ScalarT], order: _OrderKACF | None = None) -> _MaskedArray[_ScalarT]: ...
|
|
2510
|
+
@overload
|
|
2511
|
+
def asanyarray(a: object, dtype: DTypeLike | None = None, order: _OrderKACF | None = None) -> _MaskedArray[_ScalarT]: ...
|
|
2512
|
+
|
|
2513
|
+
#
|
|
2514
|
+
def is_masked(x: object) -> bool: ...
|
|
2515
|
+
|
|
2516
|
+
@overload
|
|
2517
|
+
def min(
|
|
2518
|
+
obj: _ArrayLike[_ScalarT],
|
|
2519
|
+
axis: None = None,
|
|
2520
|
+
out: None = None,
|
|
2521
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2522
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
2523
|
+
) -> _ScalarT: ...
|
|
2524
|
+
@overload
|
|
2525
|
+
def min(
|
|
2526
|
+
obj: ArrayLike,
|
|
2527
|
+
axis: _ShapeLike | None = None,
|
|
2528
|
+
out: None = None,
|
|
2529
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2530
|
+
keepdims: bool | _NoValueType = ...
|
|
2531
|
+
) -> Any: ...
|
|
2532
|
+
@overload
|
|
2533
|
+
def min(
|
|
2534
|
+
obj: ArrayLike,
|
|
2535
|
+
axis: _ShapeLike | None,
|
|
2536
|
+
out: _ArrayT,
|
|
2537
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2538
|
+
keepdims: bool | _NoValueType = ...,
|
|
2539
|
+
) -> _ArrayT: ...
|
|
2540
|
+
@overload
|
|
2541
|
+
def min(
|
|
2542
|
+
obj: ArrayLike,
|
|
2543
|
+
axis: _ShapeLike | None = None,
|
|
2544
|
+
*,
|
|
2545
|
+
out: _ArrayT,
|
|
2546
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2547
|
+
keepdims: bool | _NoValueType = ...,
|
|
2548
|
+
) -> _ArrayT: ...
|
|
2549
|
+
|
|
2550
|
+
@overload
|
|
2551
|
+
def max(
|
|
2552
|
+
obj: _ArrayLike[_ScalarT],
|
|
2553
|
+
axis: None = None,
|
|
2554
|
+
out: None = None,
|
|
2555
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2556
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
2557
|
+
) -> _ScalarT: ...
|
|
2558
|
+
@overload
|
|
2559
|
+
def max(
|
|
2560
|
+
obj: ArrayLike,
|
|
2561
|
+
axis: _ShapeLike | None = None,
|
|
2562
|
+
out: None = None,
|
|
2563
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2564
|
+
keepdims: bool | _NoValueType = ...
|
|
2565
|
+
) -> Any: ...
|
|
2566
|
+
@overload
|
|
2567
|
+
def max(
|
|
2568
|
+
obj: ArrayLike,
|
|
2569
|
+
axis: _ShapeLike | None,
|
|
2570
|
+
out: _ArrayT,
|
|
2571
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2572
|
+
keepdims: bool | _NoValueType = ...,
|
|
2573
|
+
) -> _ArrayT: ...
|
|
2574
|
+
@overload
|
|
2575
|
+
def max(
|
|
2576
|
+
obj: ArrayLike,
|
|
2577
|
+
axis: _ShapeLike | None = None,
|
|
2578
|
+
*,
|
|
2579
|
+
out: _ArrayT,
|
|
2580
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2581
|
+
keepdims: bool | _NoValueType = ...,
|
|
2582
|
+
) -> _ArrayT: ...
|
|
2583
|
+
|
|
2584
|
+
@overload
|
|
2585
|
+
def ptp(
|
|
2586
|
+
obj: _ArrayLike[_ScalarT],
|
|
2587
|
+
axis: None = None,
|
|
2588
|
+
out: None = None,
|
|
2589
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2590
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
2591
|
+
) -> _ScalarT: ...
|
|
2592
|
+
@overload
|
|
2593
|
+
def ptp(
|
|
2594
|
+
obj: ArrayLike,
|
|
2595
|
+
axis: _ShapeLike | None = None,
|
|
2596
|
+
out: None = None,
|
|
2597
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2598
|
+
keepdims: bool | _NoValueType = ...
|
|
2599
|
+
) -> Any: ...
|
|
2600
|
+
@overload
|
|
2601
|
+
def ptp(
|
|
2602
|
+
obj: ArrayLike,
|
|
2603
|
+
axis: _ShapeLike | None,
|
|
2604
|
+
out: _ArrayT,
|
|
2605
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2606
|
+
keepdims: bool | _NoValueType = ...,
|
|
2607
|
+
) -> _ArrayT: ...
|
|
2608
|
+
@overload
|
|
2609
|
+
def ptp(
|
|
2610
|
+
obj: ArrayLike,
|
|
2611
|
+
axis: _ShapeLike | None = None,
|
|
2612
|
+
*,
|
|
2613
|
+
out: _ArrayT,
|
|
2614
|
+
fill_value: _ScalarLike_co | None = None,
|
|
2615
|
+
keepdims: bool | _NoValueType = ...,
|
|
2616
|
+
) -> _ArrayT: ...
|
|
2617
|
+
|
|
2618
|
+
# we cannot meaningfully annotate `frommethod` further, because the callable signature
|
|
2619
|
+
# of the return type fully depends on the *value* of `methodname` and `reversed` in
|
|
2620
|
+
# a way that cannot be expressed in the Python type system.
|
|
2621
|
+
def _frommethod(methodname: str, reversed: bool = False) -> types.FunctionType: ...
|
|
2622
|
+
|
|
2623
|
+
# NOTE: The following `*_mask` functions will accept any array-like input runtime, but
|
|
2624
|
+
# since their use-cases are specific to masks, they only accept `MaskedArray` inputs.
|
|
2625
|
+
|
|
2626
|
+
# keep in sync with `MaskedArray.harden_mask`
|
|
2627
|
+
def harden_mask(a: _MArrayT) -> _MArrayT: ...
|
|
2628
|
+
# keep in sync with `MaskedArray.soften_mask`
|
|
2629
|
+
def soften_mask(a: _MArrayT) -> _MArrayT: ...
|
|
2630
|
+
# keep in sync with `MaskedArray.shrink_mask`
|
|
2631
|
+
def shrink_mask(a: _MArrayT) -> _MArrayT: ...
|
|
2632
|
+
|
|
2633
|
+
# keep in sync with `MaskedArray.ids`
|
|
2634
|
+
def ids(a: ArrayLike) -> tuple[int, int]: ...
|
|
2635
|
+
|
|
2636
|
+
# keep in sync with `ndarray.nonzero`
|
|
2637
|
+
def nonzero(a: ArrayLike) -> tuple[ndarray[tuple[int], np.dtype[intp]], ...]: ...
|
|
2638
|
+
|
|
2639
|
+
# keep first overload in sync with `MaskedArray.ravel`
|
|
2640
|
+
@overload
|
|
2641
|
+
def ravel(a: np.ndarray[Any, _DTypeT], order: _OrderKACF = "C") -> MaskedArray[tuple[int], _DTypeT]: ...
|
|
2642
|
+
@overload
|
|
2643
|
+
def ravel(a: _ArrayLike[_ScalarT], order: _OrderKACF = "C") -> MaskedArray[tuple[int], np.dtype[_ScalarT]]: ...
|
|
2644
|
+
@overload
|
|
2645
|
+
def ravel(a: ArrayLike, order: _OrderKACF = "C") -> MaskedArray[tuple[int], _DTypeT_co]: ...
|
|
2646
|
+
|
|
2647
|
+
# keep roughly in sync with `lib._function_base_impl.copy`
|
|
2648
|
+
@overload
|
|
2649
|
+
def copy(a: _MArrayT, order: _OrderKACF = "C") -> _MArrayT: ...
|
|
2650
|
+
@overload
|
|
2651
|
+
def copy(a: np.ndarray[_ShapeT, _DTypeT], order: _OrderKACF = "C") -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
2652
|
+
@overload
|
|
2653
|
+
def copy(a: _ArrayLike[_ScalarT], order: _OrderKACF = "C") -> _MaskedArray[_ScalarT]: ...
|
|
2654
|
+
@overload
|
|
2655
|
+
def copy(a: ArrayLike, order: _OrderKACF = "C") -> _MaskedArray[Incomplete]: ...
|
|
2656
|
+
|
|
2657
|
+
# keep in sync with `_core.fromnumeric.diagonal`
|
|
2658
|
+
@overload
|
|
2659
|
+
def diagonal(
|
|
2660
|
+
a: _ArrayLike[_ScalarT],
|
|
2661
|
+
offset: SupportsIndex = 0,
|
|
2662
|
+
axis1: SupportsIndex = 0,
|
|
2663
|
+
axis2: SupportsIndex = 1,
|
|
2664
|
+
) -> NDArray[_ScalarT]: ...
|
|
2665
|
+
@overload
|
|
2666
|
+
def diagonal(
|
|
2667
|
+
a: ArrayLike,
|
|
2668
|
+
offset: SupportsIndex = 0,
|
|
2669
|
+
axis1: SupportsIndex = 0,
|
|
2670
|
+
axis2: SupportsIndex = 1,
|
|
2671
|
+
) -> NDArray[Incomplete]: ...
|
|
2672
|
+
|
|
2673
|
+
# keep in sync with `_core.fromnumeric.repeat`
|
|
2674
|
+
@overload
|
|
2675
|
+
def repeat(a: _ArrayLike[_ScalarT], repeats: _ArrayLikeInt_co, axis: None = None) -> MaskedArray[tuple[int], dtype[_ScalarT]]: ...
|
|
2676
|
+
@overload
|
|
2677
|
+
def repeat(a: _ArrayLike[_ScalarT], repeats: _ArrayLikeInt_co, axis: SupportsIndex) -> _MaskedArray[_ScalarT]: ...
|
|
2678
|
+
@overload
|
|
2679
|
+
def repeat(a: ArrayLike, repeats: _ArrayLikeInt_co, axis: None = None) -> MaskedArray[tuple[int], dtype[Incomplete]]: ...
|
|
2680
|
+
@overload
|
|
2681
|
+
def repeat(a: ArrayLike, repeats: _ArrayLikeInt_co, axis: SupportsIndex) -> _MaskedArray[Incomplete]: ...
|
|
2682
|
+
|
|
2683
|
+
# keep in sync with `_core.fromnumeric.swapaxes`
|
|
2684
|
+
@overload
|
|
2685
|
+
def swapaxes(a: _MArrayT, axis1: SupportsIndex, axis2: SupportsIndex) -> _MArrayT: ...
|
|
2686
|
+
@overload
|
|
2687
|
+
def swapaxes(a: _ArrayLike[_ScalarT], axis1: SupportsIndex, axis2: SupportsIndex) -> _MaskedArray[_ScalarT]: ...
|
|
2688
|
+
@overload
|
|
2689
|
+
def swapaxes(a: ArrayLike, axis1: SupportsIndex, axis2: SupportsIndex) -> _MaskedArray[Incomplete]: ...
|
|
2690
|
+
|
|
2691
|
+
# NOTE: The `MaskedArray.anom` definition is specific to `MaskedArray`, so we need
|
|
2692
|
+
# additional overloads to cover the array-like input here.
|
|
2693
|
+
@overload # a: MaskedArray, dtype=None
|
|
2694
|
+
def anom(a: _MArrayT, axis: SupportsIndex | None = None, dtype: None = None) -> _MArrayT: ...
|
|
2695
|
+
@overload # a: array-like, dtype=None
|
|
2696
|
+
def anom(a: _ArrayLike[_ScalarT], axis: SupportsIndex | None = None, dtype: None = None) -> _MaskedArray[_ScalarT]: ...
|
|
2697
|
+
@overload # a: unknown array-like, dtype: dtype-like (positional)
|
|
2698
|
+
def anom(a: ArrayLike, axis: SupportsIndex | None, dtype: _DTypeLike[_ScalarT]) -> _MaskedArray[_ScalarT]: ...
|
|
2699
|
+
@overload # a: unknown array-like, dtype: dtype-like (keyword)
|
|
2700
|
+
def anom(a: ArrayLike, axis: SupportsIndex | None = None, *, dtype: _DTypeLike[_ScalarT]) -> _MaskedArray[_ScalarT]: ...
|
|
2701
|
+
@overload # a: unknown array-like, dtype: unknown dtype-like (positional)
|
|
2702
|
+
def anom(a: ArrayLike, axis: SupportsIndex | None, dtype: DTypeLike) -> _MaskedArray[Incomplete]: ...
|
|
2703
|
+
@overload # a: unknown array-like, dtype: unknown dtype-like (keyword)
|
|
2704
|
+
def anom(a: ArrayLike, axis: SupportsIndex | None = None, *, dtype: DTypeLike) -> _MaskedArray[Incomplete]: ...
|
|
2705
|
+
|
|
2706
|
+
anomalies = anom
|
|
2707
|
+
|
|
2708
|
+
# Keep in sync with `any` and `MaskedArray.all`
|
|
2709
|
+
@overload
|
|
2710
|
+
def all(a: ArrayLike, axis: None = None, out: None = None, keepdims: Literal[False] | _NoValueType = ...) -> np.bool: ...
|
|
2711
|
+
@overload
|
|
2712
|
+
def all(a: ArrayLike, axis: _ShapeLike | None, out: None, keepdims: Literal[True]) -> _MaskedArray[np.bool]: ...
|
|
2713
|
+
@overload
|
|
2714
|
+
def all(a: ArrayLike, axis: _ShapeLike | None = None, out: None = None, *, keepdims: Literal[True]) -> _MaskedArray[np.bool]: ...
|
|
2715
|
+
@overload
|
|
2716
|
+
def all(
|
|
2717
|
+
a: ArrayLike, axis: _ShapeLike | None = None, out: None = None, keepdims: bool | _NoValueType = ...
|
|
2718
|
+
) -> np.bool | _MaskedArray[np.bool]: ...
|
|
2719
|
+
@overload
|
|
2720
|
+
def all(a: ArrayLike, axis: _ShapeLike | None, out: _ArrayT, keepdims: bool | _NoValueType = ...) -> _ArrayT: ...
|
|
2721
|
+
@overload
|
|
2722
|
+
def all(a: ArrayLike, axis: _ShapeLike | None = None, *, out: _ArrayT, keepdims: bool | _NoValueType = ...) -> _ArrayT: ...
|
|
2723
|
+
|
|
2724
|
+
# Keep in sync with `all` and `MaskedArray.any`
|
|
2725
|
+
@overload
|
|
2726
|
+
def any(a: ArrayLike, axis: None = None, out: None = None, keepdims: Literal[False] | _NoValueType = ...) -> np.bool: ...
|
|
2727
|
+
@overload
|
|
2728
|
+
def any(a: ArrayLike, axis: _ShapeLike | None, out: None, keepdims: Literal[True]) -> _MaskedArray[np.bool]: ...
|
|
2729
|
+
@overload
|
|
2730
|
+
def any(a: ArrayLike, axis: _ShapeLike | None = None, out: None = None, *, keepdims: Literal[True]) -> _MaskedArray[np.bool]: ...
|
|
2731
|
+
@overload
|
|
2732
|
+
def any(
|
|
2733
|
+
a: ArrayLike, axis: _ShapeLike | None = None, out: None = None, keepdims: bool | _NoValueType = ...
|
|
2734
|
+
) -> np.bool | _MaskedArray[np.bool]: ...
|
|
2735
|
+
@overload
|
|
2736
|
+
def any(a: ArrayLike, axis: _ShapeLike | None, out: _ArrayT, keepdims: bool | _NoValueType = ...) -> _ArrayT: ...
|
|
2737
|
+
@overload
|
|
2738
|
+
def any(a: ArrayLike, axis: _ShapeLike | None = None, *, out: _ArrayT, keepdims: bool | _NoValueType = ...) -> _ArrayT: ...
|
|
2739
|
+
|
|
2740
|
+
# NOTE: The `MaskedArray.compress` definition uses its `DTypeT_co` type parameter,
|
|
2741
|
+
# which wouldn't work here for array-like inputs, so we need additional overloads.
|
|
2742
|
+
@overload
|
|
2743
|
+
def compress(
|
|
2744
|
+
condition: _ArrayLikeBool_co, a: _ArrayLike[_ScalarT], axis: None = None, out: None = None
|
|
2745
|
+
) -> MaskedArray[tuple[int], np.dtype[_ScalarT]]: ...
|
|
2746
|
+
@overload
|
|
2747
|
+
def compress(
|
|
2748
|
+
condition: _ArrayLikeBool_co, a: _ArrayLike[_ScalarT], axis: _ShapeLike | None = None, out: None = None
|
|
2749
|
+
) -> MaskedArray[_AnyShape, np.dtype[_ScalarT]]: ...
|
|
2750
|
+
@overload
|
|
2751
|
+
def compress(condition: _ArrayLikeBool_co, a: ArrayLike, axis: None = None, out: None = None) -> MaskedArray[tuple[int]]: ...
|
|
2752
|
+
@overload
|
|
2753
|
+
def compress(
|
|
2754
|
+
condition: _ArrayLikeBool_co, a: ArrayLike, axis: _ShapeLike | None = None, out: None = None
|
|
2755
|
+
) -> _MaskedArray[Incomplete]: ...
|
|
2756
|
+
@overload
|
|
2757
|
+
def compress(condition: _ArrayLikeBool_co, a: ArrayLike, axis: _ShapeLike | None, out: _ArrayT) -> _ArrayT: ...
|
|
2758
|
+
@overload
|
|
2759
|
+
def compress(condition: _ArrayLikeBool_co, a: ArrayLike, axis: _ShapeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...
|
|
2760
|
+
|
|
2761
|
+
# Keep in sync with `cumprod` and `MaskedArray.cumsum`
|
|
2762
|
+
@overload # out: None (default)
|
|
2763
|
+
def cumsum(
|
|
2764
|
+
a: ArrayLike, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None
|
|
2765
|
+
) -> _MaskedArray[Incomplete]: ...
|
|
2766
|
+
@overload # out: ndarray (positional)
|
|
2767
|
+
def cumsum(a: ArrayLike, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ...
|
|
2768
|
+
@overload # out: ndarray (kwarg)
|
|
2769
|
+
def cumsum(a: ArrayLike, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...
|
|
2770
|
+
|
|
2771
|
+
# Keep in sync with `cumsum` and `MaskedArray.cumsum`
|
|
2772
|
+
@overload # out: None (default)
|
|
2773
|
+
def cumprod(
|
|
2774
|
+
a: ArrayLike, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None
|
|
2775
|
+
) -> _MaskedArray[Incomplete]: ...
|
|
2776
|
+
@overload # out: ndarray (positional)
|
|
2777
|
+
def cumprod(a: ArrayLike, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ...
|
|
2778
|
+
@overload # out: ndarray (kwarg)
|
|
2779
|
+
def cumprod(a: ArrayLike, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...
|
|
2780
|
+
|
|
2781
|
+
# Keep in sync with `sum`, `prod`, `product`, and `MaskedArray.mean`
|
|
2782
|
+
@overload
|
|
2783
|
+
def mean(
|
|
2784
|
+
a: ArrayLike,
|
|
2785
|
+
axis: _ShapeLike | None = None,
|
|
2786
|
+
dtype: DTypeLike | None = None,
|
|
2787
|
+
out: None = None,
|
|
2788
|
+
keepdims: bool | _NoValueType = ...,
|
|
2789
|
+
) -> Incomplete: ...
|
|
2790
|
+
@overload
|
|
2791
|
+
def mean(
|
|
2792
|
+
a: ArrayLike,
|
|
2793
|
+
axis: _ShapeLike | None,
|
|
2794
|
+
dtype: DTypeLike | None,
|
|
2795
|
+
out: _ArrayT,
|
|
2796
|
+
keepdims: bool | _NoValueType = ...,
|
|
2797
|
+
) -> _ArrayT: ...
|
|
2798
|
+
@overload
|
|
2799
|
+
def mean(
|
|
2800
|
+
a: ArrayLike,
|
|
2801
|
+
axis: _ShapeLike | None = None,
|
|
2802
|
+
dtype: DTypeLike | None = None,
|
|
2803
|
+
*,
|
|
2804
|
+
out: _ArrayT,
|
|
2805
|
+
keepdims: bool | _NoValueType = ...,
|
|
2806
|
+
) -> _ArrayT: ...
|
|
2807
|
+
|
|
2808
|
+
# Keep in sync with `mean`, `prod`, `product`, and `MaskedArray.sum`
|
|
2809
|
+
@overload
|
|
2810
|
+
def sum(
|
|
2811
|
+
a: ArrayLike,
|
|
2812
|
+
axis: _ShapeLike | None = None,
|
|
2813
|
+
dtype: DTypeLike | None = None,
|
|
2814
|
+
out: None = None,
|
|
2815
|
+
keepdims: bool | _NoValueType = ...,
|
|
2816
|
+
) -> Incomplete: ...
|
|
2817
|
+
@overload
|
|
2818
|
+
def sum(
|
|
2819
|
+
a: ArrayLike,
|
|
2820
|
+
axis: _ShapeLike | None,
|
|
2821
|
+
dtype: DTypeLike | None,
|
|
2822
|
+
out: _ArrayT,
|
|
2823
|
+
keepdims: bool | _NoValueType = ...,
|
|
2824
|
+
) -> _ArrayT: ...
|
|
2825
|
+
@overload
|
|
2826
|
+
def sum(
|
|
2827
|
+
a: ArrayLike,
|
|
2828
|
+
axis: _ShapeLike | None = None,
|
|
2829
|
+
dtype: DTypeLike | None = None,
|
|
2830
|
+
*,
|
|
2831
|
+
out: _ArrayT,
|
|
2832
|
+
keepdims: bool | _NoValueType = ...,
|
|
2833
|
+
) -> _ArrayT: ...
|
|
2834
|
+
|
|
2835
|
+
# Keep in sync with `product` and `MaskedArray.prod`
|
|
2836
|
+
@overload
|
|
2837
|
+
def prod(
|
|
2838
|
+
a: ArrayLike,
|
|
2839
|
+
axis: _ShapeLike | None = None,
|
|
2840
|
+
dtype: DTypeLike | None = None,
|
|
2841
|
+
out: None = None,
|
|
2842
|
+
keepdims: bool | _NoValueType = ...,
|
|
2843
|
+
) -> Incomplete: ...
|
|
2844
|
+
@overload
|
|
2845
|
+
def prod(
|
|
2846
|
+
a: ArrayLike,
|
|
2847
|
+
axis: _ShapeLike | None,
|
|
2848
|
+
dtype: DTypeLike | None,
|
|
2849
|
+
out: _ArrayT,
|
|
2850
|
+
keepdims: bool | _NoValueType = ...,
|
|
2851
|
+
) -> _ArrayT: ...
|
|
2852
|
+
@overload
|
|
2853
|
+
def prod(
|
|
2854
|
+
a: ArrayLike,
|
|
2855
|
+
axis: _ShapeLike | None = None,
|
|
2856
|
+
dtype: DTypeLike | None = None,
|
|
2857
|
+
*,
|
|
2858
|
+
out: _ArrayT,
|
|
2859
|
+
keepdims: bool | _NoValueType = ...,
|
|
2860
|
+
) -> _ArrayT: ...
|
|
2861
|
+
|
|
2862
|
+
# Keep in sync with `prod` and `MaskedArray.prod`
|
|
2863
|
+
@overload
|
|
2864
|
+
def product(
|
|
2865
|
+
a: ArrayLike,
|
|
2866
|
+
axis: _ShapeLike | None = None,
|
|
2867
|
+
dtype: DTypeLike | None = None,
|
|
2868
|
+
out: None = None,
|
|
2869
|
+
keepdims: bool | _NoValueType = ...,
|
|
2870
|
+
) -> Incomplete: ...
|
|
2871
|
+
@overload
|
|
2872
|
+
def product(
|
|
2873
|
+
a: ArrayLike,
|
|
2874
|
+
axis: _ShapeLike | None,
|
|
2875
|
+
dtype: DTypeLike | None,
|
|
2876
|
+
out: _ArrayT,
|
|
2877
|
+
keepdims: bool | _NoValueType = ...,
|
|
2878
|
+
) -> _ArrayT: ...
|
|
2879
|
+
@overload
|
|
2880
|
+
def product(
|
|
2881
|
+
a: ArrayLike,
|
|
2882
|
+
axis: _ShapeLike | None = None,
|
|
2883
|
+
dtype: DTypeLike | None = None,
|
|
2884
|
+
*,
|
|
2885
|
+
out: _ArrayT,
|
|
2886
|
+
keepdims: bool | _NoValueType = ...,
|
|
2887
|
+
) -> _ArrayT: ...
|
|
2888
|
+
|
|
2889
|
+
# Keep in sync with `MaskedArray.trace` and `_core.fromnumeric.trace`
|
|
2890
|
+
@overload
|
|
2891
|
+
def trace(
|
|
2892
|
+
a: ArrayLike,
|
|
2893
|
+
offset: SupportsIndex = 0,
|
|
2894
|
+
axis1: SupportsIndex = 0,
|
|
2895
|
+
axis2: SupportsIndex = 1,
|
|
2896
|
+
dtype: DTypeLike | None = None,
|
|
2897
|
+
out: None = None,
|
|
2898
|
+
) -> Incomplete: ...
|
|
2899
|
+
@overload
|
|
2900
|
+
def trace(
|
|
2901
|
+
a: ArrayLike,
|
|
2902
|
+
offset: SupportsIndex,
|
|
2903
|
+
axis1: SupportsIndex,
|
|
2904
|
+
axis2: SupportsIndex,
|
|
2905
|
+
dtype: DTypeLike | None,
|
|
2906
|
+
out: _ArrayT,
|
|
2907
|
+
) -> _ArrayT: ...
|
|
2908
|
+
@overload
|
|
2909
|
+
def trace(
|
|
2910
|
+
a: ArrayLike,
|
|
2911
|
+
offset: SupportsIndex = 0,
|
|
2912
|
+
axis1: SupportsIndex = 0,
|
|
2913
|
+
axis2: SupportsIndex = 1,
|
|
2914
|
+
dtype: DTypeLike | None = None,
|
|
2915
|
+
*,
|
|
2916
|
+
out: _ArrayT,
|
|
2917
|
+
) -> _ArrayT: ...
|
|
2918
|
+
|
|
2919
|
+
# keep in sync with `std` and `MaskedArray.var`
|
|
2920
|
+
@overload
|
|
2921
|
+
def std(
|
|
2922
|
+
a: ArrayLike,
|
|
2923
|
+
axis: _ShapeLike | None = None,
|
|
2924
|
+
dtype: DTypeLike | None = None,
|
|
2925
|
+
out: None = None,
|
|
2926
|
+
ddof: float = 0,
|
|
2927
|
+
keepdims: bool | _NoValueType = ...,
|
|
2928
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2929
|
+
) -> Incomplete: ...
|
|
2930
|
+
@overload
|
|
2931
|
+
def std(
|
|
2932
|
+
a: ArrayLike,
|
|
2933
|
+
axis: _ShapeLike | None,
|
|
2934
|
+
dtype: DTypeLike | None,
|
|
2935
|
+
out: _ArrayT,
|
|
2936
|
+
ddof: float = 0,
|
|
2937
|
+
keepdims: bool | _NoValueType = ...,
|
|
2938
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2939
|
+
) -> _ArrayT: ...
|
|
2940
|
+
@overload
|
|
2941
|
+
def std(
|
|
2942
|
+
a: ArrayLike,
|
|
2943
|
+
axis: _ShapeLike | None = None,
|
|
2944
|
+
dtype: DTypeLike | None = None,
|
|
2945
|
+
*,
|
|
2946
|
+
out: _ArrayT,
|
|
2947
|
+
ddof: float = 0,
|
|
2948
|
+
keepdims: bool | _NoValueType = ...,
|
|
2949
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2950
|
+
) -> _ArrayT: ...
|
|
2951
|
+
|
|
2952
|
+
# keep in sync with `std` and `MaskedArray.var`
|
|
2953
|
+
@overload
|
|
2954
|
+
def var(
|
|
2955
|
+
a: ArrayLike,
|
|
2956
|
+
axis: _ShapeLike | None = None,
|
|
2957
|
+
dtype: DTypeLike | None = None,
|
|
2958
|
+
out: None = None,
|
|
2959
|
+
ddof: float = 0,
|
|
2960
|
+
keepdims: bool | _NoValueType = ...,
|
|
2961
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2962
|
+
) -> Incomplete: ...
|
|
2963
|
+
@overload
|
|
2964
|
+
def var(
|
|
2965
|
+
a: ArrayLike,
|
|
2966
|
+
axis: _ShapeLike | None,
|
|
2967
|
+
dtype: DTypeLike | None,
|
|
2968
|
+
out: _ArrayT,
|
|
2969
|
+
ddof: float = 0,
|
|
2970
|
+
keepdims: bool | _NoValueType = ...,
|
|
2971
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2972
|
+
) -> _ArrayT: ...
|
|
2973
|
+
@overload
|
|
2974
|
+
def var(
|
|
2975
|
+
a: ArrayLike,
|
|
2976
|
+
axis: _ShapeLike | None = None,
|
|
2977
|
+
dtype: DTypeLike | None = None,
|
|
2978
|
+
*,
|
|
2979
|
+
out: _ArrayT,
|
|
2980
|
+
ddof: float = 0,
|
|
2981
|
+
keepdims: bool | _NoValueType = ...,
|
|
2982
|
+
mean: _ArrayLikeNumber_co | _NoValueType = ...,
|
|
2983
|
+
) -> _ArrayT: ...
|
|
2984
|
+
|
|
2985
|
+
# (a, b)
|
|
2986
|
+
minimum: _extrema_operation = ...
|
|
2987
|
+
maximum: _extrema_operation = ...
|
|
2988
|
+
|
|
2989
|
+
# NOTE: this is a `_frommethod` instance at runtime
|
|
2990
|
+
@overload
|
|
2991
|
+
def count(a: ArrayLike, axis: None = None, keepdims: Literal[False] | _NoValueType = ...) -> int: ...
|
|
2992
|
+
@overload
|
|
2993
|
+
def count(a: ArrayLike, axis: _ShapeLike, keepdims: bool | _NoValueType = ...) -> NDArray[int_]: ...
|
|
2994
|
+
@overload
|
|
2995
|
+
def count(a: ArrayLike, axis: _ShapeLike | None = None, *, keepdims: Literal[True]) -> NDArray[int_]: ...
|
|
2996
|
+
@overload
|
|
2997
|
+
def count(a: ArrayLike, axis: _ShapeLike | None, keepdims: Literal[True]) -> NDArray[int_]: ...
|
|
2998
|
+
|
|
2999
|
+
# NOTE: this is a `_frommethod` instance at runtime
|
|
3000
|
+
@overload
|
|
3001
|
+
def argmin(
|
|
3002
|
+
a: ArrayLike,
|
|
3003
|
+
axis: None = None,
|
|
3004
|
+
fill_value: _ScalarLike_co | None = None,
|
|
3005
|
+
out: None = None,
|
|
3006
|
+
*,
|
|
3007
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
3008
|
+
) -> intp: ...
|
|
3009
|
+
@overload
|
|
3010
|
+
def argmin(
|
|
3011
|
+
a: ArrayLike,
|
|
3012
|
+
axis: SupportsIndex | None = None,
|
|
3013
|
+
fill_value: _ScalarLike_co | None = None,
|
|
3014
|
+
out: None = None,
|
|
3015
|
+
*,
|
|
3016
|
+
keepdims: bool | _NoValueType = ...,
|
|
3017
|
+
) -> Any: ...
|
|
3018
|
+
@overload
|
|
3019
|
+
def argmin(
|
|
3020
|
+
a: ArrayLike,
|
|
3021
|
+
axis: SupportsIndex | None = None,
|
|
3022
|
+
fill_value: _ScalarLike_co | None = None,
|
|
3023
|
+
*,
|
|
3024
|
+
out: _ArrayT,
|
|
3025
|
+
keepdims: bool | _NoValueType = ...,
|
|
3026
|
+
) -> _ArrayT: ...
|
|
3027
|
+
@overload
|
|
3028
|
+
def argmin(
|
|
3029
|
+
a: ArrayLike,
|
|
3030
|
+
axis: SupportsIndex | None,
|
|
3031
|
+
fill_value: _ScalarLike_co | None,
|
|
3032
|
+
out: _ArrayT,
|
|
3033
|
+
*,
|
|
3034
|
+
keepdims: bool | _NoValueType = ...,
|
|
3035
|
+
) -> _ArrayT: ...
|
|
3036
|
+
|
|
3037
|
+
# keep in sync with `argmin`
|
|
3038
|
+
@overload
|
|
3039
|
+
def argmax(
|
|
3040
|
+
a: ArrayLike,
|
|
3041
|
+
axis: None = None,
|
|
3042
|
+
fill_value: _ScalarLike_co | None = None,
|
|
3043
|
+
out: None = None,
|
|
3044
|
+
*,
|
|
3045
|
+
keepdims: Literal[False] | _NoValueType = ...,
|
|
3046
|
+
) -> intp: ...
|
|
3047
|
+
@overload
|
|
3048
|
+
def argmax(
|
|
3049
|
+
a: ArrayLike,
|
|
3050
|
+
axis: SupportsIndex | None = None,
|
|
3051
|
+
fill_value: _ScalarLike_co | None = None,
|
|
3052
|
+
out: None = None,
|
|
3053
|
+
*,
|
|
3054
|
+
keepdims: bool | _NoValueType = ...,
|
|
3055
|
+
) -> Any: ...
|
|
3056
|
+
@overload
|
|
3057
|
+
def argmax(
|
|
3058
|
+
a: ArrayLike,
|
|
3059
|
+
axis: SupportsIndex | None = None,
|
|
3060
|
+
fill_value: _ScalarLike_co | None = None,
|
|
3061
|
+
*,
|
|
3062
|
+
out: _ArrayT,
|
|
3063
|
+
keepdims: bool | _NoValueType = ...,
|
|
3064
|
+
) -> _ArrayT: ...
|
|
3065
|
+
@overload
|
|
3066
|
+
def argmax(
|
|
3067
|
+
a: ArrayLike,
|
|
3068
|
+
axis: SupportsIndex | None,
|
|
3069
|
+
fill_value: _ScalarLike_co | None,
|
|
3070
|
+
out: _ArrayT,
|
|
3071
|
+
*,
|
|
3072
|
+
keepdims: bool | _NoValueType = ...,
|
|
3073
|
+
) -> _ArrayT: ...
|
|
3074
|
+
|
|
3075
|
+
@overload
|
|
3076
|
+
def take(
|
|
3077
|
+
a: _ArrayLike[_ScalarT],
|
|
3078
|
+
indices: _IntLike_co,
|
|
3079
|
+
axis: None = None,
|
|
3080
|
+
out: None = None,
|
|
3081
|
+
mode: _ModeKind = "raise"
|
|
3082
|
+
) -> _ScalarT: ...
|
|
3083
|
+
@overload
|
|
3084
|
+
def take(
|
|
3085
|
+
a: _ArrayLike[_ScalarT],
|
|
3086
|
+
indices: _ArrayLikeInt_co,
|
|
3087
|
+
axis: SupportsIndex | None = None,
|
|
3088
|
+
out: None = None,
|
|
3089
|
+
mode: _ModeKind = "raise",
|
|
3090
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
3091
|
+
@overload
|
|
3092
|
+
def take(
|
|
3093
|
+
a: ArrayLike,
|
|
3094
|
+
indices: _IntLike_co,
|
|
3095
|
+
axis: SupportsIndex | None = None,
|
|
3096
|
+
out: None = None,
|
|
3097
|
+
mode: _ModeKind = "raise",
|
|
3098
|
+
) -> Any: ...
|
|
3099
|
+
@overload
|
|
3100
|
+
def take(
|
|
3101
|
+
a: ArrayLike,
|
|
3102
|
+
indices: _ArrayLikeInt_co,
|
|
3103
|
+
axis: SupportsIndex | None = None,
|
|
3104
|
+
out: None = None,
|
|
3105
|
+
mode: _ModeKind = "raise",
|
|
3106
|
+
) -> _MaskedArray[Any]: ...
|
|
3107
|
+
@overload
|
|
3108
|
+
def take(
|
|
3109
|
+
a: ArrayLike,
|
|
3110
|
+
indices: _ArrayLikeInt_co,
|
|
3111
|
+
axis: SupportsIndex | None,
|
|
3112
|
+
out: _ArrayT,
|
|
3113
|
+
mode: _ModeKind = "raise",
|
|
3114
|
+
) -> _ArrayT: ...
|
|
3115
|
+
@overload
|
|
3116
|
+
def take(
|
|
3117
|
+
a: ArrayLike,
|
|
3118
|
+
indices: _ArrayLikeInt_co,
|
|
3119
|
+
axis: SupportsIndex | None = None,
|
|
3120
|
+
*,
|
|
3121
|
+
out: _ArrayT,
|
|
3122
|
+
mode: _ModeKind = "raise",
|
|
3123
|
+
) -> _ArrayT: ...
|
|
3124
|
+
|
|
3125
|
+
def power(a, b, third=None): ...
|
|
3126
|
+
def argsort(a, axis=..., kind=None, order=None, endwith=True, fill_value=None, *, stable=None): ...
|
|
3127
|
+
@overload
|
|
3128
|
+
def sort(
|
|
3129
|
+
a: _ArrayT,
|
|
3130
|
+
axis: SupportsIndex = -1,
|
|
3131
|
+
kind: _SortKind | None = None,
|
|
3132
|
+
order: str | Sequence[str] | None = None,
|
|
3133
|
+
endwith: bool | None = True,
|
|
3134
|
+
fill_value: _ScalarLike_co | None = None,
|
|
3135
|
+
*,
|
|
3136
|
+
stable: Literal[False] | None = None,
|
|
3137
|
+
) -> _ArrayT: ...
|
|
3138
|
+
@overload
|
|
3139
|
+
def sort(
|
|
3140
|
+
a: ArrayLike,
|
|
3141
|
+
axis: SupportsIndex = -1,
|
|
3142
|
+
kind: _SortKind | None = None,
|
|
3143
|
+
order: str | Sequence[str] | None = None,
|
|
3144
|
+
endwith: bool | None = True,
|
|
3145
|
+
fill_value: _ScalarLike_co | None = None,
|
|
3146
|
+
*,
|
|
3147
|
+
stable: Literal[False] | None = None,
|
|
3148
|
+
) -> NDArray[Any]: ...
|
|
3149
|
+
@overload
|
|
3150
|
+
def compressed(x: _ArrayLike[_ScalarT_co]) -> _Array1D[_ScalarT_co]: ...
|
|
3151
|
+
@overload
|
|
3152
|
+
def compressed(x: ArrayLike) -> _Array1D[Any]: ...
|
|
3153
|
+
def concatenate(arrays, axis=0): ...
|
|
3154
|
+
def diag(v, k=0): ...
|
|
3155
|
+
def left_shift(a, n): ...
|
|
3156
|
+
def right_shift(a, n): ...
|
|
3157
|
+
def put(a: NDArray[Any], indices: _ArrayLikeInt_co, values: ArrayLike, mode: _ModeKind = "raise") -> None: ...
|
|
3158
|
+
def putmask(a: NDArray[Any], mask: _ArrayLikeBool_co, values: ArrayLike) -> None: ...
|
|
3159
|
+
def transpose(a, axes=None): ...
|
|
3160
|
+
def reshape(a, new_shape, order="C"): ...
|
|
3161
|
+
def resize(x, new_shape): ...
|
|
3162
|
+
def ndim(obj: ArrayLike) -> int: ...
|
|
3163
|
+
def shape(obj): ...
|
|
3164
|
+
def size(obj: ArrayLike, axis: SupportsIndex | None = None) -> int: ...
|
|
3165
|
+
def diff(a, /, n=1, axis=-1, prepend=..., append=...): ...
|
|
3166
|
+
def where(condition, x=..., y=...): ...
|
|
3167
|
+
def choose(indices, choices, out=None, mode="raise"): ...
|
|
3168
|
+
def round_(a, decimals=0, out=None): ...
|
|
3169
|
+
round = round_
|
|
3170
|
+
|
|
3171
|
+
def inner(a, b): ...
|
|
3172
|
+
innerproduct = inner
|
|
3173
|
+
|
|
3174
|
+
def outer(a, b): ...
|
|
3175
|
+
outerproduct = outer
|
|
3176
|
+
|
|
3177
|
+
def correlate(a, v, mode="valid", propagate_mask=True): ...
|
|
3178
|
+
def convolve(a, v, mode="full", propagate_mask=True): ...
|
|
3179
|
+
|
|
3180
|
+
def allequal(a: ArrayLike, b: ArrayLike, fill_value: bool = True) -> bool: ...
|
|
3181
|
+
|
|
3182
|
+
def allclose(a: ArrayLike, b: ArrayLike, masked_equal: bool = True, rtol: float = 1e-5, atol: float = 1e-8) -> bool: ...
|
|
3183
|
+
|
|
3184
|
+
def fromflex(fxarray): ...
|
|
3185
|
+
|
|
3186
|
+
def append(a, b, axis=None): ...
|
|
3187
|
+
def dot(a, b, strict=False, out=None): ...
|
|
3188
|
+
|
|
3189
|
+
# internal wrapper functions for the functions below
|
|
3190
|
+
def _convert2ma(
|
|
3191
|
+
funcname: str,
|
|
3192
|
+
np_ret: str,
|
|
3193
|
+
np_ma_ret: str,
|
|
3194
|
+
params: dict[str, Any] | None = None,
|
|
3195
|
+
) -> Callable[..., Any]: ...
|
|
3196
|
+
|
|
3197
|
+
# keep in sync with `_core.multiarray.arange`
|
|
3198
|
+
@overload # dtype=<known>
|
|
3199
|
+
def arange(
|
|
3200
|
+
start_or_stop: _ArangeScalar | float,
|
|
3201
|
+
/,
|
|
3202
|
+
stop: _ArangeScalar | float | None = None,
|
|
3203
|
+
step: _ArangeScalar | float | None = 1,
|
|
3204
|
+
*,
|
|
3205
|
+
dtype: _DTypeLike[_ArangeScalarT],
|
|
3206
|
+
device: Literal["cpu"] | None = None,
|
|
3207
|
+
like: _SupportsArrayFunc | None = None,
|
|
3208
|
+
fill_value: _FillValue | None = None,
|
|
3209
|
+
hardmask: bool = False,
|
|
3210
|
+
) -> _Masked1D[_ArangeScalarT]: ...
|
|
3211
|
+
@overload # (int-like, int-like?, int-like?)
|
|
3212
|
+
def arange(
|
|
3213
|
+
start_or_stop: _IntLike_co,
|
|
3214
|
+
/,
|
|
3215
|
+
stop: _IntLike_co | None = None,
|
|
3216
|
+
step: _IntLike_co | None = 1,
|
|
3217
|
+
*,
|
|
3218
|
+
dtype: type[int] | _DTypeLike[np.int_] | None = None,
|
|
3219
|
+
device: Literal["cpu"] | None = None,
|
|
3220
|
+
like: _SupportsArrayFunc | None = None,
|
|
3221
|
+
fill_value: _FillValue | None = None,
|
|
3222
|
+
hardmask: bool = False,
|
|
3223
|
+
) -> _Masked1D[np.int_]: ...
|
|
3224
|
+
@overload # (float, float-like?, float-like?)
|
|
3225
|
+
def arange(
|
|
3226
|
+
start_or_stop: float | floating,
|
|
3227
|
+
/,
|
|
3228
|
+
stop: _FloatLike_co | None = None,
|
|
3229
|
+
step: _FloatLike_co | None = 1,
|
|
3230
|
+
*,
|
|
3231
|
+
dtype: type[float] | _DTypeLike[np.float64] | None = None,
|
|
3232
|
+
device: Literal["cpu"] | None = None,
|
|
3233
|
+
like: _SupportsArrayFunc | None = None,
|
|
3234
|
+
fill_value: _FillValue | None = None,
|
|
3235
|
+
hardmask: bool = False,
|
|
3236
|
+
) -> _Masked1D[np.float64 | Any]: ...
|
|
3237
|
+
@overload # (float-like, float, float-like?)
|
|
3238
|
+
def arange(
|
|
3239
|
+
start_or_stop: _FloatLike_co,
|
|
3240
|
+
/,
|
|
3241
|
+
stop: float | floating,
|
|
3242
|
+
step: _FloatLike_co | None = 1,
|
|
3243
|
+
*,
|
|
3244
|
+
dtype: type[float] | _DTypeLike[np.float64] | None = None,
|
|
3245
|
+
device: Literal["cpu"] | None = None,
|
|
3246
|
+
like: _SupportsArrayFunc | None = None,
|
|
3247
|
+
fill_value: _FillValue | None = None,
|
|
3248
|
+
hardmask: bool = False,
|
|
3249
|
+
) -> _Masked1D[np.float64 | Any]: ...
|
|
3250
|
+
@overload # (timedelta, timedelta-like?, timedelta-like?)
|
|
3251
|
+
def arange(
|
|
3252
|
+
start_or_stop: np.timedelta64,
|
|
3253
|
+
/,
|
|
3254
|
+
stop: _TD64Like_co | None = None,
|
|
3255
|
+
step: _TD64Like_co | None = 1,
|
|
3256
|
+
*,
|
|
3257
|
+
dtype: _DTypeLike[np.timedelta64] | None = None,
|
|
3258
|
+
device: Literal["cpu"] | None = None,
|
|
3259
|
+
like: _SupportsArrayFunc | None = None,
|
|
3260
|
+
fill_value: _FillValue | None = None,
|
|
3261
|
+
hardmask: bool = False,
|
|
3262
|
+
) -> _Masked1D[np.timedelta64[Incomplete]]: ...
|
|
3263
|
+
@overload # (timedelta-like, timedelta, timedelta-like?)
|
|
3264
|
+
def arange(
|
|
3265
|
+
start_or_stop: _TD64Like_co,
|
|
3266
|
+
/,
|
|
3267
|
+
stop: np.timedelta64,
|
|
3268
|
+
step: _TD64Like_co | None = 1,
|
|
3269
|
+
*,
|
|
3270
|
+
dtype: _DTypeLike[np.timedelta64] | None = None,
|
|
3271
|
+
device: Literal["cpu"] | None = None,
|
|
3272
|
+
like: _SupportsArrayFunc | None = None,
|
|
3273
|
+
fill_value: _FillValue | None = None,
|
|
3274
|
+
hardmask: bool = False,
|
|
3275
|
+
) -> _Masked1D[np.timedelta64[Incomplete]]: ...
|
|
3276
|
+
@overload # (datetime, datetime, timedelta-like) (requires both start and stop)
|
|
3277
|
+
def arange(
|
|
3278
|
+
start_or_stop: np.datetime64,
|
|
3279
|
+
/,
|
|
3280
|
+
stop: np.datetime64,
|
|
3281
|
+
step: _TD64Like_co | None = 1,
|
|
3282
|
+
*,
|
|
3283
|
+
dtype: _DTypeLike[np.datetime64] | None = None,
|
|
3284
|
+
device: Literal["cpu"] | None = None,
|
|
3285
|
+
like: _SupportsArrayFunc | None = None,
|
|
3286
|
+
fill_value: _FillValue | None = None,
|
|
3287
|
+
hardmask: bool = False,
|
|
3288
|
+
) -> _Masked1D[np.datetime64[Incomplete]]: ...
|
|
3289
|
+
@overload # dtype=<unknown>
|
|
3290
|
+
def arange(
|
|
3291
|
+
start_or_stop: _ArangeScalar | float,
|
|
3292
|
+
/,
|
|
3293
|
+
stop: _ArangeScalar | float | None = None,
|
|
3294
|
+
step: _ArangeScalar | float | None = 1,
|
|
3295
|
+
*,
|
|
3296
|
+
dtype: DTypeLike | None = None,
|
|
3297
|
+
device: Literal["cpu"] | None = None,
|
|
3298
|
+
like: _SupportsArrayFunc | None = None,
|
|
3299
|
+
fill_value: _FillValue | None = None,
|
|
3300
|
+
hardmask: bool = False,
|
|
3301
|
+
) -> _Masked1D[Incomplete]: ...
|
|
3302
|
+
|
|
3303
|
+
# based on `_core.fromnumeric.clip`
|
|
3304
|
+
@overload
|
|
3305
|
+
def clip(
|
|
3306
|
+
a: _ScalarT,
|
|
3307
|
+
a_min: ArrayLike | _NoValueType | None = ...,
|
|
3308
|
+
a_max: ArrayLike | _NoValueType | None = ...,
|
|
3309
|
+
out: None = None,
|
|
3310
|
+
*,
|
|
3311
|
+
min: ArrayLike | _NoValueType | None = ...,
|
|
3312
|
+
max: ArrayLike | _NoValueType | None = ...,
|
|
3313
|
+
fill_value: _FillValue | None = None,
|
|
3314
|
+
hardmask: bool = False,
|
|
3315
|
+
dtype: None = None,
|
|
3316
|
+
**kwargs: Unpack[_UFuncKwargs],
|
|
3317
|
+
) -> _ScalarT: ...
|
|
3318
|
+
@overload
|
|
3319
|
+
def clip(
|
|
3320
|
+
a: NDArray[_ScalarT],
|
|
3321
|
+
a_min: ArrayLike | _NoValueType | None = ...,
|
|
3322
|
+
a_max: ArrayLike | _NoValueType | None = ...,
|
|
3323
|
+
out: None = None,
|
|
3324
|
+
*,
|
|
3325
|
+
min: ArrayLike | _NoValueType | None = ...,
|
|
3326
|
+
max: ArrayLike | _NoValueType | None = ...,
|
|
3327
|
+
fill_value: _FillValue | None = None,
|
|
3328
|
+
hardmask: bool = False,
|
|
3329
|
+
dtype: None = None,
|
|
3330
|
+
**kwargs: Unpack[_UFuncKwargs],
|
|
3331
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
3332
|
+
@overload
|
|
3333
|
+
def clip(
|
|
3334
|
+
a: ArrayLike,
|
|
3335
|
+
a_min: ArrayLike | None,
|
|
3336
|
+
a_max: ArrayLike | None,
|
|
3337
|
+
out: _MArrayT,
|
|
3338
|
+
*,
|
|
3339
|
+
min: ArrayLike | _NoValueType | None = ...,
|
|
3340
|
+
max: ArrayLike | _NoValueType | None = ...,
|
|
3341
|
+
fill_value: _FillValue | None = None,
|
|
3342
|
+
hardmask: bool = False,
|
|
3343
|
+
dtype: DTypeLike | None = None,
|
|
3344
|
+
**kwargs: Unpack[_UFuncKwargs],
|
|
3345
|
+
) -> _MArrayT: ...
|
|
3346
|
+
@overload
|
|
3347
|
+
def clip(
|
|
3348
|
+
a: ArrayLike,
|
|
3349
|
+
a_min: ArrayLike | _NoValueType | None = ...,
|
|
3350
|
+
a_max: ArrayLike | _NoValueType | None = ...,
|
|
3351
|
+
*,
|
|
3352
|
+
out: _MArrayT,
|
|
3353
|
+
min: ArrayLike | _NoValueType | None = ...,
|
|
3354
|
+
max: ArrayLike | _NoValueType | None = ...,
|
|
3355
|
+
fill_value: _FillValue | None = None,
|
|
3356
|
+
hardmask: bool = False,
|
|
3357
|
+
dtype: DTypeLike | None = None,
|
|
3358
|
+
**kwargs: Unpack[_UFuncKwargs],
|
|
3359
|
+
) -> _MArrayT: ...
|
|
3360
|
+
@overload
|
|
3361
|
+
def clip(
|
|
3362
|
+
a: ArrayLike,
|
|
3363
|
+
a_min: ArrayLike | _NoValueType | None = ...,
|
|
3364
|
+
a_max: ArrayLike | _NoValueType | None = ...,
|
|
3365
|
+
out: None = None,
|
|
3366
|
+
*,
|
|
3367
|
+
min: ArrayLike | _NoValueType | None = ...,
|
|
3368
|
+
max: ArrayLike | _NoValueType | None = ...,
|
|
3369
|
+
fill_value: _FillValue | None = None,
|
|
3370
|
+
hardmask: bool = False,
|
|
3371
|
+
dtype: DTypeLike | None = None,
|
|
3372
|
+
**kwargs: Unpack[_UFuncKwargs],
|
|
3373
|
+
) -> Incomplete: ...
|
|
3374
|
+
|
|
3375
|
+
# keep in sync with `_core.multiarray.ones`
|
|
3376
|
+
@overload
|
|
3377
|
+
def empty(
|
|
3378
|
+
shape: SupportsIndex,
|
|
3379
|
+
dtype: None = None,
|
|
3380
|
+
order: _OrderCF = "C",
|
|
3381
|
+
*,
|
|
3382
|
+
device: Literal["cpu"] | None = None,
|
|
3383
|
+
like: _SupportsArrayFunc | None = None,
|
|
3384
|
+
fill_value: _FillValue | None = None,
|
|
3385
|
+
hardmask: bool = False,
|
|
3386
|
+
) -> MaskedArray[tuple[int], np.dtype[np.float64]]: ...
|
|
3387
|
+
@overload
|
|
3388
|
+
def empty(
|
|
3389
|
+
shape: SupportsIndex,
|
|
3390
|
+
dtype: _DTypeT | _SupportsDType[_DTypeT],
|
|
3391
|
+
order: _OrderCF = "C",
|
|
3392
|
+
*,
|
|
3393
|
+
device: Literal["cpu"] | None = None,
|
|
3394
|
+
like: _SupportsArrayFunc | None = None,
|
|
3395
|
+
fill_value: _FillValue | None = None,
|
|
3396
|
+
hardmask: bool = False,
|
|
3397
|
+
) -> MaskedArray[tuple[int], _DTypeT]: ...
|
|
3398
|
+
@overload
|
|
3399
|
+
def empty(
|
|
3400
|
+
shape: SupportsIndex,
|
|
3401
|
+
dtype: type[_ScalarT],
|
|
3402
|
+
order: _OrderCF = "C",
|
|
3403
|
+
*,
|
|
3404
|
+
device: Literal["cpu"] | None = None,
|
|
3405
|
+
like: _SupportsArrayFunc | None = None,
|
|
3406
|
+
fill_value: _FillValue | None = None,
|
|
3407
|
+
hardmask: bool = False,
|
|
3408
|
+
) -> MaskedArray[tuple[int], np.dtype[_ScalarT]]: ...
|
|
3409
|
+
@overload
|
|
3410
|
+
def empty(
|
|
3411
|
+
shape: SupportsIndex,
|
|
3412
|
+
dtype: DTypeLike | None = None,
|
|
3413
|
+
order: _OrderCF = "C",
|
|
3414
|
+
*,
|
|
3415
|
+
device: Literal["cpu"] | None = None,
|
|
3416
|
+
like: _SupportsArrayFunc | None = None,
|
|
3417
|
+
fill_value: _FillValue | None = None,
|
|
3418
|
+
hardmask: bool = False,
|
|
3419
|
+
) -> MaskedArray[tuple[int]]: ...
|
|
3420
|
+
@overload # known shape
|
|
3421
|
+
def empty(
|
|
3422
|
+
shape: _AnyShapeT,
|
|
3423
|
+
dtype: None = None,
|
|
3424
|
+
order: _OrderCF = "C",
|
|
3425
|
+
*,
|
|
3426
|
+
device: Literal["cpu"] | None = None,
|
|
3427
|
+
like: _SupportsArrayFunc | None = None,
|
|
3428
|
+
fill_value: _FillValue | None = None,
|
|
3429
|
+
hardmask: bool = False,
|
|
3430
|
+
) -> MaskedArray[_AnyShapeT, np.dtype[np.float64]]: ...
|
|
3431
|
+
@overload
|
|
3432
|
+
def empty(
|
|
3433
|
+
shape: _AnyShapeT,
|
|
3434
|
+
dtype: _DTypeT | _SupportsDType[_DTypeT],
|
|
3435
|
+
order: _OrderCF = "C",
|
|
3436
|
+
*,
|
|
3437
|
+
device: Literal["cpu"] | None = None,
|
|
3438
|
+
like: _SupportsArrayFunc | None = None,
|
|
3439
|
+
fill_value: _FillValue | None = None,
|
|
3440
|
+
hardmask: bool = False,
|
|
3441
|
+
) -> MaskedArray[_AnyShapeT, _DTypeT]: ...
|
|
3442
|
+
@overload
|
|
3443
|
+
def empty(
|
|
3444
|
+
shape: _AnyShapeT,
|
|
3445
|
+
dtype: type[_ScalarT],
|
|
3446
|
+
order: _OrderCF = "C",
|
|
3447
|
+
*,
|
|
3448
|
+
device: Literal["cpu"] | None = None,
|
|
3449
|
+
like: _SupportsArrayFunc | None = None,
|
|
3450
|
+
fill_value: _FillValue | None = None,
|
|
3451
|
+
hardmask: bool = False,
|
|
3452
|
+
) -> MaskedArray[_AnyShapeT, np.dtype[_ScalarT]]: ...
|
|
3453
|
+
@overload
|
|
3454
|
+
def empty(
|
|
3455
|
+
shape: _AnyShapeT,
|
|
3456
|
+
dtype: DTypeLike | None = None,
|
|
3457
|
+
order: _OrderCF = "C",
|
|
3458
|
+
*,
|
|
3459
|
+
device: Literal["cpu"] | None = None,
|
|
3460
|
+
like: _SupportsArrayFunc | None = None,
|
|
3461
|
+
fill_value: _FillValue | None = None,
|
|
3462
|
+
hardmask: bool = False,
|
|
3463
|
+
) -> MaskedArray[_AnyShapeT]: ...
|
|
3464
|
+
@overload # unknown shape
|
|
3465
|
+
def empty(
|
|
3466
|
+
shape: _ShapeLike,
|
|
3467
|
+
dtype: None = None,
|
|
3468
|
+
order: _OrderCF = "C",
|
|
3469
|
+
*,
|
|
3470
|
+
device: Literal["cpu"] | None = None,
|
|
3471
|
+
like: _SupportsArrayFunc | None = None,
|
|
3472
|
+
fill_value: _FillValue | None = None,
|
|
3473
|
+
hardmask: bool = False,
|
|
3474
|
+
) -> _MaskedArray[np.float64]: ...
|
|
3475
|
+
@overload
|
|
3476
|
+
def empty(
|
|
3477
|
+
shape: _ShapeLike,
|
|
3478
|
+
dtype: _DTypeT | _SupportsDType[_DTypeT],
|
|
3479
|
+
order: _OrderCF = "C",
|
|
3480
|
+
*,
|
|
3481
|
+
device: Literal["cpu"] | None = None,
|
|
3482
|
+
like: _SupportsArrayFunc | None = None,
|
|
3483
|
+
fill_value: _FillValue | None = None,
|
|
3484
|
+
hardmask: bool = False,
|
|
3485
|
+
) -> MaskedArray[_AnyShape, _DTypeT]: ...
|
|
3486
|
+
@overload
|
|
3487
|
+
def empty(
|
|
3488
|
+
shape: _ShapeLike,
|
|
3489
|
+
dtype: type[_ScalarT],
|
|
3490
|
+
order: _OrderCF = "C",
|
|
3491
|
+
*,
|
|
3492
|
+
device: Literal["cpu"] | None = None,
|
|
3493
|
+
like: _SupportsArrayFunc | None = None,
|
|
3494
|
+
fill_value: _FillValue | None = None,
|
|
3495
|
+
hardmask: bool = False,
|
|
3496
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
3497
|
+
@overload
|
|
3498
|
+
def empty(
|
|
3499
|
+
shape: _ShapeLike,
|
|
3500
|
+
dtype: DTypeLike | None = None,
|
|
3501
|
+
*,
|
|
3502
|
+
device: Literal["cpu"] | None = None,
|
|
3503
|
+
like: _SupportsArrayFunc | None = None,
|
|
3504
|
+
fill_value: _FillValue | None = None,
|
|
3505
|
+
hardmask: bool = False,
|
|
3506
|
+
) -> MaskedArray: ...
|
|
3507
|
+
|
|
3508
|
+
# keep in sync with `_core.multiarray.empty_like`
|
|
3509
|
+
@overload
|
|
3510
|
+
def empty_like(
|
|
3511
|
+
a: _MArrayT,
|
|
3512
|
+
/,
|
|
3513
|
+
dtype: None = None,
|
|
3514
|
+
order: _OrderKACF = "K",
|
|
3515
|
+
subok: bool = True,
|
|
3516
|
+
shape: _ShapeLike | None = None,
|
|
3517
|
+
*,
|
|
3518
|
+
device: Literal["cpu"] | None = None,
|
|
3519
|
+
) -> _MArrayT: ...
|
|
3520
|
+
@overload
|
|
3521
|
+
def empty_like(
|
|
3522
|
+
a: _ArrayLike[_ScalarT],
|
|
3523
|
+
/,
|
|
3524
|
+
dtype: None = None,
|
|
3525
|
+
order: _OrderKACF = "K",
|
|
3526
|
+
subok: bool = True,
|
|
3527
|
+
shape: _ShapeLike | None = None,
|
|
3528
|
+
*,
|
|
3529
|
+
device: Literal["cpu"] | None = None,
|
|
3530
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
3531
|
+
@overload
|
|
3532
|
+
def empty_like(
|
|
3533
|
+
a: Incomplete,
|
|
3534
|
+
/,
|
|
3535
|
+
dtype: _DTypeLike[_ScalarT],
|
|
3536
|
+
order: _OrderKACF = "K",
|
|
3537
|
+
subok: bool = True,
|
|
3538
|
+
shape: _ShapeLike | None = None,
|
|
3539
|
+
*,
|
|
3540
|
+
device: Literal["cpu"] | None = None,
|
|
3541
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
3542
|
+
@overload
|
|
3543
|
+
def empty_like(
|
|
3544
|
+
a: Incomplete,
|
|
3545
|
+
/,
|
|
3546
|
+
dtype: DTypeLike | None = None,
|
|
3547
|
+
order: _OrderKACF = "K",
|
|
3548
|
+
subok: bool = True,
|
|
3549
|
+
shape: _ShapeLike | None = None,
|
|
3550
|
+
*,
|
|
3551
|
+
device: Literal["cpu"] | None = None,
|
|
3552
|
+
) -> _MaskedArray[Incomplete]: ...
|
|
3553
|
+
|
|
3554
|
+
# This is a bit of a hack to avoid having to duplicate all those `empty` overloads for
|
|
3555
|
+
# `ones` and `zeros`, that relies on the fact that empty/zeros/ones have identical
|
|
3556
|
+
# type signatures, but may cause some type-checkers to report incorrect names in case
|
|
3557
|
+
# of user errors. Mypy and Pyright seem to handle this just fine.
|
|
3558
|
+
ones = empty
|
|
3559
|
+
ones_like = empty_like
|
|
3560
|
+
zeros = empty
|
|
3561
|
+
zeros_like = empty_like
|
|
3562
|
+
|
|
3563
|
+
# keep in sync with `_core.multiarray.frombuffer`
|
|
3564
|
+
@overload
|
|
3565
|
+
def frombuffer(
|
|
3566
|
+
buffer: Buffer,
|
|
3567
|
+
*,
|
|
3568
|
+
count: SupportsIndex = -1,
|
|
3569
|
+
offset: SupportsIndex = 0,
|
|
3570
|
+
like: _SupportsArrayFunc | None = None,
|
|
3571
|
+
) -> _MaskedArray[np.float64]: ...
|
|
3572
|
+
@overload
|
|
3573
|
+
def frombuffer(
|
|
3574
|
+
buffer: Buffer,
|
|
3575
|
+
dtype: _DTypeLike[_ScalarT],
|
|
3576
|
+
count: SupportsIndex = -1,
|
|
3577
|
+
offset: SupportsIndex = 0,
|
|
3578
|
+
*,
|
|
3579
|
+
like: _SupportsArrayFunc | None = None,
|
|
3580
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
3581
|
+
@overload
|
|
3582
|
+
def frombuffer(
|
|
3583
|
+
buffer: Buffer,
|
|
3584
|
+
dtype: DTypeLike | None = float,
|
|
3585
|
+
count: SupportsIndex = -1,
|
|
3586
|
+
offset: SupportsIndex = 0,
|
|
3587
|
+
*,
|
|
3588
|
+
like: _SupportsArrayFunc | None = None,
|
|
3589
|
+
) -> _MaskedArray[Incomplete]: ...
|
|
3590
|
+
|
|
3591
|
+
# keep roughly in sync with `_core.numeric.fromfunction`
|
|
3592
|
+
def fromfunction(
|
|
3593
|
+
function: Callable[..., np.ndarray[_ShapeT, _DTypeT]],
|
|
3594
|
+
shape: Sequence[int],
|
|
3595
|
+
*,
|
|
3596
|
+
dtype: DTypeLike | None = float,
|
|
3597
|
+
like: _SupportsArrayFunc | None = None,
|
|
3598
|
+
**kwargs: object,
|
|
3599
|
+
) -> MaskedArray[_ShapeT, _DTypeT]: ...
|
|
3600
|
+
|
|
3601
|
+
# keep roughly in sync with `_core.numeric.identity`
|
|
3602
|
+
@overload
|
|
3603
|
+
def identity(
|
|
3604
|
+
n: int,
|
|
3605
|
+
dtype: None = None,
|
|
3606
|
+
*,
|
|
3607
|
+
like: _SupportsArrayFunc | None = None,
|
|
3608
|
+
fill_value: _FillValue | None = None,
|
|
3609
|
+
hardmask: bool = False,
|
|
3610
|
+
) -> MaskedArray[tuple[int, int], np.dtype[np.float64]]: ...
|
|
3611
|
+
@overload
|
|
3612
|
+
def identity(
|
|
3613
|
+
n: int,
|
|
3614
|
+
dtype: _DTypeLike[_ScalarT],
|
|
3615
|
+
*,
|
|
3616
|
+
like: _SupportsArrayFunc | None = None,
|
|
3617
|
+
fill_value: _FillValue | None = None,
|
|
3618
|
+
hardmask: bool = False,
|
|
3619
|
+
) -> MaskedArray[tuple[int, int], np.dtype[_ScalarT]]: ...
|
|
3620
|
+
@overload
|
|
3621
|
+
def identity(
|
|
3622
|
+
n: int,
|
|
3623
|
+
dtype: DTypeLike | None = None,
|
|
3624
|
+
*,
|
|
3625
|
+
like: _SupportsArrayFunc | None = None,
|
|
3626
|
+
fill_value: _FillValue | None = None,
|
|
3627
|
+
hardmask: bool = False,
|
|
3628
|
+
) -> MaskedArray[tuple[int, int], np.dtype[Incomplete]]: ...
|
|
3629
|
+
|
|
3630
|
+
# keep roughly in sync with `_core.numeric.indices`
|
|
3631
|
+
@overload
|
|
3632
|
+
def indices(
|
|
3633
|
+
dimensions: Sequence[int],
|
|
3634
|
+
dtype: type[int] = int,
|
|
3635
|
+
sparse: Literal[False] = False,
|
|
3636
|
+
*,
|
|
3637
|
+
fill_value: _FillValue | None = None,
|
|
3638
|
+
hardmask: bool = False,
|
|
3639
|
+
) -> _MaskedArray[np.intp]: ...
|
|
3640
|
+
@overload
|
|
3641
|
+
def indices(
|
|
3642
|
+
dimensions: Sequence[int],
|
|
3643
|
+
dtype: type[int],
|
|
3644
|
+
sparse: Literal[True],
|
|
3645
|
+
*,
|
|
3646
|
+
fill_value: _FillValue | None = None,
|
|
3647
|
+
hardmask: bool = False,
|
|
3648
|
+
) -> tuple[_MaskedArray[np.intp], ...]: ...
|
|
3649
|
+
@overload
|
|
3650
|
+
def indices(
|
|
3651
|
+
dimensions: Sequence[int],
|
|
3652
|
+
dtype: type[int] = int,
|
|
3653
|
+
*,
|
|
3654
|
+
sparse: Literal[True],
|
|
3655
|
+
fill_value: _FillValue | None = None,
|
|
3656
|
+
hardmask: bool = False,
|
|
3657
|
+
) -> tuple[_MaskedArray[np.intp], ...]: ...
|
|
3658
|
+
@overload
|
|
3659
|
+
def indices(
|
|
3660
|
+
dimensions: Sequence[int],
|
|
3661
|
+
dtype: _DTypeLike[_ScalarT],
|
|
3662
|
+
sparse: Literal[False] = False,
|
|
3663
|
+
*,
|
|
3664
|
+
fill_value: _FillValue | None = None,
|
|
3665
|
+
hardmask: bool = False,
|
|
3666
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
3667
|
+
@overload
|
|
3668
|
+
def indices(
|
|
3669
|
+
dimensions: Sequence[int],
|
|
3670
|
+
dtype: _DTypeLike[_ScalarT],
|
|
3671
|
+
sparse: Literal[True],
|
|
3672
|
+
*,
|
|
3673
|
+
fill_value: _FillValue | None = None,
|
|
3674
|
+
hardmask: bool = False,
|
|
3675
|
+
) -> tuple[_MaskedArray[_ScalarT], ...]: ...
|
|
3676
|
+
@overload
|
|
3677
|
+
def indices(
|
|
3678
|
+
dimensions: Sequence[int],
|
|
3679
|
+
dtype: DTypeLike | None = int,
|
|
3680
|
+
sparse: Literal[False] = False,
|
|
3681
|
+
*,
|
|
3682
|
+
fill_value: _FillValue | None = None,
|
|
3683
|
+
hardmask: bool = False,
|
|
3684
|
+
) -> _MaskedArray[Incomplete]: ...
|
|
3685
|
+
@overload
|
|
3686
|
+
def indices(
|
|
3687
|
+
dimensions: Sequence[int],
|
|
3688
|
+
dtype: DTypeLike | None,
|
|
3689
|
+
sparse: Literal[True],
|
|
3690
|
+
*,
|
|
3691
|
+
fill_value: _FillValue | None = None,
|
|
3692
|
+
hardmask: bool = False,
|
|
3693
|
+
) -> tuple[_MaskedArray[Incomplete], ...]: ...
|
|
3694
|
+
@overload
|
|
3695
|
+
def indices(
|
|
3696
|
+
dimensions: Sequence[int],
|
|
3697
|
+
dtype: DTypeLike | None = int,
|
|
3698
|
+
*,
|
|
3699
|
+
sparse: Literal[True],
|
|
3700
|
+
fill_value: _FillValue | None = None,
|
|
3701
|
+
hardmask: bool = False,
|
|
3702
|
+
) -> tuple[_MaskedArray[Incomplete], ...]: ...
|
|
3703
|
+
|
|
3704
|
+
# keep roughly in sync with `_core.fromnumeric.squeeze`
|
|
3705
|
+
@overload
|
|
3706
|
+
def squeeze(
|
|
3707
|
+
a: _ArrayLike[_ScalarT],
|
|
3708
|
+
axis: _ShapeLike | None = None,
|
|
3709
|
+
*,
|
|
3710
|
+
fill_value: _FillValue | None = None,
|
|
3711
|
+
hardmask: bool = False,
|
|
3712
|
+
) -> _MaskedArray[_ScalarT]: ...
|
|
3713
|
+
@overload
|
|
3714
|
+
def squeeze(
|
|
3715
|
+
a: ArrayLike,
|
|
3716
|
+
axis: _ShapeLike | None = None,
|
|
3717
|
+
*,
|
|
3718
|
+
fill_value: _FillValue | None = None,
|
|
3719
|
+
hardmask: bool = False,
|
|
3720
|
+
) -> _MaskedArray[Incomplete]: ...
|