numpy 2.4.1__cp314-cp314t-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (932) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +955 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp314t-win_arm64.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp314t-win_arm64.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp314t-win_arm64.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp314t-win_arm64.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp314t-win_arm64.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp314t-win_arm64.pyd +0 -0
  35. numpy/_core/_rational_tests.cp314t-win_arm64.lib +0 -0
  36. numpy/_core/_rational_tests.cp314t-win_arm64.pyd +0 -0
  37. numpy/_core/_simd.cp314t-win_arm64.lib +0 -0
  38. numpy/_core/_simd.cp314t-win_arm64.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp314t-win_arm64.lib +0 -0
  49. numpy/_core/_umath_tests.cp314t-win_arm64.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1316 -0
  101. numpy/_core/numeric.py +2758 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +75 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +377 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4295 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp314t-win_arm64.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp314t-win_arm64.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4750 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp314t-win_arm64.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp314t-win_arm64.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp314t-win_arm64.lib +0 -0
  582. numpy/linalg/lapack_lite.cp314t-win_arm64.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3720 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp314t-win_arm64.lib +0 -0
  660. numpy/random/_bounded_integers.cp314t-win_arm64.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp314t-win_arm64.lib +0 -0
  664. numpy/random/_common.cp314t-win_arm64.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp314t-win_arm64.lib +0 -0
  675. numpy/random/_generator.cp314t-win_arm64.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp314t-win_arm64.lib +0 -0
  678. numpy/random/_mt19937.cp314t-win_arm64.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp314t-win_arm64.lib +0 -0
  681. numpy/random/_pcg64.cp314t-win_arm64.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp314t-win_arm64.lib +0 -0
  684. numpy/random/_philox.cp314t-win_arm64.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp314t-win_arm64.lib +0 -0
  689. numpy/random/_sfc64.cp314t-win_arm64.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp314t-win_arm64.lib +0 -0
  692. numpy/random/bit_generator.cp314t-win_arm64.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp314t-win_arm64.lib +0 -0
  698. numpy/random/mtrand.cp314t-win_arm64.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.1.dist-info/DELVEWHEEL +2 -0
  910. numpy-2.4.1.dist-info/METADATA +139 -0
  911. numpy-2.4.1.dist-info/RECORD +932 -0
  912. numpy-2.4.1.dist-info/WHEEL +4 -0
  913. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  914. numpy-2.4.1.dist-info/licenses/LICENSE.txt +914 -0
  915. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  916. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  917. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  918. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  919. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  920. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  921. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  922. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  923. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  924. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  925. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  926. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  927. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  928. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  929. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  930. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
  931. numpy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  932. numpy.libs/scipy_openblas-7b69cbfd2599e6035f1310f2a72d59a6.dll +0 -0
@@ -0,0 +1,2001 @@
1
+ """
2
+ ====================================================
3
+ Chebyshev Series (:mod:`numpy.polynomial.chebyshev`)
4
+ ====================================================
5
+
6
+ This module provides a number of objects (mostly functions) useful for
7
+ dealing with Chebyshev series, including a `Chebyshev` class that
8
+ encapsulates the usual arithmetic operations. (General information
9
+ on how this module represents and works with such polynomials is in the
10
+ docstring for its "parent" sub-package, `numpy.polynomial`).
11
+
12
+ Classes
13
+ -------
14
+
15
+ .. autosummary::
16
+ :toctree: generated/
17
+
18
+ Chebyshev
19
+
20
+
21
+ Constants
22
+ ---------
23
+
24
+ .. autosummary::
25
+ :toctree: generated/
26
+
27
+ chebdomain
28
+ chebzero
29
+ chebone
30
+ chebx
31
+
32
+ Arithmetic
33
+ ----------
34
+
35
+ .. autosummary::
36
+ :toctree: generated/
37
+
38
+ chebadd
39
+ chebsub
40
+ chebmulx
41
+ chebmul
42
+ chebdiv
43
+ chebpow
44
+ chebval
45
+ chebval2d
46
+ chebval3d
47
+ chebgrid2d
48
+ chebgrid3d
49
+
50
+ Calculus
51
+ --------
52
+
53
+ .. autosummary::
54
+ :toctree: generated/
55
+
56
+ chebder
57
+ chebint
58
+
59
+ Misc Functions
60
+ --------------
61
+
62
+ .. autosummary::
63
+ :toctree: generated/
64
+
65
+ chebfromroots
66
+ chebroots
67
+ chebvander
68
+ chebvander2d
69
+ chebvander3d
70
+ chebgauss
71
+ chebweight
72
+ chebcompanion
73
+ chebfit
74
+ chebpts1
75
+ chebpts2
76
+ chebtrim
77
+ chebline
78
+ cheb2poly
79
+ poly2cheb
80
+ chebinterpolate
81
+
82
+ See also
83
+ --------
84
+ `numpy.polynomial`
85
+
86
+ Notes
87
+ -----
88
+ The implementations of multiplication, division, integration, and
89
+ differentiation use the algebraic identities [1]_:
90
+
91
+ .. math::
92
+ T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
93
+ z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.
94
+
95
+ where
96
+
97
+ .. math:: x = \\frac{z + z^{-1}}{2}.
98
+
99
+ These identities allow a Chebyshev series to be expressed as a finite,
100
+ symmetric Laurent series. In this module, this sort of Laurent series
101
+ is referred to as a "z-series."
102
+
103
+ References
104
+ ----------
105
+ .. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
106
+ Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
107
+ (https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)
108
+
109
+ """ # noqa: E501
110
+ import numpy as np
111
+
112
+ from . import polyutils as pu
113
+ from ._polybase import ABCPolyBase
114
+
115
+ __all__ = [
116
+ 'chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd',
117
+ 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', 'chebval',
118
+ 'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots',
119
+ 'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1',
120
+ 'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', 'chebgrid2d',
121
+ 'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion',
122
+ 'chebgauss', 'chebweight', 'chebinterpolate']
123
+
124
+ chebtrim = pu.trimcoef
125
+
126
+ #
127
+ # A collection of functions for manipulating z-series. These are private
128
+ # functions and do minimal error checking.
129
+ #
130
+
131
+ def _cseries_to_zseries(c):
132
+ """Convert Chebyshev series to z-series.
133
+
134
+ Convert a Chebyshev series to the equivalent z-series. The result is
135
+ never an empty array. The dtype of the return is the same as that of
136
+ the input. No checks are run on the arguments as this routine is for
137
+ internal use.
138
+
139
+ Parameters
140
+ ----------
141
+ c : 1-D ndarray
142
+ Chebyshev coefficients, ordered from low to high
143
+
144
+ Returns
145
+ -------
146
+ zs : 1-D ndarray
147
+ Odd length symmetric z-series, ordered from low to high.
148
+
149
+ """
150
+ n = c.size
151
+ zs = np.zeros(2 * n - 1, dtype=c.dtype)
152
+ zs[n - 1:] = c / 2
153
+ return zs + zs[::-1]
154
+
155
+
156
+ def _zseries_to_cseries(zs):
157
+ """Convert z-series to a Chebyshev series.
158
+
159
+ Convert a z series to the equivalent Chebyshev series. The result is
160
+ never an empty array. The dtype of the return is the same as that of
161
+ the input. No checks are run on the arguments as this routine is for
162
+ internal use.
163
+
164
+ Parameters
165
+ ----------
166
+ zs : 1-D ndarray
167
+ Odd length symmetric z-series, ordered from low to high.
168
+
169
+ Returns
170
+ -------
171
+ c : 1-D ndarray
172
+ Chebyshev coefficients, ordered from low to high.
173
+
174
+ """
175
+ n = (zs.size + 1) // 2
176
+ c = zs[n - 1:].copy()
177
+ c[1:n] *= 2
178
+ return c
179
+
180
+
181
+ def _zseries_mul(z1, z2):
182
+ """Multiply two z-series.
183
+
184
+ Multiply two z-series to produce a z-series.
185
+
186
+ Parameters
187
+ ----------
188
+ z1, z2 : 1-D ndarray
189
+ The arrays must be 1-D but this is not checked.
190
+
191
+ Returns
192
+ -------
193
+ product : 1-D ndarray
194
+ The product z-series.
195
+
196
+ Notes
197
+ -----
198
+ This is simply convolution. If symmetric/anti-symmetric z-series are
199
+ denoted by S/A then the following rules apply:
200
+
201
+ S*S, A*A -> S
202
+ S*A, A*S -> A
203
+
204
+ """
205
+ return np.convolve(z1, z2)
206
+
207
+
208
+ def _zseries_div(z1, z2):
209
+ """Divide the first z-series by the second.
210
+
211
+ Divide `z1` by `z2` and return the quotient and remainder as z-series.
212
+ Warning: this implementation only applies when both z1 and z2 have the
213
+ same symmetry, which is sufficient for present purposes.
214
+
215
+ Parameters
216
+ ----------
217
+ z1, z2 : 1-D ndarray
218
+ The arrays must be 1-D and have the same symmetry, but this is not
219
+ checked.
220
+
221
+ Returns
222
+ -------
223
+
224
+ (quotient, remainder) : 1-D ndarrays
225
+ Quotient and remainder as z-series.
226
+
227
+ Notes
228
+ -----
229
+ This is not the same as polynomial division on account of the desired form
230
+ of the remainder. If symmetric/anti-symmetric z-series are denoted by S/A
231
+ then the following rules apply:
232
+
233
+ S/S -> S,S
234
+ A/A -> S,A
235
+
236
+ The restriction to types of the same symmetry could be fixed but seems like
237
+ unneeded generality. There is no natural form for the remainder in the case
238
+ where there is no symmetry.
239
+
240
+ """
241
+ z1 = z1.copy()
242
+ z2 = z2.copy()
243
+ lc1 = len(z1)
244
+ lc2 = len(z2)
245
+ if lc2 == 1:
246
+ z1 /= z2
247
+ return z1, z1[:1] * 0
248
+ elif lc1 < lc2:
249
+ return z1[:1] * 0, z1
250
+ else:
251
+ dlen = lc1 - lc2
252
+ scl = z2[0]
253
+ z2 /= scl
254
+ quo = np.empty(dlen + 1, dtype=z1.dtype)
255
+ i = 0
256
+ j = dlen
257
+ while i < j:
258
+ r = z1[i]
259
+ quo[i] = z1[i]
260
+ quo[dlen - i] = r
261
+ tmp = r * z2
262
+ z1[i:i + lc2] -= tmp
263
+ z1[j:j + lc2] -= tmp
264
+ i += 1
265
+ j -= 1
266
+ r = z1[i]
267
+ quo[i] = r
268
+ tmp = r * z2
269
+ z1[i:i + lc2] -= tmp
270
+ quo /= scl
271
+ rem = z1[i + 1:i - 1 + lc2].copy()
272
+ return quo, rem
273
+
274
+
275
+ def _zseries_der(zs):
276
+ """Differentiate a z-series.
277
+
278
+ The derivative is with respect to x, not z. This is achieved using the
279
+ chain rule and the value of dx/dz given in the module notes.
280
+
281
+ Parameters
282
+ ----------
283
+ zs : z-series
284
+ The z-series to differentiate.
285
+
286
+ Returns
287
+ -------
288
+ derivative : z-series
289
+ The derivative
290
+
291
+ Notes
292
+ -----
293
+ The zseries for x (ns) has been multiplied by two in order to avoid
294
+ using floats that are incompatible with Decimal and likely other
295
+ specialized scalar types. This scaling has been compensated by
296
+ multiplying the value of zs by two also so that the two cancels in the
297
+ division.
298
+
299
+ """
300
+ n = len(zs) // 2
301
+ ns = np.array([-1, 0, 1], dtype=zs.dtype)
302
+ zs *= np.arange(-n, n + 1) * 2
303
+ d, r = _zseries_div(zs, ns)
304
+ return d
305
+
306
+
307
+ def _zseries_int(zs):
308
+ """Integrate a z-series.
309
+
310
+ The integral is with respect to x, not z. This is achieved by a change
311
+ of variable using dx/dz given in the module notes.
312
+
313
+ Parameters
314
+ ----------
315
+ zs : z-series
316
+ The z-series to integrate
317
+
318
+ Returns
319
+ -------
320
+ integral : z-series
321
+ The indefinite integral
322
+
323
+ Notes
324
+ -----
325
+ The zseries for x (ns) has been multiplied by two in order to avoid
326
+ using floats that are incompatible with Decimal and likely other
327
+ specialized scalar types. This scaling has been compensated by
328
+ dividing the resulting zs by two.
329
+
330
+ """
331
+ n = 1 + len(zs) // 2
332
+ ns = np.array([-1, 0, 1], dtype=zs.dtype)
333
+ zs = _zseries_mul(zs, ns)
334
+ div = np.arange(-n, n + 1) * 2
335
+ zs[:n] /= div[:n]
336
+ zs[n + 1:] /= div[n + 1:]
337
+ zs[n] = 0
338
+ return zs
339
+
340
+ #
341
+ # Chebyshev series functions
342
+ #
343
+
344
+
345
+ def poly2cheb(pol):
346
+ """
347
+ Convert a polynomial to a Chebyshev series.
348
+
349
+ Convert an array representing the coefficients of a polynomial (relative
350
+ to the "standard" basis) ordered from lowest degree to highest, to an
351
+ array of the coefficients of the equivalent Chebyshev series, ordered
352
+ from lowest to highest degree.
353
+
354
+ Parameters
355
+ ----------
356
+ pol : array_like
357
+ 1-D array containing the polynomial coefficients
358
+
359
+ Returns
360
+ -------
361
+ c : ndarray
362
+ 1-D array containing the coefficients of the equivalent Chebyshev
363
+ series.
364
+
365
+ See Also
366
+ --------
367
+ cheb2poly
368
+
369
+ Notes
370
+ -----
371
+ The easy way to do conversions between polynomial basis sets
372
+ is to use the convert method of a class instance.
373
+
374
+ Examples
375
+ --------
376
+ >>> from numpy import polynomial as P
377
+ >>> p = P.Polynomial(range(4))
378
+ >>> p
379
+ Polynomial([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
380
+ >>> c = p.convert(kind=P.Chebyshev)
381
+ >>> c
382
+ Chebyshev([1. , 3.25, 1. , 0.75], domain=[-1., 1.], window=[-1., ...
383
+ >>> P.chebyshev.poly2cheb(range(4))
384
+ array([1. , 3.25, 1. , 0.75])
385
+
386
+ """
387
+ [pol] = pu.as_series([pol])
388
+ deg = len(pol) - 1
389
+ res = 0
390
+ for i in range(deg, -1, -1):
391
+ res = chebadd(chebmulx(res), pol[i])
392
+ return res
393
+
394
+
395
+ def cheb2poly(c):
396
+ """
397
+ Convert a Chebyshev series to a polynomial.
398
+
399
+ Convert an array representing the coefficients of a Chebyshev series,
400
+ ordered from lowest degree to highest, to an array of the coefficients
401
+ of the equivalent polynomial (relative to the "standard" basis) ordered
402
+ from lowest to highest degree.
403
+
404
+ Parameters
405
+ ----------
406
+ c : array_like
407
+ 1-D array containing the Chebyshev series coefficients, ordered
408
+ from lowest order term to highest.
409
+
410
+ Returns
411
+ -------
412
+ pol : ndarray
413
+ 1-D array containing the coefficients of the equivalent polynomial
414
+ (relative to the "standard" basis) ordered from lowest order term
415
+ to highest.
416
+
417
+ See Also
418
+ --------
419
+ poly2cheb
420
+
421
+ Notes
422
+ -----
423
+ The easy way to do conversions between polynomial basis sets
424
+ is to use the convert method of a class instance.
425
+
426
+ Examples
427
+ --------
428
+ >>> from numpy import polynomial as P
429
+ >>> c = P.Chebyshev(range(4))
430
+ >>> c
431
+ Chebyshev([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
432
+ >>> p = c.convert(kind=P.Polynomial)
433
+ >>> p
434
+ Polynomial([-2., -8., 4., 12.], domain=[-1., 1.], window=[-1., 1.], ...
435
+ >>> P.chebyshev.cheb2poly(range(4))
436
+ array([-2., -8., 4., 12.])
437
+
438
+ """
439
+ from .polynomial import polyadd, polymulx, polysub
440
+
441
+ [c] = pu.as_series([c])
442
+ n = len(c)
443
+ if n < 3:
444
+ return c
445
+ else:
446
+ c0 = c[-2]
447
+ c1 = c[-1]
448
+ # i is the current degree of c1
449
+ for i in range(n - 1, 1, -1):
450
+ tmp = c0
451
+ c0 = polysub(c[i - 2], c1)
452
+ c1 = polyadd(tmp, polymulx(c1) * 2)
453
+ return polyadd(c0, polymulx(c1))
454
+
455
+
456
+ #
457
+ # These are constant arrays are of integer type so as to be compatible
458
+ # with the widest range of other types, such as Decimal.
459
+ #
460
+
461
+ # Chebyshev default domain.
462
+ chebdomain = np.array([-1., 1.])
463
+
464
+ # Chebyshev coefficients representing zero.
465
+ chebzero = np.array([0])
466
+
467
+ # Chebyshev coefficients representing one.
468
+ chebone = np.array([1])
469
+
470
+ # Chebyshev coefficients representing the identity x.
471
+ chebx = np.array([0, 1])
472
+
473
+
474
+ def chebline(off, scl):
475
+ """
476
+ Chebyshev series whose graph is a straight line.
477
+
478
+ Parameters
479
+ ----------
480
+ off, scl : scalars
481
+ The specified line is given by ``off + scl*x``.
482
+
483
+ Returns
484
+ -------
485
+ y : ndarray
486
+ This module's representation of the Chebyshev series for
487
+ ``off + scl*x``.
488
+
489
+ See Also
490
+ --------
491
+ numpy.polynomial.polynomial.polyline
492
+ numpy.polynomial.legendre.legline
493
+ numpy.polynomial.laguerre.lagline
494
+ numpy.polynomial.hermite.hermline
495
+ numpy.polynomial.hermite_e.hermeline
496
+
497
+ Examples
498
+ --------
499
+ >>> import numpy.polynomial.chebyshev as C
500
+ >>> C.chebline(3,2)
501
+ array([3, 2])
502
+ >>> C.chebval(-3, C.chebline(3,2)) # should be -3
503
+ -3.0
504
+
505
+ """
506
+ if scl != 0:
507
+ return np.array([off, scl])
508
+ else:
509
+ return np.array([off])
510
+
511
+
512
+ def chebfromroots(roots):
513
+ """
514
+ Generate a Chebyshev series with given roots.
515
+
516
+ The function returns the coefficients of the polynomial
517
+
518
+ .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
519
+
520
+ in Chebyshev form, where the :math:`r_n` are the roots specified in
521
+ `roots`. If a zero has multiplicity n, then it must appear in `roots`
522
+ n times. For instance, if 2 is a root of multiplicity three and 3 is a
523
+ root of multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3].
524
+ The roots can appear in any order.
525
+
526
+ If the returned coefficients are `c`, then
527
+
528
+ .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x)
529
+
530
+ The coefficient of the last term is not generally 1 for monic
531
+ polynomials in Chebyshev form.
532
+
533
+ Parameters
534
+ ----------
535
+ roots : array_like
536
+ Sequence containing the roots.
537
+
538
+ Returns
539
+ -------
540
+ out : ndarray
541
+ 1-D array of coefficients. If all roots are real then `out` is a
542
+ real array, if some of the roots are complex, then `out` is complex
543
+ even if all the coefficients in the result are real (see Examples
544
+ below).
545
+
546
+ See Also
547
+ --------
548
+ numpy.polynomial.polynomial.polyfromroots
549
+ numpy.polynomial.legendre.legfromroots
550
+ numpy.polynomial.laguerre.lagfromroots
551
+ numpy.polynomial.hermite.hermfromroots
552
+ numpy.polynomial.hermite_e.hermefromroots
553
+
554
+ Examples
555
+ --------
556
+ >>> import numpy.polynomial.chebyshev as C
557
+ >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
558
+ array([ 0. , -0.25, 0. , 0.25])
559
+ >>> j = complex(0,1)
560
+ >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
561
+ array([1.5+0.j, 0. +0.j, 0.5+0.j])
562
+
563
+ """
564
+ return pu._fromroots(chebline, chebmul, roots)
565
+
566
+
567
+ def chebadd(c1, c2):
568
+ """
569
+ Add one Chebyshev series to another.
570
+
571
+ Returns the sum of two Chebyshev series `c1` + `c2`. The arguments
572
+ are sequences of coefficients ordered from lowest order term to
573
+ highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
574
+
575
+ Parameters
576
+ ----------
577
+ c1, c2 : array_like
578
+ 1-D arrays of Chebyshev series coefficients ordered from low to
579
+ high.
580
+
581
+ Returns
582
+ -------
583
+ out : ndarray
584
+ Array representing the Chebyshev series of their sum.
585
+
586
+ See Also
587
+ --------
588
+ chebsub, chebmulx, chebmul, chebdiv, chebpow
589
+
590
+ Notes
591
+ -----
592
+ Unlike multiplication, division, etc., the sum of two Chebyshev series
593
+ is a Chebyshev series (without having to "reproject" the result onto
594
+ the basis set) so addition, just like that of "standard" polynomials,
595
+ is simply "component-wise."
596
+
597
+ Examples
598
+ --------
599
+ >>> from numpy.polynomial import chebyshev as C
600
+ >>> c1 = (1,2,3)
601
+ >>> c2 = (3,2,1)
602
+ >>> C.chebadd(c1,c2)
603
+ array([4., 4., 4.])
604
+
605
+ """
606
+ return pu._add(c1, c2)
607
+
608
+
609
+ def chebsub(c1, c2):
610
+ """
611
+ Subtract one Chebyshev series from another.
612
+
613
+ Returns the difference of two Chebyshev series `c1` - `c2`. The
614
+ sequences of coefficients are from lowest order term to highest, i.e.,
615
+ [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
616
+
617
+ Parameters
618
+ ----------
619
+ c1, c2 : array_like
620
+ 1-D arrays of Chebyshev series coefficients ordered from low to
621
+ high.
622
+
623
+ Returns
624
+ -------
625
+ out : ndarray
626
+ Of Chebyshev series coefficients representing their difference.
627
+
628
+ See Also
629
+ --------
630
+ chebadd, chebmulx, chebmul, chebdiv, chebpow
631
+
632
+ Notes
633
+ -----
634
+ Unlike multiplication, division, etc., the difference of two Chebyshev
635
+ series is a Chebyshev series (without having to "reproject" the result
636
+ onto the basis set) so subtraction, just like that of "standard"
637
+ polynomials, is simply "component-wise."
638
+
639
+ Examples
640
+ --------
641
+ >>> from numpy.polynomial import chebyshev as C
642
+ >>> c1 = (1,2,3)
643
+ >>> c2 = (3,2,1)
644
+ >>> C.chebsub(c1,c2)
645
+ array([-2., 0., 2.])
646
+ >>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
647
+ array([ 2., 0., -2.])
648
+
649
+ """
650
+ return pu._sub(c1, c2)
651
+
652
+
653
+ def chebmulx(c):
654
+ """Multiply a Chebyshev series by x.
655
+
656
+ Multiply the polynomial `c` by x, where x is the independent
657
+ variable.
658
+
659
+
660
+ Parameters
661
+ ----------
662
+ c : array_like
663
+ 1-D array of Chebyshev series coefficients ordered from low to
664
+ high.
665
+
666
+ Returns
667
+ -------
668
+ out : ndarray
669
+ Array representing the result of the multiplication.
670
+
671
+ See Also
672
+ --------
673
+ chebadd, chebsub, chebmul, chebdiv, chebpow
674
+
675
+ Examples
676
+ --------
677
+ >>> from numpy.polynomial import chebyshev as C
678
+ >>> C.chebmulx([1,2,3])
679
+ array([1. , 2.5, 1. , 1.5])
680
+
681
+ """
682
+ # c is a trimmed copy
683
+ [c] = pu.as_series([c])
684
+ # The zero series needs special treatment
685
+ if len(c) == 1 and c[0] == 0:
686
+ return c
687
+
688
+ prd = np.empty(len(c) + 1, dtype=c.dtype)
689
+ prd[0] = c[0] * 0
690
+ prd[1] = c[0]
691
+ if len(c) > 1:
692
+ tmp = c[1:] / 2
693
+ prd[2:] = tmp
694
+ prd[0:-2] += tmp
695
+ return prd
696
+
697
+
698
+ def chebmul(c1, c2):
699
+ """
700
+ Multiply one Chebyshev series by another.
701
+
702
+ Returns the product of two Chebyshev series `c1` * `c2`. The arguments
703
+ are sequences of coefficients, from lowest order "term" to highest,
704
+ e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
705
+
706
+ Parameters
707
+ ----------
708
+ c1, c2 : array_like
709
+ 1-D arrays of Chebyshev series coefficients ordered from low to
710
+ high.
711
+
712
+ Returns
713
+ -------
714
+ out : ndarray
715
+ Of Chebyshev series coefficients representing their product.
716
+
717
+ See Also
718
+ --------
719
+ chebadd, chebsub, chebmulx, chebdiv, chebpow
720
+
721
+ Notes
722
+ -----
723
+ In general, the (polynomial) product of two C-series results in terms
724
+ that are not in the Chebyshev polynomial basis set. Thus, to express
725
+ the product as a C-series, it is typically necessary to "reproject"
726
+ the product onto said basis set, which typically produces
727
+ "unintuitive live" (but correct) results; see Examples section below.
728
+
729
+ Examples
730
+ --------
731
+ >>> from numpy.polynomial import chebyshev as C
732
+ >>> c1 = (1,2,3)
733
+ >>> c2 = (3,2,1)
734
+ >>> C.chebmul(c1,c2) # multiplication requires "reprojection"
735
+ array([ 6.5, 12. , 12. , 4. , 1.5])
736
+
737
+ """
738
+ # c1, c2 are trimmed copies
739
+ [c1, c2] = pu.as_series([c1, c2])
740
+ z1 = _cseries_to_zseries(c1)
741
+ z2 = _cseries_to_zseries(c2)
742
+ prd = _zseries_mul(z1, z2)
743
+ ret = _zseries_to_cseries(prd)
744
+ return pu.trimseq(ret)
745
+
746
+
747
+ def chebdiv(c1, c2):
748
+ """
749
+ Divide one Chebyshev series by another.
750
+
751
+ Returns the quotient-with-remainder of two Chebyshev series
752
+ `c1` / `c2`. The arguments are sequences of coefficients from lowest
753
+ order "term" to highest, e.g., [1,2,3] represents the series
754
+ ``T_0 + 2*T_1 + 3*T_2``.
755
+
756
+ Parameters
757
+ ----------
758
+ c1, c2 : array_like
759
+ 1-D arrays of Chebyshev series coefficients ordered from low to
760
+ high.
761
+
762
+ Returns
763
+ -------
764
+ [quo, rem] : ndarrays
765
+ Of Chebyshev series coefficients representing the quotient and
766
+ remainder.
767
+
768
+ See Also
769
+ --------
770
+ chebadd, chebsub, chebmulx, chebmul, chebpow
771
+
772
+ Notes
773
+ -----
774
+ In general, the (polynomial) division of one C-series by another
775
+ results in quotient and remainder terms that are not in the Chebyshev
776
+ polynomial basis set. Thus, to express these results as C-series, it
777
+ is typically necessary to "reproject" the results onto said basis
778
+ set, which typically produces "unintuitive" (but correct) results;
779
+ see Examples section below.
780
+
781
+ Examples
782
+ --------
783
+ >>> from numpy.polynomial import chebyshev as C
784
+ >>> c1 = (1,2,3)
785
+ >>> c2 = (3,2,1)
786
+ >>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
787
+ (array([3.]), array([-8., -4.]))
788
+ >>> c2 = (0,1,2,3)
789
+ >>> C.chebdiv(c2,c1) # neither "intuitive"
790
+ (array([0., 2.]), array([-2., -4.]))
791
+
792
+ """
793
+ # c1, c2 are trimmed copies
794
+ [c1, c2] = pu.as_series([c1, c2])
795
+ if c2[-1] == 0:
796
+ raise ZeroDivisionError # FIXME: add message with details to exception
797
+
798
+ # note: this is more efficient than `pu._div(chebmul, c1, c2)`
799
+ lc1 = len(c1)
800
+ lc2 = len(c2)
801
+ if lc1 < lc2:
802
+ return c1[:1] * 0, c1
803
+ elif lc2 == 1:
804
+ return c1 / c2[-1], c1[:1] * 0
805
+ else:
806
+ z1 = _cseries_to_zseries(c1)
807
+ z2 = _cseries_to_zseries(c2)
808
+ quo, rem = _zseries_div(z1, z2)
809
+ quo = pu.trimseq(_zseries_to_cseries(quo))
810
+ rem = pu.trimseq(_zseries_to_cseries(rem))
811
+ return quo, rem
812
+
813
+
814
+ def chebpow(c, pow, maxpower=16):
815
+ """Raise a Chebyshev series to a power.
816
+
817
+ Returns the Chebyshev series `c` raised to the power `pow`. The
818
+ argument `c` is a sequence of coefficients ordered from low to high.
819
+ i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.``
820
+
821
+ Parameters
822
+ ----------
823
+ c : array_like
824
+ 1-D array of Chebyshev series coefficients ordered from low to
825
+ high.
826
+ pow : integer
827
+ Power to which the series will be raised
828
+ maxpower : integer, optional
829
+ Maximum power allowed. This is mainly to limit growth of the series
830
+ to unmanageable size. Default is 16
831
+
832
+ Returns
833
+ -------
834
+ coef : ndarray
835
+ Chebyshev series of power.
836
+
837
+ See Also
838
+ --------
839
+ chebadd, chebsub, chebmulx, chebmul, chebdiv
840
+
841
+ Examples
842
+ --------
843
+ >>> from numpy.polynomial import chebyshev as C
844
+ >>> C.chebpow([1, 2, 3, 4], 2)
845
+ array([15.5, 22. , 16. , ..., 12.5, 12. , 8. ])
846
+
847
+ """
848
+ # note: this is more efficient than `pu._pow(chebmul, c1, c2)`, as it
849
+ # avoids converting between z and c series repeatedly
850
+
851
+ # c is a trimmed copy
852
+ [c] = pu.as_series([c])
853
+ power = int(pow)
854
+ if power != pow or power < 0:
855
+ raise ValueError("Power must be a non-negative integer.")
856
+ elif maxpower is not None and power > maxpower:
857
+ raise ValueError("Power is too large")
858
+ elif power == 0:
859
+ return np.array([1], dtype=c.dtype)
860
+ elif power == 1:
861
+ return c
862
+ else:
863
+ # This can be made more efficient by using powers of two
864
+ # in the usual way.
865
+ zs = _cseries_to_zseries(c)
866
+ prd = zs
867
+ for i in range(2, power + 1):
868
+ prd = np.convolve(prd, zs)
869
+ return _zseries_to_cseries(prd)
870
+
871
+
872
+ def chebder(c, m=1, scl=1, axis=0):
873
+ """
874
+ Differentiate a Chebyshev series.
875
+
876
+ Returns the Chebyshev series coefficients `c` differentiated `m` times
877
+ along `axis`. At each iteration the result is multiplied by `scl` (the
878
+ scaling factor is for use in a linear change of variable). The argument
879
+ `c` is an array of coefficients from low to high degree along each
880
+ axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2``
881
+ while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
882
+ 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is
883
+ ``y``.
884
+
885
+ Parameters
886
+ ----------
887
+ c : array_like
888
+ Array of Chebyshev series coefficients. If c is multidimensional
889
+ the different axis correspond to different variables with the
890
+ degree in each axis given by the corresponding index.
891
+ m : int, optional
892
+ Number of derivatives taken, must be non-negative. (Default: 1)
893
+ scl : scalar, optional
894
+ Each differentiation is multiplied by `scl`. The end result is
895
+ multiplication by ``scl**m``. This is for use in a linear change of
896
+ variable. (Default: 1)
897
+ axis : int, optional
898
+ Axis over which the derivative is taken. (Default: 0).
899
+
900
+ Returns
901
+ -------
902
+ der : ndarray
903
+ Chebyshev series of the derivative.
904
+
905
+ See Also
906
+ --------
907
+ chebint
908
+
909
+ Notes
910
+ -----
911
+ In general, the result of differentiating a C-series needs to be
912
+ "reprojected" onto the C-series basis set. Thus, typically, the
913
+ result of this function is "unintuitive," albeit correct; see Examples
914
+ section below.
915
+
916
+ Examples
917
+ --------
918
+ >>> from numpy.polynomial import chebyshev as C
919
+ >>> c = (1,2,3,4)
920
+ >>> C.chebder(c)
921
+ array([14., 12., 24.])
922
+ >>> C.chebder(c,3)
923
+ array([96.])
924
+ >>> C.chebder(c,scl=-1)
925
+ array([-14., -12., -24.])
926
+ >>> C.chebder(c,2,-1)
927
+ array([12., 96.])
928
+
929
+ """
930
+ c = np.array(c, ndmin=1, copy=True)
931
+ if c.dtype.char in '?bBhHiIlLqQpP':
932
+ c = c.astype(np.double)
933
+ cnt = pu._as_int(m, "the order of derivation")
934
+ iaxis = pu._as_int(axis, "the axis")
935
+ if cnt < 0:
936
+ raise ValueError("The order of derivation must be non-negative")
937
+ iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim)
938
+
939
+ if cnt == 0:
940
+ return c
941
+
942
+ c = np.moveaxis(c, iaxis, 0)
943
+ n = len(c)
944
+ if cnt >= n:
945
+ c = c[:1] * 0
946
+ else:
947
+ for i in range(cnt):
948
+ n = n - 1
949
+ c *= scl
950
+ der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
951
+ for j in range(n, 2, -1):
952
+ der[j - 1] = (2 * j) * c[j]
953
+ c[j - 2] += (j * c[j]) / (j - 2)
954
+ if n > 1:
955
+ der[1] = 4 * c[2]
956
+ der[0] = c[1]
957
+ c = der
958
+ c = np.moveaxis(c, 0, iaxis)
959
+ return c
960
+
961
+
962
+ def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
963
+ """
964
+ Integrate a Chebyshev series.
965
+
966
+ Returns the Chebyshev series coefficients `c` integrated `m` times from
967
+ `lbnd` along `axis`. At each iteration the resulting series is
968
+ **multiplied** by `scl` and an integration constant, `k`, is added.
969
+ The scaling factor is for use in a linear change of variable. ("Buyer
970
+ beware": note that, depending on what one is doing, one may want `scl`
971
+ to be the reciprocal of what one might expect; for more information,
972
+ see the Notes section below.) The argument `c` is an array of
973
+ coefficients from low to high degree along each axis, e.g., [1,2,3]
974
+ represents the series ``T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]]
975
+ represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
976
+ 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
977
+
978
+ Parameters
979
+ ----------
980
+ c : array_like
981
+ Array of Chebyshev series coefficients. If c is multidimensional
982
+ the different axis correspond to different variables with the
983
+ degree in each axis given by the corresponding index.
984
+ m : int, optional
985
+ Order of integration, must be positive. (Default: 1)
986
+ k : {[], list, scalar}, optional
987
+ Integration constant(s). The value of the first integral at zero
988
+ is the first value in the list, the value of the second integral
989
+ at zero is the second value, etc. If ``k == []`` (the default),
990
+ all constants are set to zero. If ``m == 1``, a single scalar can
991
+ be given instead of a list.
992
+ lbnd : scalar, optional
993
+ The lower bound of the integral. (Default: 0)
994
+ scl : scalar, optional
995
+ Following each integration the result is *multiplied* by `scl`
996
+ before the integration constant is added. (Default: 1)
997
+ axis : int, optional
998
+ Axis over which the integral is taken. (Default: 0).
999
+
1000
+ Returns
1001
+ -------
1002
+ S : ndarray
1003
+ C-series coefficients of the integral.
1004
+
1005
+ Raises
1006
+ ------
1007
+ ValueError
1008
+ If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
1009
+ ``np.ndim(scl) != 0``.
1010
+
1011
+ See Also
1012
+ --------
1013
+ chebder
1014
+
1015
+ Notes
1016
+ -----
1017
+ Note that the result of each integration is *multiplied* by `scl`.
1018
+ Why is this important to note? Say one is making a linear change of
1019
+ variable :math:`u = ax + b` in an integral relative to `x`. Then
1020
+ :math:`dx = du/a`, so one will need to set `scl` equal to
1021
+ :math:`1/a`- perhaps not what one would have first thought.
1022
+
1023
+ Also note that, in general, the result of integrating a C-series needs
1024
+ to be "reprojected" onto the C-series basis set. Thus, typically,
1025
+ the result of this function is "unintuitive," albeit correct; see
1026
+ Examples section below.
1027
+
1028
+ Examples
1029
+ --------
1030
+ >>> from numpy.polynomial import chebyshev as C
1031
+ >>> c = (1,2,3)
1032
+ >>> C.chebint(c)
1033
+ array([ 0.5, -0.5, 0.5, 0.5])
1034
+ >>> C.chebint(c,3)
1035
+ array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667, # may vary
1036
+ 0.00625 ])
1037
+ >>> C.chebint(c, k=3)
1038
+ array([ 3.5, -0.5, 0.5, 0.5])
1039
+ >>> C.chebint(c,lbnd=-2)
1040
+ array([ 8.5, -0.5, 0.5, 0.5])
1041
+ >>> C.chebint(c,scl=-2)
1042
+ array([-1., 1., -1., -1.])
1043
+
1044
+ """
1045
+ c = np.array(c, ndmin=1, copy=True)
1046
+ if c.dtype.char in '?bBhHiIlLqQpP':
1047
+ c = c.astype(np.double)
1048
+ if not np.iterable(k):
1049
+ k = [k]
1050
+ cnt = pu._as_int(m, "the order of integration")
1051
+ iaxis = pu._as_int(axis, "the axis")
1052
+ if cnt < 0:
1053
+ raise ValueError("The order of integration must be non-negative")
1054
+ if len(k) > cnt:
1055
+ raise ValueError("Too many integration constants")
1056
+ if np.ndim(lbnd) != 0:
1057
+ raise ValueError("lbnd must be a scalar.")
1058
+ if np.ndim(scl) != 0:
1059
+ raise ValueError("scl must be a scalar.")
1060
+ iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim)
1061
+
1062
+ if cnt == 0:
1063
+ return c
1064
+
1065
+ c = np.moveaxis(c, iaxis, 0)
1066
+ k = list(k) + [0] * (cnt - len(k))
1067
+ for i in range(cnt):
1068
+ n = len(c)
1069
+ c *= scl
1070
+ if n == 1 and np.all(c[0] == 0):
1071
+ c[0] += k[i]
1072
+ else:
1073
+ tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
1074
+ tmp[0] = c[0] * 0
1075
+ tmp[1] = c[0]
1076
+ if n > 1:
1077
+ tmp[2] = c[1] / 4
1078
+ for j in range(2, n):
1079
+ tmp[j + 1] = c[j] / (2 * (j + 1))
1080
+ tmp[j - 1] -= c[j] / (2 * (j - 1))
1081
+ tmp[0] += k[i] - chebval(lbnd, tmp)
1082
+ c = tmp
1083
+ c = np.moveaxis(c, 0, iaxis)
1084
+ return c
1085
+
1086
+
1087
+ def chebval(x, c, tensor=True):
1088
+ """
1089
+ Evaluate a Chebyshev series at points x.
1090
+
1091
+ If `c` is of length `n + 1`, this function returns the value:
1092
+
1093
+ .. math:: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x)
1094
+
1095
+ The parameter `x` is converted to an array only if it is a tuple or a
1096
+ list, otherwise it is treated as a scalar. In either case, either `x`
1097
+ or its elements must support multiplication and addition both with
1098
+ themselves and with the elements of `c`.
1099
+
1100
+ If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If
1101
+ `c` is multidimensional, then the shape of the result depends on the
1102
+ value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
1103
+ x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
1104
+ scalars have shape (,).
1105
+
1106
+ Trailing zeros in the coefficients will be used in the evaluation, so
1107
+ they should be avoided if efficiency is a concern.
1108
+
1109
+ Parameters
1110
+ ----------
1111
+ x : array_like, compatible object
1112
+ If `x` is a list or tuple, it is converted to an ndarray, otherwise
1113
+ it is left unchanged and treated as a scalar. In either case, `x`
1114
+ or its elements must support addition and multiplication with
1115
+ themselves and with the elements of `c`.
1116
+ c : array_like
1117
+ Array of coefficients ordered so that the coefficients for terms of
1118
+ degree n are contained in c[n]. If `c` is multidimensional the
1119
+ remaining indices enumerate multiple polynomials. In the two
1120
+ dimensional case the coefficients may be thought of as stored in
1121
+ the columns of `c`.
1122
+ tensor : boolean, optional
1123
+ If True, the shape of the coefficient array is extended with ones
1124
+ on the right, one for each dimension of `x`. Scalars have dimension 0
1125
+ for this action. The result is that every column of coefficients in
1126
+ `c` is evaluated for every element of `x`. If False, `x` is broadcast
1127
+ over the columns of `c` for the evaluation. This keyword is useful
1128
+ when `c` is multidimensional. The default value is True.
1129
+
1130
+ Returns
1131
+ -------
1132
+ values : ndarray, algebra_like
1133
+ The shape of the return value is described above.
1134
+
1135
+ See Also
1136
+ --------
1137
+ chebval2d, chebgrid2d, chebval3d, chebgrid3d
1138
+
1139
+ Notes
1140
+ -----
1141
+ The evaluation uses Clenshaw recursion, aka synthetic division.
1142
+
1143
+ """
1144
+ c = np.array(c, ndmin=1, copy=True)
1145
+ if c.dtype.char in '?bBhHiIlLqQpP':
1146
+ c = c.astype(np.double)
1147
+ if isinstance(x, (tuple, list)):
1148
+ x = np.asarray(x)
1149
+ if isinstance(x, np.ndarray) and tensor:
1150
+ c = c.reshape(c.shape + (1,) * x.ndim)
1151
+
1152
+ if len(c) == 1:
1153
+ c0 = c[0]
1154
+ c1 = 0
1155
+ elif len(c) == 2:
1156
+ c0 = c[0]
1157
+ c1 = c[1]
1158
+ else:
1159
+ x2 = 2 * x
1160
+ c0 = c[-2]
1161
+ c1 = c[-1]
1162
+ for i in range(3, len(c) + 1):
1163
+ tmp = c0
1164
+ c0 = c[-i] - c1
1165
+ c1 = tmp + c1 * x2
1166
+ return c0 + c1 * x
1167
+
1168
+
1169
+ def chebval2d(x, y, c):
1170
+ """
1171
+ Evaluate a 2-D Chebyshev series at points (x, y).
1172
+
1173
+ This function returns the values:
1174
+
1175
+ .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * T_i(x) * T_j(y)
1176
+
1177
+ The parameters `x` and `y` are converted to arrays only if they are
1178
+ tuples or a lists, otherwise they are treated as a scalars and they
1179
+ must have the same shape after conversion. In either case, either `x`
1180
+ and `y` or their elements must support multiplication and addition both
1181
+ with themselves and with the elements of `c`.
1182
+
1183
+ If `c` is a 1-D array a one is implicitly appended to its shape to make
1184
+ it 2-D. The shape of the result will be c.shape[2:] + x.shape.
1185
+
1186
+ Parameters
1187
+ ----------
1188
+ x, y : array_like, compatible objects
1189
+ The two dimensional series is evaluated at the points ``(x, y)``,
1190
+ where `x` and `y` must have the same shape. If `x` or `y` is a list
1191
+ or tuple, it is first converted to an ndarray, otherwise it is left
1192
+ unchanged and if it isn't an ndarray it is treated as a scalar.
1193
+ c : array_like
1194
+ Array of coefficients ordered so that the coefficient of the term
1195
+ of multi-degree i,j is contained in ``c[i,j]``. If `c` has
1196
+ dimension greater than 2 the remaining indices enumerate multiple
1197
+ sets of coefficients.
1198
+
1199
+ Returns
1200
+ -------
1201
+ values : ndarray, compatible object
1202
+ The values of the two dimensional Chebyshev series at points formed
1203
+ from pairs of corresponding values from `x` and `y`.
1204
+
1205
+ See Also
1206
+ --------
1207
+ chebval, chebgrid2d, chebval3d, chebgrid3d
1208
+ """
1209
+ return pu._valnd(chebval, c, x, y)
1210
+
1211
+
1212
+ def chebgrid2d(x, y, c):
1213
+ """
1214
+ Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.
1215
+
1216
+ This function returns the values:
1217
+
1218
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b),
1219
+
1220
+ where the points `(a, b)` consist of all pairs formed by taking
1221
+ `a` from `x` and `b` from `y`. The resulting points form a grid with
1222
+ `x` in the first dimension and `y` in the second.
1223
+
1224
+ The parameters `x` and `y` are converted to arrays only if they are
1225
+ tuples or a lists, otherwise they are treated as a scalars. In either
1226
+ case, either `x` and `y` or their elements must support multiplication
1227
+ and addition both with themselves and with the elements of `c`.
1228
+
1229
+ If `c` has fewer than two dimensions, ones are implicitly appended to
1230
+ its shape to make it 2-D. The shape of the result will be c.shape[2:] +
1231
+ x.shape + y.shape.
1232
+
1233
+ Parameters
1234
+ ----------
1235
+ x, y : array_like, compatible objects
1236
+ The two dimensional series is evaluated at the points in the
1237
+ Cartesian product of `x` and `y`. If `x` or `y` is a list or
1238
+ tuple, it is first converted to an ndarray, otherwise it is left
1239
+ unchanged and, if it isn't an ndarray, it is treated as a scalar.
1240
+ c : array_like
1241
+ Array of coefficients ordered so that the coefficient of the term of
1242
+ multi-degree i,j is contained in ``c[i,j]``. If `c` has dimension
1243
+ greater than two the remaining indices enumerate multiple sets of
1244
+ coefficients.
1245
+
1246
+ Returns
1247
+ -------
1248
+ values : ndarray, compatible object
1249
+ The values of the two dimensional Chebyshev series at points in the
1250
+ Cartesian product of `x` and `y`.
1251
+
1252
+ See Also
1253
+ --------
1254
+ chebval, chebval2d, chebval3d, chebgrid3d
1255
+ """
1256
+ return pu._gridnd(chebval, c, x, y)
1257
+
1258
+
1259
+ def chebval3d(x, y, z, c):
1260
+ """
1261
+ Evaluate a 3-D Chebyshev series at points (x, y, z).
1262
+
1263
+ This function returns the values:
1264
+
1265
+ .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z)
1266
+
1267
+ The parameters `x`, `y`, and `z` are converted to arrays only if
1268
+ they are tuples or a lists, otherwise they are treated as a scalars and
1269
+ they must have the same shape after conversion. In either case, either
1270
+ `x`, `y`, and `z` or their elements must support multiplication and
1271
+ addition both with themselves and with the elements of `c`.
1272
+
1273
+ If `c` has fewer than 3 dimensions, ones are implicitly appended to its
1274
+ shape to make it 3-D. The shape of the result will be c.shape[3:] +
1275
+ x.shape.
1276
+
1277
+ Parameters
1278
+ ----------
1279
+ x, y, z : array_like, compatible object
1280
+ The three dimensional series is evaluated at the points
1281
+ ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If
1282
+ any of `x`, `y`, or `z` is a list or tuple, it is first converted
1283
+ to an ndarray, otherwise it is left unchanged and if it isn't an
1284
+ ndarray it is treated as a scalar.
1285
+ c : array_like
1286
+ Array of coefficients ordered so that the coefficient of the term of
1287
+ multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
1288
+ greater than 3 the remaining indices enumerate multiple sets of
1289
+ coefficients.
1290
+
1291
+ Returns
1292
+ -------
1293
+ values : ndarray, compatible object
1294
+ The values of the multidimensional polynomial on points formed with
1295
+ triples of corresponding values from `x`, `y`, and `z`.
1296
+
1297
+ See Also
1298
+ --------
1299
+ chebval, chebval2d, chebgrid2d, chebgrid3d
1300
+ """
1301
+ return pu._valnd(chebval, c, x, y, z)
1302
+
1303
+
1304
+ def chebgrid3d(x, y, z, c):
1305
+ """
1306
+ Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.
1307
+
1308
+ This function returns the values:
1309
+
1310
+ .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c)
1311
+
1312
+ where the points ``(a, b, c)`` consist of all triples formed by taking
1313
+ `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
1314
+ a grid with `x` in the first dimension, `y` in the second, and `z` in
1315
+ the third.
1316
+
1317
+ The parameters `x`, `y`, and `z` are converted to arrays only if they
1318
+ are tuples or a lists, otherwise they are treated as a scalars. In
1319
+ either case, either `x`, `y`, and `z` or their elements must support
1320
+ multiplication and addition both with themselves and with the elements
1321
+ of `c`.
1322
+
1323
+ If `c` has fewer than three dimensions, ones are implicitly appended to
1324
+ its shape to make it 3-D. The shape of the result will be c.shape[3:] +
1325
+ x.shape + y.shape + z.shape.
1326
+
1327
+ Parameters
1328
+ ----------
1329
+ x, y, z : array_like, compatible objects
1330
+ The three dimensional series is evaluated at the points in the
1331
+ Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a
1332
+ list or tuple, it is first converted to an ndarray, otherwise it is
1333
+ left unchanged and, if it isn't an ndarray, it is treated as a
1334
+ scalar.
1335
+ c : array_like
1336
+ Array of coefficients ordered so that the coefficients for terms of
1337
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
1338
+ greater than two the remaining indices enumerate multiple sets of
1339
+ coefficients.
1340
+
1341
+ Returns
1342
+ -------
1343
+ values : ndarray, compatible object
1344
+ The values of the two dimensional polynomial at points in the Cartesian
1345
+ product of `x` and `y`.
1346
+
1347
+ See Also
1348
+ --------
1349
+ chebval, chebval2d, chebgrid2d, chebval3d
1350
+ """
1351
+ return pu._gridnd(chebval, c, x, y, z)
1352
+
1353
+
1354
+ def chebvander(x, deg):
1355
+ """Pseudo-Vandermonde matrix of given degree.
1356
+
1357
+ Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
1358
+ `x`. The pseudo-Vandermonde matrix is defined by
1359
+
1360
+ .. math:: V[..., i] = T_i(x),
1361
+
1362
+ where ``0 <= i <= deg``. The leading indices of `V` index the elements of
1363
+ `x` and the last index is the degree of the Chebyshev polynomial.
1364
+
1365
+ If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the
1366
+ matrix ``V = chebvander(x, n)``, then ``np.dot(V, c)`` and
1367
+ ``chebval(x, c)`` are the same up to roundoff. This equivalence is
1368
+ useful both for least squares fitting and for the evaluation of a large
1369
+ number of Chebyshev series of the same degree and sample points.
1370
+
1371
+ Parameters
1372
+ ----------
1373
+ x : array_like
1374
+ Array of points. The dtype is converted to float64 or complex128
1375
+ depending on whether any of the elements are complex. If `x` is
1376
+ scalar it is converted to a 1-D array.
1377
+ deg : int
1378
+ Degree of the resulting matrix.
1379
+
1380
+ Returns
1381
+ -------
1382
+ vander : ndarray
1383
+ The pseudo Vandermonde matrix. The shape of the returned matrix is
1384
+ ``x.shape + (deg + 1,)``, where The last index is the degree of the
1385
+ corresponding Chebyshev polynomial. The dtype will be the same as
1386
+ the converted `x`.
1387
+
1388
+ """
1389
+ ideg = pu._as_int(deg, "deg")
1390
+ if ideg < 0:
1391
+ raise ValueError("deg must be non-negative")
1392
+
1393
+ x = np.array(x, copy=None, ndmin=1) + 0.0
1394
+ dims = (ideg + 1,) + x.shape
1395
+ dtyp = x.dtype
1396
+ v = np.empty(dims, dtype=dtyp)
1397
+ # Use forward recursion to generate the entries.
1398
+ v[0] = x * 0 + 1
1399
+ if ideg > 0:
1400
+ x2 = 2 * x
1401
+ v[1] = x
1402
+ for i in range(2, ideg + 1):
1403
+ v[i] = v[i - 1] * x2 - v[i - 2]
1404
+ return np.moveaxis(v, 0, -1)
1405
+
1406
+
1407
+ def chebvander2d(x, y, deg):
1408
+ """Pseudo-Vandermonde matrix of given degrees.
1409
+
1410
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1411
+ points ``(x, y)``. The pseudo-Vandermonde matrix is defined by
1412
+
1413
+ .. math:: V[..., (deg[1] + 1)*i + j] = T_i(x) * T_j(y),
1414
+
1415
+ where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of
1416
+ `V` index the points ``(x, y)`` and the last index encodes the degrees of
1417
+ the Chebyshev polynomials.
1418
+
1419
+ If ``V = chebvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
1420
+ correspond to the elements of a 2-D coefficient array `c` of shape
1421
+ (xdeg + 1, ydeg + 1) in the order
1422
+
1423
+ .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
1424
+
1425
+ and ``np.dot(V, c.flat)`` and ``chebval2d(x, y, c)`` will be the same
1426
+ up to roundoff. This equivalence is useful both for least squares
1427
+ fitting and for the evaluation of a large number of 2-D Chebyshev
1428
+ series of the same degrees and sample points.
1429
+
1430
+ Parameters
1431
+ ----------
1432
+ x, y : array_like
1433
+ Arrays of point coordinates, all of the same shape. The dtypes
1434
+ will be converted to either float64 or complex128 depending on
1435
+ whether any of the elements are complex. Scalars are converted to
1436
+ 1-D arrays.
1437
+ deg : list of ints
1438
+ List of maximum degrees of the form [x_deg, y_deg].
1439
+
1440
+ Returns
1441
+ -------
1442
+ vander2d : ndarray
1443
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1444
+ :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
1445
+ as the converted `x` and `y`.
1446
+
1447
+ See Also
1448
+ --------
1449
+ chebvander, chebvander3d, chebval2d, chebval3d
1450
+ """
1451
+ return pu._vander_nd_flat((chebvander, chebvander), (x, y), deg)
1452
+
1453
+
1454
+ def chebvander3d(x, y, z, deg):
1455
+ """Pseudo-Vandermonde matrix of given degrees.
1456
+
1457
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1458
+ points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`,
1459
+ then The pseudo-Vandermonde matrix is defined by
1460
+
1461
+ .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z),
1462
+
1463
+ where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading
1464
+ indices of `V` index the points ``(x, y, z)`` and the last index encodes
1465
+ the degrees of the Chebyshev polynomials.
1466
+
1467
+ If ``V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
1468
+ of `V` correspond to the elements of a 3-D coefficient array `c` of
1469
+ shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
1470
+
1471
+ .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
1472
+
1473
+ and ``np.dot(V, c.flat)`` and ``chebval3d(x, y, z, c)`` will be the
1474
+ same up to roundoff. This equivalence is useful both for least squares
1475
+ fitting and for the evaluation of a large number of 3-D Chebyshev
1476
+ series of the same degrees and sample points.
1477
+
1478
+ Parameters
1479
+ ----------
1480
+ x, y, z : array_like
1481
+ Arrays of point coordinates, all of the same shape. The dtypes will
1482
+ be converted to either float64 or complex128 depending on whether
1483
+ any of the elements are complex. Scalars are converted to 1-D
1484
+ arrays.
1485
+ deg : list of ints
1486
+ List of maximum degrees of the form [x_deg, y_deg, z_deg].
1487
+
1488
+ Returns
1489
+ -------
1490
+ vander3d : ndarray
1491
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1492
+ :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
1493
+ be the same as the converted `x`, `y`, and `z`.
1494
+
1495
+ See Also
1496
+ --------
1497
+ chebvander, chebvander3d, chebval2d, chebval3d
1498
+ """
1499
+ return pu._vander_nd_flat((chebvander, chebvander, chebvander), (x, y, z), deg)
1500
+
1501
+
1502
+ def chebfit(x, y, deg, rcond=None, full=False, w=None):
1503
+ """
1504
+ Least squares fit of Chebyshev series to data.
1505
+
1506
+ Return the coefficients of a Chebyshev series of degree `deg` that is the
1507
+ least squares fit to the data values `y` given at points `x`. If `y` is
1508
+ 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
1509
+ fits are done, one for each column of `y`, and the resulting
1510
+ coefficients are stored in the corresponding columns of a 2-D return.
1511
+ The fitted polynomial(s) are in the form
1512
+
1513
+ .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x),
1514
+
1515
+ where `n` is `deg`.
1516
+
1517
+ Parameters
1518
+ ----------
1519
+ x : array_like, shape (M,)
1520
+ x-coordinates of the M sample points ``(x[i], y[i])``.
1521
+ y : array_like, shape (M,) or (M, K)
1522
+ y-coordinates of the sample points. Several data sets of sample
1523
+ points sharing the same x-coordinates can be fitted at once by
1524
+ passing in a 2D-array that contains one dataset per column.
1525
+ deg : int or 1-D array_like
1526
+ Degree(s) of the fitting polynomials. If `deg` is a single integer,
1527
+ all terms up to and including the `deg`'th term are included in the
1528
+ fit. For NumPy versions >= 1.11.0 a list of integers specifying the
1529
+ degrees of the terms to include may be used instead.
1530
+ rcond : float, optional
1531
+ Relative condition number of the fit. Singular values smaller than
1532
+ this relative to the largest singular value will be ignored. The
1533
+ default value is ``len(x)*eps``, where eps is the relative precision of
1534
+ the float type, about 2e-16 in most cases.
1535
+ full : bool, optional
1536
+ Switch determining nature of return value. When it is False (the
1537
+ default) just the coefficients are returned, when True diagnostic
1538
+ information from the singular value decomposition is also returned.
1539
+ w : array_like, shape (`M`,), optional
1540
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
1541
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
1542
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
1543
+ same variance. When using inverse-variance weighting, use
1544
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
1545
+
1546
+ Returns
1547
+ -------
1548
+ coef : ndarray, shape (M,) or (M, K)
1549
+ Chebyshev coefficients ordered from low to high. If `y` was 2-D,
1550
+ the coefficients for the data in column k of `y` are in column
1551
+ `k`.
1552
+
1553
+ [residuals, rank, singular_values, rcond] : list
1554
+ These values are only returned if ``full == True``
1555
+
1556
+ - residuals -- sum of squared residuals of the least squares fit
1557
+ - rank -- the numerical rank of the scaled Vandermonde matrix
1558
+ - singular_values -- singular values of the scaled Vandermonde matrix
1559
+ - rcond -- value of `rcond`.
1560
+
1561
+ For more details, see `numpy.linalg.lstsq`.
1562
+
1563
+ Warns
1564
+ -----
1565
+ RankWarning
1566
+ The rank of the coefficient matrix in the least-squares fit is
1567
+ deficient. The warning is only raised if ``full == False``. The
1568
+ warnings can be turned off by
1569
+
1570
+ >>> import warnings
1571
+ >>> warnings.simplefilter('ignore', np.exceptions.RankWarning)
1572
+
1573
+ See Also
1574
+ --------
1575
+ numpy.polynomial.polynomial.polyfit
1576
+ numpy.polynomial.legendre.legfit
1577
+ numpy.polynomial.laguerre.lagfit
1578
+ numpy.polynomial.hermite.hermfit
1579
+ numpy.polynomial.hermite_e.hermefit
1580
+ chebval : Evaluates a Chebyshev series.
1581
+ chebvander : Vandermonde matrix of Chebyshev series.
1582
+ chebweight : Chebyshev weight function.
1583
+ numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
1584
+ scipy.interpolate.UnivariateSpline : Computes spline fits.
1585
+
1586
+ Notes
1587
+ -----
1588
+ The solution is the coefficients of the Chebyshev series `p` that
1589
+ minimizes the sum of the weighted squared errors
1590
+
1591
+ .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
1592
+
1593
+ where :math:`w_j` are the weights. This problem is solved by setting up
1594
+ as the (typically) overdetermined matrix equation
1595
+
1596
+ .. math:: V(x) * c = w * y,
1597
+
1598
+ where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
1599
+ coefficients to be solved for, `w` are the weights, and `y` are the
1600
+ observed values. This equation is then solved using the singular value
1601
+ decomposition of `V`.
1602
+
1603
+ If some of the singular values of `V` are so small that they are
1604
+ neglected, then a `~exceptions.RankWarning` will be issued. This means that
1605
+ the coefficient values may be poorly determined. Using a lower order fit
1606
+ will usually get rid of the warning. The `rcond` parameter can also be
1607
+ set to a value smaller than its default, but the resulting fit may be
1608
+ spurious and have large contributions from roundoff error.
1609
+
1610
+ Fits using Chebyshev series are usually better conditioned than fits
1611
+ using power series, but much can depend on the distribution of the
1612
+ sample points and the smoothness of the data. If the quality of the fit
1613
+ is inadequate splines may be a good alternative.
1614
+
1615
+ References
1616
+ ----------
1617
+ .. [1] Wikipedia, "Curve fitting",
1618
+ https://en.wikipedia.org/wiki/Curve_fitting
1619
+
1620
+ Examples
1621
+ --------
1622
+
1623
+ """
1624
+ return pu._fit(chebvander, x, y, deg, rcond, full, w)
1625
+
1626
+
1627
+ def chebcompanion(c):
1628
+ """Return the scaled companion matrix of c.
1629
+
1630
+ The basis polynomials are scaled so that the companion matrix is
1631
+ symmetric when `c` is a Chebyshev basis polynomial. This provides
1632
+ better eigenvalue estimates than the unscaled case and for basis
1633
+ polynomials the eigenvalues are guaranteed to be real if
1634
+ `numpy.linalg.eigvalsh` is used to obtain them.
1635
+
1636
+ Parameters
1637
+ ----------
1638
+ c : array_like
1639
+ 1-D array of Chebyshev series coefficients ordered from low to high
1640
+ degree.
1641
+
1642
+ Returns
1643
+ -------
1644
+ mat : ndarray
1645
+ Scaled companion matrix of dimensions (deg, deg).
1646
+ """
1647
+ # c is a trimmed copy
1648
+ [c] = pu.as_series([c])
1649
+ if len(c) < 2:
1650
+ raise ValueError('Series must have maximum degree of at least 1.')
1651
+ if len(c) == 2:
1652
+ return np.array([[-c[0] / c[1]]])
1653
+
1654
+ n = len(c) - 1
1655
+ mat = np.zeros((n, n), dtype=c.dtype)
1656
+ scl = np.array([1.] + [np.sqrt(.5)] * (n - 1))
1657
+ top = mat.reshape(-1)[1::n + 1]
1658
+ bot = mat.reshape(-1)[n::n + 1]
1659
+ top[0] = np.sqrt(.5)
1660
+ top[1:] = 1 / 2
1661
+ bot[...] = top
1662
+ mat[:, -1] -= (c[:-1] / c[-1]) * (scl / scl[-1]) * .5
1663
+ return mat
1664
+
1665
+
1666
+ def chebroots(c):
1667
+ """
1668
+ Compute the roots of a Chebyshev series.
1669
+
1670
+ Return the roots (a.k.a. "zeros") of the polynomial
1671
+
1672
+ .. math:: p(x) = \\sum_i c[i] * T_i(x).
1673
+
1674
+ Parameters
1675
+ ----------
1676
+ c : 1-D array_like
1677
+ 1-D array of coefficients.
1678
+
1679
+ Returns
1680
+ -------
1681
+ out : ndarray
1682
+ Array of the roots of the series. If all the roots are real,
1683
+ then `out` is also real, otherwise it is complex.
1684
+
1685
+ See Also
1686
+ --------
1687
+ numpy.polynomial.polynomial.polyroots
1688
+ numpy.polynomial.legendre.legroots
1689
+ numpy.polynomial.laguerre.lagroots
1690
+ numpy.polynomial.hermite.hermroots
1691
+ numpy.polynomial.hermite_e.hermeroots
1692
+
1693
+ Notes
1694
+ -----
1695
+ The root estimates are obtained as the eigenvalues of the companion
1696
+ matrix, Roots far from the origin of the complex plane may have large
1697
+ errors due to the numerical instability of the series for such
1698
+ values. Roots with multiplicity greater than 1 will also show larger
1699
+ errors as the value of the series near such points is relatively
1700
+ insensitive to errors in the roots. Isolated roots near the origin can
1701
+ be improved by a few iterations of Newton's method.
1702
+
1703
+ The Chebyshev series basis polynomials aren't powers of `x` so the
1704
+ results of this function may seem unintuitive.
1705
+
1706
+ Examples
1707
+ --------
1708
+ >>> import numpy.polynomial.chebyshev as cheb
1709
+ >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
1710
+ array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00]) # may vary
1711
+
1712
+ """
1713
+ # c is a trimmed copy
1714
+ [c] = pu.as_series([c])
1715
+ if len(c) < 2:
1716
+ return np.array([], dtype=c.dtype)
1717
+ if len(c) == 2:
1718
+ return np.array([-c[0] / c[1]])
1719
+
1720
+ # rotated companion matrix reduces error
1721
+ m = chebcompanion(c)[::-1, ::-1]
1722
+ r = np.linalg.eigvals(m)
1723
+ r.sort()
1724
+ return r
1725
+
1726
+
1727
+ def chebinterpolate(func, deg, args=()):
1728
+ """Interpolate a function at the Chebyshev points of the first kind.
1729
+
1730
+ Returns the Chebyshev series that interpolates `func` at the Chebyshev
1731
+ points of the first kind in the interval [-1, 1]. The interpolating
1732
+ series tends to a minmax approximation to `func` with increasing `deg`
1733
+ if the function is continuous in the interval.
1734
+
1735
+ Parameters
1736
+ ----------
1737
+ func : function
1738
+ The function to be approximated. It must be a function of a single
1739
+ variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
1740
+ extra arguments passed in the `args` parameter.
1741
+ deg : int
1742
+ Degree of the interpolating polynomial
1743
+ args : tuple, optional
1744
+ Extra arguments to be used in the function call. Default is no extra
1745
+ arguments.
1746
+
1747
+ Returns
1748
+ -------
1749
+ coef : ndarray, shape (deg + 1,)
1750
+ Chebyshev coefficients of the interpolating series ordered from low to
1751
+ high.
1752
+
1753
+ Examples
1754
+ --------
1755
+ >>> import numpy.polynomial.chebyshev as C
1756
+ >>> C.chebinterpolate(lambda x: np.tanh(x) + 0.5, 8)
1757
+ array([ 5.00000000e-01, 8.11675684e-01, -9.86864911e-17,
1758
+ -5.42457905e-02, -2.71387850e-16, 4.51658839e-03,
1759
+ 2.46716228e-17, -3.79694221e-04, -3.26899002e-16])
1760
+
1761
+ Notes
1762
+ -----
1763
+ The Chebyshev polynomials used in the interpolation are orthogonal when
1764
+ sampled at the Chebyshev points of the first kind. If it is desired to
1765
+ constrain some of the coefficients they can simply be set to the desired
1766
+ value after the interpolation, no new interpolation or fit is needed. This
1767
+ is especially useful if it is known apriori that some of coefficients are
1768
+ zero. For instance, if the function is even then the coefficients of the
1769
+ terms of odd degree in the result can be set to zero.
1770
+
1771
+ """
1772
+ deg = np.asarray(deg)
1773
+
1774
+ # check arguments.
1775
+ if deg.ndim > 0 or deg.dtype.kind not in 'iu' or deg.size == 0:
1776
+ raise TypeError("deg must be an int")
1777
+ if deg < 0:
1778
+ raise ValueError("expected deg >= 0")
1779
+
1780
+ order = deg + 1
1781
+ xcheb = chebpts1(order)
1782
+ yfunc = func(xcheb, *args)
1783
+ m = chebvander(xcheb, deg)
1784
+ c = np.dot(m.T, yfunc)
1785
+ c[0] /= order
1786
+ c[1:] /= 0.5 * order
1787
+
1788
+ return c
1789
+
1790
+
1791
+ def chebgauss(deg):
1792
+ """
1793
+ Gauss-Chebyshev quadrature.
1794
+
1795
+ Computes the sample points and weights for Gauss-Chebyshev quadrature.
1796
+ These sample points and weights will correctly integrate polynomials of
1797
+ degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
1798
+ the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`.
1799
+
1800
+ Parameters
1801
+ ----------
1802
+ deg : int
1803
+ Number of sample points and weights. It must be >= 1.
1804
+
1805
+ Returns
1806
+ -------
1807
+ x : ndarray
1808
+ 1-D ndarray containing the sample points.
1809
+ y : ndarray
1810
+ 1-D ndarray containing the weights.
1811
+
1812
+ Notes
1813
+ -----
1814
+ The results have only been tested up to degree 100, higher degrees may
1815
+ be problematic. For Gauss-Chebyshev there are closed form solutions for
1816
+ the sample points and weights. If n = `deg`, then
1817
+
1818
+ .. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n))
1819
+
1820
+ .. math:: w_i = \\pi / n
1821
+
1822
+ """
1823
+ ideg = pu._as_int(deg, "deg")
1824
+ if ideg <= 0:
1825
+ raise ValueError("deg must be a positive integer")
1826
+
1827
+ x = np.cos(np.pi * np.arange(1, 2 * ideg, 2) / (2.0 * ideg))
1828
+ w = np.ones(ideg) * (np.pi / ideg)
1829
+
1830
+ return x, w
1831
+
1832
+
1833
+ def chebweight(x):
1834
+ """
1835
+ The weight function of the Chebyshev polynomials.
1836
+
1837
+ The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of
1838
+ integration is :math:`[-1, 1]`. The Chebyshev polynomials are
1839
+ orthogonal, but not normalized, with respect to this weight function.
1840
+
1841
+ Parameters
1842
+ ----------
1843
+ x : array_like
1844
+ Values at which the weight function will be computed.
1845
+
1846
+ Returns
1847
+ -------
1848
+ w : ndarray
1849
+ The weight function at `x`.
1850
+ """
1851
+ w = 1. / (np.sqrt(1. + x) * np.sqrt(1. - x))
1852
+ return w
1853
+
1854
+
1855
+ def chebpts1(npts):
1856
+ """
1857
+ Chebyshev points of the first kind.
1858
+
1859
+ The Chebyshev points of the first kind are the points ``cos(x)``,
1860
+ where ``x = [pi*(k + .5)/npts for k in range(npts)]``.
1861
+
1862
+ Parameters
1863
+ ----------
1864
+ npts : int
1865
+ Number of sample points desired.
1866
+
1867
+ Returns
1868
+ -------
1869
+ pts : ndarray
1870
+ The Chebyshev points of the first kind.
1871
+
1872
+ See Also
1873
+ --------
1874
+ chebpts2
1875
+ """
1876
+ _npts = int(npts)
1877
+ if _npts != npts:
1878
+ raise ValueError("npts must be integer")
1879
+ if _npts < 1:
1880
+ raise ValueError("npts must be >= 1")
1881
+
1882
+ x = 0.5 * np.pi / _npts * np.arange(-_npts + 1, _npts + 1, 2)
1883
+ return np.sin(x)
1884
+
1885
+
1886
+ def chebpts2(npts):
1887
+ """
1888
+ Chebyshev points of the second kind.
1889
+
1890
+ The Chebyshev points of the second kind are the points ``cos(x)``,
1891
+ where ``x = [pi*k/(npts - 1) for k in range(npts)]`` sorted in ascending
1892
+ order.
1893
+
1894
+ Parameters
1895
+ ----------
1896
+ npts : int
1897
+ Number of sample points desired.
1898
+
1899
+ Returns
1900
+ -------
1901
+ pts : ndarray
1902
+ The Chebyshev points of the second kind.
1903
+ """
1904
+ _npts = int(npts)
1905
+ if _npts != npts:
1906
+ raise ValueError("npts must be integer")
1907
+ if _npts < 2:
1908
+ raise ValueError("npts must be >= 2")
1909
+
1910
+ x = np.linspace(-np.pi, 0, _npts)
1911
+ return np.cos(x)
1912
+
1913
+
1914
+ #
1915
+ # Chebyshev series class
1916
+ #
1917
+
1918
+ class Chebyshev(ABCPolyBase):
1919
+ """A Chebyshev series class.
1920
+
1921
+ The Chebyshev class provides the standard Python numerical methods
1922
+ '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
1923
+ attributes and methods listed below.
1924
+
1925
+ Parameters
1926
+ ----------
1927
+ coef : array_like
1928
+ Chebyshev coefficients in order of increasing degree, i.e.,
1929
+ ``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``.
1930
+ domain : (2,) array_like, optional
1931
+ Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
1932
+ to the interval ``[window[0], window[1]]`` by shifting and scaling.
1933
+ The default value is [-1., 1.].
1934
+ window : (2,) array_like, optional
1935
+ Window, see `domain` for its use. The default value is [-1., 1.].
1936
+ symbol : str, optional
1937
+ Symbol used to represent the independent variable in string
1938
+ representations of the polynomial expression, e.g. for printing.
1939
+ The symbol must be a valid Python identifier. Default value is 'x'.
1940
+
1941
+ .. versionadded:: 1.24
1942
+
1943
+ """
1944
+ # Virtual Functions
1945
+ _add = staticmethod(chebadd)
1946
+ _sub = staticmethod(chebsub)
1947
+ _mul = staticmethod(chebmul)
1948
+ _div = staticmethod(chebdiv)
1949
+ _pow = staticmethod(chebpow)
1950
+ _val = staticmethod(chebval)
1951
+ _int = staticmethod(chebint)
1952
+ _der = staticmethod(chebder)
1953
+ _fit = staticmethod(chebfit)
1954
+ _line = staticmethod(chebline)
1955
+ _roots = staticmethod(chebroots)
1956
+ _fromroots = staticmethod(chebfromroots)
1957
+
1958
+ @classmethod
1959
+ def interpolate(cls, func, deg, domain=None, args=()):
1960
+ """Interpolate a function at the Chebyshev points of the first kind.
1961
+
1962
+ Returns the series that interpolates `func` at the Chebyshev points of
1963
+ the first kind scaled and shifted to the `domain`. The resulting series
1964
+ tends to a minmax approximation of `func` when the function is
1965
+ continuous in the domain.
1966
+
1967
+ Parameters
1968
+ ----------
1969
+ func : function
1970
+ The function to be interpolated. It must be a function of a single
1971
+ variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
1972
+ extra arguments passed in the `args` parameter.
1973
+ deg : int
1974
+ Degree of the interpolating polynomial.
1975
+ domain : {None, [beg, end]}, optional
1976
+ Domain over which `func` is interpolated. The default is None, in
1977
+ which case the domain is [-1, 1].
1978
+ args : tuple, optional
1979
+ Extra arguments to be used in the function call. Default is no
1980
+ extra arguments.
1981
+
1982
+ Returns
1983
+ -------
1984
+ polynomial : Chebyshev instance
1985
+ Interpolating Chebyshev instance.
1986
+
1987
+ Notes
1988
+ -----
1989
+ See `numpy.polynomial.chebinterpolate` for more details.
1990
+
1991
+ """
1992
+ if domain is None:
1993
+ domain = cls.domain
1994
+ xfunc = lambda x: func(pu.mapdomain(x, cls.window, domain), *args)
1995
+ coef = chebinterpolate(xfunc, deg)
1996
+ return cls(coef, domain=domain)
1997
+
1998
+ # Virtual properties
1999
+ domain = np.array(chebdomain)
2000
+ window = np.array(chebdomain)
2001
+ basis_name = 'T'