nucleardatapy 0.2.0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/__init__.py +3 -1
- nucleardatapy/astro/setup_gw.py +18 -18
- nucleardatapy/astro/setup_mr.py +9 -1
- nucleardatapy/astro/setup_mup.py +10 -10
- nucleardatapy/corr/setup_EsymDen.py +0 -5
- nucleardatapy/corr/setup_EsymLsym.py +50 -17
- nucleardatapy/corr/setup_KsatQsat.py +170 -69
- nucleardatapy/crust/setup_crust.py +403 -120
- nucleardatapy/data/astro/NICER/J0740+6620.dat +1 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK22.dat +83 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK24.dat +74 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK25.dat +130 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK26.dat +81 -0
- nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-NM.dat → 2006-BHF-Av18-E2A-NM.dat} +8 -8
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-SM.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.2.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.4.dat +11 -0
- nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
- nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
- nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
- nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
- nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
- nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
- nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +0 -4
- nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +0 -1
- nucleardatapy/env.py +1 -1
- nucleardatapy/eos/__init__.py +4 -3
- nucleardatapy/eos/setupCC.py +429 -0
- nucleardatapy/eos/setup_am.py +71 -34
- nucleardatapy/eos/setup_am_Beq.py +48 -17
- nucleardatapy/eos/setup_am_Leq.py +81 -50
- nucleardatapy/fig/__init__.py +29 -7
- nucleardatapy/fig/astro_setupGW_fig.py +5 -5
- nucleardatapy/fig/astro_setupMR_fig.py +12 -10
- nucleardatapy/fig/astro_setupMasses_fig.py +4 -4
- nucleardatapy/fig/astro_setupMtov_fig.py +4 -4
- nucleardatapy/fig/astro_setupMup_fig.py +5 -5
- nucleardatapy/fig/corr_setupEsymDen_fig.py +12 -5
- nucleardatapy/fig/corr_setupEsymLsym_fig.py +18 -5
- nucleardatapy/fig/corr_setupKsatQsat_fig.py +19 -15
- nucleardatapy/fig/crust_setupCrust_fig.py +7 -7
- nucleardatapy/fig/eos_setupAMBeq_fig.py +1338 -64
- nucleardatapy/fig/eos_setupAMLeq_fig.py +200 -68
- nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +364 -0
- nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +337 -0
- nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +343 -0
- nucleardatapy/fig/eos_setupAM_fig.py +470 -47
- nucleardatapy/fig/eos_setupCC_fig.py +240 -0
- nucleardatapy/fig/hnuc_setupChart_fig.py +2 -2
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +4 -4
- nucleardatapy/fig/matter_all_fig.py +954 -0
- nucleardatapy/fig/matter_setupCheck_fig.py +103 -0
- nucleardatapy/fig/matter_setupFFGLep_fig.py +70 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +268 -104
- nucleardatapy/fig/matter_setupHIC_fig.py +98 -58
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +267 -51
- nucleardatapy/fig/matter_setupMicro_LP_fig.py +175 -78
- nucleardatapy/fig/matter_setupMicro_band_fig.py +116 -47
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +264 -34
- nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +41 -18
- nucleardatapy/fig/matter_setupMicro_fig.py +332 -98
- nucleardatapy/fig/matter_setupMicro_gap_fig.py +219 -92
- nucleardatapy/fig/matter_setupNEPStats_fig.py +96 -0
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +201 -61
- nucleardatapy/fig/matter_setupPheno_fig.py +392 -85
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +286 -0
- nucleardatapy/fig/nuc_setupBEExp_fig.py +232 -70
- nucleardatapy/fig/nuc_setupBETheo_fig.py +344 -0
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +59 -0
- nucleardatapy/fig/nuc_setupRchExp_fig.py +139 -0
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +143 -0
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +88 -0
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +133 -0
- nucleardatapy/hello.py +6 -0
- nucleardatapy/hnuc/__init__.py +3 -3
- nucleardatapy/hnuc/{setup_be1L_exp.py → setup_re1L_exp.py} +6 -6
- nucleardatapy/hnuc/{setup_be1Xi_exp.py → setup_re1Xi_exp.py} +5 -5
- nucleardatapy/hnuc/{setup_be2L_exp.py → setup_re2L_exp.py} +6 -6
- nucleardatapy/matter/__init__.py +14 -13
- nucleardatapy/matter/setup_check.py +97 -0
- nucleardatapy/matter/setup_ffg.py +72 -38
- nucleardatapy/matter/setup_hic.py +91 -74
- nucleardatapy/matter/setup_micro.py +1698 -1019
- nucleardatapy/matter/setup_micro_band.py +11 -6
- nucleardatapy/matter/setup_micro_effmass.py +55 -2
- nucleardatapy/matter/setup_micro_esym.py +39 -34
- nucleardatapy/matter/setup_micro_gap.py +26 -19
- nucleardatapy/matter/setup_micro_lp.py +20 -19
- nucleardatapy/matter/setup_nep.py +175 -92
- nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
- nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
- nucleardatapy/matter/setup_pheno.py +121 -45
- nucleardatapy/matter/setup_pheno_esym.py +14 -19
- nucleardatapy/nuc/__init__.py +2 -2
- nucleardatapy/nuc/setup_be_exp.py +345 -333
- nucleardatapy/nuc/setup_be_theo.py +366 -178
- nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
- nucleardatapy/nuc/setup_rch_exp.py +49 -6
- nucleardatapy/nuc/setup_rch_theo.py +72 -3
- nucleardatapy/nuc/{setup_nskin_exp.py → setup_rnp_exp.py} +59 -65
- nucleardatapy/nuc/{setup_nskin_theo.py → setup_rnp_theo.py} +35 -39
- nucleardatapy-1.0.0.dist-info/METADATA +553 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/RECORD +156 -128
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/WHEEL +1 -1
- tests/test_corr_setupKsatQsat.py +3 -1
- tests/test_matter_setupMicro.py +37 -10
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
- nucleardatapy/fig/matter_ENM_fig.py +0 -119
- nucleardatapy/fig/matter_ESM_fig.py +0 -119
- nucleardatapy/fig/matter_Esym_fig.py +0 -122
- nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
- nucleardatapy-0.2.0.dist-info/METADATA +0 -115
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-AM.dat → 2006-BHF-Av18-E2A-AM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-SM.dat → 2006-BHF-Av18-E2A-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-NM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-SelfEnergy.dat → 2006-BHF-Av18-GAP-NM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-SM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-SelfEnergy.dat → 2006-BHF-Av18-GAP-SM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL59.dat → 2019-MBPT-NM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL69.dat → 2019-MBPT-NM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL59.dat → 2019-MBPT-SM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL69.dat → 2019-MBPT-SM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-NM.csv → 2020-MBPT-NM.csv} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-SM.csv → 2020-MBPT-SM.csv} +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/208Pb.dat +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/48Ca.dat +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info/licenses}/LICENSE +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -1,119 +0,0 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
import matplotlib.pyplot as plt
|
|
3
|
-
|
|
4
|
-
import nucleardatapy as nuda
|
|
5
|
-
|
|
6
|
-
def matter_ENM_fig( pname, micro_mbs, pheno_models, band ):
|
|
7
|
-
"""
|
|
8
|
-
Plot nucleonic energy per particle E/A in NM.\
|
|
9
|
-
The plot is 1x2 with:\
|
|
10
|
-
[0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
|
|
11
|
-
|
|
12
|
-
:param pname: name of the figure (*.png)
|
|
13
|
-
:type pname: str.
|
|
14
|
-
:param micro_mbs: many-body (mb) approach considered.
|
|
15
|
-
:type micro_mbs: str.
|
|
16
|
-
:param pheno_models: models to run on.
|
|
17
|
-
:type pheno_models: array of str.
|
|
18
|
-
:param band: object instantiated on the reference band.
|
|
19
|
-
:type band: object.
|
|
20
|
-
|
|
21
|
-
"""
|
|
22
|
-
#
|
|
23
|
-
print(f'Plot name: {pname}')
|
|
24
|
-
#
|
|
25
|
-
fig, axs = plt.subplots(1,2)
|
|
26
|
-
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
27
|
-
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
|
|
28
|
-
#
|
|
29
|
-
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
30
|
-
axs[0].set_ylabel(r'$e_\text{NM}(n)$')
|
|
31
|
-
axs[0].set_xlim([0, 0.33])
|
|
32
|
-
axs[0].set_ylim([0, 30])
|
|
33
|
-
#
|
|
34
|
-
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
35
|
-
#axs[1].set_ylabel(r'$e_{sym}(n)$')
|
|
36
|
-
axs[1].set_xlim([0, 0.33])
|
|
37
|
-
axs[1].set_ylim([0, 30])
|
|
38
|
-
axs[1].tick_params('y', labelleft=False)
|
|
39
|
-
#
|
|
40
|
-
mb_check = []
|
|
41
|
-
k = 0
|
|
42
|
-
#
|
|
43
|
-
for mb in micro_mbs:
|
|
44
|
-
#
|
|
45
|
-
models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
46
|
-
#
|
|
47
|
-
for model in models:
|
|
48
|
-
#
|
|
49
|
-
enm = nuda.matter.setupMicro( model = model )
|
|
50
|
-
#
|
|
51
|
-
if enm.nm_e2a is not None:
|
|
52
|
-
print('mb:',mb,'model:',model)
|
|
53
|
-
if mb in mb_check:
|
|
54
|
-
if enm.marker:
|
|
55
|
-
if enm.err:
|
|
56
|
-
axs[0].errorbar( enm.nm_den, enm.nm_e2a, yerr=enm.nm_e2a_err, marker=enm.marker, linestyle=None, errorevery=enm.every, color=nuda.param.col[k] )
|
|
57
|
-
else:
|
|
58
|
-
axs[0].plot( enm.nm_den, enm.nm_e2a, marker=enm.marker, linestyle=None, markevery=enm.every, color=nuda.param.col[k] )
|
|
59
|
-
else:
|
|
60
|
-
if enm.err:
|
|
61
|
-
axs[0].errorbar( enm.nm_den, enm.nm_e2a, yerr=enm.nm_e2a_err, marker=enm.marker, linestyle=enm.linestyle, errorevery=enm.every, color=nuda.param.col[k] )
|
|
62
|
-
else:
|
|
63
|
-
axs[0].plot( enm.nm_den, enm.nm_e2a, marker=enm.marker, linestyle=enm.linestyle, markevery=enm.every, color=nuda.param.col[k] )
|
|
64
|
-
else:
|
|
65
|
-
mb_check.append(mb)
|
|
66
|
-
k += 1
|
|
67
|
-
if enm.marker:
|
|
68
|
-
if enm.err:
|
|
69
|
-
axs[0].errorbar( enm.nm_den, enm.nm_e2a, yerr=enm.nm_e2a_err, marker=enm.marker, linestyle=None, label=mb, errorevery=enm.every, color=nuda.param.col[k] )
|
|
70
|
-
else:
|
|
71
|
-
axs[0].plot( enm.nm_den, enm.nm_e2a, marker=enm.marker, linestyle=None, label=mb, markevery=enm.every, color=nuda.param.col[k] )
|
|
72
|
-
else:
|
|
73
|
-
if enm.err:
|
|
74
|
-
axs[0].errorbar( enm.nm_den, enm.nm_e2a, yerr=enm.nm_e2a_err, marker=enm.marker, linestyle=enm.linestyle, label=mb, errorevery=enm.every, color=nuda.param.col[k] )
|
|
75
|
-
else:
|
|
76
|
-
axs[0].plot( enm.nm_den, enm.nm_e2a, marker=enm.marker, linestyle=enm.linestyle, label=mb, markevery=enm.every, color=nuda.param.col[k] )
|
|
77
|
-
#axs[0].plot( esym.den, esym.esym, color=nuda.param.col[k], label=mb )
|
|
78
|
-
if nuda.env.verb: esm.print_outputs( )
|
|
79
|
-
axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
80
|
-
axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
81
|
-
axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
82
|
-
axs[0].text(0.03,2,'microscopic models',fontsize='10')
|
|
83
|
-
#axs[0].legend(loc='upper left',fontsize='8', ncol=3)
|
|
84
|
-
#
|
|
85
|
-
model_check = []
|
|
86
|
-
k = 0
|
|
87
|
-
#
|
|
88
|
-
for model in pheno_models:
|
|
89
|
-
#
|
|
90
|
-
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
91
|
-
#
|
|
92
|
-
for param in params:
|
|
93
|
-
#
|
|
94
|
-
enm = nuda.matter.setupPheno( model = model, param = param )
|
|
95
|
-
#
|
|
96
|
-
if enm.nm_e2a is not None:
|
|
97
|
-
print('model:',model,' param:',param)
|
|
98
|
-
if model in model_check:
|
|
99
|
-
axs[1].plot( enm.nm_den, enm.nm_e2a, color=nuda.param.col[k] )
|
|
100
|
-
else:
|
|
101
|
-
model_check.append(model)
|
|
102
|
-
k += 1
|
|
103
|
-
axs[1].plot( enm.nm_den, enm.nm_e2a, color=nuda.param.col[k], label=model )
|
|
104
|
-
#pheno.label=None
|
|
105
|
-
#axs[1].plot( esym.den, esym.esym, label=esym.label )
|
|
106
|
-
if nuda.env.verb: esym.print_outputs( )
|
|
107
|
-
axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
108
|
-
axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
109
|
-
axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
110
|
-
axs[1].text(0.03,2,'phenomenological models',fontsize='10')
|
|
111
|
-
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
112
|
-
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
113
|
-
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
114
|
-
#
|
|
115
|
-
#plt.tight_layout()
|
|
116
|
-
if pname is not None:
|
|
117
|
-
plt.savefig(pname, dpi=200)
|
|
118
|
-
plt.close()
|
|
119
|
-
#
|
|
@@ -1,119 +0,0 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
import matplotlib.pyplot as plt
|
|
3
|
-
|
|
4
|
-
import nucleardatapy as nuda
|
|
5
|
-
|
|
6
|
-
def matter_ESM_fig( pname, micro_mbs, pheno_models, band ):
|
|
7
|
-
"""
|
|
8
|
-
Plot nucleonic energy per particle E/A in matter.\
|
|
9
|
-
The plot is 1x2 with:\
|
|
10
|
-
[0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
|
|
11
|
-
|
|
12
|
-
:param pname: name of the figure (*.png)
|
|
13
|
-
:type pname: str.
|
|
14
|
-
:param micro_mbs: many-body (mb) approach considered.
|
|
15
|
-
:type micro_mbs: str.
|
|
16
|
-
:param pheno_models: models to run on.
|
|
17
|
-
:type pheno_models: array of str.
|
|
18
|
-
:param band: object instantiated on the reference band.
|
|
19
|
-
:type band: object.
|
|
20
|
-
|
|
21
|
-
"""
|
|
22
|
-
#
|
|
23
|
-
print(f'Plot name: {pname}')
|
|
24
|
-
#
|
|
25
|
-
fig, axs = plt.subplots(1,2)
|
|
26
|
-
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
27
|
-
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
|
|
28
|
-
#
|
|
29
|
-
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
30
|
-
axs[0].set_ylabel(r'$e_\text{SM}(n)$')
|
|
31
|
-
axs[0].set_xlim([0, 0.33])
|
|
32
|
-
axs[0].set_ylim([-25, 5])
|
|
33
|
-
#
|
|
34
|
-
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
35
|
-
#axs[1].set_ylabel(r'$e_{sym}(n)$')
|
|
36
|
-
axs[1].set_xlim([0, 0.33])
|
|
37
|
-
axs[1].set_ylim([-25, 5])
|
|
38
|
-
axs[1].tick_params('y', labelleft=False)
|
|
39
|
-
#
|
|
40
|
-
mb_check = []
|
|
41
|
-
k = 0
|
|
42
|
-
#
|
|
43
|
-
for mb in micro_mbs:
|
|
44
|
-
#
|
|
45
|
-
models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
46
|
-
#
|
|
47
|
-
for model in models:
|
|
48
|
-
#
|
|
49
|
-
esm = nuda.matter.setupMicro( model = model )
|
|
50
|
-
#
|
|
51
|
-
if esm.sm_e2a is not None:
|
|
52
|
-
print('mb:',mb,'model:',model)
|
|
53
|
-
if mb in mb_check:
|
|
54
|
-
if esm.marker:
|
|
55
|
-
if esm.err:
|
|
56
|
-
axs[0].errorbar( esm.sm_den, esm.sm_e2a, yerr=esm.sm_e2a_err, marker=esm.marker, linestyle=None, errorevery=esm.every, color=nuda.param.col[k] )
|
|
57
|
-
else:
|
|
58
|
-
axs[0].plot( esm.sm_den, esm.sm_e2a, marker=esm.marker, linestyle=None, markevery=esm.every, color=nuda.param.col[k] )
|
|
59
|
-
else:
|
|
60
|
-
if esm.err:
|
|
61
|
-
axs[0].errorbar( esm.sm_den, esm.sm_e2a, yerr=esm.sm_e2a_err, marker=esm.marker, linestyle=esm.linestyle, errorevery=esm.every, color=nuda.param.col[k] )
|
|
62
|
-
else:
|
|
63
|
-
axs[0].plot( esm.sm_den, esm.sm_e2a, marker=esm.marker, linestyle=esm.linestyle, markevery=esm.every, color=nuda.param.col[k] )
|
|
64
|
-
else:
|
|
65
|
-
mb_check.append(mb)
|
|
66
|
-
k += 1
|
|
67
|
-
if esm.marker:
|
|
68
|
-
if esm.err:
|
|
69
|
-
axs[0].errorbar( esm.sm_den, esm.sm_e2a, yerr=esm.sm_e2a_err, marker=esm.marker, linestyle=None, label=mb, errorevery=esm.every, color=nuda.param.col[k] )
|
|
70
|
-
else:
|
|
71
|
-
axs[0].plot( esm.sm_den, esm.sm_e2a, marker=esm.marker, linestyle=None, label=mb, markevery=esm.every, color=nuda.param.col[k] )
|
|
72
|
-
else:
|
|
73
|
-
if esm.err:
|
|
74
|
-
axs[0].errorbar( esm.sm_den, esm.sm_e2a, yerr=esm.sm_e2a_err, marker=esm.marker, linestyle=esm.linestyle, label=mb, errorevery=esm.every, color=nuda.param.col[k] )
|
|
75
|
-
else:
|
|
76
|
-
axs[0].plot( esm.sm_den, esm.sm_e2a, marker=esm.marker, linestyle=esm.linestyle, label=mb, markevery=esm.every, color=nuda.param.col[k] )
|
|
77
|
-
#axs[0].plot( esym.den, esym.esym, color=nuda.param.col[k], label=mb )
|
|
78
|
-
if nuda.env.verb: esm.print_outputs( )
|
|
79
|
-
axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
80
|
-
axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
81
|
-
axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
82
|
-
axs[0].text(0.03,2,'microscopic models',fontsize='10')
|
|
83
|
-
#axs[0].legend(loc='upper left',fontsize='8', ncol=3)
|
|
84
|
-
#
|
|
85
|
-
model_check = []
|
|
86
|
-
k = 0
|
|
87
|
-
#
|
|
88
|
-
for model in pheno_models:
|
|
89
|
-
#
|
|
90
|
-
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
91
|
-
#
|
|
92
|
-
for param in params:
|
|
93
|
-
#
|
|
94
|
-
esm = nuda.matter.setupPheno( model = model, param = param )
|
|
95
|
-
#
|
|
96
|
-
if esm.sm_e2a is not None:
|
|
97
|
-
print('model:',model,' param:',param)
|
|
98
|
-
if model in model_check:
|
|
99
|
-
axs[1].plot( esm.sm_den, esm.sm_e2a, color=nuda.param.col[k] )
|
|
100
|
-
else:
|
|
101
|
-
model_check.append(model)
|
|
102
|
-
k += 1
|
|
103
|
-
axs[1].plot( esm.sm_den, esm.sm_e2a, color=nuda.param.col[k], label=model )
|
|
104
|
-
#pheno.label=None
|
|
105
|
-
#axs[1].plot( esym.den, esym.esym, label=esym.label )
|
|
106
|
-
if nuda.env.verb: esym.print_outputs( )
|
|
107
|
-
axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
108
|
-
axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
109
|
-
axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
110
|
-
axs[1].text(0.03,2,'phenomenological models',fontsize='10')
|
|
111
|
-
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
112
|
-
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
113
|
-
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=4,frameon=False)
|
|
114
|
-
#
|
|
115
|
-
#plt.tight_layout()
|
|
116
|
-
if pname is not None:
|
|
117
|
-
plt.savefig(pname, dpi=200)
|
|
118
|
-
plt.close()
|
|
119
|
-
#
|
|
@@ -1,122 +0,0 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
import matplotlib.pyplot as plt
|
|
3
|
-
|
|
4
|
-
import nucleardatapy as nuda
|
|
5
|
-
|
|
6
|
-
def matter_Esym_fig( pname, micro_mbs, pheno_models, band ):
|
|
7
|
-
"""
|
|
8
|
-
Plot nucleonic energy per particle E/A in matter.\
|
|
9
|
-
The plot is 2x2 with:\
|
|
10
|
-
[0,0]: E/A versus den. [0,1]: E/A versus kfn.\
|
|
11
|
-
[1,0]: E/E_NRFFG versus den. [1,1]: E/E_NRFFG versus kfn.\
|
|
12
|
-
|
|
13
|
-
:param pname: name of the figure (*.png)
|
|
14
|
-
:type pname: str.
|
|
15
|
-
:param mb: many-body (mb) approach considered.
|
|
16
|
-
:type mb: str.
|
|
17
|
-
:param models: models to run on.
|
|
18
|
-
:type models: array of str.
|
|
19
|
-
:param band: object instantiated on the reference band.
|
|
20
|
-
:type band: object.
|
|
21
|
-
:param matter: can be 'SM' or 'NM'.
|
|
22
|
-
:type matter: str.
|
|
23
|
-
|
|
24
|
-
"""
|
|
25
|
-
#
|
|
26
|
-
print(f'Plot name: {pname}')
|
|
27
|
-
#
|
|
28
|
-
fig, axs = plt.subplots(1,2)
|
|
29
|
-
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
30
|
-
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
|
|
31
|
-
#
|
|
32
|
-
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
33
|
-
axs[0].set_ylabel(r'$e_\text{sym}(n)$')
|
|
34
|
-
axs[0].set_xlim([0, 0.33])
|
|
35
|
-
axs[0].set_ylim([0, 60])
|
|
36
|
-
#
|
|
37
|
-
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
38
|
-
#axs[1].set_ylabel(r'$e_{sym}(n)$')
|
|
39
|
-
axs[1].set_xlim([0, 0.33])
|
|
40
|
-
axs[1].set_ylim([0, 60])
|
|
41
|
-
axs[1].tick_params('y', labelleft=False)
|
|
42
|
-
#
|
|
43
|
-
mb_check = []
|
|
44
|
-
k = 0
|
|
45
|
-
#
|
|
46
|
-
for mb in micro_mbs:
|
|
47
|
-
#
|
|
48
|
-
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
49
|
-
#
|
|
50
|
-
for model in models:
|
|
51
|
-
#
|
|
52
|
-
esym = nuda.matter.setupMicroEsym( model = model )
|
|
53
|
-
#
|
|
54
|
-
if esym.esym is not None:
|
|
55
|
-
print('mb:',mb,'model:',model)
|
|
56
|
-
if mb in mb_check:
|
|
57
|
-
if esym.marker:
|
|
58
|
-
if esym.err:
|
|
59
|
-
axs[0].errorbar( esym.den, esym.esym, yerr=esym.esym_err, marker=esym.marker, linestyle=None, errorevery=esym.every, color=nuda.param.col[k] )
|
|
60
|
-
else:
|
|
61
|
-
axs[0].plot( esym.den, esym.esym, marker=esym.marker, linestyle=None, markevery=esym.every, color=nuda.param.col[k] )
|
|
62
|
-
else:
|
|
63
|
-
if esym.err:
|
|
64
|
-
axs[0].errorbar( esym.den, esym.esym, yerr=esym.esym_err, marker=esym.marker, linestyle=esym.linestyle, errorevery=esym.every, color=nuda.param.col[k] )
|
|
65
|
-
else:
|
|
66
|
-
axs[0].plot( esym.den, esym.esym, marker=esym.marker, linestyle=esym.linestyle, markevery=esym.every, color=nuda.param.col[k] )
|
|
67
|
-
else:
|
|
68
|
-
mb_check.append(mb)
|
|
69
|
-
k += 1
|
|
70
|
-
if esym.marker:
|
|
71
|
-
if esym.err:
|
|
72
|
-
axs[0].errorbar( esym.den, esym.esym, yerr=esym.esym_err, marker=esym.marker, linestyle=None, label=mb, errorevery=esym.every, color=nuda.param.col[k] )
|
|
73
|
-
else:
|
|
74
|
-
axs[0].plot( esym.den, esym.esym, marker=esym.marker, linestyle=None, label=mb, markevery=esym.every, color=nuda.param.col[k] )
|
|
75
|
-
else:
|
|
76
|
-
if esym.err:
|
|
77
|
-
axs[0].errorbar( esym.den, esym.esym, yerr=esym.esym_err, marker=esym.marker, linestyle=esym.linestyle, label=mb, errorevery=esym.every, color=nuda.param.col[k] )
|
|
78
|
-
else:
|
|
79
|
-
axs[0].plot( esym.den, esym.esym, marker=esym.marker, linestyle=esym.linestyle, label=mb, markevery=esym.every, color=nuda.param.col[k] )
|
|
80
|
-
#axs[0].plot( esym.den, esym.esym, color=nuda.param.col[k], label=mb )
|
|
81
|
-
if nuda.env.verb: esym.print_outputs( )
|
|
82
|
-
axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
83
|
-
axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
84
|
-
axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
85
|
-
axs[0].text(0.05,5,'microscopic models',fontsize='10')
|
|
86
|
-
#axs[0].legend(loc='upper left',fontsize='8', ncol=3)
|
|
87
|
-
#
|
|
88
|
-
model_check = []
|
|
89
|
-
k = 0
|
|
90
|
-
#
|
|
91
|
-
for model in pheno_models:
|
|
92
|
-
#
|
|
93
|
-
params, params_lower = nuda.matter.pheno_params( model = model )
|
|
94
|
-
#
|
|
95
|
-
for param in params:
|
|
96
|
-
#
|
|
97
|
-
esym = nuda.matter.setupPhenoEsym( model = model, param = param )
|
|
98
|
-
#
|
|
99
|
-
if esym.esym is not None:
|
|
100
|
-
print('model:',model,' param:',param)
|
|
101
|
-
if model in model_check:
|
|
102
|
-
axs[1].plot( esym.den, esym.esym, color=nuda.param.col[k] )
|
|
103
|
-
else:
|
|
104
|
-
model_check.append(model)
|
|
105
|
-
k += 1
|
|
106
|
-
axs[1].plot( esym.den, esym.esym, color=nuda.param.col[k], label=model )
|
|
107
|
-
#pheno.label=None
|
|
108
|
-
#axs[1].plot( esym.den, esym.esym, label=esym.label )
|
|
109
|
-
if nuda.env.verb: esym.print_outputs( )
|
|
110
|
-
axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
111
|
-
axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
112
|
-
axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
113
|
-
axs[1].text(0.05,5,'phenomenological models',fontsize='10')
|
|
114
|
-
#axs[1].legend(loc='upper left',fontsize='8', ncol=2)
|
|
115
|
-
#axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
|
|
116
|
-
fig.legend(loc='upper left',bbox_to_anchor=(0.2,1.0),columnspacing=2,fontsize='8',ncol=4,frameon=False)
|
|
117
|
-
#
|
|
118
|
-
#plt.tight_layout()
|
|
119
|
-
if pname is not None:
|
|
120
|
-
plt.savefig(pname, dpi=200)
|
|
121
|
-
plt.close()
|
|
122
|
-
#
|
|
@@ -1,68 +0,0 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
import matplotlib.pyplot as plt
|
|
3
|
-
|
|
4
|
-
import nucleardatapy as nuda
|
|
5
|
-
|
|
6
|
-
def matter_setupNEPModelDist_fig( pname, models ):
|
|
7
|
-
"""
|
|
8
|
-
Plot nucleonic energy per particle E/A in matter.\
|
|
9
|
-
The plot is 5x2 with:\
|
|
10
|
-
[0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
|
|
11
|
-
|
|
12
|
-
:param pname: name of the figure (*.png)
|
|
13
|
-
:type pname: str.
|
|
14
|
-
:param models: models to run on.
|
|
15
|
-
:type models: array of str.
|
|
16
|
-
|
|
17
|
-
"""
|
|
18
|
-
#
|
|
19
|
-
print(f'Plot name: {pname}')
|
|
20
|
-
#
|
|
21
|
-
fig, axs = plt.subplots(5,2)
|
|
22
|
-
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
23
|
-
fig.subplots_adjust(left=0.12, bottom=0.06, right=None, top=0.9, wspace=0.3, hspace=0.4 )
|
|
24
|
-
#
|
|
25
|
-
axs[0,0].set_ylabel(r'$E_\text{sat}$')
|
|
26
|
-
axs[0,0].set_xlim([-16.5, -15])
|
|
27
|
-
axs[1,0].set_ylabel(r'$n_\text{sat}$')
|
|
28
|
-
axs[1,0].set_xlim([0.14, 0.18])
|
|
29
|
-
axs[2,0].set_ylabel(r'$K_\text{sat}$')
|
|
30
|
-
axs[2,0].set_xlim([180, 360])
|
|
31
|
-
axs[3,0].set_ylabel(r'$Q_\text{sat}$')
|
|
32
|
-
axs[3,0].set_xlim([-1000, 1000])
|
|
33
|
-
axs[4,0].set_ylabel(r'$m_\text{sat}^{*}/m$')
|
|
34
|
-
axs[4,0].set_xlim([0.35, 1.2])
|
|
35
|
-
axs[0,1].set_ylabel(r'$E_\text{sym}$')
|
|
36
|
-
axs[0,1].set_xlim([26, 40])
|
|
37
|
-
axs[1,1].set_ylabel(r'$L_\text{sym}$')
|
|
38
|
-
axs[1,1].set_xlim([0, 120])
|
|
39
|
-
axs[2,1].set_ylabel(r'$K_\text{sym}$')
|
|
40
|
-
axs[2,1].set_xlim([-400, 220])
|
|
41
|
-
axs[3,1].set_ylabel(r'$Q_\text{sym}$')
|
|
42
|
-
axs[3,1].set_xlim([-50, 900])
|
|
43
|
-
axs[4,1].set_ylabel(r'$\Delta m_\text{sat}^{*}/m$')
|
|
44
|
-
axs[4,1].set_xlim([-0.5, 1.1])
|
|
45
|
-
#
|
|
46
|
-
# Built distribution of NEP
|
|
47
|
-
#
|
|
48
|
-
for model in models:
|
|
49
|
-
#
|
|
50
|
-
dist = nuda.matter.setupNEPModelDist( model )
|
|
51
|
-
#
|
|
52
|
-
axs[0,0].hist( dist.Esat, bins=10, label=model )
|
|
53
|
-
axs[1,0].hist( dist.nsat, bins=10 )
|
|
54
|
-
axs[2,0].hist( dist.Ksat, bins=10 )
|
|
55
|
-
axs[3,0].hist( dist.Qsat, bins=10 )
|
|
56
|
-
axs[4,0].hist( dist.msat, bins=10 )
|
|
57
|
-
axs[0,1].hist( dist.Esym, bins=10 )
|
|
58
|
-
axs[1,1].hist( dist.Lsym, bins=10 )
|
|
59
|
-
axs[2,1].hist( dist.Ksym, bins=10 )
|
|
60
|
-
axs[3,1].hist( dist.Qsym, bins=10 )
|
|
61
|
-
axs[4,1].hist( dist.Dmsat, bins=10 )
|
|
62
|
-
#
|
|
63
|
-
#axs[0,0].legend(loc='lower right',fontsize='10',ncol=2)
|
|
64
|
-
fig.legend(loc='upper left',bbox_to_anchor=(0.2,0.99),columnspacing=2,fontsize='8',ncol=4,frameon=False)
|
|
65
|
-
#
|
|
66
|
-
if pname is not None:
|
|
67
|
-
plt.savefig(pname, dpi=300)
|
|
68
|
-
plt.close()
|
|
@@ -1,115 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.2
|
|
2
|
-
Name: nucleardatapy
|
|
3
|
-
Version: 0.2.0
|
|
4
|
-
Summary: A toolkit for nuclear data processing and analysis.
|
|
5
|
-
Author: Jerome Margueron, Sudhanva Lalit
|
|
6
|
-
Author-email:
|
|
7
|
-
License: MIT
|
|
8
|
-
Classifier: Intended Audience :: Science/Research
|
|
9
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
-
Classifier: Programming Language :: Python
|
|
11
|
-
Classifier: Programming Language :: Python :: 3
|
|
12
|
-
Classifier: Operating System :: OS Independent
|
|
13
|
-
Requires-Python: >=3.9
|
|
14
|
-
Description-Content-Type: text/markdown
|
|
15
|
-
License-File: LICENSE
|
|
16
|
-
Requires-Dist: numpy
|
|
17
|
-
Requires-Dist: scipy
|
|
18
|
-
Requires-Dist: pandas
|
|
19
|
-
|
|
20
|
-
# The toolkit `nucleardatapy`
|
|
21
|
-
|
|
22
|
-
## Purpose:
|
|
23
|
-
|
|
24
|
-
The purpose of this toolkit is to simply the access to data, that can be theoretical data or experimental ones. All data are provided with their reference, so when using these data in a scientific paper, reference to data should be provided explicitely. The reference to this toolkit could be given, but it should not mask the reference to data.
|
|
25
|
-
|
|
26
|
-
This python toolkit is designed to provide:
|
|
27
|
-
1) microscopic calculations in nuclear matter,
|
|
28
|
-
2) phenomenological predictions in nuclear matter,
|
|
29
|
-
3) experimental data for finite nuclei.
|
|
30
|
-
|
|
31
|
-
## Installation of the toolkit:
|
|
32
|
-
|
|
33
|
-
To install the toolkit, launch:
|
|
34
|
-
```
|
|
35
|
-
$ bash install.sh
|
|
36
|
-
```
|
|
37
|
-
|
|
38
|
-
In `install.sh`, the default directory where the toolkit is installed is `mylib` in the home directory. There, you have `mylib/nucleardatapy` folder pointing to the version of the toolkit defined in `install.sh` (currently `VER=0.1`). These default options could be changed directly in the header of `install.sh`.
|
|
39
|
-
|
|
40
|
-
Create an environement variable that will be used by python:
|
|
41
|
-
```
|
|
42
|
-
export NUCLEARDATAPY_TK=/path/to/nucleardatapy
|
|
43
|
-
```
|
|
44
|
-
|
|
45
|
-
Add this environement variable to the one of python:
|
|
46
|
-
```
|
|
47
|
-
export PYTHONPATH=$NUCLEARDATAPY_TK
|
|
48
|
-
```
|
|
49
|
-
|
|
50
|
-
In this way, your library will be visible everywhere in your computer.
|
|
51
|
-
|
|
52
|
-
Put these commands in your `.profile` or `.zprofile` or `.bashrc` for instance (depending on your OS).
|
|
53
|
-
|
|
54
|
-
The first time, you should run again the `.zprofile` for instance:
|
|
55
|
-
|
|
56
|
-
```
|
|
57
|
-
$ source .zprofile
|
|
58
|
-
```
|
|
59
|
-
|
|
60
|
-
Now everything is done about the installation. You can go to the folder `mylib` in your home directory.
|
|
61
|
-
|
|
62
|
-
## Use nucleardatapy python toolkit
|
|
63
|
-
|
|
64
|
-
Go to the folder `mylib/nucleardatapy/samples/nucleardatapy_samples/` and try that:
|
|
65
|
-
|
|
66
|
-
```
|
|
67
|
-
$ python3 sample_SetupMicro.py
|
|
68
|
-
```
|
|
69
|
-
|
|
70
|
-
## Test the python toolkit
|
|
71
|
-
|
|
72
|
-
A set of tests can be easily performed. They are stored in tests/ folder.
|
|
73
|
-
|
|
74
|
-
Launch:
|
|
75
|
-
|
|
76
|
-
```
|
|
77
|
-
$ bash run_tests.sh
|
|
78
|
-
```
|
|
79
|
-
|
|
80
|
-
## Get started
|
|
81
|
-
How to obtain microscopic results for APR equation of state:
|
|
82
|
-
|
|
83
|
-
```Python
|
|
84
|
-
import os
|
|
85
|
-
import sys
|
|
86
|
-
nuda_tk = os.getenv('NUCLEARDATAPY_TK')
|
|
87
|
-
sys.path.insert(0, nuda_tk)
|
|
88
|
-
|
|
89
|
-
import nucleardatapy as nuda
|
|
90
|
-
|
|
91
|
-
# Instantiate a microscopic object
|
|
92
|
-
mic = nuda.SetMicroMatter( model = '1998-VAR-AM-APR')
|
|
93
|
-
|
|
94
|
-
# print outputs
|
|
95
|
-
mic.print_outputs( )
|
|
96
|
-
```
|
|
97
|
-
|
|
98
|
-
## Contributing
|
|
99
|
-
|
|
100
|
-
The file `how_to_contribute.md` details how contributors could join our team or share their results.
|
|
101
|
-
|
|
102
|
-
## License
|
|
103
|
-
|
|
104
|
-
TBC.
|
|
105
|
-
|
|
106
|
-
## Report issues
|
|
107
|
-
|
|
108
|
-
For the current version, we report issues chatting among us.
|
|
109
|
-
Once this toolkit is released, we should setup a way that users could contact us and report issues or difficulties in installing or using the toolkit.
|
|
110
|
-
|
|
111
|
-
## Thanks
|
|
112
|
-
|
|
113
|
-
A special thanks to all contributors who accepted to share their results in this toolkit.
|
|
114
|
-
|
|
115
|
-
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
/nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat}
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|