numpy 2.4.1__cp314-cp314t-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (932) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +955 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp314t-win_arm64.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp314t-win_arm64.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp314t-win_arm64.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp314t-win_arm64.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp314t-win_arm64.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp314t-win_arm64.pyd +0 -0
  35. numpy/_core/_rational_tests.cp314t-win_arm64.lib +0 -0
  36. numpy/_core/_rational_tests.cp314t-win_arm64.pyd +0 -0
  37. numpy/_core/_simd.cp314t-win_arm64.lib +0 -0
  38. numpy/_core/_simd.cp314t-win_arm64.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp314t-win_arm64.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp314t-win_arm64.lib +0 -0
  49. numpy/_core/_umath_tests.cp314t-win_arm64.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1316 -0
  101. numpy/_core/numeric.py +2758 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +75 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +377 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4295 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp314t-win_arm64.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp314t-win_arm64.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4750 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp314t-win_arm64.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp314t-win_arm64.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp314t-win_arm64.lib +0 -0
  582. numpy/linalg/lapack_lite.cp314t-win_arm64.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3720 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp314t-win_arm64.lib +0 -0
  660. numpy/random/_bounded_integers.cp314t-win_arm64.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp314t-win_arm64.lib +0 -0
  664. numpy/random/_common.cp314t-win_arm64.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp314t-win_arm64.lib +0 -0
  675. numpy/random/_generator.cp314t-win_arm64.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp314t-win_arm64.lib +0 -0
  678. numpy/random/_mt19937.cp314t-win_arm64.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp314t-win_arm64.lib +0 -0
  681. numpy/random/_pcg64.cp314t-win_arm64.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp314t-win_arm64.lib +0 -0
  684. numpy/random/_philox.cp314t-win_arm64.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp314t-win_arm64.lib +0 -0
  689. numpy/random/_sfc64.cp314t-win_arm64.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp314t-win_arm64.lib +0 -0
  692. numpy/random/bit_generator.cp314t-win_arm64.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp314t-win_arm64.lib +0 -0
  698. numpy/random/mtrand.cp314t-win_arm64.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.1.dist-info/DELVEWHEEL +2 -0
  910. numpy-2.4.1.dist-info/METADATA +139 -0
  911. numpy-2.4.1.dist-info/RECORD +932 -0
  912. numpy-2.4.1.dist-info/WHEEL +4 -0
  913. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  914. numpy-2.4.1.dist-info/licenses/LICENSE.txt +914 -0
  915. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  916. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  917. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  918. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  919. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  920. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  921. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  922. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  923. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  924. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  925. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  926. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  927. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  928. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  929. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  930. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
  931. numpy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  932. numpy.libs/scipy_openblas-7b69cbfd2599e6035f1310f2a72d59a6.dll +0 -0
@@ -0,0 +1,1465 @@
1
+ """
2
+ Functions to operate on polynomials.
3
+
4
+ """
5
+ __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd',
6
+ 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d',
7
+ 'polyfit']
8
+
9
+ import functools
10
+ import re
11
+ import warnings
12
+
13
+ import numpy._core.numeric as NX
14
+ from numpy._core import (
15
+ abs,
16
+ array,
17
+ atleast_1d,
18
+ dot,
19
+ finfo,
20
+ hstack,
21
+ isscalar,
22
+ ones,
23
+ overrides,
24
+ )
25
+ from numpy._utils import set_module
26
+ from numpy.exceptions import RankWarning
27
+ from numpy.lib._function_base_impl import trim_zeros
28
+ from numpy.lib._twodim_base_impl import diag, vander
29
+ from numpy.lib._type_check_impl import imag, iscomplex, mintypecode, real
30
+ from numpy.linalg import eigvals, inv, lstsq
31
+
32
+ array_function_dispatch = functools.partial(
33
+ overrides.array_function_dispatch, module='numpy')
34
+
35
+
36
+ def _poly_dispatcher(seq_of_zeros):
37
+ return seq_of_zeros
38
+
39
+
40
+ @array_function_dispatch(_poly_dispatcher)
41
+ def poly(seq_of_zeros):
42
+ """
43
+ Find the coefficients of a polynomial with the given sequence of roots.
44
+
45
+ .. note::
46
+ This forms part of the old polynomial API. Since version 1.4, the
47
+ new polynomial API defined in `numpy.polynomial` is preferred.
48
+ A summary of the differences can be found in the
49
+ :doc:`transition guide </reference/routines.polynomials>`.
50
+
51
+ Returns the coefficients of the polynomial whose leading coefficient
52
+ is one for the given sequence of zeros (multiple roots must be included
53
+ in the sequence as many times as their multiplicity; see Examples).
54
+ A square matrix (or array, which will be treated as a matrix) can also
55
+ be given, in which case the coefficients of the characteristic polynomial
56
+ of the matrix are returned.
57
+
58
+ Parameters
59
+ ----------
60
+ seq_of_zeros : array_like, shape (N,) or (N, N)
61
+ A sequence of polynomial roots, or a square array or matrix object.
62
+
63
+ Returns
64
+ -------
65
+ c : ndarray
66
+ 1D array of polynomial coefficients from highest to lowest degree:
67
+
68
+ ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]``
69
+ where c[0] always equals 1.
70
+
71
+ Raises
72
+ ------
73
+ ValueError
74
+ If input is the wrong shape (the input must be a 1-D or square
75
+ 2-D array).
76
+
77
+ See Also
78
+ --------
79
+ polyval : Compute polynomial values.
80
+ roots : Return the roots of a polynomial.
81
+ polyfit : Least squares polynomial fit.
82
+ poly1d : A one-dimensional polynomial class.
83
+
84
+ Notes
85
+ -----
86
+ Specifying the roots of a polynomial still leaves one degree of
87
+ freedom, typically represented by an undetermined leading
88
+ coefficient. [1]_ In the case of this function, that coefficient -
89
+ the first one in the returned array - is always taken as one. (If
90
+ for some reason you have one other point, the only automatic way
91
+ presently to leverage that information is to use ``polyfit``.)
92
+
93
+ The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n`
94
+ matrix **A** is given by
95
+
96
+ :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`,
97
+
98
+ where **I** is the `n`-by-`n` identity matrix. [2]_
99
+
100
+ References
101
+ ----------
102
+ .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trigonometry,
103
+ Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996.
104
+
105
+ .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition,"
106
+ Academic Press, pg. 182, 1980.
107
+
108
+ Examples
109
+ --------
110
+
111
+ Given a sequence of a polynomial's zeros:
112
+
113
+ >>> import numpy as np
114
+
115
+ >>> np.poly((0, 0, 0)) # Multiple root example
116
+ array([1., 0., 0., 0.])
117
+
118
+ The line above represents z**3 + 0*z**2 + 0*z + 0.
119
+
120
+ >>> np.poly((-1./2, 0, 1./2))
121
+ array([ 1. , 0. , -0.25, 0. ])
122
+
123
+ The line above represents z**3 - z/4
124
+
125
+ >>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0]))
126
+ array([ 1. , -0.77086955, 0.08618131, 0. ]) # random
127
+
128
+ Given a square array object:
129
+
130
+ >>> P = np.array([[0, 1./3], [-1./2, 0]])
131
+ >>> np.poly(P)
132
+ array([1. , 0. , 0.16666667])
133
+
134
+ Note how in all cases the leading coefficient is always 1.
135
+
136
+ """
137
+ seq_of_zeros = atleast_1d(seq_of_zeros)
138
+ sh = seq_of_zeros.shape
139
+
140
+ if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0:
141
+ seq_of_zeros = eigvals(seq_of_zeros)
142
+ elif len(sh) == 1:
143
+ dt = seq_of_zeros.dtype
144
+ # Let object arrays slip through, e.g. for arbitrary precision
145
+ if dt != object:
146
+ seq_of_zeros = seq_of_zeros.astype(mintypecode(dt.char))
147
+ else:
148
+ raise ValueError("input must be 1d or non-empty square 2d array.")
149
+
150
+ if len(seq_of_zeros) == 0:
151
+ return 1.0
152
+ dt = seq_of_zeros.dtype
153
+ a = ones((1,), dtype=dt)
154
+ for zero in seq_of_zeros:
155
+ a = NX.convolve(a, array([1, -zero], dtype=dt), mode='full')
156
+
157
+ if issubclass(a.dtype.type, NX.complexfloating):
158
+ # if complex roots are all complex conjugates, the roots are real.
159
+ roots = NX.asarray(seq_of_zeros, complex)
160
+ if NX.all(NX.sort(roots) == NX.sort(roots.conjugate())):
161
+ a = a.real.copy()
162
+
163
+ return a
164
+
165
+
166
+ def _roots_dispatcher(p):
167
+ return p
168
+
169
+
170
+ @array_function_dispatch(_roots_dispatcher)
171
+ def roots(p):
172
+ """
173
+ Return the roots of a polynomial with coefficients given in p.
174
+
175
+ .. note::
176
+ This forms part of the old polynomial API. Since version 1.4, the
177
+ new polynomial API defined in `numpy.polynomial` is preferred.
178
+ A summary of the differences can be found in the
179
+ :doc:`transition guide </reference/routines.polynomials>`.
180
+
181
+ The values in the rank-1 array `p` are coefficients of a polynomial.
182
+ If the length of `p` is n+1 then the polynomial is described by::
183
+
184
+ p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
185
+
186
+ Parameters
187
+ ----------
188
+ p : array_like
189
+ Rank-1 array of polynomial coefficients.
190
+
191
+ Returns
192
+ -------
193
+ out : ndarray
194
+ An array containing the roots of the polynomial.
195
+
196
+ Raises
197
+ ------
198
+ ValueError
199
+ When `p` cannot be converted to a rank-1 array.
200
+
201
+ See also
202
+ --------
203
+ poly : Find the coefficients of a polynomial with a given sequence
204
+ of roots.
205
+ polyval : Compute polynomial values.
206
+ polyfit : Least squares polynomial fit.
207
+ poly1d : A one-dimensional polynomial class.
208
+
209
+ Notes
210
+ -----
211
+ The algorithm relies on computing the eigenvalues of the
212
+ companion matrix [1]_.
213
+
214
+ References
215
+ ----------
216
+ .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK:
217
+ Cambridge University Press, 1999, pp. 146-7.
218
+
219
+ Examples
220
+ --------
221
+ >>> import numpy as np
222
+ >>> coeff = [3.2, 2, 1]
223
+ >>> np.roots(coeff)
224
+ array([-0.3125+0.46351241j, -0.3125-0.46351241j])
225
+
226
+ """
227
+ # If input is scalar, this makes it an array
228
+ p = atleast_1d(p)
229
+ if p.ndim != 1:
230
+ raise ValueError("Input must be a rank-1 array.")
231
+
232
+ # find non-zero array entries
233
+ non_zero = NX.nonzero(NX.ravel(p))[0]
234
+
235
+ # Return an empty array if polynomial is all zeros
236
+ if len(non_zero) == 0:
237
+ return NX.array([])
238
+
239
+ # find the number of trailing zeros -- this is the number of roots at 0.
240
+ trailing_zeros = len(p) - non_zero[-1] - 1
241
+
242
+ # strip leading and trailing zeros
243
+ p = p[int(non_zero[0]):int(non_zero[-1]) + 1]
244
+
245
+ # casting: if incoming array isn't floating point, make it floating point.
246
+ if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)):
247
+ p = p.astype(float)
248
+
249
+ N = len(p)
250
+ if N > 1:
251
+ # build companion matrix and find its eigenvalues (the roots)
252
+ A = diag(NX.ones((N - 2,), p.dtype), -1)
253
+ A[0, :] = -p[1:] / p[0]
254
+ roots = eigvals(A)
255
+ else:
256
+ roots = NX.array([])
257
+
258
+ # tack any zeros onto the back of the array
259
+ roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype)))
260
+ return roots
261
+
262
+
263
+ def _polyint_dispatcher(p, m=None, k=None):
264
+ return (p,)
265
+
266
+
267
+ @array_function_dispatch(_polyint_dispatcher)
268
+ def polyint(p, m=1, k=None):
269
+ """
270
+ Return an antiderivative (indefinite integral) of a polynomial.
271
+
272
+ .. note::
273
+ This forms part of the old polynomial API. Since version 1.4, the
274
+ new polynomial API defined in `numpy.polynomial` is preferred.
275
+ A summary of the differences can be found in the
276
+ :doc:`transition guide </reference/routines.polynomials>`.
277
+
278
+ The returned order `m` antiderivative `P` of polynomial `p` satisfies
279
+ :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1`
280
+ integration constants `k`. The constants determine the low-order
281
+ polynomial part
282
+
283
+ .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1}
284
+
285
+ of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`.
286
+
287
+ Parameters
288
+ ----------
289
+ p : array_like or poly1d
290
+ Polynomial to integrate.
291
+ A sequence is interpreted as polynomial coefficients, see `poly1d`.
292
+ m : int, optional
293
+ Order of the antiderivative. (Default: 1)
294
+ k : list of `m` scalars or scalar, optional
295
+ Integration constants. They are given in the order of integration:
296
+ those corresponding to highest-order terms come first.
297
+
298
+ If ``None`` (default), all constants are assumed to be zero.
299
+ If `m = 1`, a single scalar can be given instead of a list.
300
+
301
+ See Also
302
+ --------
303
+ polyder : derivative of a polynomial
304
+ poly1d.integ : equivalent method
305
+
306
+ Examples
307
+ --------
308
+
309
+ The defining property of the antiderivative:
310
+
311
+ >>> import numpy as np
312
+
313
+ >>> p = np.poly1d([1,1,1])
314
+ >>> P = np.polyint(p)
315
+ >>> P
316
+ poly1d([ 0.33333333, 0.5 , 1. , 0. ]) # may vary
317
+ >>> np.polyder(P) == p
318
+ True
319
+
320
+ The integration constants default to zero, but can be specified:
321
+
322
+ >>> P = np.polyint(p, 3)
323
+ >>> P(0)
324
+ 0.0
325
+ >>> np.polyder(P)(0)
326
+ 0.0
327
+ >>> np.polyder(P, 2)(0)
328
+ 0.0
329
+ >>> P = np.polyint(p, 3, k=[6,5,3])
330
+ >>> P
331
+ poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) # may vary
332
+
333
+ Note that 3 = 6 / 2!, and that the constants are given in the order of
334
+ integrations. Constant of the highest-order polynomial term comes first:
335
+
336
+ >>> np.polyder(P, 2)(0)
337
+ 6.0
338
+ >>> np.polyder(P, 1)(0)
339
+ 5.0
340
+ >>> P(0)
341
+ 3.0
342
+
343
+ """
344
+ m = int(m)
345
+ if m < 0:
346
+ raise ValueError("Order of integral must be positive (see polyder)")
347
+ if k is None:
348
+ k = NX.zeros(m, float)
349
+ k = atleast_1d(k)
350
+ if len(k) == 1 and m > 1:
351
+ k = k[0] * NX.ones(m, float)
352
+ if len(k) < m:
353
+ raise ValueError(
354
+ "k must be a scalar or a rank-1 array of length 1 or >m.")
355
+
356
+ truepoly = isinstance(p, poly1d)
357
+ p = NX.asarray(p)
358
+ if m == 0:
359
+ if truepoly:
360
+ return poly1d(p)
361
+ return p
362
+ else:
363
+ # Note: this must work also with object and integer arrays
364
+ y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]]))
365
+ val = polyint(y, m - 1, k=k[1:])
366
+ if truepoly:
367
+ return poly1d(val)
368
+ return val
369
+
370
+
371
+ def _polyder_dispatcher(p, m=None):
372
+ return (p,)
373
+
374
+
375
+ @array_function_dispatch(_polyder_dispatcher)
376
+ def polyder(p, m=1):
377
+ """
378
+ Return the derivative of the specified order of a polynomial.
379
+
380
+ .. note::
381
+ This forms part of the old polynomial API. Since version 1.4, the
382
+ new polynomial API defined in `numpy.polynomial` is preferred.
383
+ A summary of the differences can be found in the
384
+ :doc:`transition guide </reference/routines.polynomials>`.
385
+
386
+ Parameters
387
+ ----------
388
+ p : poly1d or sequence
389
+ Polynomial to differentiate.
390
+ A sequence is interpreted as polynomial coefficients, see `poly1d`.
391
+ m : int, optional
392
+ Order of differentiation (default: 1)
393
+
394
+ Returns
395
+ -------
396
+ der : poly1d
397
+ A new polynomial representing the derivative.
398
+
399
+ See Also
400
+ --------
401
+ polyint : Anti-derivative of a polynomial.
402
+ poly1d : Class for one-dimensional polynomials.
403
+
404
+ Examples
405
+ --------
406
+
407
+ The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is:
408
+
409
+ >>> import numpy as np
410
+
411
+ >>> p = np.poly1d([1,1,1,1])
412
+ >>> p2 = np.polyder(p)
413
+ >>> p2
414
+ poly1d([3, 2, 1])
415
+
416
+ which evaluates to:
417
+
418
+ >>> p2(2.)
419
+ 17.0
420
+
421
+ We can verify this, approximating the derivative with
422
+ ``(f(x + h) - f(x))/h``:
423
+
424
+ >>> (p(2. + 0.001) - p(2.)) / 0.001
425
+ 17.007000999997857
426
+
427
+ The fourth-order derivative of a 3rd-order polynomial is zero:
428
+
429
+ >>> np.polyder(p, 2)
430
+ poly1d([6, 2])
431
+ >>> np.polyder(p, 3)
432
+ poly1d([6])
433
+ >>> np.polyder(p, 4)
434
+ poly1d([0])
435
+
436
+ """
437
+ m = int(m)
438
+ if m < 0:
439
+ raise ValueError("Order of derivative must be positive (see polyint)")
440
+
441
+ truepoly = isinstance(p, poly1d)
442
+ p = NX.asarray(p)
443
+ n = len(p) - 1
444
+ y = p[:-1] * NX.arange(n, 0, -1)
445
+ if m == 0:
446
+ val = p
447
+ else:
448
+ val = polyder(y, m - 1)
449
+ if truepoly:
450
+ val = poly1d(val)
451
+ return val
452
+
453
+
454
+ def _polyfit_dispatcher(x, y, deg, rcond=None, full=None, w=None, cov=None):
455
+ return (x, y, w)
456
+
457
+
458
+ @array_function_dispatch(_polyfit_dispatcher)
459
+ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
460
+ """
461
+ Least squares polynomial fit.
462
+
463
+ .. note::
464
+ This forms part of the old polynomial API. Since version 1.4, the
465
+ new polynomial API defined in `numpy.polynomial` is preferred.
466
+ A summary of the differences can be found in the
467
+ :doc:`transition guide </reference/routines.polynomials>`.
468
+
469
+ Fit a polynomial ``p[0] * x**deg + ... + p[deg]`` of degree `deg`
470
+ to points `(x, y)`. Returns a vector of coefficients `p` that minimises
471
+ the squared error in the order `deg`, `deg-1`, ... `0`.
472
+
473
+ The `Polynomial.fit <numpy.polynomial.polynomial.Polynomial.fit>` class
474
+ method is recommended for new code as it is more stable numerically. See
475
+ the documentation of the method for more information.
476
+
477
+ Parameters
478
+ ----------
479
+ x : array_like, shape (M,)
480
+ x-coordinates of the M sample points ``(x[i], y[i])``.
481
+ y : array_like, shape (M,) or (M, K)
482
+ y-coordinates of the sample points. Several data sets of sample
483
+ points sharing the same x-coordinates can be fitted at once by
484
+ passing in a 2D-array that contains one dataset per column.
485
+ deg : int
486
+ Degree of the fitting polynomial
487
+ rcond : float, optional
488
+ Relative condition number of the fit. Singular values smaller than
489
+ this relative to the largest singular value will be ignored. The
490
+ default value is len(x)*eps, where eps is the relative precision of
491
+ the float type, about 2e-16 in most cases.
492
+ full : bool, optional
493
+ Switch determining nature of return value. When it is False (the
494
+ default) just the coefficients are returned, when True diagnostic
495
+ information from the singular value decomposition is also returned.
496
+ w : array_like, shape (M,), optional
497
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
498
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
499
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
500
+ same variance. When using inverse-variance weighting, use
501
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
502
+ cov : bool or str, optional
503
+ If given and not `False`, return not just the estimate but also its
504
+ covariance matrix. By default, the covariance are scaled by
505
+ chi2/dof, where dof = M - (deg + 1), i.e., the weights are presumed
506
+ to be unreliable except in a relative sense and everything is scaled
507
+ such that the reduced chi2 is unity. This scaling is omitted if
508
+ ``cov='unscaled'``, as is relevant for the case that the weights are
509
+ w = 1/sigma, with sigma known to be a reliable estimate of the
510
+ uncertainty.
511
+
512
+ Returns
513
+ -------
514
+ p : ndarray, shape (deg + 1,) or (deg + 1, K)
515
+ Polynomial coefficients, highest power first. If `y` was 2-D, the
516
+ coefficients for `k`-th data set are in ``p[:,k]``.
517
+
518
+ residuals, rank, singular_values, rcond
519
+ These values are only returned if ``full == True``
520
+
521
+ - residuals -- sum of squared residuals of the least squares fit
522
+ - rank -- the effective rank of the scaled Vandermonde
523
+ coefficient matrix
524
+ - singular_values -- singular values of the scaled Vandermonde
525
+ coefficient matrix
526
+ - rcond -- value of `rcond`.
527
+
528
+ For more details, see `numpy.linalg.lstsq`.
529
+
530
+ V : ndarray, shape (deg + 1, deg + 1) or (deg + 1, deg + 1, K)
531
+ Present only if ``full == False`` and ``cov == True``. The covariance
532
+ matrix of the polynomial coefficient estimates. The diagonal of
533
+ this matrix are the variance estimates for each coefficient. If y
534
+ is a 2-D array, then the covariance matrix for the `k`-th data set
535
+ are in ``V[:,:,k]``
536
+
537
+
538
+ Warns
539
+ -----
540
+ RankWarning
541
+ The rank of the coefficient matrix in the least-squares fit is
542
+ deficient. The warning is only raised if ``full == False``.
543
+
544
+ The warnings can be turned off by
545
+
546
+ >>> import warnings
547
+ >>> warnings.simplefilter('ignore', np.exceptions.RankWarning)
548
+
549
+ See Also
550
+ --------
551
+ polyval : Compute polynomial values.
552
+ linalg.lstsq : Computes a least-squares fit.
553
+ scipy.interpolate.UnivariateSpline : Computes spline fits.
554
+
555
+ Notes
556
+ -----
557
+ The solution minimizes the squared error
558
+
559
+ .. math::
560
+ E = \\sum_{j=0}^k |p(x_j) - y_j|^2
561
+
562
+ in the equations::
563
+
564
+ x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
565
+ x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
566
+ ...
567
+ x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]
568
+
569
+ The coefficient matrix of the coefficients `p` is a Vandermonde matrix.
570
+
571
+ `polyfit` issues a `~exceptions.RankWarning` when the least-squares fit is
572
+ badly conditioned. This implies that the best fit is not well-defined due
573
+ to numerical error. The results may be improved by lowering the polynomial
574
+ degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter
575
+ can also be set to a value smaller than its default, but the resulting
576
+ fit may be spurious: including contributions from the small singular
577
+ values can add numerical noise to the result.
578
+
579
+ Note that fitting polynomial coefficients is inherently badly conditioned
580
+ when the degree of the polynomial is large or the interval of sample points
581
+ is badly centered. The quality of the fit should always be checked in these
582
+ cases. When polynomial fits are not satisfactory, splines may be a good
583
+ alternative.
584
+
585
+ References
586
+ ----------
587
+ .. [1] Wikipedia, "Curve fitting",
588
+ https://en.wikipedia.org/wiki/Curve_fitting
589
+ .. [2] Wikipedia, "Polynomial interpolation",
590
+ https://en.wikipedia.org/wiki/Polynomial_interpolation
591
+
592
+ Examples
593
+ --------
594
+ >>> import numpy as np
595
+ >>> import warnings
596
+ >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
597
+ >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
598
+ >>> z = np.polyfit(x, y, 3)
599
+ >>> z
600
+ array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary
601
+
602
+ It is convenient to use `poly1d` objects for dealing with polynomials:
603
+
604
+ >>> p = np.poly1d(z)
605
+ >>> p(0.5)
606
+ 0.6143849206349179 # may vary
607
+ >>> p(3.5)
608
+ -0.34732142857143039 # may vary
609
+ >>> p(10)
610
+ 22.579365079365115 # may vary
611
+
612
+ High-order polynomials may oscillate wildly:
613
+
614
+ >>> with warnings.catch_warnings():
615
+ ... warnings.simplefilter('ignore', np.exceptions.RankWarning)
616
+ ... p30 = np.poly1d(np.polyfit(x, y, 30))
617
+ ...
618
+ >>> p30(4)
619
+ -0.80000000000000204 # may vary
620
+ >>> p30(5)
621
+ -0.99999999999999445 # may vary
622
+ >>> p30(4.5)
623
+ -0.10547061179440398 # may vary
624
+
625
+ Illustration:
626
+
627
+ >>> import matplotlib.pyplot as plt
628
+ >>> xp = np.linspace(-2, 6, 100)
629
+ >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
630
+ >>> plt.ylim(-2,2)
631
+ (-2, 2)
632
+ >>> plt.show()
633
+
634
+ """
635
+ order = int(deg) + 1
636
+ x = NX.asarray(x) + 0.0
637
+ y = NX.asarray(y) + 0.0
638
+
639
+ # check arguments.
640
+ if deg < 0:
641
+ raise ValueError("expected deg >= 0")
642
+ if x.ndim != 1:
643
+ raise TypeError("expected 1D vector for x")
644
+ if x.size == 0:
645
+ raise TypeError("expected non-empty vector for x")
646
+ if y.ndim < 1 or y.ndim > 2:
647
+ raise TypeError("expected 1D or 2D array for y")
648
+ if x.shape[0] != y.shape[0]:
649
+ raise TypeError("expected x and y to have same length")
650
+
651
+ # set rcond
652
+ if rcond is None:
653
+ rcond = len(x) * finfo(x.dtype).eps
654
+
655
+ # set up least squares equation for powers of x
656
+ lhs = vander(x, order)
657
+ rhs = y
658
+
659
+ # apply weighting
660
+ if w is not None:
661
+ w = NX.asarray(w) + 0.0
662
+ if w.ndim != 1:
663
+ raise TypeError("expected a 1-d array for weights")
664
+ if w.shape[0] != y.shape[0]:
665
+ raise TypeError("expected w and y to have the same length")
666
+ lhs *= w[:, NX.newaxis]
667
+ if rhs.ndim == 2:
668
+ rhs *= w[:, NX.newaxis]
669
+ else:
670
+ rhs *= w
671
+
672
+ # scale lhs to improve condition number and solve
673
+ scale = NX.sqrt((lhs * lhs).sum(axis=0))
674
+ lhs /= scale
675
+ c, resids, rank, s = lstsq(lhs, rhs, rcond)
676
+ c = (c.T / scale).T # broadcast scale coefficients
677
+
678
+ # warn on rank reduction, which indicates an ill conditioned matrix
679
+ if rank != order and not full:
680
+ msg = "Polyfit may be poorly conditioned"
681
+ warnings.warn(msg, RankWarning, stacklevel=2)
682
+
683
+ if full:
684
+ return c, resids, rank, s, rcond
685
+ elif cov:
686
+ Vbase = inv(dot(lhs.T, lhs))
687
+ Vbase /= NX.outer(scale, scale)
688
+ if cov == "unscaled":
689
+ fac = 1
690
+ else:
691
+ if len(x) <= order:
692
+ raise ValueError("the number of data points must exceed order "
693
+ "to scale the covariance matrix")
694
+ # note, this used to be: fac = resids / (len(x) - order - 2.0)
695
+ # it was decided that the "- 2" (originally justified by "Bayesian
696
+ # uncertainty analysis") is not what the user expects
697
+ # (see gh-11196 and gh-11197)
698
+ fac = resids / (len(x) - order)
699
+ if y.ndim == 1:
700
+ return c, Vbase * fac
701
+ else:
702
+ return c, Vbase[:, :, NX.newaxis] * fac
703
+ else:
704
+ return c
705
+
706
+
707
+ def _polyval_dispatcher(p, x):
708
+ return (p, x)
709
+
710
+
711
+ @array_function_dispatch(_polyval_dispatcher)
712
+ def polyval(p, x):
713
+ """
714
+ Evaluate a polynomial at specific values.
715
+
716
+ .. note::
717
+ This forms part of the old polynomial API. Since version 1.4, the
718
+ new polynomial API defined in `numpy.polynomial` is preferred.
719
+ A summary of the differences can be found in the
720
+ :doc:`transition guide </reference/routines.polynomials>`.
721
+
722
+ If `p` is of length N, this function returns the value::
723
+
724
+ p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]
725
+
726
+ If `x` is a sequence, then ``p(x)`` is returned for each element of ``x``.
727
+ If `x` is another polynomial then the composite polynomial ``p(x(t))``
728
+ is returned.
729
+
730
+ Parameters
731
+ ----------
732
+ p : array_like or poly1d object
733
+ 1D array of polynomial coefficients (including coefficients equal
734
+ to zero) from highest degree to the constant term, or an
735
+ instance of poly1d.
736
+ x : array_like or poly1d object
737
+ A number, an array of numbers, or an instance of poly1d, at
738
+ which to evaluate `p`.
739
+
740
+ Returns
741
+ -------
742
+ values : ndarray or poly1d
743
+ If `x` is a poly1d instance, the result is the composition of the two
744
+ polynomials, i.e., `x` is "substituted" in `p` and the simplified
745
+ result is returned. In addition, the type of `x` - array_like or
746
+ poly1d - governs the type of the output: `x` array_like => `values`
747
+ array_like, `x` a poly1d object => `values` is also.
748
+
749
+ See Also
750
+ --------
751
+ poly1d: A polynomial class.
752
+
753
+ Notes
754
+ -----
755
+ Horner's scheme [1]_ is used to evaluate the polynomial. Even so,
756
+ for polynomials of high degree the values may be inaccurate due to
757
+ rounding errors. Use carefully.
758
+
759
+ If `x` is a subtype of `ndarray` the return value will be of the same type.
760
+
761
+ References
762
+ ----------
763
+ .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng.
764
+ trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand
765
+ Reinhold Co., 1985, pg. 720.
766
+
767
+ Examples
768
+ --------
769
+ >>> import numpy as np
770
+ >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
771
+ 76
772
+ >>> np.polyval([3,0,1], np.poly1d(5))
773
+ poly1d([76])
774
+ >>> np.polyval(np.poly1d([3,0,1]), 5)
775
+ 76
776
+ >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
777
+ poly1d([76])
778
+
779
+ """
780
+ p = NX.asarray(p)
781
+ if isinstance(x, poly1d):
782
+ y = 0
783
+ else:
784
+ x = NX.asanyarray(x)
785
+ y = NX.zeros_like(x)
786
+ for pv in p:
787
+ y = y * x + pv
788
+ return y
789
+
790
+
791
+ def _binary_op_dispatcher(a1, a2):
792
+ return (a1, a2)
793
+
794
+
795
+ @array_function_dispatch(_binary_op_dispatcher)
796
+ def polyadd(a1, a2):
797
+ """
798
+ Find the sum of two polynomials.
799
+
800
+ .. note::
801
+ This forms part of the old polynomial API. Since version 1.4, the
802
+ new polynomial API defined in `numpy.polynomial` is preferred.
803
+ A summary of the differences can be found in the
804
+ :doc:`transition guide </reference/routines.polynomials>`.
805
+
806
+ Returns the polynomial resulting from the sum of two input polynomials.
807
+ Each input must be either a poly1d object or a 1D sequence of polynomial
808
+ coefficients, from highest to lowest degree.
809
+
810
+ Parameters
811
+ ----------
812
+ a1, a2 : array_like or poly1d object
813
+ Input polynomials.
814
+
815
+ Returns
816
+ -------
817
+ out : ndarray or poly1d object
818
+ The sum of the inputs. If either input is a poly1d object, then the
819
+ output is also a poly1d object. Otherwise, it is a 1D array of
820
+ polynomial coefficients from highest to lowest degree.
821
+
822
+ See Also
823
+ --------
824
+ poly1d : A one-dimensional polynomial class.
825
+ poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval
826
+
827
+ Examples
828
+ --------
829
+ >>> import numpy as np
830
+ >>> np.polyadd([1, 2], [9, 5, 4])
831
+ array([9, 6, 6])
832
+
833
+ Using poly1d objects:
834
+
835
+ >>> p1 = np.poly1d([1, 2])
836
+ >>> p2 = np.poly1d([9, 5, 4])
837
+ >>> print(p1)
838
+ 1 x + 2
839
+ >>> print(p2)
840
+ 2
841
+ 9 x + 5 x + 4
842
+ >>> print(np.polyadd(p1, p2))
843
+ 2
844
+ 9 x + 6 x + 6
845
+
846
+ """
847
+ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
848
+ a1 = atleast_1d(a1)
849
+ a2 = atleast_1d(a2)
850
+ diff = len(a2) - len(a1)
851
+ if diff == 0:
852
+ val = a1 + a2
853
+ elif diff > 0:
854
+ zr = NX.zeros(diff, a1.dtype)
855
+ val = NX.concatenate((zr, a1)) + a2
856
+ else:
857
+ zr = NX.zeros(abs(diff), a2.dtype)
858
+ val = a1 + NX.concatenate((zr, a2))
859
+ if truepoly:
860
+ val = poly1d(val)
861
+ return val
862
+
863
+
864
+ @array_function_dispatch(_binary_op_dispatcher)
865
+ def polysub(a1, a2):
866
+ """
867
+ Difference (subtraction) of two polynomials.
868
+
869
+ .. note::
870
+ This forms part of the old polynomial API. Since version 1.4, the
871
+ new polynomial API defined in `numpy.polynomial` is preferred.
872
+ A summary of the differences can be found in the
873
+ :doc:`transition guide </reference/routines.polynomials>`.
874
+
875
+ Given two polynomials `a1` and `a2`, returns ``a1 - a2``.
876
+ `a1` and `a2` can be either array_like sequences of the polynomials'
877
+ coefficients (including coefficients equal to zero), or `poly1d` objects.
878
+
879
+ Parameters
880
+ ----------
881
+ a1, a2 : array_like or poly1d
882
+ Minuend and subtrahend polynomials, respectively.
883
+
884
+ Returns
885
+ -------
886
+ out : ndarray or poly1d
887
+ Array or `poly1d` object of the difference polynomial's coefficients.
888
+
889
+ See Also
890
+ --------
891
+ polyval, polydiv, polymul, polyadd
892
+
893
+ Examples
894
+ --------
895
+
896
+ .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)
897
+
898
+ >>> import numpy as np
899
+
900
+ >>> np.polysub([2, 10, -2], [3, 10, -4])
901
+ array([-1, 0, 2])
902
+
903
+ """
904
+ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
905
+ a1 = atleast_1d(a1)
906
+ a2 = atleast_1d(a2)
907
+ diff = len(a2) - len(a1)
908
+ if diff == 0:
909
+ val = a1 - a2
910
+ elif diff > 0:
911
+ zr = NX.zeros(diff, a1.dtype)
912
+ val = NX.concatenate((zr, a1)) - a2
913
+ else:
914
+ zr = NX.zeros(abs(diff), a2.dtype)
915
+ val = a1 - NX.concatenate((zr, a2))
916
+ if truepoly:
917
+ val = poly1d(val)
918
+ return val
919
+
920
+
921
+ @array_function_dispatch(_binary_op_dispatcher)
922
+ def polymul(a1, a2):
923
+ """
924
+ Find the product of two polynomials.
925
+
926
+ .. note::
927
+ This forms part of the old polynomial API. Since version 1.4, the
928
+ new polynomial API defined in `numpy.polynomial` is preferred.
929
+ A summary of the differences can be found in the
930
+ :doc:`transition guide </reference/routines.polynomials>`.
931
+
932
+ Finds the polynomial resulting from the multiplication of the two input
933
+ polynomials. Each input must be either a poly1d object or a 1D sequence
934
+ of polynomial coefficients, from highest to lowest degree.
935
+
936
+ Parameters
937
+ ----------
938
+ a1, a2 : array_like or poly1d object
939
+ Input polynomials.
940
+
941
+ Returns
942
+ -------
943
+ out : ndarray or poly1d object
944
+ The polynomial resulting from the multiplication of the inputs. If
945
+ either inputs is a poly1d object, then the output is also a poly1d
946
+ object. Otherwise, it is a 1D array of polynomial coefficients from
947
+ highest to lowest degree.
948
+
949
+ See Also
950
+ --------
951
+ poly1d : A one-dimensional polynomial class.
952
+ poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval
953
+ convolve : Array convolution. Same output as polymul, but has parameter
954
+ for overlap mode.
955
+
956
+ Examples
957
+ --------
958
+ >>> import numpy as np
959
+ >>> np.polymul([1, 2, 3], [9, 5, 1])
960
+ array([ 9, 23, 38, 17, 3])
961
+
962
+ Using poly1d objects:
963
+
964
+ >>> p1 = np.poly1d([1, 2, 3])
965
+ >>> p2 = np.poly1d([9, 5, 1])
966
+ >>> print(p1)
967
+ 2
968
+ 1 x + 2 x + 3
969
+ >>> print(p2)
970
+ 2
971
+ 9 x + 5 x + 1
972
+ >>> print(np.polymul(p1, p2))
973
+ 4 3 2
974
+ 9 x + 23 x + 38 x + 17 x + 3
975
+
976
+ """
977
+ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
978
+ a1, a2 = poly1d(a1), poly1d(a2)
979
+ val = NX.convolve(a1, a2)
980
+ if truepoly:
981
+ val = poly1d(val)
982
+ return val
983
+
984
+
985
+ def _polydiv_dispatcher(u, v):
986
+ return (u, v)
987
+
988
+
989
+ @array_function_dispatch(_polydiv_dispatcher)
990
+ def polydiv(u, v):
991
+ """
992
+ Returns the quotient and remainder of polynomial division.
993
+
994
+ .. note::
995
+ This forms part of the old polynomial API. Since version 1.4, the
996
+ new polynomial API defined in `numpy.polynomial` is preferred.
997
+ A summary of the differences can be found in the
998
+ :doc:`transition guide </reference/routines.polynomials>`.
999
+
1000
+ The input arrays are the coefficients (including any coefficients
1001
+ equal to zero) of the "numerator" (dividend) and "denominator"
1002
+ (divisor) polynomials, respectively.
1003
+
1004
+ Parameters
1005
+ ----------
1006
+ u : array_like or poly1d
1007
+ Dividend polynomial's coefficients.
1008
+
1009
+ v : array_like or poly1d
1010
+ Divisor polynomial's coefficients.
1011
+
1012
+ Returns
1013
+ -------
1014
+ q : ndarray
1015
+ Coefficients, including those equal to zero, of the quotient.
1016
+ r : ndarray
1017
+ Coefficients, including those equal to zero, of the remainder.
1018
+
1019
+ See Also
1020
+ --------
1021
+ poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub
1022
+ polyval
1023
+
1024
+ Notes
1025
+ -----
1026
+ Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need
1027
+ not equal `v.ndim`. In other words, all four possible combinations -
1028
+ ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``,
1029
+ ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work.
1030
+
1031
+ Examples
1032
+ --------
1033
+
1034
+ .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25
1035
+
1036
+ >>> import numpy as np
1037
+
1038
+ >>> x = np.array([3.0, 5.0, 2.0])
1039
+ >>> y = np.array([2.0, 1.0])
1040
+ >>> np.polydiv(x, y)
1041
+ (array([1.5 , 1.75]), array([0.25]))
1042
+
1043
+ """
1044
+ truepoly = (isinstance(u, poly1d) or isinstance(v, poly1d))
1045
+ u = atleast_1d(u) + 0.0
1046
+ v = atleast_1d(v) + 0.0
1047
+ # w has the common type
1048
+ w = u[0] + v[0]
1049
+ m = len(u) - 1
1050
+ n = len(v) - 1
1051
+ scale = 1. / v[0]
1052
+ q = NX.zeros((max(m - n + 1, 1),), w.dtype)
1053
+ r = u.astype(w.dtype)
1054
+ for k in range(m - n + 1):
1055
+ d = scale * r[k]
1056
+ q[k] = d
1057
+ r[k:k + n + 1] -= d * v
1058
+ while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1):
1059
+ r = r[1:]
1060
+ if truepoly:
1061
+ return poly1d(q), poly1d(r)
1062
+ return q, r
1063
+
1064
+
1065
+ _poly_mat = re.compile(r"\*\*([0-9]*)")
1066
+ def _raise_power(astr, wrap=70):
1067
+ n = 0
1068
+ line1 = ''
1069
+ line2 = ''
1070
+ output = ' '
1071
+ while True:
1072
+ mat = _poly_mat.search(astr, n)
1073
+ if mat is None:
1074
+ break
1075
+ span = mat.span()
1076
+ power = mat.groups()[0]
1077
+ partstr = astr[n:span[0]]
1078
+ n = span[1]
1079
+ toadd2 = partstr + ' ' * (len(power) - 1)
1080
+ toadd1 = ' ' * (len(partstr) - 1) + power
1081
+ if ((len(line2) + len(toadd2) > wrap) or
1082
+ (len(line1) + len(toadd1) > wrap)):
1083
+ output += line1 + "\n" + line2 + "\n "
1084
+ line1 = toadd1
1085
+ line2 = toadd2
1086
+ else:
1087
+ line2 += partstr + ' ' * (len(power) - 1)
1088
+ line1 += ' ' * (len(partstr) - 1) + power
1089
+ output += line1 + "\n" + line2
1090
+ return output + astr[n:]
1091
+
1092
+
1093
+ @set_module('numpy')
1094
+ class poly1d:
1095
+ """
1096
+ A one-dimensional polynomial class.
1097
+
1098
+ .. note::
1099
+ This forms part of the old polynomial API. Since version 1.4, the
1100
+ new polynomial API defined in `numpy.polynomial` is preferred.
1101
+ A summary of the differences can be found in the
1102
+ :doc:`transition guide </reference/routines.polynomials>`.
1103
+
1104
+ A convenience class, used to encapsulate "natural" operations on
1105
+ polynomials so that said operations may take on their customary
1106
+ form in code (see Examples).
1107
+
1108
+ Parameters
1109
+ ----------
1110
+ c_or_r : array_like
1111
+ The polynomial's coefficients, in decreasing powers, or if
1112
+ the value of the second parameter is True, the polynomial's
1113
+ roots (values where the polynomial evaluates to 0). For example,
1114
+ ``poly1d([1, 2, 3])`` returns an object that represents
1115
+ :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns
1116
+ one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`.
1117
+ r : bool, optional
1118
+ If True, `c_or_r` specifies the polynomial's roots; the default
1119
+ is False.
1120
+ variable : str, optional
1121
+ Changes the variable used when printing `p` from `x` to `variable`
1122
+ (see Examples).
1123
+
1124
+ Examples
1125
+ --------
1126
+ >>> import numpy as np
1127
+
1128
+ Construct the polynomial :math:`x^2 + 2x + 3`:
1129
+
1130
+ >>> import numpy as np
1131
+
1132
+ >>> p = np.poly1d([1, 2, 3])
1133
+ >>> print(np.poly1d(p))
1134
+ 2
1135
+ 1 x + 2 x + 3
1136
+
1137
+ Evaluate the polynomial at :math:`x = 0.5`:
1138
+
1139
+ >>> p(0.5)
1140
+ 4.25
1141
+
1142
+ Find the roots:
1143
+
1144
+ >>> p.r
1145
+ array([-1.+1.41421356j, -1.-1.41421356j])
1146
+ >>> p(p.r)
1147
+ array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary
1148
+
1149
+ These numbers in the previous line represent (0, 0) to machine precision
1150
+
1151
+ Show the coefficients:
1152
+
1153
+ >>> p.c
1154
+ array([1, 2, 3])
1155
+
1156
+ Display the order (the leading zero-coefficients are removed):
1157
+
1158
+ >>> p.order
1159
+ 2
1160
+
1161
+ Show the coefficient of the k-th power in the polynomial
1162
+ (which is equivalent to ``p.c[-(i+1)]``):
1163
+
1164
+ >>> p[1]
1165
+ 2
1166
+
1167
+ Polynomials can be added, subtracted, multiplied, and divided
1168
+ (returns quotient and remainder):
1169
+
1170
+ >>> p * p
1171
+ poly1d([ 1, 4, 10, 12, 9])
1172
+
1173
+ >>> (p**3 + 4) / p
1174
+ (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.]))
1175
+
1176
+ ``asarray(p)`` gives the coefficient array, so polynomials can be
1177
+ used in all functions that accept arrays:
1178
+
1179
+ >>> p**2 # square of polynomial
1180
+ poly1d([ 1, 4, 10, 12, 9])
1181
+
1182
+ >>> np.square(p) # square of individual coefficients
1183
+ array([1, 4, 9])
1184
+
1185
+ The variable used in the string representation of `p` can be modified,
1186
+ using the `variable` parameter:
1187
+
1188
+ >>> p = np.poly1d([1,2,3], variable='z')
1189
+ >>> print(p)
1190
+ 2
1191
+ 1 z + 2 z + 3
1192
+
1193
+ Construct a polynomial from its roots:
1194
+
1195
+ >>> np.poly1d([1, 2], True)
1196
+ poly1d([ 1., -3., 2.])
1197
+
1198
+ This is the same polynomial as obtained by:
1199
+
1200
+ >>> np.poly1d([1, -1]) * np.poly1d([1, -2])
1201
+ poly1d([ 1, -3, 2])
1202
+
1203
+ """
1204
+ __hash__ = None
1205
+
1206
+ @property
1207
+ def coeffs(self):
1208
+ """ The polynomial coefficients """
1209
+ return self._coeffs
1210
+
1211
+ @coeffs.setter
1212
+ def coeffs(self, value):
1213
+ # allowing this makes p.coeffs *= 2 legal
1214
+ if value is not self._coeffs:
1215
+ raise AttributeError("Cannot set attribute")
1216
+
1217
+ @property
1218
+ def variable(self):
1219
+ """ The name of the polynomial variable """
1220
+ return self._variable
1221
+
1222
+ # calculated attributes
1223
+ @property
1224
+ def order(self):
1225
+ """ The order or degree of the polynomial """
1226
+ return len(self._coeffs) - 1
1227
+
1228
+ @property
1229
+ def roots(self):
1230
+ """ The roots of the polynomial, where self(x) == 0 """
1231
+ return roots(self._coeffs)
1232
+
1233
+ # our internal _coeffs property need to be backed by __dict__['coeffs'] for
1234
+ # scipy to work correctly.
1235
+ @property
1236
+ def _coeffs(self):
1237
+ return self.__dict__['coeffs']
1238
+
1239
+ @_coeffs.setter
1240
+ def _coeffs(self, coeffs):
1241
+ self.__dict__['coeffs'] = coeffs
1242
+
1243
+ # alias attributes
1244
+ r = roots
1245
+ c = coef = coefficients = coeffs
1246
+ o = order
1247
+
1248
+ def __init__(self, c_or_r, r=False, variable=None):
1249
+ if isinstance(c_or_r, poly1d):
1250
+ self._variable = c_or_r._variable
1251
+ self._coeffs = c_or_r._coeffs
1252
+
1253
+ if set(c_or_r.__dict__) - set(self.__dict__):
1254
+ msg = ("In the future extra properties will not be copied "
1255
+ "across when constructing one poly1d from another")
1256
+ warnings.warn(msg, FutureWarning, stacklevel=2)
1257
+ self.__dict__.update(c_or_r.__dict__)
1258
+
1259
+ if variable is not None:
1260
+ self._variable = variable
1261
+ return
1262
+ if r:
1263
+ c_or_r = poly(c_or_r)
1264
+ c_or_r = atleast_1d(c_or_r)
1265
+ if c_or_r.ndim > 1:
1266
+ raise ValueError("Polynomial must be 1d only.")
1267
+ c_or_r = trim_zeros(c_or_r, trim='f')
1268
+ if len(c_or_r) == 0:
1269
+ c_or_r = NX.array([0], dtype=c_or_r.dtype)
1270
+ self._coeffs = c_or_r
1271
+ if variable is None:
1272
+ variable = 'x'
1273
+ self._variable = variable
1274
+
1275
+ def __array__(self, t=None, copy=None):
1276
+ if t:
1277
+ return NX.asarray(self.coeffs, t, copy=copy)
1278
+ else:
1279
+ return NX.asarray(self.coeffs, copy=copy)
1280
+
1281
+ def __repr__(self):
1282
+ vals = repr(self.coeffs)
1283
+ vals = vals[6:-1]
1284
+ return f"poly1d({vals})"
1285
+
1286
+ def __len__(self):
1287
+ return self.order
1288
+
1289
+ def __str__(self):
1290
+ thestr = "0"
1291
+ var = self.variable
1292
+
1293
+ # Remove leading zeros
1294
+ coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)]
1295
+ N = len(coeffs) - 1
1296
+
1297
+ def fmt_float(q):
1298
+ s = f'{q:.4g}'
1299
+ s = s.removesuffix('.0000')
1300
+ return s
1301
+
1302
+ for k, coeff in enumerate(coeffs):
1303
+ if not iscomplex(coeff):
1304
+ coefstr = fmt_float(real(coeff))
1305
+ elif real(coeff) == 0:
1306
+ coefstr = f'{fmt_float(imag(coeff))}j'
1307
+ else:
1308
+ coefstr = f'({fmt_float(real(coeff))} + {fmt_float(imag(coeff))}j)'
1309
+
1310
+ power = (N - k)
1311
+ if power == 0:
1312
+ if coefstr != '0':
1313
+ newstr = f'{coefstr}'
1314
+ elif k == 0:
1315
+ newstr = '0'
1316
+ else:
1317
+ newstr = ''
1318
+ elif power == 1:
1319
+ if coefstr == '0':
1320
+ newstr = ''
1321
+ elif coefstr == 'b':
1322
+ newstr = var
1323
+ else:
1324
+ newstr = f'{coefstr} {var}'
1325
+ elif coefstr == '0':
1326
+ newstr = ''
1327
+ elif coefstr == 'b':
1328
+ newstr = '%s**%d' % (var, power,)
1329
+ else:
1330
+ newstr = '%s %s**%d' % (coefstr, var, power)
1331
+
1332
+ if k > 0:
1333
+ if newstr != '':
1334
+ if newstr.startswith('-'):
1335
+ thestr = f"{thestr} - {newstr[1:]}"
1336
+ else:
1337
+ thestr = f"{thestr} + {newstr}"
1338
+ else:
1339
+ thestr = newstr
1340
+ return _raise_power(thestr)
1341
+
1342
+ def __call__(self, val):
1343
+ return polyval(self.coeffs, val)
1344
+
1345
+ def __neg__(self):
1346
+ return poly1d(-self.coeffs)
1347
+
1348
+ def __pos__(self):
1349
+ return self
1350
+
1351
+ def __mul__(self, other):
1352
+ if isscalar(other):
1353
+ return poly1d(self.coeffs * other)
1354
+ else:
1355
+ other = poly1d(other)
1356
+ return poly1d(polymul(self.coeffs, other.coeffs))
1357
+
1358
+ def __rmul__(self, other):
1359
+ if isscalar(other):
1360
+ return poly1d(other * self.coeffs)
1361
+ else:
1362
+ other = poly1d(other)
1363
+ return poly1d(polymul(self.coeffs, other.coeffs))
1364
+
1365
+ def __add__(self, other):
1366
+ other = poly1d(other)
1367
+ return poly1d(polyadd(self.coeffs, other.coeffs))
1368
+
1369
+ def __radd__(self, other):
1370
+ other = poly1d(other)
1371
+ return poly1d(polyadd(self.coeffs, other.coeffs))
1372
+
1373
+ def __pow__(self, val):
1374
+ if not isscalar(val) or int(val) != val or val < 0:
1375
+ raise ValueError("Power to non-negative integers only.")
1376
+ res = [1]
1377
+ for _ in range(val):
1378
+ res = polymul(self.coeffs, res)
1379
+ return poly1d(res)
1380
+
1381
+ def __sub__(self, other):
1382
+ other = poly1d(other)
1383
+ return poly1d(polysub(self.coeffs, other.coeffs))
1384
+
1385
+ def __rsub__(self, other):
1386
+ other = poly1d(other)
1387
+ return poly1d(polysub(other.coeffs, self.coeffs))
1388
+
1389
+ def __truediv__(self, other):
1390
+ if isscalar(other):
1391
+ return poly1d(self.coeffs / other)
1392
+ else:
1393
+ other = poly1d(other)
1394
+ return polydiv(self, other)
1395
+
1396
+ def __rtruediv__(self, other):
1397
+ if isscalar(other):
1398
+ return poly1d(other / self.coeffs)
1399
+ else:
1400
+ other = poly1d(other)
1401
+ return polydiv(other, self)
1402
+
1403
+ def __eq__(self, other):
1404
+ if not isinstance(other, poly1d):
1405
+ return NotImplemented
1406
+ if self.coeffs.shape != other.coeffs.shape:
1407
+ return False
1408
+ return (self.coeffs == other.coeffs).all()
1409
+
1410
+ def __ne__(self, other):
1411
+ if not isinstance(other, poly1d):
1412
+ return NotImplemented
1413
+ return not self.__eq__(other)
1414
+
1415
+ def __getitem__(self, val):
1416
+ ind = self.order - val
1417
+ if val > self.order:
1418
+ return self.coeffs.dtype.type(0)
1419
+ if val < 0:
1420
+ return self.coeffs.dtype.type(0)
1421
+ return self.coeffs[ind]
1422
+
1423
+ def __setitem__(self, key, val):
1424
+ ind = self.order - key
1425
+ if key < 0:
1426
+ raise ValueError("Does not support negative powers.")
1427
+ if key > self.order:
1428
+ zr = NX.zeros(key - self.order, self.coeffs.dtype)
1429
+ self._coeffs = NX.concatenate((zr, self.coeffs))
1430
+ ind = 0
1431
+ self._coeffs[ind] = val
1432
+
1433
+ def __iter__(self):
1434
+ return iter(self.coeffs)
1435
+
1436
+ def integ(self, m=1, k=0):
1437
+ """
1438
+ Return an antiderivative (indefinite integral) of this polynomial.
1439
+
1440
+ Refer to `polyint` for full documentation.
1441
+
1442
+ See Also
1443
+ --------
1444
+ polyint : equivalent function
1445
+
1446
+ """
1447
+ return poly1d(polyint(self.coeffs, m=m, k=k))
1448
+
1449
+ def deriv(self, m=1):
1450
+ """
1451
+ Return a derivative of this polynomial.
1452
+
1453
+ Refer to `polyder` for full documentation.
1454
+
1455
+ See Also
1456
+ --------
1457
+ polyder : equivalent function
1458
+
1459
+ """
1460
+ return poly1d(polyder(self.coeffs, m=m))
1461
+
1462
+ # Stuff to do on module import
1463
+
1464
+
1465
+ warnings.simplefilter('always', RankWarning)