nucleardatapy 0.2.0__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (165) hide show
  1. nucleardatapy/__init__.py +3 -1
  2. nucleardatapy/astro/setup_gw.py +18 -18
  3. nucleardatapy/astro/setup_mr.py +9 -1
  4. nucleardatapy/astro/setup_mup.py +10 -10
  5. nucleardatapy/corr/setup_EsymDen.py +0 -5
  6. nucleardatapy/corr/setup_EsymLsym.py +50 -17
  7. nucleardatapy/corr/setup_KsatQsat.py +170 -69
  8. nucleardatapy/crust/setup_crust.py +403 -120
  9. nucleardatapy/data/astro/NICER/J0740+6620.dat +1 -0
  10. nucleardatapy/data/crust/2018-PCPFDDG-BSK22.dat +83 -0
  11. nucleardatapy/data/crust/2018-PCPFDDG-BSK24.dat +74 -0
  12. nucleardatapy/data/crust/2018-PCPFDDG-BSK25.dat +130 -0
  13. nucleardatapy/data/crust/2018-PCPFDDG-BSK26.dat +81 -0
  14. nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-NM.dat → 2006-BHF-Av18-E2A-NM.dat} +8 -8
  15. nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-SM.dat +11 -0
  16. nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.2.dat +11 -0
  17. nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.4.dat +11 -0
  18. nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
  19. nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
  20. nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
  21. nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
  22. nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
  23. nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
  24. nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
  25. nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
  26. nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
  27. nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
  28. nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
  29. nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
  30. nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
  31. nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
  32. nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
  33. nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +0 -4
  34. nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +0 -1
  35. nucleardatapy/env.py +1 -1
  36. nucleardatapy/eos/__init__.py +4 -3
  37. nucleardatapy/eos/setupCC.py +429 -0
  38. nucleardatapy/eos/setup_am.py +71 -34
  39. nucleardatapy/eos/setup_am_Beq.py +48 -17
  40. nucleardatapy/eos/setup_am_Leq.py +81 -50
  41. nucleardatapy/fig/__init__.py +29 -7
  42. nucleardatapy/fig/astro_setupGW_fig.py +5 -5
  43. nucleardatapy/fig/astro_setupMR_fig.py +12 -10
  44. nucleardatapy/fig/astro_setupMasses_fig.py +4 -4
  45. nucleardatapy/fig/astro_setupMtov_fig.py +4 -4
  46. nucleardatapy/fig/astro_setupMup_fig.py +5 -5
  47. nucleardatapy/fig/corr_setupEsymDen_fig.py +12 -5
  48. nucleardatapy/fig/corr_setupEsymLsym_fig.py +18 -5
  49. nucleardatapy/fig/corr_setupKsatQsat_fig.py +19 -15
  50. nucleardatapy/fig/crust_setupCrust_fig.py +7 -7
  51. nucleardatapy/fig/eos_setupAMBeq_fig.py +1338 -64
  52. nucleardatapy/fig/eos_setupAMLeq_fig.py +200 -68
  53. nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +364 -0
  54. nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +337 -0
  55. nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +343 -0
  56. nucleardatapy/fig/eos_setupAM_fig.py +470 -47
  57. nucleardatapy/fig/eos_setupCC_fig.py +240 -0
  58. nucleardatapy/fig/hnuc_setupChart_fig.py +2 -2
  59. nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +4 -4
  60. nucleardatapy/fig/matter_all_fig.py +954 -0
  61. nucleardatapy/fig/matter_setupCheck_fig.py +103 -0
  62. nucleardatapy/fig/matter_setupFFGLep_fig.py +70 -0
  63. nucleardatapy/fig/matter_setupFFGNuc_fig.py +268 -104
  64. nucleardatapy/fig/matter_setupHIC_fig.py +98 -58
  65. nucleardatapy/fig/matter_setupMicroEsym_fig.py +267 -51
  66. nucleardatapy/fig/matter_setupMicro_LP_fig.py +175 -78
  67. nucleardatapy/fig/matter_setupMicro_band_fig.py +116 -47
  68. nucleardatapy/fig/matter_setupMicro_effmass_fig.py +264 -34
  69. nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +41 -18
  70. nucleardatapy/fig/matter_setupMicro_fig.py +332 -98
  71. nucleardatapy/fig/matter_setupMicro_gap_fig.py +219 -92
  72. nucleardatapy/fig/matter_setupNEPStats_fig.py +96 -0
  73. nucleardatapy/fig/matter_setupPhenoEsym_fig.py +201 -61
  74. nucleardatapy/fig/matter_setupPheno_fig.py +392 -85
  75. nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +286 -0
  76. nucleardatapy/fig/nuc_setupBEExp_fig.py +232 -70
  77. nucleardatapy/fig/nuc_setupBETheo_fig.py +344 -0
  78. nucleardatapy/fig/nuc_setupISGMRExp_fig.py +59 -0
  79. nucleardatapy/fig/nuc_setupRchExp_fig.py +139 -0
  80. nucleardatapy/fig/nuc_setupRchTheo_fig.py +143 -0
  81. nucleardatapy/fig/nuc_setupRnpExp_fig.py +88 -0
  82. nucleardatapy/fig/nuc_setupRnpTheo_fig.py +133 -0
  83. nucleardatapy/hello.py +6 -0
  84. nucleardatapy/hnuc/__init__.py +3 -3
  85. nucleardatapy/hnuc/{setup_be1L_exp.py → setup_re1L_exp.py} +6 -6
  86. nucleardatapy/hnuc/{setup_be1Xi_exp.py → setup_re1Xi_exp.py} +5 -5
  87. nucleardatapy/hnuc/{setup_be2L_exp.py → setup_re2L_exp.py} +6 -6
  88. nucleardatapy/matter/__init__.py +14 -13
  89. nucleardatapy/matter/setup_check.py +97 -0
  90. nucleardatapy/matter/setup_ffg.py +72 -38
  91. nucleardatapy/matter/setup_hic.py +91 -74
  92. nucleardatapy/matter/setup_micro.py +1698 -1019
  93. nucleardatapy/matter/setup_micro_band.py +11 -6
  94. nucleardatapy/matter/setup_micro_effmass.py +55 -2
  95. nucleardatapy/matter/setup_micro_esym.py +39 -34
  96. nucleardatapy/matter/setup_micro_gap.py +26 -19
  97. nucleardatapy/matter/setup_micro_lp.py +20 -19
  98. nucleardatapy/matter/setup_nep.py +175 -92
  99. nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
  100. nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
  101. nucleardatapy/matter/setup_pheno.py +121 -45
  102. nucleardatapy/matter/setup_pheno_esym.py +14 -19
  103. nucleardatapy/nuc/__init__.py +2 -2
  104. nucleardatapy/nuc/setup_be_exp.py +345 -333
  105. nucleardatapy/nuc/setup_be_theo.py +366 -178
  106. nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
  107. nucleardatapy/nuc/setup_rch_exp.py +49 -6
  108. nucleardatapy/nuc/setup_rch_theo.py +72 -3
  109. nucleardatapy/nuc/{setup_nskin_exp.py → setup_rnp_exp.py} +59 -65
  110. nucleardatapy/nuc/{setup_nskin_theo.py → setup_rnp_theo.py} +35 -39
  111. nucleardatapy-1.0.0.dist-info/METADATA +553 -0
  112. {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/RECORD +156 -128
  113. {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/WHEEL +1 -1
  114. tests/test_corr_setupKsatQsat.py +3 -1
  115. tests/test_matter_setupMicro.py +37 -10
  116. nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
  117. nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
  118. nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
  119. nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
  120. nucleardatapy/fig/matter_ENM_fig.py +0 -119
  121. nucleardatapy/fig/matter_ESM_fig.py +0 -119
  122. nucleardatapy/fig/matter_Esym_fig.py +0 -122
  123. nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
  124. nucleardatapy-0.2.0.dist-info/METADATA +0 -115
  125. /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
  126. /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
  127. /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
  128. /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
  129. /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
  130. /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
  131. /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
  132. /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
  133. /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
  134. /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
  135. /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
  136. /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
  137. /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
  138. /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
  139. /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
  140. /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
  141. /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
  142. /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-AM.dat → 2006-BHF-Av18-E2A-AM.dat} +0 -0
  143. /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-SM.dat → 2006-BHF-Av18-E2A-SM.dat} +0 -0
  144. /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat} +0 -0
  145. /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-NM-FreeSpectrum.dat} +0 -0
  146. /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-SelfEnergy.dat → 2006-BHF-Av18-GAP-NM-SelfEnergy.dat} +0 -0
  147. /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-SM-FreeSpectrum.dat} +0 -0
  148. /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-SelfEnergy.dat → 2006-BHF-Av18-GAP-SM-SelfEnergy.dat} +0 -0
  149. /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
  150. /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL59.dat → 2019-MBPT-NM-DHSL59.dat} +0 -0
  151. /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL69.dat → 2019-MBPT-NM-DHSL69.dat} +0 -0
  152. /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL59.dat → 2019-MBPT-SM-DHSL59.dat} +0 -0
  153. /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL69.dat → 2019-MBPT-SM-DHSL69.dat} +0 -0
  154. /nucleardatapy/data/matter/micro/{2023-MBPT-NM.csv → 2020-MBPT-NM.csv} +0 -0
  155. /nucleardatapy/data/matter/micro/{2023-MBPT-SM.csv → 2020-MBPT-SM.csv} +0 -0
  156. /nucleardatapy/data/nuclei/{nskin → rnp}/208Pb.dat +0 -0
  157. /nucleardatapy/data/nuclei/{nskin → rnp}/48Ca.dat +0 -0
  158. /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
  159. /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
  160. /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
  161. /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
  162. /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
  163. /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
  164. {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info/licenses}/LICENSE +0 -0
  165. {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,364 @@
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+
4
+ import nucleardatapy as nuda
5
+
6
+ def eos_setupAM_e2a_asy_lep_fig( pname, micro_mbs, pheno_models, asy, band ):
7
+ """
8
+ Plot nuclear chart (N versus Z).\
9
+ The plot is 1x2 with:\
10
+ [0]: nuclear chart.
11
+
12
+ :param pname: name of the figure (*.png)
13
+ :type pname: str.
14
+ :param table: table.
15
+ :type table: str.
16
+ :param version: version of table to run on.
17
+ :type version: str.
18
+ :param theo_tables: object instantiated on the reference band.
19
+ :type theo_tables: object.
20
+
21
+ """
22
+ #
23
+ print(f'Plot name: {pname}')
24
+ #
25
+ fig, axs = plt.subplots(1,2)
26
+ #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
27
+ fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
28
+ #
29
+ axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
30
+ axs[0].set_ylabel(r'$e_\text{lep}^\text{int}$ (MeV)',fontsize='14')
31
+ axs[0].set_xlim([0, 0.33])
32
+ axs[0].set_ylim([-10, 35])
33
+ #
34
+ axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
35
+ #axs[1].set_ylabel(r'$E/A$')
36
+ axs[1].set_xlim([0, 0.33])
37
+ axs[1].set_ylim([-10, 35])
38
+ axs[1].tick_params('y', labelleft=False)
39
+ #
40
+ mb_check = []
41
+ #
42
+ for kmb,mb in enumerate(micro_mbs):
43
+ #
44
+ print('mb:',mb,kmb)
45
+ #
46
+ models, models_lower = nuda.matter.micro_esym_models_mb( mb )
47
+ #
48
+ print('models:',models)
49
+ #
50
+ if mb == 'VAR':
51
+ models.remove('1998-VAR-AM-APR-fit')
52
+ models_lower.remove('1998-var-am-apr-fit')
53
+ #
54
+ for model in models:
55
+ #
56
+ micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
57
+ if nuda.env.verb_output: micro.print_outputs( )
58
+ #
59
+ check = nuda.matter.setupCheck( eos = micro, band = band )
60
+ #
61
+ if check.isInside:
62
+ lstyle = 'solid'
63
+ else:
64
+ lstyle = 'dashed'
65
+ #continue
66
+ #
67
+ if micro.e2a_lep is not None:
68
+ print('model:',model)
69
+ print('den:',micro.den)
70
+ print('e2a_lep:',micro.e2a_lep)
71
+ if mb in mb_check:
72
+ axs[0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
73
+ else:
74
+ mb_check.append(mb)
75
+ axs[0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
76
+ # end of model
77
+ # end of mb
78
+ axs[0].text(0.02,-8,'microscopic models',fontsize='10')
79
+ axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
80
+ #
81
+ model_check = []
82
+ #
83
+ for kmodel,model in enumerate(pheno_models):
84
+ #
85
+ params, params_lower = nuda.matter.pheno_esym_params( model = model )
86
+ #
87
+ for param in params:
88
+ #
89
+ pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
90
+ if nuda.env.verb_output: pheno.print_outputs( )
91
+ #
92
+ check = nuda.matter.setupCheck( eos = pheno, band = band )
93
+ #
94
+ if check.isInside:
95
+ lstyle = 'solid'
96
+ else:
97
+ lstyle = 'dashed'
98
+ #continue
99
+ #
100
+ if pheno.e2a_lep is not None:
101
+ print('model:',model,' param:',param)
102
+ if model in model_check:
103
+ axs[1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
104
+ else:
105
+ model_check.append(model)
106
+ axs[1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
107
+ # end of param
108
+ # end of model
109
+ #
110
+ #axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
111
+ #axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
112
+ #axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
113
+ axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
114
+ axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
115
+ #
116
+ #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
117
+ #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
118
+ #axs[1].legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
119
+ #fig.legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
120
+ fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
121
+ #
122
+ if pname is not None:
123
+ plt.savefig(pname, dpi=200)
124
+ plt.close()
125
+ #
126
+
127
+ def eos_setupAM_pre_asy_lep_fig( pname, micro_mbs, pheno_models, asy, band ):
128
+ """
129
+ Plot nuclear chart (N versus Z).\
130
+ The plot is 1x2 with:\
131
+ [0]: nuclear chart.
132
+
133
+ :param pname: name of the figure (*.png)
134
+ :type pname: str.
135
+ :param table: table.
136
+ :type table: str.
137
+ :param version: version of table to run on.
138
+ :type version: str.
139
+ :param theo_tables: object instantiated on the reference band.
140
+ :type theo_tables: object.
141
+
142
+ """
143
+ #
144
+ print(f'Plot name: {pname}')
145
+ #
146
+ fig, axs = plt.subplots(1,2)
147
+ #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
148
+ fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
149
+ #
150
+ axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
151
+ axs[0].set_ylabel(r'$p_\text{lep}$ (MeV fm$^{-3}$)',fontsize='14')
152
+ axs[0].set_xlim([0, 0.33])
153
+ axs[0].set_ylim([-10, 35])
154
+ #
155
+ axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
156
+ #axs[1].set_ylabel(r'$E/A$')
157
+ axs[1].set_xlim([0, 0.33])
158
+ axs[1].set_ylim([-10, 35])
159
+ axs[1].tick_params('y', labelleft=False)
160
+ #
161
+ mb_check = []
162
+ #
163
+ for kmb,mb in enumerate(micro_mbs):
164
+ #
165
+ print('mb:',mb,kmb)
166
+ #
167
+ models, models_lower = nuda.matter.micro_esym_models_mb( mb )
168
+ #
169
+ print('models:',models)
170
+ #
171
+ if mb == 'VAR':
172
+ models.remove('1998-VAR-AM-APR-fit')
173
+ models_lower.remove('1998-var-am-apr-fit')
174
+ #
175
+ for model in models:
176
+ #
177
+ micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
178
+ if nuda.env.verb_output: micro.print_outputs( )
179
+ #
180
+ check = nuda.matter.setupCheck( eos = micro, band = band )
181
+ #
182
+ if check.isInside:
183
+ lstyle = 'solid'
184
+ else:
185
+ lstyle = 'dashed'
186
+ #continue
187
+ #
188
+ if micro.pre_lep is not None:
189
+ print('model:',model)
190
+ print('den:',micro.den)
191
+ print('e2a_lep:',micro.e2a_lep)
192
+ if mb in mb_check:
193
+ axs[0].plot( micro.den, micro.pre_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
194
+ else:
195
+ mb_check.append(mb)
196
+ axs[0].plot( micro.den, micro.pre_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
197
+ # end of model
198
+ # end of mb
199
+ axs[0].text(0.02,-8,'microscopic models',fontsize='10')
200
+ axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
201
+ #
202
+ model_check = []
203
+ #
204
+ for kmodel,model in enumerate(pheno_models):
205
+ #
206
+ params, params_lower = nuda.matter.pheno_esym_params( model = model )
207
+ #
208
+ for param in params:
209
+ #
210
+ pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
211
+ if nuda.env.verb_output: pheno.print_outputs( )
212
+ #
213
+ check = nuda.matter.setupCheck( eos = pheno, band = band )
214
+ #
215
+ if check.isInside:
216
+ lstyle = 'solid'
217
+ else:
218
+ lstyle = 'dashed'
219
+ #continue
220
+ #
221
+ if pheno.pre_lep is not None:
222
+ print('model:',model,' param:',param)
223
+ if model in model_check:
224
+ axs[1].plot( pheno.den, pheno.pre_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
225
+ else:
226
+ model_check.append(model)
227
+ axs[1].plot( pheno.den, pheno.pre_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
228
+ # end of param
229
+ # end of model
230
+ #
231
+ #axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
232
+ #axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
233
+ #axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
234
+ axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
235
+ axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
236
+ #
237
+ #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
238
+ #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
239
+ #axs[1].legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
240
+ #fig.legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
241
+ fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
242
+ #
243
+ if pname is not None:
244
+ plt.savefig(pname, dpi=200)
245
+ plt.close()
246
+ #
247
+
248
+ def eos_setupAM_cs2_asy_lep_fig( pname, micro_mbs, pheno_models, asy, band ):
249
+ """
250
+ Plot nuclear chart (N versus Z).\
251
+ The plot is 1x2 with:\
252
+ [0]: nuclear chart.
253
+
254
+ :param pname: name of the figure (*.png)
255
+ :type pname: str.
256
+ :param table: table.
257
+ :type table: str.
258
+ :param version: version of table to run on.
259
+ :type version: str.
260
+ :param theo_tables: object instantiated on the reference band.
261
+ :type theo_tables: object.
262
+
263
+ """
264
+ #
265
+ print(f'Plot name: {pname}')
266
+ #
267
+ fig, axs = plt.subplots(1,2)
268
+ #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
269
+ fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
270
+ #
271
+ axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
272
+ axs[0].set_ylabel(r'$c_\text{s,lep}^2/c^2$',fontsize='14')
273
+ axs[0].set_xlim([0, 0.33])
274
+ axs[0].set_ylim([0.2, 0.4])
275
+ #
276
+ axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
277
+ #axs[1].set_ylabel(r'$E/A$')
278
+ axs[1].set_xlim([0, 0.33])
279
+ axs[1].set_ylim([0.2, 0.4])
280
+ axs[1].tick_params('y', labelleft=False)
281
+ #
282
+ mb_check = []
283
+ #
284
+ for kmb,mb in enumerate(micro_mbs):
285
+ #
286
+ print('mb:',mb,kmb)
287
+ #
288
+ models, models_lower = nuda.matter.micro_esym_models_mb( mb )
289
+ #
290
+ print('models:',models)
291
+ #
292
+ if mb == 'VAR':
293
+ models.remove('1998-VAR-AM-APR-fit')
294
+ models_lower.remove('1998-var-am-apr-fit')
295
+ #
296
+ for model in models:
297
+ #
298
+ micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
299
+ if nuda.env.verb_output: micro.print_outputs( )
300
+ #
301
+ check = nuda.matter.setupCheck( eos = micro, band = band )
302
+ #
303
+ if check.isInside:
304
+ lstyle = 'solid'
305
+ else:
306
+ lstyle = 'dashed'
307
+ #continue
308
+ #
309
+ if micro.cs2_lep is not None:
310
+ if mb in mb_check:
311
+ axs[0].plot( micro.den, micro.cs2_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
312
+ else:
313
+ mb_check.append(mb)
314
+ axs[0].plot( micro.den, micro.cs2_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
315
+ # end of model
316
+ # end of mb
317
+ axs[0].text(0.02,-8,'microscopic models',fontsize='10')
318
+ axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
319
+ #
320
+ model_check = []
321
+ #
322
+ for kmodel,model in enumerate(pheno_models):
323
+ #
324
+ params, params_lower = nuda.matter.pheno_esym_params( model = model )
325
+ #
326
+ for param in params:
327
+ #
328
+ pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
329
+ if nuda.env.verb_output: pheno.print_outputs( )
330
+ #
331
+ check = nuda.matter.setupCheck( eos = pheno, band = band )
332
+ #
333
+ if check.isInside:
334
+ lstyle = 'solid'
335
+ else:
336
+ lstyle = 'dashed'
337
+ #continue
338
+ #
339
+ if pheno.cs2_lep is not None:
340
+ print('model:',model,' param:',param)
341
+ if model in model_check:
342
+ axs[1].plot( pheno.den, pheno.cs2_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
343
+ else:
344
+ model_check.append(model)
345
+ axs[1].plot( pheno.den, pheno.cs2_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
346
+ # end of param
347
+ # end of model
348
+ #
349
+ #axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
350
+ #axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
351
+ #axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
352
+ axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
353
+ axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
354
+ #
355
+ #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
356
+ #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
357
+ #axs[1].legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
358
+ #fig.legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
359
+ fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
360
+ #
361
+ if pname is not None:
362
+ plt.savefig(pname, dpi=200)
363
+ plt.close()
364
+ #
@@ -0,0 +1,337 @@
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+
4
+ import nucleardatapy as nuda
5
+
6
+ def eos_setupAM_e2a_asy_nuc_fig( pname, micro_mbs, pheno_models, asy, band ):
7
+ """
8
+ Plot nuclear chart (N versus Z).\
9
+ The plot is 1x2 with:\
10
+ [0]: nuclear chart.
11
+
12
+ :param pname: name of the figure (*.png)
13
+ :type pname: str.
14
+ :param table: table.
15
+ :type table: str.
16
+ :param version: version of table to run on.
17
+ :type version: str.
18
+ :param theo_tables: object instantiated on the reference band.
19
+ :type theo_tables: object.
20
+
21
+ """
22
+ #
23
+ print(f'Plot name: {pname}')
24
+ #
25
+ fig, axs = plt.subplots(1,2)
26
+ #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
27
+ fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
28
+ #
29
+ axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
30
+ axs[0].set_ylabel(r'$e_\text{nuc}^\text{int}$ (MeV)',fontsize='14')
31
+ axs[0].set_xlim([0, 0.33])
32
+ axs[0].set_ylim([-10, 35])
33
+ #
34
+ axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
35
+ #axs[1].set_ylabel(r'$E/A$')
36
+ axs[1].set_xlim([0, 0.33])
37
+ axs[1].set_ylim([-10, 35])
38
+ axs[1].tick_params('y', labelleft=False)
39
+ #
40
+ mb_check = []
41
+ #
42
+ for kmb,mb in enumerate(micro_mbs):
43
+ #
44
+ print('mb:',mb,kmb)
45
+ #
46
+ models, models_lower = nuda.matter.micro_esym_models_mb( mb )
47
+ #
48
+ print('models:',models)
49
+ #
50
+ if mb == 'VAR':
51
+ models.remove('1998-VAR-AM-APR-fit')
52
+ models_lower.remove('1998-var-am-apr-fit')
53
+ #
54
+ for model in models:
55
+ #
56
+ micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
57
+ if nuda.env.verb_output: micro.print_outputs( )
58
+ #
59
+ check = nuda.matter.setupCheck( eos = micro, band = band )
60
+ #
61
+ if check.isInside:
62
+ lstyle = 'solid'
63
+ else:
64
+ lstyle = 'dashed'
65
+ #continue
66
+ #
67
+ if micro.e2a_int_nuc is not None:
68
+ if mb in mb_check:
69
+ axs[0].plot( micro.den, micro.e2a_int_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
70
+ else:
71
+ mb_check.append(mb)
72
+ axs[0].plot( micro.den, micro.e2a_int_nuc, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
73
+ # end of model
74
+ # end of mb
75
+ axs[0].text(0.02,-8,'microscopic models',fontsize='10')
76
+ axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
77
+ #
78
+ model_check = []
79
+ #
80
+ for kmodel,model in enumerate(pheno_models):
81
+ #
82
+ params, params_lower = nuda.matter.pheno_esym_params( model = model )
83
+ #
84
+ for param in params:
85
+ #
86
+ pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
87
+ if nuda.env.verb_output: pheno.print_outputs( )
88
+ #
89
+ check = nuda.matter.setupCheck( eos = pheno, band = band )
90
+ #
91
+ if check.isInside:
92
+ lstyle = 'solid'
93
+ else:
94
+ lstyle = 'dashed'
95
+ #continue
96
+ #
97
+ if pheno.e2a_int_nuc is not None:
98
+ print('model:',model,' param:',param)
99
+ if model in model_check:
100
+ axs[1].plot( pheno.den, pheno.e2a_int_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
101
+ else:
102
+ model_check.append(model)
103
+ axs[1].plot( pheno.den, pheno.e2a_int_nuc, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
104
+ # end of param
105
+ # end of model
106
+ #
107
+ axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
108
+ axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
109
+ #
110
+ fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
111
+ #
112
+ if pname is not None:
113
+ plt.savefig(pname, dpi=200)
114
+ plt.close()
115
+ #
116
+
117
+ def eos_setupAM_pre_asy_nuc_fig( pname, micro_mbs, pheno_models, asy, band ):
118
+ """
119
+ Plot nuclear chart (N versus Z).\
120
+ The plot is 1x2 with:\
121
+ [0]: nuclear chart.
122
+
123
+ :param pname: name of the figure (*.png)
124
+ :type pname: str.
125
+ :param table: table.
126
+ :type table: str.
127
+ :param version: version of table to run on.
128
+ :type version: str.
129
+ :param theo_tables: object instantiated on the reference band.
130
+ :type theo_tables: object.
131
+
132
+ """
133
+ #
134
+ print(f'Plot name: {pname}')
135
+ #
136
+ fig, axs = plt.subplots(1,2)
137
+ #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
138
+ fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
139
+ #
140
+ axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
141
+ axs[0].set_ylabel(r'$p_\text{nuc}$ (MeV fm$^{-3}$)',fontsize='14')
142
+ axs[0].set_xlim([0, 0.33])
143
+ axs[0].set_ylim([-10, 35])
144
+ #
145
+ axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
146
+ #axs[1].set_ylabel(r'$E/A$')
147
+ axs[1].set_xlim([0, 0.33])
148
+ axs[1].set_ylim([-10, 35])
149
+ axs[1].tick_params('y', labelleft=False)
150
+ #
151
+ mb_check = []
152
+ #
153
+ for kmb,mb in enumerate(micro_mbs):
154
+ #
155
+ print('mb:',mb,kmb)
156
+ #
157
+ models, models_lower = nuda.matter.micro_esym_models_mb( mb )
158
+ #
159
+ print('models:',models)
160
+ #
161
+ if mb == 'VAR':
162
+ models.remove('1998-VAR-AM-APR-fit')
163
+ models_lower.remove('1998-var-am-apr-fit')
164
+ #
165
+ for model in models:
166
+ #
167
+ micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
168
+ if nuda.env.verb_output: micro.print_outputs( )
169
+ #
170
+ check = nuda.matter.setupCheck( eos = micro, band = band )
171
+ #
172
+ if check.isInside:
173
+ lstyle = 'solid'
174
+ else:
175
+ lstyle = 'dashed'
176
+ #continue
177
+ #
178
+ if micro.pre_nuc is not None:
179
+ if mb in mb_check:
180
+ axs[0].plot( micro.den, micro.pre_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
181
+ else:
182
+ mb_check.append(mb)
183
+ axs[0].plot( micro.den, micro.pre_nuc, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
184
+ # end of model
185
+ # end of mb
186
+ axs[0].text(0.02,-8,'microscopic models',fontsize='10')
187
+ axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
188
+ #
189
+ model_check = []
190
+ #
191
+ for kmodel,model in enumerate(pheno_models):
192
+ #
193
+ params, params_lower = nuda.matter.pheno_esym_params( model = model )
194
+ #
195
+ for param in params:
196
+ #
197
+ pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
198
+ if nuda.env.verb_output: pheno.print_outputs( )
199
+ #
200
+ check = nuda.matter.setupCheck( eos = pheno, band = band )
201
+ #
202
+ if check.isInside:
203
+ lstyle = 'solid'
204
+ else:
205
+ lstyle = 'dashed'
206
+ #continue
207
+ #
208
+ if pheno.pre_nuc is not None:
209
+ print('model:',model,' param:',param)
210
+ if model in model_check:
211
+ axs[1].plot( pheno.den, pheno.pre_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
212
+ else:
213
+ model_check.append(model)
214
+ axs[1].plot( pheno.den, pheno.pre_nuc, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
215
+ # end of param
216
+ # end of model
217
+ #
218
+ axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
219
+ axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
220
+ #
221
+ fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
222
+ #
223
+ if pname is not None:
224
+ plt.savefig(pname, dpi=200)
225
+ plt.close()
226
+ #
227
+
228
+ def eos_setupAM_cs2_asy_nuc_fig( pname, micro_mbs, pheno_models, asy, band ):
229
+ """
230
+ Plot nuclear chart (N versus Z).\
231
+ The plot is 1x2 with:\
232
+ [0]: nuclear chart.
233
+
234
+ :param pname: name of the figure (*.png)
235
+ :type pname: str.
236
+ :param table: table.
237
+ :type table: str.
238
+ :param version: version of table to run on.
239
+ :type version: str.
240
+ :param theo_tables: object instantiated on the reference band.
241
+ :type theo_tables: object.
242
+
243
+ """
244
+ #
245
+ print(f'Plot name: {pname}')
246
+ #
247
+ fig, axs = plt.subplots(1,2)
248
+ #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
249
+ fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
250
+ #
251
+ axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
252
+ axs[0].set_ylabel(r'$c_\text{s,nuc}^2/c^2$',fontsize='14')
253
+ axs[0].set_xlim([0, 0.33])
254
+ axs[0].set_ylim([-0.05, 0.25])
255
+ #
256
+ axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
257
+ #axs[1].set_ylabel(r'$E/A$')
258
+ axs[1].set_xlim([0, 0.33])
259
+ axs[1].set_ylim([-0.05, 0.25])
260
+ axs[1].tick_params('y', labelleft=False)
261
+ #
262
+ mb_check = []
263
+ #
264
+ for kmb,mb in enumerate(micro_mbs):
265
+ #
266
+ print('mb:',mb,kmb)
267
+ #
268
+ models, models_lower = nuda.matter.micro_esym_models_mb( mb )
269
+ #
270
+ print('models:',models)
271
+ #
272
+ if mb == 'VAR':
273
+ models.remove('1998-VAR-AM-APR-fit')
274
+ models_lower.remove('1998-var-am-apr-fit')
275
+ #
276
+ for model in models:
277
+ #
278
+ micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
279
+ if nuda.env.verb_output: micro.print_outputs( )
280
+ #
281
+ check = nuda.matter.setupCheck( eos = micro, band = band )
282
+ #
283
+ if check.isInside:
284
+ lstyle = 'solid'
285
+ else:
286
+ lstyle = 'dashed'
287
+ #continue
288
+ #
289
+ if micro.cs2_nuc is not None:
290
+ if mb in mb_check:
291
+ axs[0].plot( micro.den, micro.cs2_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
292
+ else:
293
+ mb_check.append(mb)
294
+ axs[0].plot( micro.den, micro.cs2_nuc, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
295
+ # end of model
296
+ # end of mb
297
+ axs[0].text(0.02,-8,'microscopic models',fontsize='10')
298
+ axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
299
+ #
300
+ model_check = []
301
+ #
302
+ for kmodel,model in enumerate(pheno_models):
303
+ #
304
+ params, params_lower = nuda.matter.pheno_esym_params( model = model )
305
+ #
306
+ for param in params:
307
+ #
308
+ pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
309
+ if nuda.env.verb_output: pheno.print_outputs( )
310
+ #
311
+ check = nuda.matter.setupCheck( eos = pheno, band = band )
312
+ #
313
+ if check.isInside:
314
+ lstyle = 'solid'
315
+ else:
316
+ lstyle = 'dashed'
317
+ #continue
318
+ #
319
+ if pheno.cs2_nuc is not None:
320
+ print('model:',model,' param:',param)
321
+ if model in model_check:
322
+ axs[1].plot( pheno.den, pheno.cs2_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
323
+ else:
324
+ model_check.append(model)
325
+ axs[1].plot( pheno.den, pheno.cs2_nuc, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
326
+ # end of param
327
+ # end of model
328
+ #
329
+ axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
330
+ axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
331
+ #
332
+ fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
333
+ #
334
+ if pname is not None:
335
+ plt.savefig(pname, dpi=200)
336
+ plt.close()
337
+ #