numpy 2.4.1__cp314-cp314t-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (932) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +955 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp314t-win_arm64.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp314t-win_arm64.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp314t-win_arm64.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp314t-win_arm64.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp314t-win_arm64.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp314t-win_arm64.pyd +0 -0
  35. numpy/_core/_rational_tests.cp314t-win_arm64.lib +0 -0
  36. numpy/_core/_rational_tests.cp314t-win_arm64.pyd +0 -0
  37. numpy/_core/_simd.cp314t-win_arm64.lib +0 -0
  38. numpy/_core/_simd.cp314t-win_arm64.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp314t-win_arm64.lib +0 -0
  49. numpy/_core/_umath_tests.cp314t-win_arm64.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1316 -0
  101. numpy/_core/numeric.py +2758 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +75 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +377 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4295 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp314t-win_arm64.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp314t-win_arm64.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4750 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp314t-win_arm64.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp314t-win_arm64.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp314t-win_arm64.lib +0 -0
  582. numpy/linalg/lapack_lite.cp314t-win_arm64.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3720 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp314t-win_arm64.lib +0 -0
  660. numpy/random/_bounded_integers.cp314t-win_arm64.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp314t-win_arm64.lib +0 -0
  664. numpy/random/_common.cp314t-win_arm64.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp314t-win_arm64.lib +0 -0
  675. numpy/random/_generator.cp314t-win_arm64.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp314t-win_arm64.lib +0 -0
  678. numpy/random/_mt19937.cp314t-win_arm64.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp314t-win_arm64.lib +0 -0
  681. numpy/random/_pcg64.cp314t-win_arm64.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp314t-win_arm64.lib +0 -0
  684. numpy/random/_philox.cp314t-win_arm64.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp314t-win_arm64.lib +0 -0
  689. numpy/random/_sfc64.cp314t-win_arm64.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp314t-win_arm64.lib +0 -0
  692. numpy/random/bit_generator.cp314t-win_arm64.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp314t-win_arm64.lib +0 -0
  698. numpy/random/mtrand.cp314t-win_arm64.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.1.dist-info/DELVEWHEEL +2 -0
  910. numpy-2.4.1.dist-info/METADATA +139 -0
  911. numpy-2.4.1.dist-info/RECORD +932 -0
  912. numpy-2.4.1.dist-info/WHEEL +4 -0
  913. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  914. numpy-2.4.1.dist-info/licenses/LICENSE.txt +914 -0
  915. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  916. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  917. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  918. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  919. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  920. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  921. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  922. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  923. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  924. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  925. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  926. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  927. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  928. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  929. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  930. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
  931. numpy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  932. numpy.libs/scipy_openblas-7b69cbfd2599e6035f1310f2a72d59a6.dll +0 -0
@@ -0,0 +1,1201 @@
1
+ """ Basic functions for manipulating 2d arrays
2
+
3
+ """
4
+ import functools
5
+ import operator
6
+
7
+ from numpy._core import iinfo, overrides
8
+ from numpy._core._multiarray_umath import _array_converter
9
+ from numpy._core.numeric import (
10
+ arange,
11
+ asanyarray,
12
+ asarray,
13
+ diagonal,
14
+ empty,
15
+ greater_equal,
16
+ indices,
17
+ int8,
18
+ int16,
19
+ int32,
20
+ int64,
21
+ intp,
22
+ multiply,
23
+ nonzero,
24
+ ones,
25
+ promote_types,
26
+ where,
27
+ zeros,
28
+ )
29
+ from numpy._core.overrides import finalize_array_function_like, set_module
30
+ from numpy.lib._stride_tricks_impl import broadcast_to
31
+
32
+ __all__ = [
33
+ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu',
34
+ 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices',
35
+ 'tril_indices_from', 'triu_indices', 'triu_indices_from', ]
36
+
37
+
38
+ array_function_dispatch = functools.partial(
39
+ overrides.array_function_dispatch, module='numpy')
40
+
41
+
42
+ i1 = iinfo(int8)
43
+ i2 = iinfo(int16)
44
+ i4 = iinfo(int32)
45
+
46
+
47
+ def _min_int(low, high):
48
+ """ get small int that fits the range """
49
+ if high <= i1.max and low >= i1.min:
50
+ return int8
51
+ if high <= i2.max and low >= i2.min:
52
+ return int16
53
+ if high <= i4.max and low >= i4.min:
54
+ return int32
55
+ return int64
56
+
57
+
58
+ def _flip_dispatcher(m):
59
+ return (m,)
60
+
61
+
62
+ @array_function_dispatch(_flip_dispatcher)
63
+ def fliplr(m):
64
+ """
65
+ Reverse the order of elements along axis 1 (left/right).
66
+
67
+ For a 2-D array, this flips the entries in each row in the left/right
68
+ direction. Columns are preserved, but appear in a different order than
69
+ before.
70
+
71
+ Parameters
72
+ ----------
73
+ m : array_like
74
+ Input array, must be at least 2-D.
75
+
76
+ Returns
77
+ -------
78
+ f : ndarray
79
+ A view of `m` with the columns reversed. Since a view
80
+ is returned, this operation is :math:`\\mathcal O(1)`.
81
+
82
+ See Also
83
+ --------
84
+ flipud : Flip array in the up/down direction.
85
+ flip : Flip array in one or more dimensions.
86
+ rot90 : Rotate array counterclockwise.
87
+
88
+ Notes
89
+ -----
90
+ Equivalent to ``m[:,::-1]`` or ``np.flip(m, axis=1)``.
91
+ Requires the array to be at least 2-D.
92
+
93
+ Examples
94
+ --------
95
+ >>> import numpy as np
96
+ >>> A = np.diag([1.,2.,3.])
97
+ >>> A
98
+ array([[1., 0., 0.],
99
+ [0., 2., 0.],
100
+ [0., 0., 3.]])
101
+ >>> np.fliplr(A)
102
+ array([[0., 0., 1.],
103
+ [0., 2., 0.],
104
+ [3., 0., 0.]])
105
+
106
+ >>> rng = np.random.default_rng()
107
+ >>> A = rng.normal(size=(2,3,5))
108
+ >>> np.all(np.fliplr(A) == A[:,::-1,...])
109
+ True
110
+
111
+ """
112
+ m = asanyarray(m)
113
+ if m.ndim < 2:
114
+ raise ValueError("Input must be >= 2-d.")
115
+ return m[:, ::-1]
116
+
117
+
118
+ @array_function_dispatch(_flip_dispatcher)
119
+ def flipud(m):
120
+ """
121
+ Reverse the order of elements along axis 0 (up/down).
122
+
123
+ For a 2-D array, this flips the entries in each column in the up/down
124
+ direction. Rows are preserved, but appear in a different order than before.
125
+
126
+ Parameters
127
+ ----------
128
+ m : array_like
129
+ Input array.
130
+
131
+ Returns
132
+ -------
133
+ out : array_like
134
+ A view of `m` with the rows reversed. Since a view is
135
+ returned, this operation is :math:`\\mathcal O(1)`.
136
+
137
+ See Also
138
+ --------
139
+ fliplr : Flip array in the left/right direction.
140
+ flip : Flip array in one or more dimensions.
141
+ rot90 : Rotate array counterclockwise.
142
+
143
+ Notes
144
+ -----
145
+ Equivalent to ``m[::-1, ...]`` or ``np.flip(m, axis=0)``.
146
+ Requires the array to be at least 1-D.
147
+
148
+ Examples
149
+ --------
150
+ >>> import numpy as np
151
+ >>> A = np.diag([1.0, 2, 3])
152
+ >>> A
153
+ array([[1., 0., 0.],
154
+ [0., 2., 0.],
155
+ [0., 0., 3.]])
156
+ >>> np.flipud(A)
157
+ array([[0., 0., 3.],
158
+ [0., 2., 0.],
159
+ [1., 0., 0.]])
160
+
161
+ >>> rng = np.random.default_rng()
162
+ >>> A = rng.normal(size=(2,3,5))
163
+ >>> np.all(np.flipud(A) == A[::-1,...])
164
+ True
165
+
166
+ >>> np.flipud([1,2])
167
+ array([2, 1])
168
+
169
+ """
170
+ m = asanyarray(m)
171
+ if m.ndim < 1:
172
+ raise ValueError("Input must be >= 1-d.")
173
+ return m[::-1, ...]
174
+
175
+
176
+ @finalize_array_function_like
177
+ @set_module('numpy')
178
+ def eye(N, M=None, k=0, dtype=float, order='C', *, device=None, like=None):
179
+ """
180
+ Return a 2-D array with ones on the diagonal and zeros elsewhere.
181
+
182
+ Parameters
183
+ ----------
184
+ N : int
185
+ Number of rows in the output.
186
+ M : int, optional
187
+ Number of columns in the output. If None, defaults to `N`.
188
+ k : int, optional
189
+ Index of the diagonal: 0 (the default) refers to the main diagonal,
190
+ a positive value refers to an upper diagonal, and a negative value
191
+ to a lower diagonal.
192
+ dtype : data-type, optional
193
+ Data-type of the returned array.
194
+ order : {'C', 'F'}, optional
195
+ Whether the output should be stored in row-major (C-style) or
196
+ column-major (Fortran-style) order in memory.
197
+ device : str, optional
198
+ The device on which to place the created array. Default: None.
199
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
200
+
201
+ .. versionadded:: 2.0.0
202
+ ${ARRAY_FUNCTION_LIKE}
203
+
204
+ .. versionadded:: 1.20.0
205
+
206
+ Returns
207
+ -------
208
+ I : ndarray of shape (N,M)
209
+ An array where all elements are equal to zero, except for the `k`-th
210
+ diagonal, whose values are equal to one.
211
+
212
+ See Also
213
+ --------
214
+ identity : (almost) equivalent function
215
+ diag : diagonal 2-D array from a 1-D array specified by the user.
216
+
217
+ Examples
218
+ --------
219
+ >>> import numpy as np
220
+ >>> np.eye(2, dtype=int)
221
+ array([[1, 0],
222
+ [0, 1]])
223
+ >>> np.eye(3, k=1)
224
+ array([[0., 1., 0.],
225
+ [0., 0., 1.],
226
+ [0., 0., 0.]])
227
+
228
+ """
229
+ if like is not None:
230
+ return _eye_with_like(
231
+ like, N, M=M, k=k, dtype=dtype, order=order, device=device
232
+ )
233
+ if M is None:
234
+ M = N
235
+ m = zeros((N, M), dtype=dtype, order=order, device=device)
236
+ if k >= M:
237
+ return m
238
+ # Ensure M and k are integers, so we don't get any surprise casting
239
+ # results in the expressions `M-k` and `M+1` used below. This avoids
240
+ # a problem with inputs with type (for example) np.uint64.
241
+ M = operator.index(M)
242
+ k = operator.index(k)
243
+ if k >= 0:
244
+ i = k
245
+ else:
246
+ i = (-k) * M
247
+ m[:M - k].flat[i::M + 1] = 1
248
+ return m
249
+
250
+
251
+ _eye_with_like = array_function_dispatch()(eye)
252
+
253
+
254
+ def _diag_dispatcher(v, k=None):
255
+ return (v,)
256
+
257
+
258
+ @array_function_dispatch(_diag_dispatcher)
259
+ def diag(v, k=0):
260
+ """
261
+ Extract a diagonal or construct a diagonal array.
262
+
263
+ See the more detailed documentation for ``numpy.diagonal`` if you use this
264
+ function to extract a diagonal and wish to write to the resulting array;
265
+ whether it returns a copy or a view depends on what version of numpy you
266
+ are using.
267
+
268
+ Parameters
269
+ ----------
270
+ v : array_like
271
+ If `v` is a 2-D array, return a copy of its `k`-th diagonal.
272
+ If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th
273
+ diagonal.
274
+ k : int, optional
275
+ Diagonal in question. The default is 0. Use `k>0` for diagonals
276
+ above the main diagonal, and `k<0` for diagonals below the main
277
+ diagonal.
278
+
279
+ Returns
280
+ -------
281
+ out : ndarray
282
+ The extracted diagonal or constructed diagonal array.
283
+
284
+ See Also
285
+ --------
286
+ diagonal : Return specified diagonals.
287
+ diagflat : Create a 2-D array with the flattened input as a diagonal.
288
+ trace : Sum along diagonals.
289
+ triu : Upper triangle of an array.
290
+ tril : Lower triangle of an array.
291
+
292
+ Examples
293
+ --------
294
+ >>> import numpy as np
295
+ >>> x = np.arange(9).reshape((3,3))
296
+ >>> x
297
+ array([[0, 1, 2],
298
+ [3, 4, 5],
299
+ [6, 7, 8]])
300
+
301
+ >>> np.diag(x)
302
+ array([0, 4, 8])
303
+ >>> np.diag(x, k=1)
304
+ array([1, 5])
305
+ >>> np.diag(x, k=-1)
306
+ array([3, 7])
307
+
308
+ >>> np.diag(np.diag(x))
309
+ array([[0, 0, 0],
310
+ [0, 4, 0],
311
+ [0, 0, 8]])
312
+
313
+ """
314
+ v = asanyarray(v)
315
+ s = v.shape
316
+ if len(s) == 1:
317
+ n = s[0] + abs(k)
318
+ res = zeros((n, n), v.dtype)
319
+ if k >= 0:
320
+ i = k
321
+ else:
322
+ i = (-k) * n
323
+ res[:n - k].flat[i::n + 1] = v
324
+ return res
325
+ elif len(s) == 2:
326
+ return diagonal(v, k)
327
+ else:
328
+ raise ValueError("Input must be 1- or 2-d.")
329
+
330
+
331
+ @array_function_dispatch(_diag_dispatcher)
332
+ def diagflat(v, k=0):
333
+ """
334
+ Create a two-dimensional array with the flattened input as a diagonal.
335
+
336
+ Parameters
337
+ ----------
338
+ v : array_like
339
+ Input data, which is flattened and set as the `k`-th
340
+ diagonal of the output.
341
+ k : int, optional
342
+ Diagonal to set; 0, the default, corresponds to the "main" diagonal,
343
+ a positive (negative) `k` giving the number of the diagonal above
344
+ (below) the main.
345
+
346
+ Returns
347
+ -------
348
+ out : ndarray
349
+ The 2-D output array.
350
+
351
+ See Also
352
+ --------
353
+ diag : MATLAB work-alike for 1-D and 2-D arrays.
354
+ diagonal : Return specified diagonals.
355
+ trace : Sum along diagonals.
356
+
357
+ Examples
358
+ --------
359
+ >>> import numpy as np
360
+ >>> np.diagflat([[1,2], [3,4]])
361
+ array([[1, 0, 0, 0],
362
+ [0, 2, 0, 0],
363
+ [0, 0, 3, 0],
364
+ [0, 0, 0, 4]])
365
+
366
+ >>> np.diagflat([1,2], 1)
367
+ array([[0, 1, 0],
368
+ [0, 0, 2],
369
+ [0, 0, 0]])
370
+
371
+ """
372
+ conv = _array_converter(v)
373
+ v, = conv.as_arrays(subok=False)
374
+ v = v.ravel()
375
+ s = len(v)
376
+ n = s + abs(k)
377
+ res = zeros((n, n), v.dtype)
378
+ if (k >= 0):
379
+ i = arange(0, n - k, dtype=intp)
380
+ fi = i + k + i * n
381
+ else:
382
+ i = arange(0, n + k, dtype=intp)
383
+ fi = i + (i - k) * n
384
+ res.flat[fi] = v
385
+
386
+ return conv.wrap(res)
387
+
388
+
389
+ @finalize_array_function_like
390
+ @set_module('numpy')
391
+ def tri(N, M=None, k=0, dtype=float, *, like=None):
392
+ """
393
+ An array with ones at and below the given diagonal and zeros elsewhere.
394
+
395
+ Parameters
396
+ ----------
397
+ N : int
398
+ Number of rows in the array.
399
+ M : int, optional
400
+ Number of columns in the array.
401
+ By default, `M` is taken equal to `N`.
402
+ k : int, optional
403
+ The sub-diagonal at and below which the array is filled.
404
+ `k` = 0 is the main diagonal, while `k` < 0 is below it,
405
+ and `k` > 0 is above. The default is 0.
406
+ dtype : dtype, optional
407
+ Data type of the returned array. The default is float.
408
+ ${ARRAY_FUNCTION_LIKE}
409
+
410
+ .. versionadded:: 1.20.0
411
+
412
+ Returns
413
+ -------
414
+ tri : ndarray of shape (N, M)
415
+ Array with its lower triangle filled with ones and zero elsewhere;
416
+ in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise.
417
+
418
+ Examples
419
+ --------
420
+ >>> import numpy as np
421
+ >>> np.tri(3, 5, 2, dtype=int)
422
+ array([[1, 1, 1, 0, 0],
423
+ [1, 1, 1, 1, 0],
424
+ [1, 1, 1, 1, 1]])
425
+
426
+ >>> np.tri(3, 5, -1)
427
+ array([[0., 0., 0., 0., 0.],
428
+ [1., 0., 0., 0., 0.],
429
+ [1., 1., 0., 0., 0.]])
430
+
431
+ """
432
+ if like is not None:
433
+ return _tri_with_like(like, N, M=M, k=k, dtype=dtype)
434
+
435
+ if M is None:
436
+ M = N
437
+
438
+ m = greater_equal.outer(arange(N, dtype=_min_int(0, N)),
439
+ arange(-k, M - k, dtype=_min_int(-k, M - k)))
440
+
441
+ # Avoid making a copy if the requested type is already bool
442
+ m = m.astype(dtype, copy=False)
443
+
444
+ return m
445
+
446
+
447
+ _tri_with_like = array_function_dispatch()(tri)
448
+
449
+
450
+ def _trilu_dispatcher(m, k=None):
451
+ return (m,)
452
+
453
+
454
+ @array_function_dispatch(_trilu_dispatcher)
455
+ def tril(m, k=0):
456
+ """
457
+ Lower triangle of an array.
458
+
459
+ Return a copy of an array with elements above the `k`-th diagonal zeroed.
460
+ For arrays with ``ndim`` exceeding 2, `tril` will apply to the final two
461
+ axes.
462
+
463
+ Parameters
464
+ ----------
465
+ m : array_like, shape (..., M, N)
466
+ Input array.
467
+ k : int, optional
468
+ Diagonal above which to zero elements. `k = 0` (the default) is the
469
+ main diagonal, `k < 0` is below it and `k > 0` is above.
470
+
471
+ Returns
472
+ -------
473
+ tril : ndarray, shape (..., M, N)
474
+ Lower triangle of `m`, of same shape and data-type as `m`.
475
+
476
+ See Also
477
+ --------
478
+ triu : same thing, only for the upper triangle
479
+
480
+ Examples
481
+ --------
482
+ >>> import numpy as np
483
+ >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
484
+ array([[ 0, 0, 0],
485
+ [ 4, 0, 0],
486
+ [ 7, 8, 0],
487
+ [10, 11, 12]])
488
+
489
+ >>> np.tril(np.arange(3*4*5).reshape(3, 4, 5))
490
+ array([[[ 0, 0, 0, 0, 0],
491
+ [ 5, 6, 0, 0, 0],
492
+ [10, 11, 12, 0, 0],
493
+ [15, 16, 17, 18, 0]],
494
+ [[20, 0, 0, 0, 0],
495
+ [25, 26, 0, 0, 0],
496
+ [30, 31, 32, 0, 0],
497
+ [35, 36, 37, 38, 0]],
498
+ [[40, 0, 0, 0, 0],
499
+ [45, 46, 0, 0, 0],
500
+ [50, 51, 52, 0, 0],
501
+ [55, 56, 57, 58, 0]]])
502
+
503
+ """
504
+ m = asanyarray(m)
505
+ mask = tri(*m.shape[-2:], k=k, dtype=bool)
506
+
507
+ return where(mask, m, zeros(1, m.dtype))
508
+
509
+
510
+ @array_function_dispatch(_trilu_dispatcher)
511
+ def triu(m, k=0):
512
+ """
513
+ Upper triangle of an array.
514
+
515
+ Return a copy of an array with the elements below the `k`-th diagonal
516
+ zeroed. For arrays with ``ndim`` exceeding 2, `triu` will apply to the
517
+ final two axes.
518
+
519
+ Please refer to the documentation for `tril` for further details.
520
+
521
+ See Also
522
+ --------
523
+ tril : lower triangle of an array
524
+
525
+ Examples
526
+ --------
527
+ >>> import numpy as np
528
+ >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
529
+ array([[ 1, 2, 3],
530
+ [ 4, 5, 6],
531
+ [ 0, 8, 9],
532
+ [ 0, 0, 12]])
533
+
534
+ >>> np.triu(np.arange(3*4*5).reshape(3, 4, 5))
535
+ array([[[ 0, 1, 2, 3, 4],
536
+ [ 0, 6, 7, 8, 9],
537
+ [ 0, 0, 12, 13, 14],
538
+ [ 0, 0, 0, 18, 19]],
539
+ [[20, 21, 22, 23, 24],
540
+ [ 0, 26, 27, 28, 29],
541
+ [ 0, 0, 32, 33, 34],
542
+ [ 0, 0, 0, 38, 39]],
543
+ [[40, 41, 42, 43, 44],
544
+ [ 0, 46, 47, 48, 49],
545
+ [ 0, 0, 52, 53, 54],
546
+ [ 0, 0, 0, 58, 59]]])
547
+
548
+ """
549
+ m = asanyarray(m)
550
+ mask = tri(*m.shape[-2:], k=k - 1, dtype=bool)
551
+
552
+ return where(mask, zeros(1, m.dtype), m)
553
+
554
+
555
+ def _vander_dispatcher(x, N=None, increasing=None):
556
+ return (x,)
557
+
558
+
559
+ # Originally borrowed from John Hunter and matplotlib
560
+ @array_function_dispatch(_vander_dispatcher)
561
+ def vander(x, N=None, increasing=False):
562
+ """
563
+ Generate a Vandermonde matrix.
564
+
565
+ The columns of the output matrix are powers of the input vector. The
566
+ order of the powers is determined by the `increasing` boolean argument.
567
+ Specifically, when `increasing` is False, the `i`-th output column is
568
+ the input vector raised element-wise to the power of ``N - i - 1``. Such
569
+ a matrix with a geometric progression in each row is named for Alexandre-
570
+ Theophile Vandermonde.
571
+
572
+ Parameters
573
+ ----------
574
+ x : array_like
575
+ 1-D input array.
576
+ N : int, optional
577
+ Number of columns in the output. If `N` is not specified, a square
578
+ array is returned (``N = len(x)``).
579
+ increasing : bool, optional
580
+ Order of the powers of the columns. If True, the powers increase
581
+ from left to right, if False (the default) they are reversed.
582
+
583
+ Returns
584
+ -------
585
+ out : ndarray
586
+ Vandermonde matrix. If `increasing` is False, the first column is
587
+ ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is
588
+ True, the columns are ``x^0, x^1, ..., x^(N-1)``.
589
+
590
+ See Also
591
+ --------
592
+ polynomial.polynomial.polyvander
593
+
594
+ Examples
595
+ --------
596
+ >>> import numpy as np
597
+ >>> x = np.array([1, 2, 3, 5])
598
+ >>> N = 3
599
+ >>> np.vander(x, N)
600
+ array([[ 1, 1, 1],
601
+ [ 4, 2, 1],
602
+ [ 9, 3, 1],
603
+ [25, 5, 1]])
604
+
605
+ >>> np.column_stack([x**(N-1-i) for i in range(N)])
606
+ array([[ 1, 1, 1],
607
+ [ 4, 2, 1],
608
+ [ 9, 3, 1],
609
+ [25, 5, 1]])
610
+
611
+ >>> x = np.array([1, 2, 3, 5])
612
+ >>> np.vander(x)
613
+ array([[ 1, 1, 1, 1],
614
+ [ 8, 4, 2, 1],
615
+ [ 27, 9, 3, 1],
616
+ [125, 25, 5, 1]])
617
+ >>> np.vander(x, increasing=True)
618
+ array([[ 1, 1, 1, 1],
619
+ [ 1, 2, 4, 8],
620
+ [ 1, 3, 9, 27],
621
+ [ 1, 5, 25, 125]])
622
+
623
+ The determinant of a square Vandermonde matrix is the product
624
+ of the differences between the values of the input vector:
625
+
626
+ >>> np.linalg.det(np.vander(x))
627
+ 48.000000000000043 # may vary
628
+ >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
629
+ 48
630
+
631
+ """
632
+ x = asarray(x)
633
+ if x.ndim != 1:
634
+ raise ValueError("x must be a one-dimensional array or sequence.")
635
+ if N is None:
636
+ N = len(x)
637
+
638
+ v = empty((len(x), N), dtype=promote_types(x.dtype, int))
639
+ tmp = v[:, ::-1] if not increasing else v
640
+
641
+ if N > 0:
642
+ tmp[:, 0] = 1
643
+ if N > 1:
644
+ tmp[:, 1:] = x[:, None]
645
+ multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1)
646
+
647
+ return v
648
+
649
+
650
+ def _histogram2d_dispatcher(x, y, bins=None, range=None, density=None,
651
+ weights=None):
652
+ yield x
653
+ yield y
654
+
655
+ # This terrible logic is adapted from the checks in histogram2d
656
+ try:
657
+ N = len(bins)
658
+ except TypeError:
659
+ N = 1
660
+ if N == 2:
661
+ yield from bins # bins=[x, y]
662
+ else:
663
+ yield bins
664
+
665
+ yield weights
666
+
667
+
668
+ @array_function_dispatch(_histogram2d_dispatcher)
669
+ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
670
+ """
671
+ Compute the bi-dimensional histogram of two data samples.
672
+
673
+ Parameters
674
+ ----------
675
+ x : array_like, shape (N,)
676
+ An array containing the x coordinates of the points to be
677
+ histogrammed.
678
+ y : array_like, shape (N,)
679
+ An array containing the y coordinates of the points to be
680
+ histogrammed.
681
+ bins : int or array_like or [int, int] or [array, array], optional
682
+ The bin specification:
683
+
684
+ * If int, the number of bins for the two dimensions (nx=ny=bins).
685
+ * If array_like, the bin edges for the two dimensions
686
+ (x_edges=y_edges=bins).
687
+ * If [int, int], the number of bins in each dimension
688
+ (nx, ny = bins).
689
+ * If [array, array], the bin edges in each dimension
690
+ (x_edges, y_edges = bins).
691
+ * A combination [int, array] or [array, int], where int
692
+ is the number of bins and array is the bin edges.
693
+
694
+ range : array_like, shape(2,2), optional
695
+ The leftmost and rightmost edges of the bins along each dimension
696
+ (if not specified explicitly in the `bins` parameters):
697
+ ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
698
+ will be considered outliers and not tallied in the histogram.
699
+ density : bool, optional
700
+ If False, the default, returns the number of samples in each bin.
701
+ If True, returns the probability *density* function at the bin,
702
+ ``bin_count / sample_count / bin_area``.
703
+ weights : array_like, shape(N,), optional
704
+ An array of values ``w_i`` weighing each sample ``(x_i, y_i)``.
705
+ Weights are normalized to 1 if `density` is True. If `density` is
706
+ False, the values of the returned histogram are equal to the sum of
707
+ the weights belonging to the samples falling into each bin.
708
+
709
+ Returns
710
+ -------
711
+ H : ndarray, shape(nx, ny)
712
+ The bi-dimensional histogram of samples `x` and `y`. Values in `x`
713
+ are histogrammed along the first dimension and values in `y` are
714
+ histogrammed along the second dimension.
715
+ xedges : ndarray, shape(nx+1,)
716
+ The bin edges along the first dimension.
717
+ yedges : ndarray, shape(ny+1,)
718
+ The bin edges along the second dimension.
719
+
720
+ See Also
721
+ --------
722
+ histogram : 1D histogram
723
+ histogramdd : Multidimensional histogram
724
+
725
+ Notes
726
+ -----
727
+ When `density` is True, then the returned histogram is the sample
728
+ density, defined such that the sum over bins of the product
729
+ ``bin_value * bin_area`` is 1.
730
+
731
+ Please note that the histogram does not follow the Cartesian convention
732
+ where `x` values are on the abscissa and `y` values on the ordinate
733
+ axis. Rather, `x` is histogrammed along the first dimension of the
734
+ array (vertical), and `y` along the second dimension of the array
735
+ (horizontal). This ensures compatibility with `histogramdd`.
736
+
737
+ Examples
738
+ --------
739
+ >>> import numpy as np
740
+ >>> from matplotlib.image import NonUniformImage
741
+ >>> import matplotlib.pyplot as plt
742
+
743
+ Construct a 2-D histogram with variable bin width. First define the bin
744
+ edges:
745
+
746
+ >>> xedges = [0, 1, 3, 5]
747
+ >>> yedges = [0, 2, 3, 4, 6]
748
+
749
+ Next we create a histogram H with random bin content:
750
+
751
+ >>> x = np.random.normal(2, 1, 100)
752
+ >>> y = np.random.normal(1, 1, 100)
753
+ >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges))
754
+ >>> # Histogram does not follow Cartesian convention (see Notes),
755
+ >>> # therefore transpose H for visualization purposes.
756
+ >>> H = H.T
757
+
758
+ :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins:
759
+
760
+ >>> fig = plt.figure(figsize=(7, 3))
761
+ >>> ax = fig.add_subplot(131, title='imshow: square bins')
762
+ >>> plt.imshow(H, interpolation='nearest', origin='lower',
763
+ ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
764
+ <matplotlib.image.AxesImage object at 0x...>
765
+
766
+ :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges:
767
+
768
+ >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges',
769
+ ... aspect='equal')
770
+ >>> X, Y = np.meshgrid(xedges, yedges)
771
+ >>> ax.pcolormesh(X, Y, H)
772
+ <matplotlib.collections.QuadMesh object at 0x...>
773
+
774
+ :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to
775
+ display actual bin edges with interpolation:
776
+
777
+ >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated',
778
+ ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]])
779
+ >>> im = NonUniformImage(ax, interpolation='bilinear')
780
+ >>> xcenters = (xedges[:-1] + xedges[1:]) / 2
781
+ >>> ycenters = (yedges[:-1] + yedges[1:]) / 2
782
+ >>> im.set_data(xcenters, ycenters, H)
783
+ >>> ax.add_image(im)
784
+ >>> plt.show()
785
+
786
+ It is also possible to construct a 2-D histogram without specifying bin
787
+ edges:
788
+
789
+ >>> # Generate non-symmetric test data
790
+ >>> n = 10000
791
+ >>> x = np.linspace(1, 100, n)
792
+ >>> y = 2*np.log(x) + np.random.rand(n) - 0.5
793
+ >>> # Compute 2d histogram. Note the order of x/y and xedges/yedges
794
+ >>> H, yedges, xedges = np.histogram2d(y, x, bins=20)
795
+
796
+ Now we can plot the histogram using
797
+ :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`, and a
798
+ :func:`hexbin <matplotlib.pyplot.hexbin>` for comparison.
799
+
800
+ >>> # Plot histogram using pcolormesh
801
+ >>> fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True)
802
+ >>> ax1.pcolormesh(xedges, yedges, H, cmap='rainbow')
803
+ >>> ax1.plot(x, 2*np.log(x), 'k-')
804
+ >>> ax1.set_xlim(x.min(), x.max())
805
+ >>> ax1.set_ylim(y.min(), y.max())
806
+ >>> ax1.set_xlabel('x')
807
+ >>> ax1.set_ylabel('y')
808
+ >>> ax1.set_title('histogram2d')
809
+ >>> ax1.grid()
810
+
811
+ >>> # Create hexbin plot for comparison
812
+ >>> ax2.hexbin(x, y, gridsize=20, cmap='rainbow')
813
+ >>> ax2.plot(x, 2*np.log(x), 'k-')
814
+ >>> ax2.set_title('hexbin')
815
+ >>> ax2.set_xlim(x.min(), x.max())
816
+ >>> ax2.set_xlabel('x')
817
+ >>> ax2.grid()
818
+
819
+ >>> plt.show()
820
+ """
821
+ from numpy import histogramdd
822
+
823
+ if len(x) != len(y):
824
+ raise ValueError('x and y must have the same length.')
825
+
826
+ try:
827
+ N = len(bins)
828
+ except TypeError:
829
+ N = 1
830
+
831
+ if N not in {1, 2}:
832
+ xedges = yedges = asarray(bins)
833
+ bins = [xedges, yedges]
834
+ hist, edges = histogramdd([x, y], bins, range, density, weights)
835
+ return hist, edges[0], edges[1]
836
+
837
+
838
+ @set_module('numpy')
839
+ def mask_indices(n, mask_func, k=0):
840
+ """
841
+ Return the indices to access (n, n) arrays, given a masking function.
842
+
843
+ Assume `mask_func` is a function that, for a square array a of size
844
+ ``(n, n)`` with a possible offset argument `k`, when called as
845
+ ``mask_func(a, k)`` returns a new array with zeros in certain locations
846
+ (functions like `triu` or `tril` do precisely this). Then this function
847
+ returns the indices where the non-zero values would be located.
848
+
849
+ Parameters
850
+ ----------
851
+ n : int
852
+ The returned indices will be valid to access arrays of shape (n, n).
853
+ mask_func : callable
854
+ A function whose call signature is similar to that of `triu`, `tril`.
855
+ That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`.
856
+ `k` is an optional argument to the function.
857
+ k : scalar
858
+ An optional argument which is passed through to `mask_func`. Functions
859
+ like `triu`, `tril` take a second argument that is interpreted as an
860
+ offset.
861
+
862
+ Returns
863
+ -------
864
+ indices : tuple of arrays.
865
+ The `n` arrays of indices corresponding to the locations where
866
+ ``mask_func(np.ones((n, n)), k)`` is True.
867
+
868
+ See Also
869
+ --------
870
+ triu, tril, triu_indices, tril_indices
871
+
872
+ Examples
873
+ --------
874
+ >>> import numpy as np
875
+
876
+ These are the indices that would allow you to access the upper triangular
877
+ part of any 3x3 array:
878
+
879
+ >>> iu = np.mask_indices(3, np.triu)
880
+
881
+ For example, if `a` is a 3x3 array:
882
+
883
+ >>> a = np.arange(9).reshape(3, 3)
884
+ >>> a
885
+ array([[0, 1, 2],
886
+ [3, 4, 5],
887
+ [6, 7, 8]])
888
+ >>> a[iu]
889
+ array([0, 1, 2, 4, 5, 8])
890
+
891
+ An offset can be passed also to the masking function. This gets us the
892
+ indices starting on the first diagonal right of the main one:
893
+
894
+ >>> iu1 = np.mask_indices(3, np.triu, 1)
895
+
896
+ with which we now extract only three elements:
897
+
898
+ >>> a[iu1]
899
+ array([1, 2, 5])
900
+
901
+ """
902
+ m = ones((n, n), int)
903
+ a = mask_func(m, k)
904
+ return nonzero(a != 0)
905
+
906
+
907
+ @set_module('numpy')
908
+ def tril_indices(n, k=0, m=None):
909
+ """
910
+ Return the indices for the lower-triangle of an (n, m) array.
911
+
912
+ Parameters
913
+ ----------
914
+ n : int
915
+ The row dimension of the arrays for which the returned
916
+ indices will be valid.
917
+ k : int, optional
918
+ Diagonal offset (see `tril` for details).
919
+ m : int, optional
920
+ The column dimension of the arrays for which the returned
921
+ arrays will be valid.
922
+ By default `m` is taken equal to `n`.
923
+
924
+
925
+ Returns
926
+ -------
927
+ inds : tuple of arrays
928
+ The row and column indices, respectively. The row indices are sorted
929
+ in non-decreasing order, and the corresponding column indices are
930
+ strictly increasing for each row.
931
+
932
+ See also
933
+ --------
934
+ triu_indices : similar function, for upper-triangular.
935
+ mask_indices : generic function accepting an arbitrary mask function.
936
+ tril, triu
937
+
938
+ Examples
939
+ --------
940
+ >>> import numpy as np
941
+
942
+ Compute two different sets of indices to access 4x4 arrays, one for the
943
+ lower triangular part starting at the main diagonal, and one starting two
944
+ diagonals further right:
945
+
946
+ >>> il1 = np.tril_indices(4)
947
+ >>> il1
948
+ (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))
949
+
950
+ Note that row indices (first array) are non-decreasing, and the corresponding
951
+ column indices (second array) are strictly increasing for each row.
952
+ Here is how they can be used with a sample array:
953
+
954
+ >>> a = np.arange(16).reshape(4, 4)
955
+ >>> a
956
+ array([[ 0, 1, 2, 3],
957
+ [ 4, 5, 6, 7],
958
+ [ 8, 9, 10, 11],
959
+ [12, 13, 14, 15]])
960
+
961
+ Both for indexing:
962
+
963
+ >>> a[il1]
964
+ array([ 0, 4, 5, ..., 13, 14, 15])
965
+
966
+ And for assigning values:
967
+
968
+ >>> a[il1] = -1
969
+ >>> a
970
+ array([[-1, 1, 2, 3],
971
+ [-1, -1, 6, 7],
972
+ [-1, -1, -1, 11],
973
+ [-1, -1, -1, -1]])
974
+
975
+ These cover almost the whole array (two diagonals right of the main one):
976
+
977
+ >>> il2 = np.tril_indices(4, 2)
978
+ >>> a[il2] = -10
979
+ >>> a
980
+ array([[-10, -10, -10, 3],
981
+ [-10, -10, -10, -10],
982
+ [-10, -10, -10, -10],
983
+ [-10, -10, -10, -10]])
984
+
985
+ """
986
+ tri_ = tri(n, m, k=k, dtype=bool)
987
+
988
+ return tuple(broadcast_to(inds, tri_.shape)[tri_]
989
+ for inds in indices(tri_.shape, sparse=True))
990
+
991
+
992
+ def _trilu_indices_form_dispatcher(arr, k=None):
993
+ return (arr,)
994
+
995
+
996
+ @array_function_dispatch(_trilu_indices_form_dispatcher)
997
+ def tril_indices_from(arr, k=0):
998
+ """
999
+ Return the indices for the lower-triangle of arr.
1000
+
1001
+ See `tril_indices` for full details.
1002
+
1003
+ Parameters
1004
+ ----------
1005
+ arr : array_like
1006
+ The indices will be valid for square arrays whose dimensions are
1007
+ the same as arr.
1008
+ k : int, optional
1009
+ Diagonal offset (see `tril` for details).
1010
+
1011
+ Examples
1012
+ --------
1013
+ >>> import numpy as np
1014
+
1015
+ Create a 4 by 4 array
1016
+
1017
+ >>> a = np.arange(16).reshape(4, 4)
1018
+ >>> a
1019
+ array([[ 0, 1, 2, 3],
1020
+ [ 4, 5, 6, 7],
1021
+ [ 8, 9, 10, 11],
1022
+ [12, 13, 14, 15]])
1023
+
1024
+ Pass the array to get the indices of the lower triangular elements.
1025
+
1026
+ >>> trili = np.tril_indices_from(a)
1027
+ >>> trili
1028
+ (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))
1029
+
1030
+ >>> a[trili]
1031
+ array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15])
1032
+
1033
+ This is syntactic sugar for tril_indices().
1034
+
1035
+ >>> np.tril_indices(a.shape[0])
1036
+ (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))
1037
+
1038
+ Use the `k` parameter to return the indices for the lower triangular array
1039
+ up to the k-th diagonal.
1040
+
1041
+ >>> trili1 = np.tril_indices_from(a, k=1)
1042
+ >>> a[trili1]
1043
+ array([ 0, 1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15])
1044
+
1045
+ See Also
1046
+ --------
1047
+ tril_indices, tril, triu_indices_from
1048
+ """
1049
+ if arr.ndim != 2:
1050
+ raise ValueError("input array must be 2-d")
1051
+ return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1])
1052
+
1053
+
1054
+ @set_module('numpy')
1055
+ def triu_indices(n, k=0, m=None):
1056
+ """
1057
+ Return the indices for the upper-triangle of an (n, m) array.
1058
+
1059
+ Parameters
1060
+ ----------
1061
+ n : int
1062
+ The size of the arrays for which the returned indices will
1063
+ be valid.
1064
+ k : int, optional
1065
+ Diagonal offset (see `triu` for details).
1066
+ m : int, optional
1067
+ The column dimension of the arrays for which the returned
1068
+ arrays will be valid.
1069
+ By default `m` is taken equal to `n`.
1070
+
1071
+
1072
+ Returns
1073
+ -------
1074
+ inds : tuple, shape(2) of ndarrays, shape(`n`)
1075
+ The row and column indices, respectively. The row indices are sorted
1076
+ in non-decreasing order, and the corresponding column indices are
1077
+ strictly increasing for each row.
1078
+
1079
+ See also
1080
+ --------
1081
+ tril_indices : similar function, for lower-triangular.
1082
+ mask_indices : generic function accepting an arbitrary mask function.
1083
+ triu, tril
1084
+
1085
+ Examples
1086
+ --------
1087
+ >>> import numpy as np
1088
+
1089
+ Compute two different sets of indices to access 4x4 arrays, one for the
1090
+ upper triangular part starting at the main diagonal, and one starting two
1091
+ diagonals further right:
1092
+
1093
+ >>> iu1 = np.triu_indices(4)
1094
+ >>> iu1
1095
+ (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))
1096
+
1097
+ Note that row indices (first array) are non-decreasing, and the corresponding
1098
+ column indices (second array) are strictly increasing for each row.
1099
+
1100
+ Here is how they can be used with a sample array:
1101
+
1102
+ >>> a = np.arange(16).reshape(4, 4)
1103
+ >>> a
1104
+ array([[ 0, 1, 2, 3],
1105
+ [ 4, 5, 6, 7],
1106
+ [ 8, 9, 10, 11],
1107
+ [12, 13, 14, 15]])
1108
+
1109
+ Both for indexing:
1110
+
1111
+ >>> a[iu1]
1112
+ array([ 0, 1, 2, ..., 10, 11, 15])
1113
+
1114
+ And for assigning values:
1115
+
1116
+ >>> a[iu1] = -1
1117
+ >>> a
1118
+ array([[-1, -1, -1, -1],
1119
+ [ 4, -1, -1, -1],
1120
+ [ 8, 9, -1, -1],
1121
+ [12, 13, 14, -1]])
1122
+
1123
+ These cover only a small part of the whole array (two diagonals right
1124
+ of the main one):
1125
+
1126
+ >>> iu2 = np.triu_indices(4, 2)
1127
+ >>> a[iu2] = -10
1128
+ >>> a
1129
+ array([[ -1, -1, -10, -10],
1130
+ [ 4, -1, -1, -10],
1131
+ [ 8, 9, -1, -1],
1132
+ [ 12, 13, 14, -1]])
1133
+
1134
+ """
1135
+ tri_ = ~tri(n, m, k=k - 1, dtype=bool)
1136
+
1137
+ return tuple(broadcast_to(inds, tri_.shape)[tri_]
1138
+ for inds in indices(tri_.shape, sparse=True))
1139
+
1140
+
1141
+ @array_function_dispatch(_trilu_indices_form_dispatcher)
1142
+ def triu_indices_from(arr, k=0):
1143
+ """
1144
+ Return the indices for the upper-triangle of arr.
1145
+
1146
+ See `triu_indices` for full details.
1147
+
1148
+ Parameters
1149
+ ----------
1150
+ arr : ndarray, shape(N, N)
1151
+ The indices will be valid for square arrays.
1152
+ k : int, optional
1153
+ Diagonal offset (see `triu` for details).
1154
+
1155
+ Returns
1156
+ -------
1157
+ triu_indices_from : tuple, shape(2) of ndarray, shape(N)
1158
+ Indices for the upper-triangle of `arr`.
1159
+
1160
+ Examples
1161
+ --------
1162
+ >>> import numpy as np
1163
+
1164
+ Create a 4 by 4 array
1165
+
1166
+ >>> a = np.arange(16).reshape(4, 4)
1167
+ >>> a
1168
+ array([[ 0, 1, 2, 3],
1169
+ [ 4, 5, 6, 7],
1170
+ [ 8, 9, 10, 11],
1171
+ [12, 13, 14, 15]])
1172
+
1173
+ Pass the array to get the indices of the upper triangular elements.
1174
+
1175
+ >>> triui = np.triu_indices_from(a)
1176
+ >>> triui
1177
+ (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))
1178
+
1179
+ >>> a[triui]
1180
+ array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15])
1181
+
1182
+ This is syntactic sugar for triu_indices().
1183
+
1184
+ >>> np.triu_indices(a.shape[0])
1185
+ (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))
1186
+
1187
+ Use the `k` parameter to return the indices for the upper triangular array
1188
+ from the k-th diagonal.
1189
+
1190
+ >>> triuim1 = np.triu_indices_from(a, k=1)
1191
+ >>> a[triuim1]
1192
+ array([ 1, 2, 3, 6, 7, 11])
1193
+
1194
+
1195
+ See Also
1196
+ --------
1197
+ triu_indices, triu, tril_indices_from
1198
+ """
1199
+ if arr.ndim != 2:
1200
+ raise ValueError("input array must be 2-d")
1201
+ return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])