numpy 2.4.1__cp314-cp314t-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- numpy/__config__.py +170 -0
- numpy/__config__.pyi +108 -0
- numpy/__init__.cython-30.pxd +1242 -0
- numpy/__init__.pxd +1155 -0
- numpy/__init__.py +955 -0
- numpy/__init__.pyi +6202 -0
- numpy/_array_api_info.py +346 -0
- numpy/_array_api_info.pyi +206 -0
- numpy/_configtool.py +39 -0
- numpy/_configtool.pyi +1 -0
- numpy/_core/__init__.py +201 -0
- numpy/_core/__init__.pyi +666 -0
- numpy/_core/_add_newdocs.py +7151 -0
- numpy/_core/_add_newdocs.pyi +2 -0
- numpy/_core/_add_newdocs_scalars.py +381 -0
- numpy/_core/_add_newdocs_scalars.pyi +16 -0
- numpy/_core/_asarray.py +130 -0
- numpy/_core/_asarray.pyi +43 -0
- numpy/_core/_dtype.py +366 -0
- numpy/_core/_dtype.pyi +56 -0
- numpy/_core/_dtype_ctypes.py +120 -0
- numpy/_core/_dtype_ctypes.pyi +83 -0
- numpy/_core/_exceptions.py +162 -0
- numpy/_core/_exceptions.pyi +54 -0
- numpy/_core/_internal.py +968 -0
- numpy/_core/_internal.pyi +61 -0
- numpy/_core/_methods.py +252 -0
- numpy/_core/_methods.pyi +22 -0
- numpy/_core/_multiarray_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_multiarray_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_multiarray_umath.cp314t-win_arm64.lib +0 -0
- numpy/_core/_multiarray_umath.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_operand_flag_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_operand_flag_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_rational_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_rational_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_simd.cp314t-win_arm64.lib +0 -0
- numpy/_core/_simd.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_simd.pyi +35 -0
- numpy/_core/_string_helpers.py +100 -0
- numpy/_core/_string_helpers.pyi +12 -0
- numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_type_aliases.py +131 -0
- numpy/_core/_type_aliases.pyi +86 -0
- numpy/_core/_ufunc_config.py +515 -0
- numpy/_core/_ufunc_config.pyi +69 -0
- numpy/_core/_umath_tests.cp314t-win_arm64.lib +0 -0
- numpy/_core/_umath_tests.cp314t-win_arm64.pyd +0 -0
- numpy/_core/_umath_tests.pyi +47 -0
- numpy/_core/arrayprint.py +1779 -0
- numpy/_core/arrayprint.pyi +158 -0
- numpy/_core/cversions.py +13 -0
- numpy/_core/defchararray.py +1414 -0
- numpy/_core/defchararray.pyi +1150 -0
- numpy/_core/einsumfunc.py +1650 -0
- numpy/_core/einsumfunc.pyi +184 -0
- numpy/_core/fromnumeric.py +4233 -0
- numpy/_core/fromnumeric.pyi +1735 -0
- numpy/_core/function_base.py +547 -0
- numpy/_core/function_base.pyi +276 -0
- numpy/_core/getlimits.py +462 -0
- numpy/_core/getlimits.pyi +124 -0
- numpy/_core/include/numpy/__multiarray_api.c +376 -0
- numpy/_core/include/numpy/__multiarray_api.h +1628 -0
- numpy/_core/include/numpy/__ufunc_api.c +55 -0
- numpy/_core/include/numpy/__ufunc_api.h +349 -0
- numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
- numpy/_core/include/numpy/_numpyconfig.h +33 -0
- numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
- numpy/_core/include/numpy/arrayobject.h +7 -0
- numpy/_core/include/numpy/arrayscalars.h +198 -0
- numpy/_core/include/numpy/dtype_api.h +547 -0
- numpy/_core/include/numpy/halffloat.h +70 -0
- numpy/_core/include/numpy/ndarrayobject.h +304 -0
- numpy/_core/include/numpy/ndarraytypes.h +1982 -0
- numpy/_core/include/numpy/npy_2_compat.h +249 -0
- numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
- numpy/_core/include/numpy/npy_3kcompat.h +374 -0
- numpy/_core/include/numpy/npy_common.h +989 -0
- numpy/_core/include/numpy/npy_cpu.h +126 -0
- numpy/_core/include/numpy/npy_endian.h +79 -0
- numpy/_core/include/numpy/npy_math.h +602 -0
- numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
- numpy/_core/include/numpy/npy_os.h +42 -0
- numpy/_core/include/numpy/numpyconfig.h +185 -0
- numpy/_core/include/numpy/random/LICENSE.txt +21 -0
- numpy/_core/include/numpy/random/bitgen.h +20 -0
- numpy/_core/include/numpy/random/distributions.h +209 -0
- numpy/_core/include/numpy/random/libdivide.h +2079 -0
- numpy/_core/include/numpy/ufuncobject.h +343 -0
- numpy/_core/include/numpy/utils.h +37 -0
- numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
- numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
- numpy/_core/lib/npymath.lib +0 -0
- numpy/_core/lib/pkgconfig/numpy.pc +7 -0
- numpy/_core/memmap.py +363 -0
- numpy/_core/memmap.pyi +3 -0
- numpy/_core/multiarray.py +1740 -0
- numpy/_core/multiarray.pyi +1316 -0
- numpy/_core/numeric.py +2758 -0
- numpy/_core/numeric.pyi +1276 -0
- numpy/_core/numerictypes.py +633 -0
- numpy/_core/numerictypes.pyi +196 -0
- numpy/_core/overrides.py +188 -0
- numpy/_core/overrides.pyi +47 -0
- numpy/_core/printoptions.py +32 -0
- numpy/_core/printoptions.pyi +28 -0
- numpy/_core/records.py +1088 -0
- numpy/_core/records.pyi +340 -0
- numpy/_core/shape_base.py +996 -0
- numpy/_core/shape_base.pyi +182 -0
- numpy/_core/strings.py +1813 -0
- numpy/_core/strings.pyi +536 -0
- numpy/_core/tests/_locales.py +72 -0
- numpy/_core/tests/_natype.py +144 -0
- numpy/_core/tests/data/astype_copy.pkl +0 -0
- numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
- numpy/_core/tests/data/recarray_from_file.fits +0 -0
- numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
- numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
- numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
- numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
- numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
- numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
- numpy/_core/tests/examples/cython/checks.pyx +373 -0
- numpy/_core/tests/examples/cython/meson.build +43 -0
- numpy/_core/tests/examples/cython/setup.py +39 -0
- numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
- numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
- numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
- numpy/_core/tests/examples/limited_api/meson.build +59 -0
- numpy/_core/tests/examples/limited_api/setup.py +24 -0
- numpy/_core/tests/test__exceptions.py +90 -0
- numpy/_core/tests/test_abc.py +54 -0
- numpy/_core/tests/test_api.py +655 -0
- numpy/_core/tests/test_argparse.py +90 -0
- numpy/_core/tests/test_array_api_info.py +113 -0
- numpy/_core/tests/test_array_coercion.py +928 -0
- numpy/_core/tests/test_array_interface.py +222 -0
- numpy/_core/tests/test_arraymethod.py +84 -0
- numpy/_core/tests/test_arrayobject.py +75 -0
- numpy/_core/tests/test_arrayprint.py +1324 -0
- numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
- numpy/_core/tests/test_casting_unittests.py +955 -0
- numpy/_core/tests/test_conversion_utils.py +209 -0
- numpy/_core/tests/test_cpu_dispatcher.py +48 -0
- numpy/_core/tests/test_cpu_features.py +450 -0
- numpy/_core/tests/test_custom_dtypes.py +393 -0
- numpy/_core/tests/test_cython.py +352 -0
- numpy/_core/tests/test_datetime.py +2792 -0
- numpy/_core/tests/test_defchararray.py +858 -0
- numpy/_core/tests/test_deprecations.py +460 -0
- numpy/_core/tests/test_dlpack.py +190 -0
- numpy/_core/tests/test_dtype.py +2110 -0
- numpy/_core/tests/test_einsum.py +1351 -0
- numpy/_core/tests/test_errstate.py +131 -0
- numpy/_core/tests/test_extint128.py +217 -0
- numpy/_core/tests/test_finfo.py +86 -0
- numpy/_core/tests/test_function_base.py +504 -0
- numpy/_core/tests/test_getlimits.py +171 -0
- numpy/_core/tests/test_half.py +593 -0
- numpy/_core/tests/test_hashtable.py +36 -0
- numpy/_core/tests/test_indexerrors.py +122 -0
- numpy/_core/tests/test_indexing.py +1692 -0
- numpy/_core/tests/test_item_selection.py +167 -0
- numpy/_core/tests/test_limited_api.py +102 -0
- numpy/_core/tests/test_longdouble.py +370 -0
- numpy/_core/tests/test_mem_overlap.py +933 -0
- numpy/_core/tests/test_mem_policy.py +453 -0
- numpy/_core/tests/test_memmap.py +248 -0
- numpy/_core/tests/test_multiarray.py +11008 -0
- numpy/_core/tests/test_multiprocessing.py +55 -0
- numpy/_core/tests/test_multithreading.py +377 -0
- numpy/_core/tests/test_nditer.py +3533 -0
- numpy/_core/tests/test_nep50_promotions.py +287 -0
- numpy/_core/tests/test_numeric.py +4295 -0
- numpy/_core/tests/test_numerictypes.py +650 -0
- numpy/_core/tests/test_overrides.py +800 -0
- numpy/_core/tests/test_print.py +202 -0
- numpy/_core/tests/test_protocols.py +46 -0
- numpy/_core/tests/test_records.py +544 -0
- numpy/_core/tests/test_regression.py +2677 -0
- numpy/_core/tests/test_scalar_ctors.py +203 -0
- numpy/_core/tests/test_scalar_methods.py +328 -0
- numpy/_core/tests/test_scalarbuffer.py +153 -0
- numpy/_core/tests/test_scalarinherit.py +105 -0
- numpy/_core/tests/test_scalarmath.py +1168 -0
- numpy/_core/tests/test_scalarprint.py +403 -0
- numpy/_core/tests/test_shape_base.py +904 -0
- numpy/_core/tests/test_simd.py +1345 -0
- numpy/_core/tests/test_simd_module.py +105 -0
- numpy/_core/tests/test_stringdtype.py +1855 -0
- numpy/_core/tests/test_strings.py +1523 -0
- numpy/_core/tests/test_ufunc.py +3405 -0
- numpy/_core/tests/test_umath.py +4962 -0
- numpy/_core/tests/test_umath_accuracy.py +132 -0
- numpy/_core/tests/test_umath_complex.py +631 -0
- numpy/_core/tests/test_unicode.py +369 -0
- numpy/_core/umath.py +60 -0
- numpy/_core/umath.pyi +232 -0
- numpy/_distributor_init.py +15 -0
- numpy/_distributor_init.pyi +1 -0
- numpy/_expired_attrs_2_0.py +78 -0
- numpy/_expired_attrs_2_0.pyi +61 -0
- numpy/_globals.py +121 -0
- numpy/_globals.pyi +17 -0
- numpy/_pyinstaller/__init__.py +0 -0
- numpy/_pyinstaller/__init__.pyi +0 -0
- numpy/_pyinstaller/hook-numpy.py +36 -0
- numpy/_pyinstaller/hook-numpy.pyi +6 -0
- numpy/_pyinstaller/tests/__init__.py +16 -0
- numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
- numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
- numpy/_pytesttester.py +201 -0
- numpy/_pytesttester.pyi +18 -0
- numpy/_typing/__init__.py +173 -0
- numpy/_typing/_add_docstring.py +153 -0
- numpy/_typing/_array_like.py +106 -0
- numpy/_typing/_char_codes.py +213 -0
- numpy/_typing/_dtype_like.py +114 -0
- numpy/_typing/_extended_precision.py +15 -0
- numpy/_typing/_nbit.py +19 -0
- numpy/_typing/_nbit_base.py +94 -0
- numpy/_typing/_nbit_base.pyi +39 -0
- numpy/_typing/_nested_sequence.py +79 -0
- numpy/_typing/_scalars.py +20 -0
- numpy/_typing/_shape.py +8 -0
- numpy/_typing/_ufunc.py +7 -0
- numpy/_typing/_ufunc.pyi +975 -0
- numpy/_utils/__init__.py +95 -0
- numpy/_utils/__init__.pyi +28 -0
- numpy/_utils/_convertions.py +18 -0
- numpy/_utils/_convertions.pyi +4 -0
- numpy/_utils/_inspect.py +192 -0
- numpy/_utils/_inspect.pyi +70 -0
- numpy/_utils/_pep440.py +486 -0
- numpy/_utils/_pep440.pyi +118 -0
- numpy/char/__init__.py +2 -0
- numpy/char/__init__.pyi +111 -0
- numpy/conftest.py +248 -0
- numpy/core/__init__.py +33 -0
- numpy/core/__init__.pyi +0 -0
- numpy/core/_dtype.py +10 -0
- numpy/core/_dtype.pyi +0 -0
- numpy/core/_dtype_ctypes.py +10 -0
- numpy/core/_dtype_ctypes.pyi +0 -0
- numpy/core/_internal.py +27 -0
- numpy/core/_multiarray_umath.py +57 -0
- numpy/core/_utils.py +21 -0
- numpy/core/arrayprint.py +10 -0
- numpy/core/defchararray.py +10 -0
- numpy/core/einsumfunc.py +10 -0
- numpy/core/fromnumeric.py +10 -0
- numpy/core/function_base.py +10 -0
- numpy/core/getlimits.py +10 -0
- numpy/core/multiarray.py +25 -0
- numpy/core/numeric.py +12 -0
- numpy/core/numerictypes.py +10 -0
- numpy/core/overrides.py +10 -0
- numpy/core/overrides.pyi +7 -0
- numpy/core/records.py +10 -0
- numpy/core/shape_base.py +10 -0
- numpy/core/umath.py +10 -0
- numpy/ctypeslib/__init__.py +13 -0
- numpy/ctypeslib/__init__.pyi +15 -0
- numpy/ctypeslib/_ctypeslib.py +603 -0
- numpy/ctypeslib/_ctypeslib.pyi +236 -0
- numpy/doc/ufuncs.py +138 -0
- numpy/dtypes.py +41 -0
- numpy/dtypes.pyi +630 -0
- numpy/exceptions.py +246 -0
- numpy/exceptions.pyi +27 -0
- numpy/f2py/__init__.py +86 -0
- numpy/f2py/__init__.pyi +5 -0
- numpy/f2py/__main__.py +5 -0
- numpy/f2py/__version__.py +1 -0
- numpy/f2py/__version__.pyi +1 -0
- numpy/f2py/_backends/__init__.py +9 -0
- numpy/f2py/_backends/__init__.pyi +5 -0
- numpy/f2py/_backends/_backend.py +44 -0
- numpy/f2py/_backends/_backend.pyi +46 -0
- numpy/f2py/_backends/_distutils.py +76 -0
- numpy/f2py/_backends/_distutils.pyi +13 -0
- numpy/f2py/_backends/_meson.py +244 -0
- numpy/f2py/_backends/_meson.pyi +62 -0
- numpy/f2py/_backends/meson.build.template +58 -0
- numpy/f2py/_isocbind.py +62 -0
- numpy/f2py/_isocbind.pyi +13 -0
- numpy/f2py/_src_pyf.py +247 -0
- numpy/f2py/_src_pyf.pyi +28 -0
- numpy/f2py/auxfuncs.py +1004 -0
- numpy/f2py/auxfuncs.pyi +262 -0
- numpy/f2py/capi_maps.py +811 -0
- numpy/f2py/capi_maps.pyi +33 -0
- numpy/f2py/cb_rules.py +665 -0
- numpy/f2py/cb_rules.pyi +17 -0
- numpy/f2py/cfuncs.py +1563 -0
- numpy/f2py/cfuncs.pyi +31 -0
- numpy/f2py/common_rules.py +143 -0
- numpy/f2py/common_rules.pyi +9 -0
- numpy/f2py/crackfortran.py +3725 -0
- numpy/f2py/crackfortran.pyi +266 -0
- numpy/f2py/diagnose.py +149 -0
- numpy/f2py/diagnose.pyi +1 -0
- numpy/f2py/f2py2e.py +788 -0
- numpy/f2py/f2py2e.pyi +74 -0
- numpy/f2py/f90mod_rules.py +269 -0
- numpy/f2py/f90mod_rules.pyi +16 -0
- numpy/f2py/func2subr.py +329 -0
- numpy/f2py/func2subr.pyi +7 -0
- numpy/f2py/rules.py +1629 -0
- numpy/f2py/rules.pyi +41 -0
- numpy/f2py/setup.cfg +3 -0
- numpy/f2py/src/fortranobject.c +1436 -0
- numpy/f2py/src/fortranobject.h +173 -0
- numpy/f2py/symbolic.py +1518 -0
- numpy/f2py/symbolic.pyi +219 -0
- numpy/f2py/tests/__init__.py +16 -0
- numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
- numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
- numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
- numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
- numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
- numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
- numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
- numpy/f2py/tests/src/block_docstring/foo.f +6 -0
- numpy/f2py/tests/src/callback/foo.f +62 -0
- numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
- numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
- numpy/f2py/tests/src/callback/gh25211.f +10 -0
- numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
- numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
- numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
- numpy/f2py/tests/src/cli/hi77.f +3 -0
- numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
- numpy/f2py/tests/src/common/block.f +11 -0
- numpy/f2py/tests/src/common/gh19161.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
- numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
- numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
- numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
- numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
- numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
- numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
- numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
- numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
- numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
- numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
- numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
- numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
- numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
- numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
- numpy/f2py/tests/src/kind/foo.f90 +20 -0
- numpy/f2py/tests/src/mixed/foo.f +5 -0
- numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
- numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
- numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
- numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
- numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
- numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
- numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
- numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
- numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
- numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
- numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
- numpy/f2py/tests/src/quoted_character/foo.f +14 -0
- numpy/f2py/tests/src/regression/AB.inc +1 -0
- numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
- numpy/f2py/tests/src/regression/datonly.f90 +17 -0
- numpy/f2py/tests/src/regression/f77comments.f +26 -0
- numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
- numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
- numpy/f2py/tests/src/regression/incfile.f90 +5 -0
- numpy/f2py/tests/src/regression/inout.f90 +9 -0
- numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
- numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
- numpy/f2py/tests/src/return_character/foo77.f +45 -0
- numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_complex/foo77.f +45 -0
- numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_integer/foo77.f +56 -0
- numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_logical/foo77.f +56 -0
- numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_real/foo77.f +45 -0
- numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
- numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
- numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
- numpy/f2py/tests/src/routines/subrout.f +4 -0
- numpy/f2py/tests/src/routines/subrout.pyf +10 -0
- numpy/f2py/tests/src/size/foo.f90 +44 -0
- numpy/f2py/tests/src/string/char.f90 +29 -0
- numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
- numpy/f2py/tests/src/string/gh24008.f +8 -0
- numpy/f2py/tests/src/string/gh24662.f90 +7 -0
- numpy/f2py/tests/src/string/gh25286.f90 +14 -0
- numpy/f2py/tests/src/string/gh25286.pyf +12 -0
- numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
- numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
- numpy/f2py/tests/src/string/string.f +12 -0
- numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
- numpy/f2py/tests/test_abstract_interface.py +26 -0
- numpy/f2py/tests/test_array_from_pyobj.py +678 -0
- numpy/f2py/tests/test_assumed_shape.py +50 -0
- numpy/f2py/tests/test_block_docstring.py +20 -0
- numpy/f2py/tests/test_callback.py +263 -0
- numpy/f2py/tests/test_character.py +641 -0
- numpy/f2py/tests/test_common.py +23 -0
- numpy/f2py/tests/test_crackfortran.py +421 -0
- numpy/f2py/tests/test_data.py +71 -0
- numpy/f2py/tests/test_docs.py +66 -0
- numpy/f2py/tests/test_f2cmap.py +17 -0
- numpy/f2py/tests/test_f2py2e.py +983 -0
- numpy/f2py/tests/test_isoc.py +56 -0
- numpy/f2py/tests/test_kind.py +52 -0
- numpy/f2py/tests/test_mixed.py +35 -0
- numpy/f2py/tests/test_modules.py +83 -0
- numpy/f2py/tests/test_parameter.py +129 -0
- numpy/f2py/tests/test_pyf_src.py +43 -0
- numpy/f2py/tests/test_quoted_character.py +18 -0
- numpy/f2py/tests/test_regression.py +187 -0
- numpy/f2py/tests/test_return_character.py +48 -0
- numpy/f2py/tests/test_return_complex.py +67 -0
- numpy/f2py/tests/test_return_integer.py +55 -0
- numpy/f2py/tests/test_return_logical.py +65 -0
- numpy/f2py/tests/test_return_real.py +109 -0
- numpy/f2py/tests/test_routines.py +29 -0
- numpy/f2py/tests/test_semicolon_split.py +75 -0
- numpy/f2py/tests/test_size.py +45 -0
- numpy/f2py/tests/test_string.py +100 -0
- numpy/f2py/tests/test_symbolic.py +500 -0
- numpy/f2py/tests/test_value_attrspec.py +15 -0
- numpy/f2py/tests/util.py +442 -0
- numpy/f2py/use_rules.py +99 -0
- numpy/f2py/use_rules.pyi +9 -0
- numpy/fft/__init__.py +213 -0
- numpy/fft/__init__.pyi +38 -0
- numpy/fft/_helper.py +235 -0
- numpy/fft/_helper.pyi +44 -0
- numpy/fft/_pocketfft.py +1693 -0
- numpy/fft/_pocketfft.pyi +137 -0
- numpy/fft/_pocketfft_umath.cp314t-win_arm64.lib +0 -0
- numpy/fft/_pocketfft_umath.cp314t-win_arm64.pyd +0 -0
- numpy/fft/tests/__init__.py +0 -0
- numpy/fft/tests/test_helper.py +167 -0
- numpy/fft/tests/test_pocketfft.py +589 -0
- numpy/lib/__init__.py +97 -0
- numpy/lib/__init__.pyi +52 -0
- numpy/lib/_array_utils_impl.py +62 -0
- numpy/lib/_array_utils_impl.pyi +10 -0
- numpy/lib/_arraypad_impl.py +926 -0
- numpy/lib/_arraypad_impl.pyi +88 -0
- numpy/lib/_arraysetops_impl.py +1158 -0
- numpy/lib/_arraysetops_impl.pyi +462 -0
- numpy/lib/_arrayterator_impl.py +224 -0
- numpy/lib/_arrayterator_impl.pyi +45 -0
- numpy/lib/_datasource.py +700 -0
- numpy/lib/_datasource.pyi +30 -0
- numpy/lib/_format_impl.py +1036 -0
- numpy/lib/_format_impl.pyi +56 -0
- numpy/lib/_function_base_impl.py +5760 -0
- numpy/lib/_function_base_impl.pyi +2324 -0
- numpy/lib/_histograms_impl.py +1085 -0
- numpy/lib/_histograms_impl.pyi +40 -0
- numpy/lib/_index_tricks_impl.py +1048 -0
- numpy/lib/_index_tricks_impl.pyi +267 -0
- numpy/lib/_iotools.py +900 -0
- numpy/lib/_iotools.pyi +116 -0
- numpy/lib/_nanfunctions_impl.py +2006 -0
- numpy/lib/_nanfunctions_impl.pyi +48 -0
- numpy/lib/_npyio_impl.py +2583 -0
- numpy/lib/_npyio_impl.pyi +299 -0
- numpy/lib/_polynomial_impl.py +1465 -0
- numpy/lib/_polynomial_impl.pyi +338 -0
- numpy/lib/_scimath_impl.py +642 -0
- numpy/lib/_scimath_impl.pyi +93 -0
- numpy/lib/_shape_base_impl.py +1289 -0
- numpy/lib/_shape_base_impl.pyi +236 -0
- numpy/lib/_stride_tricks_impl.py +582 -0
- numpy/lib/_stride_tricks_impl.pyi +73 -0
- numpy/lib/_twodim_base_impl.py +1201 -0
- numpy/lib/_twodim_base_impl.pyi +408 -0
- numpy/lib/_type_check_impl.py +710 -0
- numpy/lib/_type_check_impl.pyi +348 -0
- numpy/lib/_ufunclike_impl.py +199 -0
- numpy/lib/_ufunclike_impl.pyi +60 -0
- numpy/lib/_user_array_impl.py +310 -0
- numpy/lib/_user_array_impl.pyi +226 -0
- numpy/lib/_utils_impl.py +784 -0
- numpy/lib/_utils_impl.pyi +22 -0
- numpy/lib/_version.py +153 -0
- numpy/lib/_version.pyi +17 -0
- numpy/lib/array_utils.py +7 -0
- numpy/lib/array_utils.pyi +6 -0
- numpy/lib/format.py +24 -0
- numpy/lib/format.pyi +24 -0
- numpy/lib/introspect.py +94 -0
- numpy/lib/introspect.pyi +3 -0
- numpy/lib/mixins.py +180 -0
- numpy/lib/mixins.pyi +78 -0
- numpy/lib/npyio.py +1 -0
- numpy/lib/npyio.pyi +5 -0
- numpy/lib/recfunctions.py +1681 -0
- numpy/lib/recfunctions.pyi +444 -0
- numpy/lib/scimath.py +13 -0
- numpy/lib/scimath.pyi +12 -0
- numpy/lib/stride_tricks.py +1 -0
- numpy/lib/stride_tricks.pyi +4 -0
- numpy/lib/tests/__init__.py +0 -0
- numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npz +0 -0
- numpy/lib/tests/data/py3-objarr.npy +0 -0
- numpy/lib/tests/data/py3-objarr.npz +0 -0
- numpy/lib/tests/data/python3.npy +0 -0
- numpy/lib/tests/data/win64python2.npy +0 -0
- numpy/lib/tests/test__datasource.py +328 -0
- numpy/lib/tests/test__iotools.py +358 -0
- numpy/lib/tests/test__version.py +64 -0
- numpy/lib/tests/test_array_utils.py +32 -0
- numpy/lib/tests/test_arraypad.py +1427 -0
- numpy/lib/tests/test_arraysetops.py +1302 -0
- numpy/lib/tests/test_arrayterator.py +45 -0
- numpy/lib/tests/test_format.py +1054 -0
- numpy/lib/tests/test_function_base.py +4750 -0
- numpy/lib/tests/test_histograms.py +855 -0
- numpy/lib/tests/test_index_tricks.py +693 -0
- numpy/lib/tests/test_io.py +2857 -0
- numpy/lib/tests/test_loadtxt.py +1099 -0
- numpy/lib/tests/test_mixins.py +215 -0
- numpy/lib/tests/test_nanfunctions.py +1438 -0
- numpy/lib/tests/test_packbits.py +376 -0
- numpy/lib/tests/test_polynomial.py +325 -0
- numpy/lib/tests/test_recfunctions.py +1042 -0
- numpy/lib/tests/test_regression.py +231 -0
- numpy/lib/tests/test_shape_base.py +813 -0
- numpy/lib/tests/test_stride_tricks.py +655 -0
- numpy/lib/tests/test_twodim_base.py +559 -0
- numpy/lib/tests/test_type_check.py +473 -0
- numpy/lib/tests/test_ufunclike.py +97 -0
- numpy/lib/tests/test_utils.py +80 -0
- numpy/lib/user_array.py +1 -0
- numpy/lib/user_array.pyi +1 -0
- numpy/linalg/__init__.py +95 -0
- numpy/linalg/__init__.pyi +71 -0
- numpy/linalg/_linalg.py +3657 -0
- numpy/linalg/_linalg.pyi +548 -0
- numpy/linalg/_umath_linalg.cp314t-win_arm64.lib +0 -0
- numpy/linalg/_umath_linalg.cp314t-win_arm64.pyd +0 -0
- numpy/linalg/_umath_linalg.pyi +60 -0
- numpy/linalg/lapack_lite.cp314t-win_arm64.lib +0 -0
- numpy/linalg/lapack_lite.cp314t-win_arm64.pyd +0 -0
- numpy/linalg/lapack_lite.pyi +143 -0
- numpy/linalg/tests/__init__.py +0 -0
- numpy/linalg/tests/test_deprecations.py +21 -0
- numpy/linalg/tests/test_linalg.py +2442 -0
- numpy/linalg/tests/test_regression.py +182 -0
- numpy/ma/API_CHANGES.txt +135 -0
- numpy/ma/LICENSE +24 -0
- numpy/ma/README.rst +236 -0
- numpy/ma/__init__.py +53 -0
- numpy/ma/__init__.pyi +458 -0
- numpy/ma/core.py +8929 -0
- numpy/ma/core.pyi +3720 -0
- numpy/ma/extras.py +2266 -0
- numpy/ma/extras.pyi +297 -0
- numpy/ma/mrecords.py +762 -0
- numpy/ma/mrecords.pyi +96 -0
- numpy/ma/tests/__init__.py +0 -0
- numpy/ma/tests/test_arrayobject.py +40 -0
- numpy/ma/tests/test_core.py +6008 -0
- numpy/ma/tests/test_deprecations.py +65 -0
- numpy/ma/tests/test_extras.py +1945 -0
- numpy/ma/tests/test_mrecords.py +495 -0
- numpy/ma/tests/test_old_ma.py +939 -0
- numpy/ma/tests/test_regression.py +83 -0
- numpy/ma/tests/test_subclassing.py +469 -0
- numpy/ma/testutils.py +294 -0
- numpy/ma/testutils.pyi +69 -0
- numpy/matlib.py +380 -0
- numpy/matlib.pyi +580 -0
- numpy/matrixlib/__init__.py +12 -0
- numpy/matrixlib/__init__.pyi +3 -0
- numpy/matrixlib/defmatrix.py +1119 -0
- numpy/matrixlib/defmatrix.pyi +218 -0
- numpy/matrixlib/tests/__init__.py +0 -0
- numpy/matrixlib/tests/test_defmatrix.py +455 -0
- numpy/matrixlib/tests/test_interaction.py +360 -0
- numpy/matrixlib/tests/test_masked_matrix.py +240 -0
- numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
- numpy/matrixlib/tests/test_multiarray.py +17 -0
- numpy/matrixlib/tests/test_numeric.py +18 -0
- numpy/matrixlib/tests/test_regression.py +31 -0
- numpy/polynomial/__init__.py +187 -0
- numpy/polynomial/__init__.pyi +31 -0
- numpy/polynomial/_polybase.py +1191 -0
- numpy/polynomial/_polybase.pyi +262 -0
- numpy/polynomial/_polytypes.pyi +501 -0
- numpy/polynomial/chebyshev.py +2001 -0
- numpy/polynomial/chebyshev.pyi +180 -0
- numpy/polynomial/hermite.py +1738 -0
- numpy/polynomial/hermite.pyi +106 -0
- numpy/polynomial/hermite_e.py +1640 -0
- numpy/polynomial/hermite_e.pyi +106 -0
- numpy/polynomial/laguerre.py +1673 -0
- numpy/polynomial/laguerre.pyi +100 -0
- numpy/polynomial/legendre.py +1603 -0
- numpy/polynomial/legendre.pyi +100 -0
- numpy/polynomial/polynomial.py +1625 -0
- numpy/polynomial/polynomial.pyi +109 -0
- numpy/polynomial/polyutils.py +759 -0
- numpy/polynomial/polyutils.pyi +307 -0
- numpy/polynomial/tests/__init__.py +0 -0
- numpy/polynomial/tests/test_chebyshev.py +618 -0
- numpy/polynomial/tests/test_classes.py +613 -0
- numpy/polynomial/tests/test_hermite.py +553 -0
- numpy/polynomial/tests/test_hermite_e.py +554 -0
- numpy/polynomial/tests/test_laguerre.py +535 -0
- numpy/polynomial/tests/test_legendre.py +566 -0
- numpy/polynomial/tests/test_polynomial.py +691 -0
- numpy/polynomial/tests/test_polyutils.py +123 -0
- numpy/polynomial/tests/test_printing.py +557 -0
- numpy/polynomial/tests/test_symbol.py +217 -0
- numpy/py.typed +0 -0
- numpy/random/LICENSE.md +71 -0
- numpy/random/__init__.pxd +14 -0
- numpy/random/__init__.py +213 -0
- numpy/random/__init__.pyi +124 -0
- numpy/random/_bounded_integers.cp314t-win_arm64.lib +0 -0
- numpy/random/_bounded_integers.cp314t-win_arm64.pyd +0 -0
- numpy/random/_bounded_integers.pxd +38 -0
- numpy/random/_bounded_integers.pyi +1 -0
- numpy/random/_common.cp314t-win_arm64.lib +0 -0
- numpy/random/_common.cp314t-win_arm64.pyd +0 -0
- numpy/random/_common.pxd +110 -0
- numpy/random/_common.pyi +16 -0
- numpy/random/_examples/cffi/extending.py +44 -0
- numpy/random/_examples/cffi/parse.py +53 -0
- numpy/random/_examples/cython/extending.pyx +77 -0
- numpy/random/_examples/cython/extending_distributions.pyx +117 -0
- numpy/random/_examples/cython/meson.build +53 -0
- numpy/random/_examples/numba/extending.py +86 -0
- numpy/random/_examples/numba/extending_distributions.py +67 -0
- numpy/random/_generator.cp314t-win_arm64.lib +0 -0
- numpy/random/_generator.cp314t-win_arm64.pyd +0 -0
- numpy/random/_generator.pyi +862 -0
- numpy/random/_mt19937.cp314t-win_arm64.lib +0 -0
- numpy/random/_mt19937.cp314t-win_arm64.pyd +0 -0
- numpy/random/_mt19937.pyi +27 -0
- numpy/random/_pcg64.cp314t-win_arm64.lib +0 -0
- numpy/random/_pcg64.cp314t-win_arm64.pyd +0 -0
- numpy/random/_pcg64.pyi +41 -0
- numpy/random/_philox.cp314t-win_arm64.lib +0 -0
- numpy/random/_philox.cp314t-win_arm64.pyd +0 -0
- numpy/random/_philox.pyi +36 -0
- numpy/random/_pickle.py +88 -0
- numpy/random/_pickle.pyi +43 -0
- numpy/random/_sfc64.cp314t-win_arm64.lib +0 -0
- numpy/random/_sfc64.cp314t-win_arm64.pyd +0 -0
- numpy/random/_sfc64.pyi +25 -0
- numpy/random/bit_generator.cp314t-win_arm64.lib +0 -0
- numpy/random/bit_generator.cp314t-win_arm64.pyd +0 -0
- numpy/random/bit_generator.pxd +40 -0
- numpy/random/bit_generator.pyi +123 -0
- numpy/random/c_distributions.pxd +119 -0
- numpy/random/lib/npyrandom.lib +0 -0
- numpy/random/mtrand.cp314t-win_arm64.lib +0 -0
- numpy/random/mtrand.cp314t-win_arm64.pyd +0 -0
- numpy/random/mtrand.pyi +759 -0
- numpy/random/tests/__init__.py +0 -0
- numpy/random/tests/data/__init__.py +0 -0
- numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
- numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
- numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
- numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
- numpy/random/tests/data/philox-testset-1.csv +1001 -0
- numpy/random/tests/data/philox-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
- numpy/random/tests/test_direct.py +595 -0
- numpy/random/tests/test_extending.py +131 -0
- numpy/random/tests/test_generator_mt19937.py +2825 -0
- numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
- numpy/random/tests/test_random.py +1724 -0
- numpy/random/tests/test_randomstate.py +2099 -0
- numpy/random/tests/test_randomstate_regression.py +213 -0
- numpy/random/tests/test_regression.py +175 -0
- numpy/random/tests/test_seed_sequence.py +79 -0
- numpy/random/tests/test_smoke.py +882 -0
- numpy/rec/__init__.py +2 -0
- numpy/rec/__init__.pyi +23 -0
- numpy/strings/__init__.py +2 -0
- numpy/strings/__init__.pyi +97 -0
- numpy/testing/__init__.py +22 -0
- numpy/testing/__init__.pyi +107 -0
- numpy/testing/_private/__init__.py +0 -0
- numpy/testing/_private/__init__.pyi +0 -0
- numpy/testing/_private/extbuild.py +250 -0
- numpy/testing/_private/extbuild.pyi +25 -0
- numpy/testing/_private/utils.py +2830 -0
- numpy/testing/_private/utils.pyi +505 -0
- numpy/testing/overrides.py +84 -0
- numpy/testing/overrides.pyi +10 -0
- numpy/testing/print_coercion_tables.py +207 -0
- numpy/testing/print_coercion_tables.pyi +26 -0
- numpy/testing/tests/__init__.py +0 -0
- numpy/testing/tests/test_utils.py +2123 -0
- numpy/tests/__init__.py +0 -0
- numpy/tests/test__all__.py +10 -0
- numpy/tests/test_configtool.py +51 -0
- numpy/tests/test_ctypeslib.py +383 -0
- numpy/tests/test_lazyloading.py +42 -0
- numpy/tests/test_matlib.py +59 -0
- numpy/tests/test_numpy_config.py +47 -0
- numpy/tests/test_numpy_version.py +54 -0
- numpy/tests/test_public_api.py +807 -0
- numpy/tests/test_reloading.py +76 -0
- numpy/tests/test_scripts.py +48 -0
- numpy/tests/test_warnings.py +79 -0
- numpy/typing/__init__.py +233 -0
- numpy/typing/__init__.pyi +3 -0
- numpy/typing/mypy_plugin.py +200 -0
- numpy/typing/tests/__init__.py +0 -0
- numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
- numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
- numpy/typing/tests/data/fail/array_like.pyi +15 -0
- numpy/typing/tests/data/fail/array_pad.pyi +6 -0
- numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
- numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
- numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
- numpy/typing/tests/data/fail/char.pyi +63 -0
- numpy/typing/tests/data/fail/chararray.pyi +61 -0
- numpy/typing/tests/data/fail/comparisons.pyi +27 -0
- numpy/typing/tests/data/fail/constants.pyi +3 -0
- numpy/typing/tests/data/fail/datasource.pyi +16 -0
- numpy/typing/tests/data/fail/dtype.pyi +17 -0
- numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
- numpy/typing/tests/data/fail/flatiter.pyi +38 -0
- numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
- numpy/typing/tests/data/fail/histograms.pyi +12 -0
- numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
- numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
- numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
- numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
- numpy/typing/tests/data/fail/lib_version.pyi +6 -0
- numpy/typing/tests/data/fail/linalg.pyi +52 -0
- numpy/typing/tests/data/fail/ma.pyi +155 -0
- numpy/typing/tests/data/fail/memmap.pyi +5 -0
- numpy/typing/tests/data/fail/modules.pyi +17 -0
- numpy/typing/tests/data/fail/multiarray.pyi +52 -0
- numpy/typing/tests/data/fail/ndarray.pyi +11 -0
- numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
- numpy/typing/tests/data/fail/nditer.pyi +8 -0
- numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
- numpy/typing/tests/data/fail/npyio.pyi +24 -0
- numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
- numpy/typing/tests/data/fail/random.pyi +62 -0
- numpy/typing/tests/data/fail/rec.pyi +17 -0
- numpy/typing/tests/data/fail/scalars.pyi +86 -0
- numpy/typing/tests/data/fail/shape.pyi +7 -0
- numpy/typing/tests/data/fail/shape_base.pyi +8 -0
- numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
- numpy/typing/tests/data/fail/strings.pyi +52 -0
- numpy/typing/tests/data/fail/testing.pyi +28 -0
- numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
- numpy/typing/tests/data/fail/type_check.pyi +12 -0
- numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
- numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
- numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
- numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
- numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
- numpy/typing/tests/data/mypy.ini +8 -0
- numpy/typing/tests/data/pass/arithmetic.py +614 -0
- numpy/typing/tests/data/pass/array_constructors.py +138 -0
- numpy/typing/tests/data/pass/array_like.py +43 -0
- numpy/typing/tests/data/pass/arrayprint.py +37 -0
- numpy/typing/tests/data/pass/arrayterator.py +28 -0
- numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
- numpy/typing/tests/data/pass/comparisons.py +316 -0
- numpy/typing/tests/data/pass/dtype.py +57 -0
- numpy/typing/tests/data/pass/einsumfunc.py +36 -0
- numpy/typing/tests/data/pass/flatiter.py +26 -0
- numpy/typing/tests/data/pass/fromnumeric.py +272 -0
- numpy/typing/tests/data/pass/index_tricks.py +62 -0
- numpy/typing/tests/data/pass/lib_user_array.py +22 -0
- numpy/typing/tests/data/pass/lib_utils.py +19 -0
- numpy/typing/tests/data/pass/lib_version.py +18 -0
- numpy/typing/tests/data/pass/literal.py +52 -0
- numpy/typing/tests/data/pass/ma.py +199 -0
- numpy/typing/tests/data/pass/mod.py +149 -0
- numpy/typing/tests/data/pass/modules.py +45 -0
- numpy/typing/tests/data/pass/multiarray.py +77 -0
- numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
- numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
- numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
- numpy/typing/tests/data/pass/nditer.py +4 -0
- numpy/typing/tests/data/pass/numeric.py +90 -0
- numpy/typing/tests/data/pass/numerictypes.py +17 -0
- numpy/typing/tests/data/pass/random.py +1498 -0
- numpy/typing/tests/data/pass/recfunctions.py +164 -0
- numpy/typing/tests/data/pass/scalars.py +249 -0
- numpy/typing/tests/data/pass/shape.py +19 -0
- numpy/typing/tests/data/pass/simple.py +170 -0
- numpy/typing/tests/data/pass/ufunc_config.py +64 -0
- numpy/typing/tests/data/pass/ufunclike.py +52 -0
- numpy/typing/tests/data/pass/ufuncs.py +16 -0
- numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
- numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
- numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
- numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
- numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
- numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
- numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
- numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
- numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
- numpy/typing/tests/data/reveal/char.pyi +225 -0
- numpy/typing/tests/data/reveal/chararray.pyi +138 -0
- numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
- numpy/typing/tests/data/reveal/constants.pyi +14 -0
- numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
- numpy/typing/tests/data/reveal/datasource.pyi +23 -0
- numpy/typing/tests/data/reveal/dtype.pyi +132 -0
- numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
- numpy/typing/tests/data/reveal/emath.pyi +54 -0
- numpy/typing/tests/data/reveal/fft.pyi +37 -0
- numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
- numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
- numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
- numpy/typing/tests/data/reveal/histograms.pyi +25 -0
- numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
- numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
- numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
- numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
- numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
- numpy/typing/tests/data/reveal/linalg.pyi +154 -0
- numpy/typing/tests/data/reveal/ma.pyi +1098 -0
- numpy/typing/tests/data/reveal/matrix.pyi +73 -0
- numpy/typing/tests/data/reveal/memmap.pyi +19 -0
- numpy/typing/tests/data/reveal/mod.pyi +178 -0
- numpy/typing/tests/data/reveal/modules.pyi +51 -0
- numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
- numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
- numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
- numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
- numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
- numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
- numpy/typing/tests/data/reveal/nditer.pyi +49 -0
- numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
- numpy/typing/tests/data/reveal/npyio.pyi +83 -0
- numpy/typing/tests/data/reveal/numeric.pyi +170 -0
- numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
- numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
- numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
- numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
- numpy/typing/tests/data/reveal/random.pyi +1546 -0
- numpy/typing/tests/data/reveal/rec.pyi +171 -0
- numpy/typing/tests/data/reveal/scalars.pyi +191 -0
- numpy/typing/tests/data/reveal/shape.pyi +13 -0
- numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
- numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
- numpy/typing/tests/data/reveal/strings.pyi +196 -0
- numpy/typing/tests/data/reveal/testing.pyi +198 -0
- numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
- numpy/typing/tests/data/reveal/type_check.pyi +67 -0
- numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
- numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
- numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
- numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
- numpy/typing/tests/test_isfile.py +38 -0
- numpy/typing/tests/test_runtime.py +110 -0
- numpy/typing/tests/test_typing.py +205 -0
- numpy/version.py +11 -0
- numpy/version.pyi +9 -0
- numpy-2.4.1.dist-info/DELVEWHEEL +2 -0
- numpy-2.4.1.dist-info/METADATA +139 -0
- numpy-2.4.1.dist-info/RECORD +932 -0
- numpy-2.4.1.dist-info/WHEEL +4 -0
- numpy-2.4.1.dist-info/entry_points.txt +13 -0
- numpy-2.4.1.dist-info/licenses/LICENSE.txt +914 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
- numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
- numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
- numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
- numpy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- numpy.libs/scipy_openblas-7b69cbfd2599e6035f1310f2a72d59a6.dll +0 -0
|
@@ -0,0 +1,1201 @@
|
|
|
1
|
+
""" Basic functions for manipulating 2d arrays
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
import functools
|
|
5
|
+
import operator
|
|
6
|
+
|
|
7
|
+
from numpy._core import iinfo, overrides
|
|
8
|
+
from numpy._core._multiarray_umath import _array_converter
|
|
9
|
+
from numpy._core.numeric import (
|
|
10
|
+
arange,
|
|
11
|
+
asanyarray,
|
|
12
|
+
asarray,
|
|
13
|
+
diagonal,
|
|
14
|
+
empty,
|
|
15
|
+
greater_equal,
|
|
16
|
+
indices,
|
|
17
|
+
int8,
|
|
18
|
+
int16,
|
|
19
|
+
int32,
|
|
20
|
+
int64,
|
|
21
|
+
intp,
|
|
22
|
+
multiply,
|
|
23
|
+
nonzero,
|
|
24
|
+
ones,
|
|
25
|
+
promote_types,
|
|
26
|
+
where,
|
|
27
|
+
zeros,
|
|
28
|
+
)
|
|
29
|
+
from numpy._core.overrides import finalize_array_function_like, set_module
|
|
30
|
+
from numpy.lib._stride_tricks_impl import broadcast_to
|
|
31
|
+
|
|
32
|
+
__all__ = [
|
|
33
|
+
'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu',
|
|
34
|
+
'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices',
|
|
35
|
+
'tril_indices_from', 'triu_indices', 'triu_indices_from', ]
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
array_function_dispatch = functools.partial(
|
|
39
|
+
overrides.array_function_dispatch, module='numpy')
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
i1 = iinfo(int8)
|
|
43
|
+
i2 = iinfo(int16)
|
|
44
|
+
i4 = iinfo(int32)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _min_int(low, high):
|
|
48
|
+
""" get small int that fits the range """
|
|
49
|
+
if high <= i1.max and low >= i1.min:
|
|
50
|
+
return int8
|
|
51
|
+
if high <= i2.max and low >= i2.min:
|
|
52
|
+
return int16
|
|
53
|
+
if high <= i4.max and low >= i4.min:
|
|
54
|
+
return int32
|
|
55
|
+
return int64
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def _flip_dispatcher(m):
|
|
59
|
+
return (m,)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
@array_function_dispatch(_flip_dispatcher)
|
|
63
|
+
def fliplr(m):
|
|
64
|
+
"""
|
|
65
|
+
Reverse the order of elements along axis 1 (left/right).
|
|
66
|
+
|
|
67
|
+
For a 2-D array, this flips the entries in each row in the left/right
|
|
68
|
+
direction. Columns are preserved, but appear in a different order than
|
|
69
|
+
before.
|
|
70
|
+
|
|
71
|
+
Parameters
|
|
72
|
+
----------
|
|
73
|
+
m : array_like
|
|
74
|
+
Input array, must be at least 2-D.
|
|
75
|
+
|
|
76
|
+
Returns
|
|
77
|
+
-------
|
|
78
|
+
f : ndarray
|
|
79
|
+
A view of `m` with the columns reversed. Since a view
|
|
80
|
+
is returned, this operation is :math:`\\mathcal O(1)`.
|
|
81
|
+
|
|
82
|
+
See Also
|
|
83
|
+
--------
|
|
84
|
+
flipud : Flip array in the up/down direction.
|
|
85
|
+
flip : Flip array in one or more dimensions.
|
|
86
|
+
rot90 : Rotate array counterclockwise.
|
|
87
|
+
|
|
88
|
+
Notes
|
|
89
|
+
-----
|
|
90
|
+
Equivalent to ``m[:,::-1]`` or ``np.flip(m, axis=1)``.
|
|
91
|
+
Requires the array to be at least 2-D.
|
|
92
|
+
|
|
93
|
+
Examples
|
|
94
|
+
--------
|
|
95
|
+
>>> import numpy as np
|
|
96
|
+
>>> A = np.diag([1.,2.,3.])
|
|
97
|
+
>>> A
|
|
98
|
+
array([[1., 0., 0.],
|
|
99
|
+
[0., 2., 0.],
|
|
100
|
+
[0., 0., 3.]])
|
|
101
|
+
>>> np.fliplr(A)
|
|
102
|
+
array([[0., 0., 1.],
|
|
103
|
+
[0., 2., 0.],
|
|
104
|
+
[3., 0., 0.]])
|
|
105
|
+
|
|
106
|
+
>>> rng = np.random.default_rng()
|
|
107
|
+
>>> A = rng.normal(size=(2,3,5))
|
|
108
|
+
>>> np.all(np.fliplr(A) == A[:,::-1,...])
|
|
109
|
+
True
|
|
110
|
+
|
|
111
|
+
"""
|
|
112
|
+
m = asanyarray(m)
|
|
113
|
+
if m.ndim < 2:
|
|
114
|
+
raise ValueError("Input must be >= 2-d.")
|
|
115
|
+
return m[:, ::-1]
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
@array_function_dispatch(_flip_dispatcher)
|
|
119
|
+
def flipud(m):
|
|
120
|
+
"""
|
|
121
|
+
Reverse the order of elements along axis 0 (up/down).
|
|
122
|
+
|
|
123
|
+
For a 2-D array, this flips the entries in each column in the up/down
|
|
124
|
+
direction. Rows are preserved, but appear in a different order than before.
|
|
125
|
+
|
|
126
|
+
Parameters
|
|
127
|
+
----------
|
|
128
|
+
m : array_like
|
|
129
|
+
Input array.
|
|
130
|
+
|
|
131
|
+
Returns
|
|
132
|
+
-------
|
|
133
|
+
out : array_like
|
|
134
|
+
A view of `m` with the rows reversed. Since a view is
|
|
135
|
+
returned, this operation is :math:`\\mathcal O(1)`.
|
|
136
|
+
|
|
137
|
+
See Also
|
|
138
|
+
--------
|
|
139
|
+
fliplr : Flip array in the left/right direction.
|
|
140
|
+
flip : Flip array in one or more dimensions.
|
|
141
|
+
rot90 : Rotate array counterclockwise.
|
|
142
|
+
|
|
143
|
+
Notes
|
|
144
|
+
-----
|
|
145
|
+
Equivalent to ``m[::-1, ...]`` or ``np.flip(m, axis=0)``.
|
|
146
|
+
Requires the array to be at least 1-D.
|
|
147
|
+
|
|
148
|
+
Examples
|
|
149
|
+
--------
|
|
150
|
+
>>> import numpy as np
|
|
151
|
+
>>> A = np.diag([1.0, 2, 3])
|
|
152
|
+
>>> A
|
|
153
|
+
array([[1., 0., 0.],
|
|
154
|
+
[0., 2., 0.],
|
|
155
|
+
[0., 0., 3.]])
|
|
156
|
+
>>> np.flipud(A)
|
|
157
|
+
array([[0., 0., 3.],
|
|
158
|
+
[0., 2., 0.],
|
|
159
|
+
[1., 0., 0.]])
|
|
160
|
+
|
|
161
|
+
>>> rng = np.random.default_rng()
|
|
162
|
+
>>> A = rng.normal(size=(2,3,5))
|
|
163
|
+
>>> np.all(np.flipud(A) == A[::-1,...])
|
|
164
|
+
True
|
|
165
|
+
|
|
166
|
+
>>> np.flipud([1,2])
|
|
167
|
+
array([2, 1])
|
|
168
|
+
|
|
169
|
+
"""
|
|
170
|
+
m = asanyarray(m)
|
|
171
|
+
if m.ndim < 1:
|
|
172
|
+
raise ValueError("Input must be >= 1-d.")
|
|
173
|
+
return m[::-1, ...]
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
@finalize_array_function_like
|
|
177
|
+
@set_module('numpy')
|
|
178
|
+
def eye(N, M=None, k=0, dtype=float, order='C', *, device=None, like=None):
|
|
179
|
+
"""
|
|
180
|
+
Return a 2-D array with ones on the diagonal and zeros elsewhere.
|
|
181
|
+
|
|
182
|
+
Parameters
|
|
183
|
+
----------
|
|
184
|
+
N : int
|
|
185
|
+
Number of rows in the output.
|
|
186
|
+
M : int, optional
|
|
187
|
+
Number of columns in the output. If None, defaults to `N`.
|
|
188
|
+
k : int, optional
|
|
189
|
+
Index of the diagonal: 0 (the default) refers to the main diagonal,
|
|
190
|
+
a positive value refers to an upper diagonal, and a negative value
|
|
191
|
+
to a lower diagonal.
|
|
192
|
+
dtype : data-type, optional
|
|
193
|
+
Data-type of the returned array.
|
|
194
|
+
order : {'C', 'F'}, optional
|
|
195
|
+
Whether the output should be stored in row-major (C-style) or
|
|
196
|
+
column-major (Fortran-style) order in memory.
|
|
197
|
+
device : str, optional
|
|
198
|
+
The device on which to place the created array. Default: None.
|
|
199
|
+
For Array-API interoperability only, so must be ``"cpu"`` if passed.
|
|
200
|
+
|
|
201
|
+
.. versionadded:: 2.0.0
|
|
202
|
+
${ARRAY_FUNCTION_LIKE}
|
|
203
|
+
|
|
204
|
+
.. versionadded:: 1.20.0
|
|
205
|
+
|
|
206
|
+
Returns
|
|
207
|
+
-------
|
|
208
|
+
I : ndarray of shape (N,M)
|
|
209
|
+
An array where all elements are equal to zero, except for the `k`-th
|
|
210
|
+
diagonal, whose values are equal to one.
|
|
211
|
+
|
|
212
|
+
See Also
|
|
213
|
+
--------
|
|
214
|
+
identity : (almost) equivalent function
|
|
215
|
+
diag : diagonal 2-D array from a 1-D array specified by the user.
|
|
216
|
+
|
|
217
|
+
Examples
|
|
218
|
+
--------
|
|
219
|
+
>>> import numpy as np
|
|
220
|
+
>>> np.eye(2, dtype=int)
|
|
221
|
+
array([[1, 0],
|
|
222
|
+
[0, 1]])
|
|
223
|
+
>>> np.eye(3, k=1)
|
|
224
|
+
array([[0., 1., 0.],
|
|
225
|
+
[0., 0., 1.],
|
|
226
|
+
[0., 0., 0.]])
|
|
227
|
+
|
|
228
|
+
"""
|
|
229
|
+
if like is not None:
|
|
230
|
+
return _eye_with_like(
|
|
231
|
+
like, N, M=M, k=k, dtype=dtype, order=order, device=device
|
|
232
|
+
)
|
|
233
|
+
if M is None:
|
|
234
|
+
M = N
|
|
235
|
+
m = zeros((N, M), dtype=dtype, order=order, device=device)
|
|
236
|
+
if k >= M:
|
|
237
|
+
return m
|
|
238
|
+
# Ensure M and k are integers, so we don't get any surprise casting
|
|
239
|
+
# results in the expressions `M-k` and `M+1` used below. This avoids
|
|
240
|
+
# a problem with inputs with type (for example) np.uint64.
|
|
241
|
+
M = operator.index(M)
|
|
242
|
+
k = operator.index(k)
|
|
243
|
+
if k >= 0:
|
|
244
|
+
i = k
|
|
245
|
+
else:
|
|
246
|
+
i = (-k) * M
|
|
247
|
+
m[:M - k].flat[i::M + 1] = 1
|
|
248
|
+
return m
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
_eye_with_like = array_function_dispatch()(eye)
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
def _diag_dispatcher(v, k=None):
|
|
255
|
+
return (v,)
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
@array_function_dispatch(_diag_dispatcher)
|
|
259
|
+
def diag(v, k=0):
|
|
260
|
+
"""
|
|
261
|
+
Extract a diagonal or construct a diagonal array.
|
|
262
|
+
|
|
263
|
+
See the more detailed documentation for ``numpy.diagonal`` if you use this
|
|
264
|
+
function to extract a diagonal and wish to write to the resulting array;
|
|
265
|
+
whether it returns a copy or a view depends on what version of numpy you
|
|
266
|
+
are using.
|
|
267
|
+
|
|
268
|
+
Parameters
|
|
269
|
+
----------
|
|
270
|
+
v : array_like
|
|
271
|
+
If `v` is a 2-D array, return a copy of its `k`-th diagonal.
|
|
272
|
+
If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th
|
|
273
|
+
diagonal.
|
|
274
|
+
k : int, optional
|
|
275
|
+
Diagonal in question. The default is 0. Use `k>0` for diagonals
|
|
276
|
+
above the main diagonal, and `k<0` for diagonals below the main
|
|
277
|
+
diagonal.
|
|
278
|
+
|
|
279
|
+
Returns
|
|
280
|
+
-------
|
|
281
|
+
out : ndarray
|
|
282
|
+
The extracted diagonal or constructed diagonal array.
|
|
283
|
+
|
|
284
|
+
See Also
|
|
285
|
+
--------
|
|
286
|
+
diagonal : Return specified diagonals.
|
|
287
|
+
diagflat : Create a 2-D array with the flattened input as a diagonal.
|
|
288
|
+
trace : Sum along diagonals.
|
|
289
|
+
triu : Upper triangle of an array.
|
|
290
|
+
tril : Lower triangle of an array.
|
|
291
|
+
|
|
292
|
+
Examples
|
|
293
|
+
--------
|
|
294
|
+
>>> import numpy as np
|
|
295
|
+
>>> x = np.arange(9).reshape((3,3))
|
|
296
|
+
>>> x
|
|
297
|
+
array([[0, 1, 2],
|
|
298
|
+
[3, 4, 5],
|
|
299
|
+
[6, 7, 8]])
|
|
300
|
+
|
|
301
|
+
>>> np.diag(x)
|
|
302
|
+
array([0, 4, 8])
|
|
303
|
+
>>> np.diag(x, k=1)
|
|
304
|
+
array([1, 5])
|
|
305
|
+
>>> np.diag(x, k=-1)
|
|
306
|
+
array([3, 7])
|
|
307
|
+
|
|
308
|
+
>>> np.diag(np.diag(x))
|
|
309
|
+
array([[0, 0, 0],
|
|
310
|
+
[0, 4, 0],
|
|
311
|
+
[0, 0, 8]])
|
|
312
|
+
|
|
313
|
+
"""
|
|
314
|
+
v = asanyarray(v)
|
|
315
|
+
s = v.shape
|
|
316
|
+
if len(s) == 1:
|
|
317
|
+
n = s[0] + abs(k)
|
|
318
|
+
res = zeros((n, n), v.dtype)
|
|
319
|
+
if k >= 0:
|
|
320
|
+
i = k
|
|
321
|
+
else:
|
|
322
|
+
i = (-k) * n
|
|
323
|
+
res[:n - k].flat[i::n + 1] = v
|
|
324
|
+
return res
|
|
325
|
+
elif len(s) == 2:
|
|
326
|
+
return diagonal(v, k)
|
|
327
|
+
else:
|
|
328
|
+
raise ValueError("Input must be 1- or 2-d.")
|
|
329
|
+
|
|
330
|
+
|
|
331
|
+
@array_function_dispatch(_diag_dispatcher)
|
|
332
|
+
def diagflat(v, k=0):
|
|
333
|
+
"""
|
|
334
|
+
Create a two-dimensional array with the flattened input as a diagonal.
|
|
335
|
+
|
|
336
|
+
Parameters
|
|
337
|
+
----------
|
|
338
|
+
v : array_like
|
|
339
|
+
Input data, which is flattened and set as the `k`-th
|
|
340
|
+
diagonal of the output.
|
|
341
|
+
k : int, optional
|
|
342
|
+
Diagonal to set; 0, the default, corresponds to the "main" diagonal,
|
|
343
|
+
a positive (negative) `k` giving the number of the diagonal above
|
|
344
|
+
(below) the main.
|
|
345
|
+
|
|
346
|
+
Returns
|
|
347
|
+
-------
|
|
348
|
+
out : ndarray
|
|
349
|
+
The 2-D output array.
|
|
350
|
+
|
|
351
|
+
See Also
|
|
352
|
+
--------
|
|
353
|
+
diag : MATLAB work-alike for 1-D and 2-D arrays.
|
|
354
|
+
diagonal : Return specified diagonals.
|
|
355
|
+
trace : Sum along diagonals.
|
|
356
|
+
|
|
357
|
+
Examples
|
|
358
|
+
--------
|
|
359
|
+
>>> import numpy as np
|
|
360
|
+
>>> np.diagflat([[1,2], [3,4]])
|
|
361
|
+
array([[1, 0, 0, 0],
|
|
362
|
+
[0, 2, 0, 0],
|
|
363
|
+
[0, 0, 3, 0],
|
|
364
|
+
[0, 0, 0, 4]])
|
|
365
|
+
|
|
366
|
+
>>> np.diagflat([1,2], 1)
|
|
367
|
+
array([[0, 1, 0],
|
|
368
|
+
[0, 0, 2],
|
|
369
|
+
[0, 0, 0]])
|
|
370
|
+
|
|
371
|
+
"""
|
|
372
|
+
conv = _array_converter(v)
|
|
373
|
+
v, = conv.as_arrays(subok=False)
|
|
374
|
+
v = v.ravel()
|
|
375
|
+
s = len(v)
|
|
376
|
+
n = s + abs(k)
|
|
377
|
+
res = zeros((n, n), v.dtype)
|
|
378
|
+
if (k >= 0):
|
|
379
|
+
i = arange(0, n - k, dtype=intp)
|
|
380
|
+
fi = i + k + i * n
|
|
381
|
+
else:
|
|
382
|
+
i = arange(0, n + k, dtype=intp)
|
|
383
|
+
fi = i + (i - k) * n
|
|
384
|
+
res.flat[fi] = v
|
|
385
|
+
|
|
386
|
+
return conv.wrap(res)
|
|
387
|
+
|
|
388
|
+
|
|
389
|
+
@finalize_array_function_like
|
|
390
|
+
@set_module('numpy')
|
|
391
|
+
def tri(N, M=None, k=0, dtype=float, *, like=None):
|
|
392
|
+
"""
|
|
393
|
+
An array with ones at and below the given diagonal and zeros elsewhere.
|
|
394
|
+
|
|
395
|
+
Parameters
|
|
396
|
+
----------
|
|
397
|
+
N : int
|
|
398
|
+
Number of rows in the array.
|
|
399
|
+
M : int, optional
|
|
400
|
+
Number of columns in the array.
|
|
401
|
+
By default, `M` is taken equal to `N`.
|
|
402
|
+
k : int, optional
|
|
403
|
+
The sub-diagonal at and below which the array is filled.
|
|
404
|
+
`k` = 0 is the main diagonal, while `k` < 0 is below it,
|
|
405
|
+
and `k` > 0 is above. The default is 0.
|
|
406
|
+
dtype : dtype, optional
|
|
407
|
+
Data type of the returned array. The default is float.
|
|
408
|
+
${ARRAY_FUNCTION_LIKE}
|
|
409
|
+
|
|
410
|
+
.. versionadded:: 1.20.0
|
|
411
|
+
|
|
412
|
+
Returns
|
|
413
|
+
-------
|
|
414
|
+
tri : ndarray of shape (N, M)
|
|
415
|
+
Array with its lower triangle filled with ones and zero elsewhere;
|
|
416
|
+
in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise.
|
|
417
|
+
|
|
418
|
+
Examples
|
|
419
|
+
--------
|
|
420
|
+
>>> import numpy as np
|
|
421
|
+
>>> np.tri(3, 5, 2, dtype=int)
|
|
422
|
+
array([[1, 1, 1, 0, 0],
|
|
423
|
+
[1, 1, 1, 1, 0],
|
|
424
|
+
[1, 1, 1, 1, 1]])
|
|
425
|
+
|
|
426
|
+
>>> np.tri(3, 5, -1)
|
|
427
|
+
array([[0., 0., 0., 0., 0.],
|
|
428
|
+
[1., 0., 0., 0., 0.],
|
|
429
|
+
[1., 1., 0., 0., 0.]])
|
|
430
|
+
|
|
431
|
+
"""
|
|
432
|
+
if like is not None:
|
|
433
|
+
return _tri_with_like(like, N, M=M, k=k, dtype=dtype)
|
|
434
|
+
|
|
435
|
+
if M is None:
|
|
436
|
+
M = N
|
|
437
|
+
|
|
438
|
+
m = greater_equal.outer(arange(N, dtype=_min_int(0, N)),
|
|
439
|
+
arange(-k, M - k, dtype=_min_int(-k, M - k)))
|
|
440
|
+
|
|
441
|
+
# Avoid making a copy if the requested type is already bool
|
|
442
|
+
m = m.astype(dtype, copy=False)
|
|
443
|
+
|
|
444
|
+
return m
|
|
445
|
+
|
|
446
|
+
|
|
447
|
+
_tri_with_like = array_function_dispatch()(tri)
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
def _trilu_dispatcher(m, k=None):
|
|
451
|
+
return (m,)
|
|
452
|
+
|
|
453
|
+
|
|
454
|
+
@array_function_dispatch(_trilu_dispatcher)
|
|
455
|
+
def tril(m, k=0):
|
|
456
|
+
"""
|
|
457
|
+
Lower triangle of an array.
|
|
458
|
+
|
|
459
|
+
Return a copy of an array with elements above the `k`-th diagonal zeroed.
|
|
460
|
+
For arrays with ``ndim`` exceeding 2, `tril` will apply to the final two
|
|
461
|
+
axes.
|
|
462
|
+
|
|
463
|
+
Parameters
|
|
464
|
+
----------
|
|
465
|
+
m : array_like, shape (..., M, N)
|
|
466
|
+
Input array.
|
|
467
|
+
k : int, optional
|
|
468
|
+
Diagonal above which to zero elements. `k = 0` (the default) is the
|
|
469
|
+
main diagonal, `k < 0` is below it and `k > 0` is above.
|
|
470
|
+
|
|
471
|
+
Returns
|
|
472
|
+
-------
|
|
473
|
+
tril : ndarray, shape (..., M, N)
|
|
474
|
+
Lower triangle of `m`, of same shape and data-type as `m`.
|
|
475
|
+
|
|
476
|
+
See Also
|
|
477
|
+
--------
|
|
478
|
+
triu : same thing, only for the upper triangle
|
|
479
|
+
|
|
480
|
+
Examples
|
|
481
|
+
--------
|
|
482
|
+
>>> import numpy as np
|
|
483
|
+
>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
|
|
484
|
+
array([[ 0, 0, 0],
|
|
485
|
+
[ 4, 0, 0],
|
|
486
|
+
[ 7, 8, 0],
|
|
487
|
+
[10, 11, 12]])
|
|
488
|
+
|
|
489
|
+
>>> np.tril(np.arange(3*4*5).reshape(3, 4, 5))
|
|
490
|
+
array([[[ 0, 0, 0, 0, 0],
|
|
491
|
+
[ 5, 6, 0, 0, 0],
|
|
492
|
+
[10, 11, 12, 0, 0],
|
|
493
|
+
[15, 16, 17, 18, 0]],
|
|
494
|
+
[[20, 0, 0, 0, 0],
|
|
495
|
+
[25, 26, 0, 0, 0],
|
|
496
|
+
[30, 31, 32, 0, 0],
|
|
497
|
+
[35, 36, 37, 38, 0]],
|
|
498
|
+
[[40, 0, 0, 0, 0],
|
|
499
|
+
[45, 46, 0, 0, 0],
|
|
500
|
+
[50, 51, 52, 0, 0],
|
|
501
|
+
[55, 56, 57, 58, 0]]])
|
|
502
|
+
|
|
503
|
+
"""
|
|
504
|
+
m = asanyarray(m)
|
|
505
|
+
mask = tri(*m.shape[-2:], k=k, dtype=bool)
|
|
506
|
+
|
|
507
|
+
return where(mask, m, zeros(1, m.dtype))
|
|
508
|
+
|
|
509
|
+
|
|
510
|
+
@array_function_dispatch(_trilu_dispatcher)
|
|
511
|
+
def triu(m, k=0):
|
|
512
|
+
"""
|
|
513
|
+
Upper triangle of an array.
|
|
514
|
+
|
|
515
|
+
Return a copy of an array with the elements below the `k`-th diagonal
|
|
516
|
+
zeroed. For arrays with ``ndim`` exceeding 2, `triu` will apply to the
|
|
517
|
+
final two axes.
|
|
518
|
+
|
|
519
|
+
Please refer to the documentation for `tril` for further details.
|
|
520
|
+
|
|
521
|
+
See Also
|
|
522
|
+
--------
|
|
523
|
+
tril : lower triangle of an array
|
|
524
|
+
|
|
525
|
+
Examples
|
|
526
|
+
--------
|
|
527
|
+
>>> import numpy as np
|
|
528
|
+
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
|
|
529
|
+
array([[ 1, 2, 3],
|
|
530
|
+
[ 4, 5, 6],
|
|
531
|
+
[ 0, 8, 9],
|
|
532
|
+
[ 0, 0, 12]])
|
|
533
|
+
|
|
534
|
+
>>> np.triu(np.arange(3*4*5).reshape(3, 4, 5))
|
|
535
|
+
array([[[ 0, 1, 2, 3, 4],
|
|
536
|
+
[ 0, 6, 7, 8, 9],
|
|
537
|
+
[ 0, 0, 12, 13, 14],
|
|
538
|
+
[ 0, 0, 0, 18, 19]],
|
|
539
|
+
[[20, 21, 22, 23, 24],
|
|
540
|
+
[ 0, 26, 27, 28, 29],
|
|
541
|
+
[ 0, 0, 32, 33, 34],
|
|
542
|
+
[ 0, 0, 0, 38, 39]],
|
|
543
|
+
[[40, 41, 42, 43, 44],
|
|
544
|
+
[ 0, 46, 47, 48, 49],
|
|
545
|
+
[ 0, 0, 52, 53, 54],
|
|
546
|
+
[ 0, 0, 0, 58, 59]]])
|
|
547
|
+
|
|
548
|
+
"""
|
|
549
|
+
m = asanyarray(m)
|
|
550
|
+
mask = tri(*m.shape[-2:], k=k - 1, dtype=bool)
|
|
551
|
+
|
|
552
|
+
return where(mask, zeros(1, m.dtype), m)
|
|
553
|
+
|
|
554
|
+
|
|
555
|
+
def _vander_dispatcher(x, N=None, increasing=None):
|
|
556
|
+
return (x,)
|
|
557
|
+
|
|
558
|
+
|
|
559
|
+
# Originally borrowed from John Hunter and matplotlib
|
|
560
|
+
@array_function_dispatch(_vander_dispatcher)
|
|
561
|
+
def vander(x, N=None, increasing=False):
|
|
562
|
+
"""
|
|
563
|
+
Generate a Vandermonde matrix.
|
|
564
|
+
|
|
565
|
+
The columns of the output matrix are powers of the input vector. The
|
|
566
|
+
order of the powers is determined by the `increasing` boolean argument.
|
|
567
|
+
Specifically, when `increasing` is False, the `i`-th output column is
|
|
568
|
+
the input vector raised element-wise to the power of ``N - i - 1``. Such
|
|
569
|
+
a matrix with a geometric progression in each row is named for Alexandre-
|
|
570
|
+
Theophile Vandermonde.
|
|
571
|
+
|
|
572
|
+
Parameters
|
|
573
|
+
----------
|
|
574
|
+
x : array_like
|
|
575
|
+
1-D input array.
|
|
576
|
+
N : int, optional
|
|
577
|
+
Number of columns in the output. If `N` is not specified, a square
|
|
578
|
+
array is returned (``N = len(x)``).
|
|
579
|
+
increasing : bool, optional
|
|
580
|
+
Order of the powers of the columns. If True, the powers increase
|
|
581
|
+
from left to right, if False (the default) they are reversed.
|
|
582
|
+
|
|
583
|
+
Returns
|
|
584
|
+
-------
|
|
585
|
+
out : ndarray
|
|
586
|
+
Vandermonde matrix. If `increasing` is False, the first column is
|
|
587
|
+
``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is
|
|
588
|
+
True, the columns are ``x^0, x^1, ..., x^(N-1)``.
|
|
589
|
+
|
|
590
|
+
See Also
|
|
591
|
+
--------
|
|
592
|
+
polynomial.polynomial.polyvander
|
|
593
|
+
|
|
594
|
+
Examples
|
|
595
|
+
--------
|
|
596
|
+
>>> import numpy as np
|
|
597
|
+
>>> x = np.array([1, 2, 3, 5])
|
|
598
|
+
>>> N = 3
|
|
599
|
+
>>> np.vander(x, N)
|
|
600
|
+
array([[ 1, 1, 1],
|
|
601
|
+
[ 4, 2, 1],
|
|
602
|
+
[ 9, 3, 1],
|
|
603
|
+
[25, 5, 1]])
|
|
604
|
+
|
|
605
|
+
>>> np.column_stack([x**(N-1-i) for i in range(N)])
|
|
606
|
+
array([[ 1, 1, 1],
|
|
607
|
+
[ 4, 2, 1],
|
|
608
|
+
[ 9, 3, 1],
|
|
609
|
+
[25, 5, 1]])
|
|
610
|
+
|
|
611
|
+
>>> x = np.array([1, 2, 3, 5])
|
|
612
|
+
>>> np.vander(x)
|
|
613
|
+
array([[ 1, 1, 1, 1],
|
|
614
|
+
[ 8, 4, 2, 1],
|
|
615
|
+
[ 27, 9, 3, 1],
|
|
616
|
+
[125, 25, 5, 1]])
|
|
617
|
+
>>> np.vander(x, increasing=True)
|
|
618
|
+
array([[ 1, 1, 1, 1],
|
|
619
|
+
[ 1, 2, 4, 8],
|
|
620
|
+
[ 1, 3, 9, 27],
|
|
621
|
+
[ 1, 5, 25, 125]])
|
|
622
|
+
|
|
623
|
+
The determinant of a square Vandermonde matrix is the product
|
|
624
|
+
of the differences between the values of the input vector:
|
|
625
|
+
|
|
626
|
+
>>> np.linalg.det(np.vander(x))
|
|
627
|
+
48.000000000000043 # may vary
|
|
628
|
+
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
|
|
629
|
+
48
|
|
630
|
+
|
|
631
|
+
"""
|
|
632
|
+
x = asarray(x)
|
|
633
|
+
if x.ndim != 1:
|
|
634
|
+
raise ValueError("x must be a one-dimensional array or sequence.")
|
|
635
|
+
if N is None:
|
|
636
|
+
N = len(x)
|
|
637
|
+
|
|
638
|
+
v = empty((len(x), N), dtype=promote_types(x.dtype, int))
|
|
639
|
+
tmp = v[:, ::-1] if not increasing else v
|
|
640
|
+
|
|
641
|
+
if N > 0:
|
|
642
|
+
tmp[:, 0] = 1
|
|
643
|
+
if N > 1:
|
|
644
|
+
tmp[:, 1:] = x[:, None]
|
|
645
|
+
multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1)
|
|
646
|
+
|
|
647
|
+
return v
|
|
648
|
+
|
|
649
|
+
|
|
650
|
+
def _histogram2d_dispatcher(x, y, bins=None, range=None, density=None,
|
|
651
|
+
weights=None):
|
|
652
|
+
yield x
|
|
653
|
+
yield y
|
|
654
|
+
|
|
655
|
+
# This terrible logic is adapted from the checks in histogram2d
|
|
656
|
+
try:
|
|
657
|
+
N = len(bins)
|
|
658
|
+
except TypeError:
|
|
659
|
+
N = 1
|
|
660
|
+
if N == 2:
|
|
661
|
+
yield from bins # bins=[x, y]
|
|
662
|
+
else:
|
|
663
|
+
yield bins
|
|
664
|
+
|
|
665
|
+
yield weights
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
@array_function_dispatch(_histogram2d_dispatcher)
|
|
669
|
+
def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
|
|
670
|
+
"""
|
|
671
|
+
Compute the bi-dimensional histogram of two data samples.
|
|
672
|
+
|
|
673
|
+
Parameters
|
|
674
|
+
----------
|
|
675
|
+
x : array_like, shape (N,)
|
|
676
|
+
An array containing the x coordinates of the points to be
|
|
677
|
+
histogrammed.
|
|
678
|
+
y : array_like, shape (N,)
|
|
679
|
+
An array containing the y coordinates of the points to be
|
|
680
|
+
histogrammed.
|
|
681
|
+
bins : int or array_like or [int, int] or [array, array], optional
|
|
682
|
+
The bin specification:
|
|
683
|
+
|
|
684
|
+
* If int, the number of bins for the two dimensions (nx=ny=bins).
|
|
685
|
+
* If array_like, the bin edges for the two dimensions
|
|
686
|
+
(x_edges=y_edges=bins).
|
|
687
|
+
* If [int, int], the number of bins in each dimension
|
|
688
|
+
(nx, ny = bins).
|
|
689
|
+
* If [array, array], the bin edges in each dimension
|
|
690
|
+
(x_edges, y_edges = bins).
|
|
691
|
+
* A combination [int, array] or [array, int], where int
|
|
692
|
+
is the number of bins and array is the bin edges.
|
|
693
|
+
|
|
694
|
+
range : array_like, shape(2,2), optional
|
|
695
|
+
The leftmost and rightmost edges of the bins along each dimension
|
|
696
|
+
(if not specified explicitly in the `bins` parameters):
|
|
697
|
+
``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
|
|
698
|
+
will be considered outliers and not tallied in the histogram.
|
|
699
|
+
density : bool, optional
|
|
700
|
+
If False, the default, returns the number of samples in each bin.
|
|
701
|
+
If True, returns the probability *density* function at the bin,
|
|
702
|
+
``bin_count / sample_count / bin_area``.
|
|
703
|
+
weights : array_like, shape(N,), optional
|
|
704
|
+
An array of values ``w_i`` weighing each sample ``(x_i, y_i)``.
|
|
705
|
+
Weights are normalized to 1 if `density` is True. If `density` is
|
|
706
|
+
False, the values of the returned histogram are equal to the sum of
|
|
707
|
+
the weights belonging to the samples falling into each bin.
|
|
708
|
+
|
|
709
|
+
Returns
|
|
710
|
+
-------
|
|
711
|
+
H : ndarray, shape(nx, ny)
|
|
712
|
+
The bi-dimensional histogram of samples `x` and `y`. Values in `x`
|
|
713
|
+
are histogrammed along the first dimension and values in `y` are
|
|
714
|
+
histogrammed along the second dimension.
|
|
715
|
+
xedges : ndarray, shape(nx+1,)
|
|
716
|
+
The bin edges along the first dimension.
|
|
717
|
+
yedges : ndarray, shape(ny+1,)
|
|
718
|
+
The bin edges along the second dimension.
|
|
719
|
+
|
|
720
|
+
See Also
|
|
721
|
+
--------
|
|
722
|
+
histogram : 1D histogram
|
|
723
|
+
histogramdd : Multidimensional histogram
|
|
724
|
+
|
|
725
|
+
Notes
|
|
726
|
+
-----
|
|
727
|
+
When `density` is True, then the returned histogram is the sample
|
|
728
|
+
density, defined such that the sum over bins of the product
|
|
729
|
+
``bin_value * bin_area`` is 1.
|
|
730
|
+
|
|
731
|
+
Please note that the histogram does not follow the Cartesian convention
|
|
732
|
+
where `x` values are on the abscissa and `y` values on the ordinate
|
|
733
|
+
axis. Rather, `x` is histogrammed along the first dimension of the
|
|
734
|
+
array (vertical), and `y` along the second dimension of the array
|
|
735
|
+
(horizontal). This ensures compatibility with `histogramdd`.
|
|
736
|
+
|
|
737
|
+
Examples
|
|
738
|
+
--------
|
|
739
|
+
>>> import numpy as np
|
|
740
|
+
>>> from matplotlib.image import NonUniformImage
|
|
741
|
+
>>> import matplotlib.pyplot as plt
|
|
742
|
+
|
|
743
|
+
Construct a 2-D histogram with variable bin width. First define the bin
|
|
744
|
+
edges:
|
|
745
|
+
|
|
746
|
+
>>> xedges = [0, 1, 3, 5]
|
|
747
|
+
>>> yedges = [0, 2, 3, 4, 6]
|
|
748
|
+
|
|
749
|
+
Next we create a histogram H with random bin content:
|
|
750
|
+
|
|
751
|
+
>>> x = np.random.normal(2, 1, 100)
|
|
752
|
+
>>> y = np.random.normal(1, 1, 100)
|
|
753
|
+
>>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges))
|
|
754
|
+
>>> # Histogram does not follow Cartesian convention (see Notes),
|
|
755
|
+
>>> # therefore transpose H for visualization purposes.
|
|
756
|
+
>>> H = H.T
|
|
757
|
+
|
|
758
|
+
:func:`imshow <matplotlib.pyplot.imshow>` can only display square bins:
|
|
759
|
+
|
|
760
|
+
>>> fig = plt.figure(figsize=(7, 3))
|
|
761
|
+
>>> ax = fig.add_subplot(131, title='imshow: square bins')
|
|
762
|
+
>>> plt.imshow(H, interpolation='nearest', origin='lower',
|
|
763
|
+
... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
|
|
764
|
+
<matplotlib.image.AxesImage object at 0x...>
|
|
765
|
+
|
|
766
|
+
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges:
|
|
767
|
+
|
|
768
|
+
>>> ax = fig.add_subplot(132, title='pcolormesh: actual edges',
|
|
769
|
+
... aspect='equal')
|
|
770
|
+
>>> X, Y = np.meshgrid(xedges, yedges)
|
|
771
|
+
>>> ax.pcolormesh(X, Y, H)
|
|
772
|
+
<matplotlib.collections.QuadMesh object at 0x...>
|
|
773
|
+
|
|
774
|
+
:class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to
|
|
775
|
+
display actual bin edges with interpolation:
|
|
776
|
+
|
|
777
|
+
>>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated',
|
|
778
|
+
... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]])
|
|
779
|
+
>>> im = NonUniformImage(ax, interpolation='bilinear')
|
|
780
|
+
>>> xcenters = (xedges[:-1] + xedges[1:]) / 2
|
|
781
|
+
>>> ycenters = (yedges[:-1] + yedges[1:]) / 2
|
|
782
|
+
>>> im.set_data(xcenters, ycenters, H)
|
|
783
|
+
>>> ax.add_image(im)
|
|
784
|
+
>>> plt.show()
|
|
785
|
+
|
|
786
|
+
It is also possible to construct a 2-D histogram without specifying bin
|
|
787
|
+
edges:
|
|
788
|
+
|
|
789
|
+
>>> # Generate non-symmetric test data
|
|
790
|
+
>>> n = 10000
|
|
791
|
+
>>> x = np.linspace(1, 100, n)
|
|
792
|
+
>>> y = 2*np.log(x) + np.random.rand(n) - 0.5
|
|
793
|
+
>>> # Compute 2d histogram. Note the order of x/y and xedges/yedges
|
|
794
|
+
>>> H, yedges, xedges = np.histogram2d(y, x, bins=20)
|
|
795
|
+
|
|
796
|
+
Now we can plot the histogram using
|
|
797
|
+
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>`, and a
|
|
798
|
+
:func:`hexbin <matplotlib.pyplot.hexbin>` for comparison.
|
|
799
|
+
|
|
800
|
+
>>> # Plot histogram using pcolormesh
|
|
801
|
+
>>> fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True)
|
|
802
|
+
>>> ax1.pcolormesh(xedges, yedges, H, cmap='rainbow')
|
|
803
|
+
>>> ax1.plot(x, 2*np.log(x), 'k-')
|
|
804
|
+
>>> ax1.set_xlim(x.min(), x.max())
|
|
805
|
+
>>> ax1.set_ylim(y.min(), y.max())
|
|
806
|
+
>>> ax1.set_xlabel('x')
|
|
807
|
+
>>> ax1.set_ylabel('y')
|
|
808
|
+
>>> ax1.set_title('histogram2d')
|
|
809
|
+
>>> ax1.grid()
|
|
810
|
+
|
|
811
|
+
>>> # Create hexbin plot for comparison
|
|
812
|
+
>>> ax2.hexbin(x, y, gridsize=20, cmap='rainbow')
|
|
813
|
+
>>> ax2.plot(x, 2*np.log(x), 'k-')
|
|
814
|
+
>>> ax2.set_title('hexbin')
|
|
815
|
+
>>> ax2.set_xlim(x.min(), x.max())
|
|
816
|
+
>>> ax2.set_xlabel('x')
|
|
817
|
+
>>> ax2.grid()
|
|
818
|
+
|
|
819
|
+
>>> plt.show()
|
|
820
|
+
"""
|
|
821
|
+
from numpy import histogramdd
|
|
822
|
+
|
|
823
|
+
if len(x) != len(y):
|
|
824
|
+
raise ValueError('x and y must have the same length.')
|
|
825
|
+
|
|
826
|
+
try:
|
|
827
|
+
N = len(bins)
|
|
828
|
+
except TypeError:
|
|
829
|
+
N = 1
|
|
830
|
+
|
|
831
|
+
if N not in {1, 2}:
|
|
832
|
+
xedges = yedges = asarray(bins)
|
|
833
|
+
bins = [xedges, yedges]
|
|
834
|
+
hist, edges = histogramdd([x, y], bins, range, density, weights)
|
|
835
|
+
return hist, edges[0], edges[1]
|
|
836
|
+
|
|
837
|
+
|
|
838
|
+
@set_module('numpy')
|
|
839
|
+
def mask_indices(n, mask_func, k=0):
|
|
840
|
+
"""
|
|
841
|
+
Return the indices to access (n, n) arrays, given a masking function.
|
|
842
|
+
|
|
843
|
+
Assume `mask_func` is a function that, for a square array a of size
|
|
844
|
+
``(n, n)`` with a possible offset argument `k`, when called as
|
|
845
|
+
``mask_func(a, k)`` returns a new array with zeros in certain locations
|
|
846
|
+
(functions like `triu` or `tril` do precisely this). Then this function
|
|
847
|
+
returns the indices where the non-zero values would be located.
|
|
848
|
+
|
|
849
|
+
Parameters
|
|
850
|
+
----------
|
|
851
|
+
n : int
|
|
852
|
+
The returned indices will be valid to access arrays of shape (n, n).
|
|
853
|
+
mask_func : callable
|
|
854
|
+
A function whose call signature is similar to that of `triu`, `tril`.
|
|
855
|
+
That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`.
|
|
856
|
+
`k` is an optional argument to the function.
|
|
857
|
+
k : scalar
|
|
858
|
+
An optional argument which is passed through to `mask_func`. Functions
|
|
859
|
+
like `triu`, `tril` take a second argument that is interpreted as an
|
|
860
|
+
offset.
|
|
861
|
+
|
|
862
|
+
Returns
|
|
863
|
+
-------
|
|
864
|
+
indices : tuple of arrays.
|
|
865
|
+
The `n` arrays of indices corresponding to the locations where
|
|
866
|
+
``mask_func(np.ones((n, n)), k)`` is True.
|
|
867
|
+
|
|
868
|
+
See Also
|
|
869
|
+
--------
|
|
870
|
+
triu, tril, triu_indices, tril_indices
|
|
871
|
+
|
|
872
|
+
Examples
|
|
873
|
+
--------
|
|
874
|
+
>>> import numpy as np
|
|
875
|
+
|
|
876
|
+
These are the indices that would allow you to access the upper triangular
|
|
877
|
+
part of any 3x3 array:
|
|
878
|
+
|
|
879
|
+
>>> iu = np.mask_indices(3, np.triu)
|
|
880
|
+
|
|
881
|
+
For example, if `a` is a 3x3 array:
|
|
882
|
+
|
|
883
|
+
>>> a = np.arange(9).reshape(3, 3)
|
|
884
|
+
>>> a
|
|
885
|
+
array([[0, 1, 2],
|
|
886
|
+
[3, 4, 5],
|
|
887
|
+
[6, 7, 8]])
|
|
888
|
+
>>> a[iu]
|
|
889
|
+
array([0, 1, 2, 4, 5, 8])
|
|
890
|
+
|
|
891
|
+
An offset can be passed also to the masking function. This gets us the
|
|
892
|
+
indices starting on the first diagonal right of the main one:
|
|
893
|
+
|
|
894
|
+
>>> iu1 = np.mask_indices(3, np.triu, 1)
|
|
895
|
+
|
|
896
|
+
with which we now extract only three elements:
|
|
897
|
+
|
|
898
|
+
>>> a[iu1]
|
|
899
|
+
array([1, 2, 5])
|
|
900
|
+
|
|
901
|
+
"""
|
|
902
|
+
m = ones((n, n), int)
|
|
903
|
+
a = mask_func(m, k)
|
|
904
|
+
return nonzero(a != 0)
|
|
905
|
+
|
|
906
|
+
|
|
907
|
+
@set_module('numpy')
|
|
908
|
+
def tril_indices(n, k=0, m=None):
|
|
909
|
+
"""
|
|
910
|
+
Return the indices for the lower-triangle of an (n, m) array.
|
|
911
|
+
|
|
912
|
+
Parameters
|
|
913
|
+
----------
|
|
914
|
+
n : int
|
|
915
|
+
The row dimension of the arrays for which the returned
|
|
916
|
+
indices will be valid.
|
|
917
|
+
k : int, optional
|
|
918
|
+
Diagonal offset (see `tril` for details).
|
|
919
|
+
m : int, optional
|
|
920
|
+
The column dimension of the arrays for which the returned
|
|
921
|
+
arrays will be valid.
|
|
922
|
+
By default `m` is taken equal to `n`.
|
|
923
|
+
|
|
924
|
+
|
|
925
|
+
Returns
|
|
926
|
+
-------
|
|
927
|
+
inds : tuple of arrays
|
|
928
|
+
The row and column indices, respectively. The row indices are sorted
|
|
929
|
+
in non-decreasing order, and the corresponding column indices are
|
|
930
|
+
strictly increasing for each row.
|
|
931
|
+
|
|
932
|
+
See also
|
|
933
|
+
--------
|
|
934
|
+
triu_indices : similar function, for upper-triangular.
|
|
935
|
+
mask_indices : generic function accepting an arbitrary mask function.
|
|
936
|
+
tril, triu
|
|
937
|
+
|
|
938
|
+
Examples
|
|
939
|
+
--------
|
|
940
|
+
>>> import numpy as np
|
|
941
|
+
|
|
942
|
+
Compute two different sets of indices to access 4x4 arrays, one for the
|
|
943
|
+
lower triangular part starting at the main diagonal, and one starting two
|
|
944
|
+
diagonals further right:
|
|
945
|
+
|
|
946
|
+
>>> il1 = np.tril_indices(4)
|
|
947
|
+
>>> il1
|
|
948
|
+
(array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))
|
|
949
|
+
|
|
950
|
+
Note that row indices (first array) are non-decreasing, and the corresponding
|
|
951
|
+
column indices (second array) are strictly increasing for each row.
|
|
952
|
+
Here is how they can be used with a sample array:
|
|
953
|
+
|
|
954
|
+
>>> a = np.arange(16).reshape(4, 4)
|
|
955
|
+
>>> a
|
|
956
|
+
array([[ 0, 1, 2, 3],
|
|
957
|
+
[ 4, 5, 6, 7],
|
|
958
|
+
[ 8, 9, 10, 11],
|
|
959
|
+
[12, 13, 14, 15]])
|
|
960
|
+
|
|
961
|
+
Both for indexing:
|
|
962
|
+
|
|
963
|
+
>>> a[il1]
|
|
964
|
+
array([ 0, 4, 5, ..., 13, 14, 15])
|
|
965
|
+
|
|
966
|
+
And for assigning values:
|
|
967
|
+
|
|
968
|
+
>>> a[il1] = -1
|
|
969
|
+
>>> a
|
|
970
|
+
array([[-1, 1, 2, 3],
|
|
971
|
+
[-1, -1, 6, 7],
|
|
972
|
+
[-1, -1, -1, 11],
|
|
973
|
+
[-1, -1, -1, -1]])
|
|
974
|
+
|
|
975
|
+
These cover almost the whole array (two diagonals right of the main one):
|
|
976
|
+
|
|
977
|
+
>>> il2 = np.tril_indices(4, 2)
|
|
978
|
+
>>> a[il2] = -10
|
|
979
|
+
>>> a
|
|
980
|
+
array([[-10, -10, -10, 3],
|
|
981
|
+
[-10, -10, -10, -10],
|
|
982
|
+
[-10, -10, -10, -10],
|
|
983
|
+
[-10, -10, -10, -10]])
|
|
984
|
+
|
|
985
|
+
"""
|
|
986
|
+
tri_ = tri(n, m, k=k, dtype=bool)
|
|
987
|
+
|
|
988
|
+
return tuple(broadcast_to(inds, tri_.shape)[tri_]
|
|
989
|
+
for inds in indices(tri_.shape, sparse=True))
|
|
990
|
+
|
|
991
|
+
|
|
992
|
+
def _trilu_indices_form_dispatcher(arr, k=None):
|
|
993
|
+
return (arr,)
|
|
994
|
+
|
|
995
|
+
|
|
996
|
+
@array_function_dispatch(_trilu_indices_form_dispatcher)
|
|
997
|
+
def tril_indices_from(arr, k=0):
|
|
998
|
+
"""
|
|
999
|
+
Return the indices for the lower-triangle of arr.
|
|
1000
|
+
|
|
1001
|
+
See `tril_indices` for full details.
|
|
1002
|
+
|
|
1003
|
+
Parameters
|
|
1004
|
+
----------
|
|
1005
|
+
arr : array_like
|
|
1006
|
+
The indices will be valid for square arrays whose dimensions are
|
|
1007
|
+
the same as arr.
|
|
1008
|
+
k : int, optional
|
|
1009
|
+
Diagonal offset (see `tril` for details).
|
|
1010
|
+
|
|
1011
|
+
Examples
|
|
1012
|
+
--------
|
|
1013
|
+
>>> import numpy as np
|
|
1014
|
+
|
|
1015
|
+
Create a 4 by 4 array
|
|
1016
|
+
|
|
1017
|
+
>>> a = np.arange(16).reshape(4, 4)
|
|
1018
|
+
>>> a
|
|
1019
|
+
array([[ 0, 1, 2, 3],
|
|
1020
|
+
[ 4, 5, 6, 7],
|
|
1021
|
+
[ 8, 9, 10, 11],
|
|
1022
|
+
[12, 13, 14, 15]])
|
|
1023
|
+
|
|
1024
|
+
Pass the array to get the indices of the lower triangular elements.
|
|
1025
|
+
|
|
1026
|
+
>>> trili = np.tril_indices_from(a)
|
|
1027
|
+
>>> trili
|
|
1028
|
+
(array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))
|
|
1029
|
+
|
|
1030
|
+
>>> a[trili]
|
|
1031
|
+
array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15])
|
|
1032
|
+
|
|
1033
|
+
This is syntactic sugar for tril_indices().
|
|
1034
|
+
|
|
1035
|
+
>>> np.tril_indices(a.shape[0])
|
|
1036
|
+
(array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))
|
|
1037
|
+
|
|
1038
|
+
Use the `k` parameter to return the indices for the lower triangular array
|
|
1039
|
+
up to the k-th diagonal.
|
|
1040
|
+
|
|
1041
|
+
>>> trili1 = np.tril_indices_from(a, k=1)
|
|
1042
|
+
>>> a[trili1]
|
|
1043
|
+
array([ 0, 1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15])
|
|
1044
|
+
|
|
1045
|
+
See Also
|
|
1046
|
+
--------
|
|
1047
|
+
tril_indices, tril, triu_indices_from
|
|
1048
|
+
"""
|
|
1049
|
+
if arr.ndim != 2:
|
|
1050
|
+
raise ValueError("input array must be 2-d")
|
|
1051
|
+
return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1])
|
|
1052
|
+
|
|
1053
|
+
|
|
1054
|
+
@set_module('numpy')
|
|
1055
|
+
def triu_indices(n, k=0, m=None):
|
|
1056
|
+
"""
|
|
1057
|
+
Return the indices for the upper-triangle of an (n, m) array.
|
|
1058
|
+
|
|
1059
|
+
Parameters
|
|
1060
|
+
----------
|
|
1061
|
+
n : int
|
|
1062
|
+
The size of the arrays for which the returned indices will
|
|
1063
|
+
be valid.
|
|
1064
|
+
k : int, optional
|
|
1065
|
+
Diagonal offset (see `triu` for details).
|
|
1066
|
+
m : int, optional
|
|
1067
|
+
The column dimension of the arrays for which the returned
|
|
1068
|
+
arrays will be valid.
|
|
1069
|
+
By default `m` is taken equal to `n`.
|
|
1070
|
+
|
|
1071
|
+
|
|
1072
|
+
Returns
|
|
1073
|
+
-------
|
|
1074
|
+
inds : tuple, shape(2) of ndarrays, shape(`n`)
|
|
1075
|
+
The row and column indices, respectively. The row indices are sorted
|
|
1076
|
+
in non-decreasing order, and the corresponding column indices are
|
|
1077
|
+
strictly increasing for each row.
|
|
1078
|
+
|
|
1079
|
+
See also
|
|
1080
|
+
--------
|
|
1081
|
+
tril_indices : similar function, for lower-triangular.
|
|
1082
|
+
mask_indices : generic function accepting an arbitrary mask function.
|
|
1083
|
+
triu, tril
|
|
1084
|
+
|
|
1085
|
+
Examples
|
|
1086
|
+
--------
|
|
1087
|
+
>>> import numpy as np
|
|
1088
|
+
|
|
1089
|
+
Compute two different sets of indices to access 4x4 arrays, one for the
|
|
1090
|
+
upper triangular part starting at the main diagonal, and one starting two
|
|
1091
|
+
diagonals further right:
|
|
1092
|
+
|
|
1093
|
+
>>> iu1 = np.triu_indices(4)
|
|
1094
|
+
>>> iu1
|
|
1095
|
+
(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))
|
|
1096
|
+
|
|
1097
|
+
Note that row indices (first array) are non-decreasing, and the corresponding
|
|
1098
|
+
column indices (second array) are strictly increasing for each row.
|
|
1099
|
+
|
|
1100
|
+
Here is how they can be used with a sample array:
|
|
1101
|
+
|
|
1102
|
+
>>> a = np.arange(16).reshape(4, 4)
|
|
1103
|
+
>>> a
|
|
1104
|
+
array([[ 0, 1, 2, 3],
|
|
1105
|
+
[ 4, 5, 6, 7],
|
|
1106
|
+
[ 8, 9, 10, 11],
|
|
1107
|
+
[12, 13, 14, 15]])
|
|
1108
|
+
|
|
1109
|
+
Both for indexing:
|
|
1110
|
+
|
|
1111
|
+
>>> a[iu1]
|
|
1112
|
+
array([ 0, 1, 2, ..., 10, 11, 15])
|
|
1113
|
+
|
|
1114
|
+
And for assigning values:
|
|
1115
|
+
|
|
1116
|
+
>>> a[iu1] = -1
|
|
1117
|
+
>>> a
|
|
1118
|
+
array([[-1, -1, -1, -1],
|
|
1119
|
+
[ 4, -1, -1, -1],
|
|
1120
|
+
[ 8, 9, -1, -1],
|
|
1121
|
+
[12, 13, 14, -1]])
|
|
1122
|
+
|
|
1123
|
+
These cover only a small part of the whole array (two diagonals right
|
|
1124
|
+
of the main one):
|
|
1125
|
+
|
|
1126
|
+
>>> iu2 = np.triu_indices(4, 2)
|
|
1127
|
+
>>> a[iu2] = -10
|
|
1128
|
+
>>> a
|
|
1129
|
+
array([[ -1, -1, -10, -10],
|
|
1130
|
+
[ 4, -1, -1, -10],
|
|
1131
|
+
[ 8, 9, -1, -1],
|
|
1132
|
+
[ 12, 13, 14, -1]])
|
|
1133
|
+
|
|
1134
|
+
"""
|
|
1135
|
+
tri_ = ~tri(n, m, k=k - 1, dtype=bool)
|
|
1136
|
+
|
|
1137
|
+
return tuple(broadcast_to(inds, tri_.shape)[tri_]
|
|
1138
|
+
for inds in indices(tri_.shape, sparse=True))
|
|
1139
|
+
|
|
1140
|
+
|
|
1141
|
+
@array_function_dispatch(_trilu_indices_form_dispatcher)
|
|
1142
|
+
def triu_indices_from(arr, k=0):
|
|
1143
|
+
"""
|
|
1144
|
+
Return the indices for the upper-triangle of arr.
|
|
1145
|
+
|
|
1146
|
+
See `triu_indices` for full details.
|
|
1147
|
+
|
|
1148
|
+
Parameters
|
|
1149
|
+
----------
|
|
1150
|
+
arr : ndarray, shape(N, N)
|
|
1151
|
+
The indices will be valid for square arrays.
|
|
1152
|
+
k : int, optional
|
|
1153
|
+
Diagonal offset (see `triu` for details).
|
|
1154
|
+
|
|
1155
|
+
Returns
|
|
1156
|
+
-------
|
|
1157
|
+
triu_indices_from : tuple, shape(2) of ndarray, shape(N)
|
|
1158
|
+
Indices for the upper-triangle of `arr`.
|
|
1159
|
+
|
|
1160
|
+
Examples
|
|
1161
|
+
--------
|
|
1162
|
+
>>> import numpy as np
|
|
1163
|
+
|
|
1164
|
+
Create a 4 by 4 array
|
|
1165
|
+
|
|
1166
|
+
>>> a = np.arange(16).reshape(4, 4)
|
|
1167
|
+
>>> a
|
|
1168
|
+
array([[ 0, 1, 2, 3],
|
|
1169
|
+
[ 4, 5, 6, 7],
|
|
1170
|
+
[ 8, 9, 10, 11],
|
|
1171
|
+
[12, 13, 14, 15]])
|
|
1172
|
+
|
|
1173
|
+
Pass the array to get the indices of the upper triangular elements.
|
|
1174
|
+
|
|
1175
|
+
>>> triui = np.triu_indices_from(a)
|
|
1176
|
+
>>> triui
|
|
1177
|
+
(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))
|
|
1178
|
+
|
|
1179
|
+
>>> a[triui]
|
|
1180
|
+
array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15])
|
|
1181
|
+
|
|
1182
|
+
This is syntactic sugar for triu_indices().
|
|
1183
|
+
|
|
1184
|
+
>>> np.triu_indices(a.shape[0])
|
|
1185
|
+
(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))
|
|
1186
|
+
|
|
1187
|
+
Use the `k` parameter to return the indices for the upper triangular array
|
|
1188
|
+
from the k-th diagonal.
|
|
1189
|
+
|
|
1190
|
+
>>> triuim1 = np.triu_indices_from(a, k=1)
|
|
1191
|
+
>>> a[triuim1]
|
|
1192
|
+
array([ 1, 2, 3, 6, 7, 11])
|
|
1193
|
+
|
|
1194
|
+
|
|
1195
|
+
See Also
|
|
1196
|
+
--------
|
|
1197
|
+
triu_indices, triu, tril_indices_from
|
|
1198
|
+
"""
|
|
1199
|
+
if arr.ndim != 2:
|
|
1200
|
+
raise ValueError("input array must be 2-d")
|
|
1201
|
+
return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
|