nucleardatapy 0.2.0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/__init__.py +3 -1
- nucleardatapy/astro/setup_gw.py +18 -18
- nucleardatapy/astro/setup_mr.py +9 -1
- nucleardatapy/astro/setup_mup.py +10 -10
- nucleardatapy/corr/setup_EsymDen.py +0 -5
- nucleardatapy/corr/setup_EsymLsym.py +50 -17
- nucleardatapy/corr/setup_KsatQsat.py +170 -69
- nucleardatapy/crust/setup_crust.py +403 -120
- nucleardatapy/data/astro/NICER/J0740+6620.dat +1 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK22.dat +83 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK24.dat +74 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK25.dat +130 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK26.dat +81 -0
- nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-NM.dat → 2006-BHF-Av18-E2A-NM.dat} +8 -8
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-SM.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.2.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.4.dat +11 -0
- nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
- nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
- nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
- nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
- nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
- nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
- nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +0 -4
- nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +0 -1
- nucleardatapy/env.py +1 -1
- nucleardatapy/eos/__init__.py +4 -3
- nucleardatapy/eos/setupCC.py +429 -0
- nucleardatapy/eos/setup_am.py +71 -34
- nucleardatapy/eos/setup_am_Beq.py +48 -17
- nucleardatapy/eos/setup_am_Leq.py +81 -50
- nucleardatapy/fig/__init__.py +29 -7
- nucleardatapy/fig/astro_setupGW_fig.py +5 -5
- nucleardatapy/fig/astro_setupMR_fig.py +12 -10
- nucleardatapy/fig/astro_setupMasses_fig.py +4 -4
- nucleardatapy/fig/astro_setupMtov_fig.py +4 -4
- nucleardatapy/fig/astro_setupMup_fig.py +5 -5
- nucleardatapy/fig/corr_setupEsymDen_fig.py +12 -5
- nucleardatapy/fig/corr_setupEsymLsym_fig.py +18 -5
- nucleardatapy/fig/corr_setupKsatQsat_fig.py +19 -15
- nucleardatapy/fig/crust_setupCrust_fig.py +7 -7
- nucleardatapy/fig/eos_setupAMBeq_fig.py +1338 -64
- nucleardatapy/fig/eos_setupAMLeq_fig.py +200 -68
- nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +364 -0
- nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +337 -0
- nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +343 -0
- nucleardatapy/fig/eos_setupAM_fig.py +470 -47
- nucleardatapy/fig/eos_setupCC_fig.py +240 -0
- nucleardatapy/fig/hnuc_setupChart_fig.py +2 -2
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +4 -4
- nucleardatapy/fig/matter_all_fig.py +954 -0
- nucleardatapy/fig/matter_setupCheck_fig.py +103 -0
- nucleardatapy/fig/matter_setupFFGLep_fig.py +70 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +268 -104
- nucleardatapy/fig/matter_setupHIC_fig.py +98 -58
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +267 -51
- nucleardatapy/fig/matter_setupMicro_LP_fig.py +175 -78
- nucleardatapy/fig/matter_setupMicro_band_fig.py +116 -47
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +264 -34
- nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +41 -18
- nucleardatapy/fig/matter_setupMicro_fig.py +332 -98
- nucleardatapy/fig/matter_setupMicro_gap_fig.py +219 -92
- nucleardatapy/fig/matter_setupNEPStats_fig.py +96 -0
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +201 -61
- nucleardatapy/fig/matter_setupPheno_fig.py +392 -85
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +286 -0
- nucleardatapy/fig/nuc_setupBEExp_fig.py +232 -70
- nucleardatapy/fig/nuc_setupBETheo_fig.py +344 -0
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +59 -0
- nucleardatapy/fig/nuc_setupRchExp_fig.py +139 -0
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +143 -0
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +88 -0
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +133 -0
- nucleardatapy/hello.py +6 -0
- nucleardatapy/hnuc/__init__.py +3 -3
- nucleardatapy/hnuc/{setup_be1L_exp.py → setup_re1L_exp.py} +6 -6
- nucleardatapy/hnuc/{setup_be1Xi_exp.py → setup_re1Xi_exp.py} +5 -5
- nucleardatapy/hnuc/{setup_be2L_exp.py → setup_re2L_exp.py} +6 -6
- nucleardatapy/matter/__init__.py +14 -13
- nucleardatapy/matter/setup_check.py +97 -0
- nucleardatapy/matter/setup_ffg.py +72 -38
- nucleardatapy/matter/setup_hic.py +91 -74
- nucleardatapy/matter/setup_micro.py +1698 -1019
- nucleardatapy/matter/setup_micro_band.py +11 -6
- nucleardatapy/matter/setup_micro_effmass.py +55 -2
- nucleardatapy/matter/setup_micro_esym.py +39 -34
- nucleardatapy/matter/setup_micro_gap.py +26 -19
- nucleardatapy/matter/setup_micro_lp.py +20 -19
- nucleardatapy/matter/setup_nep.py +175 -92
- nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
- nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
- nucleardatapy/matter/setup_pheno.py +121 -45
- nucleardatapy/matter/setup_pheno_esym.py +14 -19
- nucleardatapy/nuc/__init__.py +2 -2
- nucleardatapy/nuc/setup_be_exp.py +345 -333
- nucleardatapy/nuc/setup_be_theo.py +366 -178
- nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
- nucleardatapy/nuc/setup_rch_exp.py +49 -6
- nucleardatapy/nuc/setup_rch_theo.py +72 -3
- nucleardatapy/nuc/{setup_nskin_exp.py → setup_rnp_exp.py} +59 -65
- nucleardatapy/nuc/{setup_nskin_theo.py → setup_rnp_theo.py} +35 -39
- nucleardatapy-1.0.0.dist-info/METADATA +553 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/RECORD +156 -128
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/WHEEL +1 -1
- tests/test_corr_setupKsatQsat.py +3 -1
- tests/test_matter_setupMicro.py +37 -10
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
- nucleardatapy/fig/matter_ENM_fig.py +0 -119
- nucleardatapy/fig/matter_ESM_fig.py +0 -119
- nucleardatapy/fig/matter_Esym_fig.py +0 -122
- nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
- nucleardatapy-0.2.0.dist-info/METADATA +0 -115
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-AM.dat → 2006-BHF-Av18-E2A-AM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-SM.dat → 2006-BHF-Av18-E2A-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-NM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-SelfEnergy.dat → 2006-BHF-Av18-GAP-NM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-SM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-SelfEnergy.dat → 2006-BHF-Av18-GAP-SM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL59.dat → 2019-MBPT-NM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL69.dat → 2019-MBPT-NM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL59.dat → 2019-MBPT-SM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL69.dat → 2019-MBPT-SM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-NM.csv → 2020-MBPT-NM.csv} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-SM.csv → 2020-MBPT-SM.csv} +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/208Pb.dat +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/48Ca.dat +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info/licenses}/LICENSE +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -3,7 +3,8 @@ import matplotlib.pyplot as plt
|
|
|
3
3
|
|
|
4
4
|
import nucleardatapy as nuda
|
|
5
5
|
|
|
6
|
-
|
|
6
|
+
|
|
7
|
+
def matter_setupPheno_e2a_fig(pname, model, band):
|
|
7
8
|
"""
|
|
8
9
|
Plot nucleonic energy per particle E/A in matter.\
|
|
9
10
|
The plot is 2x2 with:\
|
|
@@ -21,101 +22,407 @@ def matter_setupPheno_E_fig( pname, model, band, matter ):
|
|
|
21
22
|
|
|
22
23
|
"""
|
|
23
24
|
#
|
|
24
|
-
print(f
|
|
25
|
+
print(f"Plot name: {pname}")
|
|
26
|
+
matter = band.matter
|
|
25
27
|
#
|
|
26
28
|
# plot
|
|
27
29
|
#
|
|
28
|
-
fig, axs = plt.subplots(2,2)
|
|
29
|
-
fig.tight_layout()
|
|
30
|
-
fig.subplots_adjust(left=0.15, bottom=0.12, right=
|
|
31
|
-
#
|
|
32
|
-
axs[
|
|
33
|
-
axs[1,
|
|
34
|
-
axs[
|
|
35
|
-
axs[0
|
|
36
|
-
axs[
|
|
37
|
-
axs[1,1].set_xlim([0.5, 1.
|
|
38
|
-
#
|
|
39
|
-
axs[0,0].tick_params(
|
|
40
|
-
axs[0,1].tick_params(
|
|
41
|
-
axs[0,1].tick_params(
|
|
42
|
-
axs[1,1].tick_params(
|
|
43
|
-
#
|
|
44
|
-
if matter.lower() ==
|
|
45
|
-
axs[0,0].set_ylabel(r
|
|
46
|
-
axs[
|
|
47
|
-
axs[0,
|
|
48
|
-
axs[1
|
|
49
|
-
axs[1,0].set_ylim([0.2, 0.84])
|
|
50
|
-
axs[1,1].set_ylim([0.2, 0.84])
|
|
51
|
-
elif matter.lower() ==
|
|
52
|
-
axs[0,0].set_ylabel(r
|
|
53
|
-
axs[
|
|
54
|
-
axs[0,
|
|
55
|
-
axs[1
|
|
56
|
-
axs[1,0].set_ylim([-2.0, 0.1])
|
|
57
|
-
axs[1,1].set_ylim([-2.0, 0.1])
|
|
58
|
-
#
|
|
59
|
-
params, params_lower = nuda.matter.pheno_params(
|
|
30
|
+
fig, axs = plt.subplots(2, 2)
|
|
31
|
+
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
32
|
+
fig.subplots_adjust( left=0.15, bottom=0.12, right=0.95, top=0.85, wspace=0.05, hspace=0.05 )
|
|
33
|
+
#
|
|
34
|
+
axs[1, 0].set_xlabel(r"$n_\text{nuc}$ (fm$^{-3}$)", fontsize="14")
|
|
35
|
+
axs[1, 1].set_xlabel(r"$k_{F}$ (fm$^{-1}$)", fontsize="14")
|
|
36
|
+
axs[0, 0].set_xlim([0, 0.33])
|
|
37
|
+
axs[1, 0].set_xlim([0, 0.33])
|
|
38
|
+
axs[0, 1].set_xlim([0.5, 1.9])
|
|
39
|
+
axs[1, 1].set_xlim([0.5, 1.9])
|
|
40
|
+
#
|
|
41
|
+
axs[0, 0].tick_params("x", labelbottom=False)
|
|
42
|
+
axs[0, 1].tick_params("x", labelbottom=False)
|
|
43
|
+
axs[0, 1].tick_params("y", labelleft=False)
|
|
44
|
+
axs[1, 1].tick_params("y", labelleft=False)
|
|
45
|
+
#
|
|
46
|
+
if matter.lower() == "nm":
|
|
47
|
+
axs[0, 0].set_ylabel(r"$E_\text{int,NM}/A$ (MeV)", fontsize="14")
|
|
48
|
+
axs[1, 0].set_ylabel(r"$E_\text{int,NM}/E_\text{int,NM}^\text{NR FFG}$", fontsize="14")
|
|
49
|
+
axs[0, 0].set_ylim([0, 30])
|
|
50
|
+
axs[0, 1].set_ylim([0, 30])
|
|
51
|
+
axs[1, 0].set_ylim([0.2, 0.84])
|
|
52
|
+
axs[1, 1].set_ylim([0.2, 0.84])
|
|
53
|
+
elif matter.lower() == "sm":
|
|
54
|
+
axs[0, 0].set_ylabel(r"$E_\text{int,SM}/A$ (MeV)", fontsize="14")
|
|
55
|
+
axs[1, 0].set_ylabel(r"$E_\text{int,SM}/E_\text{int,SM}^\text{NR FFG}$", fontsize="14")
|
|
56
|
+
axs[0, 0].set_ylim([-20, 10])
|
|
57
|
+
axs[0, 1].set_ylim([-20, 10])
|
|
58
|
+
axs[1, 0].set_ylim([-2.0, 0.1])
|
|
59
|
+
axs[1, 1].set_ylim([-2.0, 0.1])
|
|
60
|
+
#
|
|
61
|
+
params, params_lower = nuda.matter.pheno_params(model=model)
|
|
62
|
+
#
|
|
63
|
+
for param in params:
|
|
64
|
+
#
|
|
65
|
+
pheno = nuda.matter.setupPheno(model=model, param=param)
|
|
66
|
+
#
|
|
67
|
+
check = nuda.matter.setupCheck(eos=pheno, band=band)
|
|
68
|
+
#
|
|
69
|
+
if check.isInside:
|
|
70
|
+
lstyle = "solid"
|
|
71
|
+
else:
|
|
72
|
+
lstyle = "dashed"
|
|
73
|
+
#
|
|
74
|
+
if matter.lower() == "nm":
|
|
75
|
+
#
|
|
76
|
+
if any(pheno.nm_e2a):
|
|
77
|
+
if model == "Skyrme" and check.isInside:
|
|
78
|
+
axs[0, 0].plot( pheno.nm_den, pheno.nm_e2a_int, linestyle=lstyle, label=pheno.label )
|
|
79
|
+
elif model == "Skyrme" and check.isOutside:
|
|
80
|
+
axs[0, 0].plot(pheno.nm_den, pheno.nm_e2a_int, linestyle=lstyle)
|
|
81
|
+
else:
|
|
82
|
+
axs[0, 0].plot( pheno.nm_den, pheno.nm_e2a_int, linestyle=lstyle, label=pheno.label )
|
|
83
|
+
axs[0, 1].plot(pheno.nm_kfn, pheno.nm_e2a_int, linestyle=lstyle)
|
|
84
|
+
axs[1, 0].plot(
|
|
85
|
+
pheno.nm_den,
|
|
86
|
+
pheno.nm_e2a_int / nuda.effg_nr(pheno.nm_kfn),
|
|
87
|
+
linestyle=lstyle,
|
|
88
|
+
)
|
|
89
|
+
axs[1, 1].plot(
|
|
90
|
+
pheno.nm_kfn,
|
|
91
|
+
pheno.nm_e2a_int / nuda.effg_nr(pheno.nm_kfn),
|
|
92
|
+
linestyle=lstyle,
|
|
93
|
+
)
|
|
94
|
+
#
|
|
95
|
+
elif matter.lower() == "sm":
|
|
96
|
+
#
|
|
97
|
+
if any(pheno.sm_e2a):
|
|
98
|
+
if model == "Skyrme" and check.isInside:
|
|
99
|
+
axs[0, 0].plot( pheno.sm_den, pheno.sm_e2a_int, linestyle=lstyle, label=pheno.label )
|
|
100
|
+
elif model == "Skyrme" and check.isOutside:
|
|
101
|
+
axs[0, 0].plot( pheno.sm_den, pheno.sm_e2a_int, linestyle=lstyle)
|
|
102
|
+
else:
|
|
103
|
+
axs[0, 0].plot( pheno.sm_den, pheno.sm_e2a_int, linestyle=lstyle, label=pheno.label )
|
|
104
|
+
axs[0, 1].plot(pheno.sm_kf, pheno.sm_e2a_int, linestyle=lstyle)
|
|
105
|
+
axs[1, 0].plot(
|
|
106
|
+
pheno.sm_den,
|
|
107
|
+
pheno.sm_e2a_int / nuda.effg_nr(pheno.sm_kf),
|
|
108
|
+
linestyle=lstyle,
|
|
109
|
+
)
|
|
110
|
+
axs[1, 1].plot(
|
|
111
|
+
pheno.sm_kf,
|
|
112
|
+
pheno.sm_e2a_int / nuda.effg_nr(pheno.sm_kf),
|
|
113
|
+
linestyle=lstyle,
|
|
114
|
+
)
|
|
115
|
+
if nuda.env.verb_output:
|
|
116
|
+
pheno.print_outputs()
|
|
117
|
+
if matter.lower() == "nm":
|
|
118
|
+
axs[0, 0].fill_between(
|
|
119
|
+
band.den,
|
|
120
|
+
y1=(band.e2a_int - band.e2a_std),
|
|
121
|
+
y2=(band.e2a_int + band.e2a_std),
|
|
122
|
+
color=band.color,
|
|
123
|
+
alpha=band.alpha,
|
|
124
|
+
)
|
|
125
|
+
axs[0, 0].plot( band.den, (band.e2a_int - band.e2a_std), color="k", linestyle="dashed", zorder = 100 )
|
|
126
|
+
axs[0, 0].plot( band.den, (band.e2a_int + band.e2a_std), color="k", linestyle="dashed", zorder = 100 )
|
|
127
|
+
axs[0, 1].fill_between(
|
|
128
|
+
band.kfn,
|
|
129
|
+
y1=(band.e2a_int - band.e2a_std),
|
|
130
|
+
y2=(band.e2a_int + band.e2a_std),
|
|
131
|
+
color=band.color,
|
|
132
|
+
alpha=band.alpha,
|
|
133
|
+
)
|
|
134
|
+
axs[0, 1].plot( band.kfn, (band.e2a_int - band.e2a_std), color="k", linestyle="dashed", zorder = 100 )
|
|
135
|
+
axs[0, 1].plot( band.kfn, (band.e2a_int + band.e2a_std), color="k", linestyle="dashed", zorder = 100 )
|
|
136
|
+
axs[1, 0].fill_between(
|
|
137
|
+
band.den,
|
|
138
|
+
y1=(band.e2a_int - band.e2a_std) / nuda.effg_nr(band.kfn),
|
|
139
|
+
y2=(band.e2a_int + band.e2a_std) / nuda.effg_nr(band.kfn),
|
|
140
|
+
color=band.color,
|
|
141
|
+
alpha=band.alpha,
|
|
142
|
+
)
|
|
143
|
+
axs[1, 0].plot( band.den, (band.e2a_int - band.e2a_std) / nuda.effg_nr(band.kfn), color="k", linestyle="dashed", zorder = 100 )
|
|
144
|
+
axs[1, 0].plot( band.den, (band.e2a_int + band.e2a_std) / nuda.effg_nr(band.kfn), color="k", linestyle="dashed", zorder = 100 )
|
|
145
|
+
axs[1, 1].fill_between(
|
|
146
|
+
band.kfn,
|
|
147
|
+
y1=(band.e2a_int - band.e2a_std) / nuda.effg_nr(band.kfn),
|
|
148
|
+
y2=(band.e2a_int + band.e2a_std) / nuda.effg_nr(band.kfn),
|
|
149
|
+
color=band.color,
|
|
150
|
+
alpha=band.alpha,
|
|
151
|
+
)
|
|
152
|
+
axs[1, 1].plot( band.kfn, (band.e2a_int - band.e2a_std) / nuda.effg_nr(band.kfn), color="k", linestyle="dashed", zorder = 100 )
|
|
153
|
+
axs[1, 1].plot( band.kfn, (band.e2a_int + band.e2a_std) / nuda.effg_nr(band.kfn), color="k", linestyle="dashed", zorder = 100 )
|
|
154
|
+
elif matter.lower() == "sm":
|
|
155
|
+
axs[0, 0].fill_between(
|
|
156
|
+
band.den,
|
|
157
|
+
y1=(band.e2a_int - band.e2a_std),
|
|
158
|
+
y2=(band.e2a_int + band.e2a_std),
|
|
159
|
+
color=band.color,
|
|
160
|
+
alpha=band.alpha,
|
|
161
|
+
visible=True,
|
|
162
|
+
)
|
|
163
|
+
axs[0, 0].plot( band.den, (band.e2a_int - band.e2a_std), color="k", linestyle="dashed", zorder = 100 )
|
|
164
|
+
axs[0, 0].plot( band.den, (band.e2a_int + band.e2a_std), color="k", linestyle="dashed", zorder = 100 )
|
|
165
|
+
axs[0, 1].fill_between(
|
|
166
|
+
band.kfn,
|
|
167
|
+
y1=(band.e2a_int - band.e2a_std),
|
|
168
|
+
y2=(band.e2a_int + band.e2a_std),
|
|
169
|
+
color=band.color,
|
|
170
|
+
alpha=band.alpha,
|
|
171
|
+
visible=True,
|
|
172
|
+
)
|
|
173
|
+
axs[0, 1].plot(
|
|
174
|
+
band.kfn, (band.e2a_int - band.e2a_std), color="k", linestyle="dashed", zorder = 100
|
|
175
|
+
)
|
|
176
|
+
axs[0, 1].plot(
|
|
177
|
+
band.kfn, (band.e2a_int + band.e2a_std), color="k", linestyle="dashed", zorder = 100
|
|
178
|
+
)
|
|
179
|
+
axs[1, 0].fill_between(
|
|
180
|
+
band.den,
|
|
181
|
+
y1=(band.e2a_int - band.e2a_std) / nuda.effg_nr(band.kfn),
|
|
182
|
+
y2=(band.e2a_int + band.e2a_std) / nuda.effg_nr(band.kfn),
|
|
183
|
+
color=band.color,
|
|
184
|
+
alpha=band.alpha,
|
|
185
|
+
visible=True,
|
|
186
|
+
)
|
|
187
|
+
axs[1, 0].plot(
|
|
188
|
+
band.den, (band.e2a_int - band.e2a_std) / nuda.effg_nr(band.kfn), color="k", linestyle="dashed", zorder = 100
|
|
189
|
+
)
|
|
190
|
+
axs[1, 0].plot(
|
|
191
|
+
band.den, (band.e2a_int + band.e2a_std) / nuda.effg_nr(band.kfn), color="k", linestyle="dashed", zorder = 100
|
|
192
|
+
)
|
|
193
|
+
axs[1, 1].fill_between(
|
|
194
|
+
band.kfn,
|
|
195
|
+
y1=(band.e2a_int - band.e2a_std) / nuda.effg_nr(band.kfn),
|
|
196
|
+
y2=(band.e2a_int + band.e2a_std) / nuda.effg_nr(band.kfn),
|
|
197
|
+
color=band.color,
|
|
198
|
+
alpha=band.alpha,
|
|
199
|
+
visible=True,
|
|
200
|
+
)
|
|
201
|
+
axs[1, 1].plot( band.kfn, (band.e2a_int - band.e2a_std) / nuda.effg_nr(band.kfn), color="k", linestyle="dashed", zorder = 100 )
|
|
202
|
+
axs[1, 1].plot( band.kfn, (band.e2a_int + band.e2a_std) / nuda.effg_nr(band.kfn), color="k", linestyle="dashed", zorder = 100 )
|
|
203
|
+
#
|
|
204
|
+
# if model != 'Skyrme':
|
|
205
|
+
# axs[0,0].legend(loc='upper right',fontsize='8', ncol=2)
|
|
206
|
+
fig.legend(
|
|
207
|
+
loc="upper left",
|
|
208
|
+
bbox_to_anchor=(0.03, 1.0),
|
|
209
|
+
columnspacing=2,
|
|
210
|
+
fontsize="8",
|
|
211
|
+
ncol=5,
|
|
212
|
+
frameon=False,
|
|
213
|
+
)
|
|
214
|
+
#
|
|
215
|
+
#
|
|
216
|
+
if pname is not None:
|
|
217
|
+
plt.savefig(pname, dpi=300)
|
|
218
|
+
plt.close()
|
|
219
|
+
#
|
|
220
|
+
|
|
221
|
+
def matter_setupPheno_pre_fig(pname, model, band):
|
|
222
|
+
"""
|
|
223
|
+
Plot nucleonic pressure in matter.\
|
|
224
|
+
The plot is 2x2 with:\
|
|
225
|
+
[0,0]: pre versus den. [0,1]: pre versus kfn.\
|
|
226
|
+
[1,0]: pre/pre_NRFFG versus den. [1,1]: pre/pre_NRFFG versus kfn.\
|
|
227
|
+
|
|
228
|
+
:param pname: name of the figure (*.png)
|
|
229
|
+
:type pname: str.
|
|
230
|
+
:param model: class of model considered.
|
|
231
|
+
:type model: str.
|
|
232
|
+
:param band: object instantiated on the reference band.
|
|
233
|
+
:type band: object.
|
|
234
|
+
:param matter: can be 'SM' or 'NM'.
|
|
235
|
+
:type matter: str.
|
|
236
|
+
|
|
237
|
+
"""
|
|
238
|
+
#
|
|
239
|
+
print(f"Plot name: {pname}")
|
|
240
|
+
matter = band.matter
|
|
241
|
+
#
|
|
242
|
+
# plot
|
|
243
|
+
#
|
|
244
|
+
fig, axs = plt.subplots(2, 2)
|
|
245
|
+
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
246
|
+
fig.subplots_adjust(
|
|
247
|
+
left=0.15, bottom=0.12, right=0.95, top=0.88, wspace=0.05, hspace=0.05
|
|
248
|
+
)
|
|
249
|
+
#
|
|
250
|
+
axs[1, 0].set_xlabel(r"$n_\text{nuc}$ (fm$^{-3}$)", fontsize="14")
|
|
251
|
+
axs[1, 1].set_xlabel(r"$k_{F_n}$ (fm$^{-1}$)", fontsize="14")
|
|
252
|
+
axs[0, 0].set_xlim([0, 0.33])
|
|
253
|
+
axs[1, 0].set_xlim([0, 0.33])
|
|
254
|
+
axs[0, 1].set_xlim([0.5, 1.9])
|
|
255
|
+
axs[1, 1].set_xlim([0.5, 1.9])
|
|
256
|
+
#
|
|
257
|
+
axs[0, 0].tick_params("x", labelbottom=False)
|
|
258
|
+
axs[0, 1].tick_params("x", labelbottom=False)
|
|
259
|
+
axs[0, 1].tick_params("y", labelleft=False)
|
|
260
|
+
axs[1, 1].tick_params("y", labelleft=False)
|
|
261
|
+
#
|
|
262
|
+
if matter.lower() == "nm":
|
|
263
|
+
axs[0, 0].set_ylabel(r"$p_\text{NM}$ (MeV fm$^{-3}$)", fontsize="14")
|
|
264
|
+
axs[1, 0].set_ylabel(r"$p_\text{NM}/p_\text{NRFFG,NM}$", fontsize="14")
|
|
265
|
+
axs[0, 0].set_ylim([-2, 30])
|
|
266
|
+
axs[0, 1].set_ylim([-2, 30])
|
|
267
|
+
axs[1, 0].set_ylim([-0.2, 0.84])
|
|
268
|
+
axs[1, 1].set_ylim([-0.2, 0.84])
|
|
269
|
+
elif matter.lower() == "sm":
|
|
270
|
+
axs[0, 0].set_ylabel(r"$p_\text{SM}$ (MeV fm$^{-3})", fontsize="14")
|
|
271
|
+
axs[1, 0].set_ylabel(r"$p_\text{SM}/p_\text{NRFFG,SM}$", fontsize="14")
|
|
272
|
+
axs[0, 0].set_ylim([-5, 10])
|
|
273
|
+
axs[0, 1].set_ylim([-5, 10])
|
|
274
|
+
axs[1, 0].set_ylim([-1.5, 0.5])
|
|
275
|
+
axs[1, 1].set_ylim([-1.5, 0.5])
|
|
276
|
+
#
|
|
277
|
+
params, params_lower = nuda.matter.pheno_params(model=model)
|
|
60
278
|
#
|
|
61
279
|
for param in params:
|
|
62
280
|
#
|
|
63
|
-
pheno = nuda.matter.setupPheno(
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
281
|
+
pheno = nuda.matter.setupPheno(model=model, param=param)
|
|
282
|
+
#
|
|
283
|
+
check = nuda.matter.setupCheck(eos=pheno, band=band)
|
|
284
|
+
#
|
|
285
|
+
if check.isInside:
|
|
286
|
+
lstyle = "solid"
|
|
287
|
+
else:
|
|
288
|
+
lstyle = "dashed"
|
|
289
|
+
#
|
|
290
|
+
if matter.lower() == "nm":
|
|
291
|
+
if any(pheno.nm_pre):
|
|
292
|
+
if model == "Skyrme" and check.isInside:
|
|
293
|
+
axs[0, 0].plot( pheno.nm_den, pheno.nm_pre, linestyle=lstyle, label=pheno.label )
|
|
294
|
+
elif model == "Skyrme" and check.isOutside:
|
|
295
|
+
axs[0, 0].plot( pheno.nm_den, pheno.nm_pre, linestyle=lstyle )
|
|
68
296
|
else:
|
|
69
|
-
axs[0,0].plot( pheno.nm_den, pheno.
|
|
70
|
-
|
|
71
|
-
axs[0
|
|
72
|
-
axs[1,
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
297
|
+
axs[0, 0].plot( pheno.nm_den, pheno.nm_pre, linestyle=lstyle, label=pheno.label )
|
|
298
|
+
axs[0, 1].plot(pheno.nm_kfn, pheno.nm_pre, linestyle=lstyle)
|
|
299
|
+
axs[1, 0].plot( pheno.nm_den, pheno.nm_pre / nuda.pre_nr(pheno.nm_kfn), linestyle=lstyle )
|
|
300
|
+
axs[1, 1].plot( pheno.nm_kfn, pheno.nm_pre / nuda.pre_nr(pheno.nm_kfn), linestyle=lstyle )
|
|
301
|
+
elif matter.lower() == "sm":
|
|
302
|
+
if any(pheno.sm_pre):
|
|
303
|
+
if model == "Skyrme" and check.isInside:
|
|
304
|
+
axs[0, 0].plot( pheno.sm_den, pheno.sm_pre, linestyle=lstyle, label=pheno.label )
|
|
305
|
+
elif model == "Skyrme" and check.isOutside:
|
|
306
|
+
axs[0, 0].plot(pheno.sm_den, pheno.sm_pre, linestyle=lstyle)
|
|
78
307
|
else:
|
|
79
|
-
axs[0,0].plot( pheno.sm_den, pheno.
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
axs[
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
if
|
|
87
|
-
axs[0,0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha )
|
|
88
|
-
axs[0,0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
89
|
-
axs[0,0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
90
|
-
axs[0,1].fill_between( band.kfn, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha )
|
|
91
|
-
axs[0,1].plot( band.kfn, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
92
|
-
axs[0,1].plot( band.kfn, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
93
|
-
axs[1,0].fill_between( band.den, y1=(band.e2a-band.e2a_std)/nuda.effg_nr(band.kfn), y2=(band.e2a+band.e2a_std)/nuda.effg_nr(band.kfn), color=band.color, alpha=band.alpha )
|
|
94
|
-
axs[1,0].plot( band.den, (band.e2a-band.e2a_std)/nuda.effg_nr(band.kfn), color='k', linestyle='dashed' )
|
|
95
|
-
axs[1,0].plot( band.den, (band.e2a+band.e2a_std)/nuda.effg_nr(band.kfn), color='k', linestyle='dashed' )
|
|
96
|
-
axs[1,1].fill_between( band.kfn, y1=(band.e2a-band.e2a_std)/nuda.effg_nr(band.kfn), y2=(band.e2a+band.e2a_std)/nuda.effg_nr(band.kfn), color=band.color, alpha=band.alpha )
|
|
97
|
-
axs[1,1].plot( band.kfn, (band.e2a-band.e2a_std)/nuda.effg_nr(band.kfn), color='k', linestyle='dashed' )
|
|
98
|
-
axs[1,1].plot( band.kfn, (band.e2a+band.e2a_std)/nuda.effg_nr(band.kfn), color='k', linestyle='dashed' )
|
|
99
|
-
elif matter.lower() == 'sm':
|
|
100
|
-
axs[0,0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
101
|
-
axs[0,0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
102
|
-
axs[0,0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
103
|
-
axs[0,1].fill_between( band.kfn, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
|
|
104
|
-
axs[0,1].plot( band.kfn, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
|
|
105
|
-
axs[0,1].plot( band.kfn, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
|
|
106
|
-
axs[1,0].fill_between( band.den, y1=(band.e2a-band.e2a_std)/nuda.effg_nr(band.kfn), y2=(band.e2a+band.e2a_std)/nuda.effg_nr(band.kfn), color=band.color, alpha=band.alpha, visible=True )
|
|
107
|
-
axs[1,0].plot( band.den, (band.e2a-band.e2a_std)/nuda.effg_nr(band.kfn), color='k', linestyle='dashed' )
|
|
108
|
-
axs[1,0].plot( band.den, (band.e2a+band.e2a_std)/nuda.effg_nr(band.kfn), color='k', linestyle='dashed' )
|
|
109
|
-
axs[1,1].fill_between( band.kfn, y1=(band.e2a-band.e2a_std)/nuda.effg_nr(band.kfn), y2=(band.e2a+band.e2a_std)/nuda.effg_nr(band.kfn), color=band.color, alpha=band.alpha, visible=True )
|
|
110
|
-
axs[1,1].plot( band.kfn, (band.e2a-band.e2a_std)/nuda.effg_nr(band.kfn), color='k', linestyle='dashed' )
|
|
111
|
-
axs[1,1].plot( band.kfn, (band.e2a+band.e2a_std)/nuda.effg_nr(band.kfn), color='k', linestyle='dashed' )
|
|
112
|
-
#
|
|
113
|
-
#if model != 'Skyrme':
|
|
308
|
+
axs[0, 0].plot( pheno.sm_den, pheno.sm_pre, linestyle=lstyle, label=pheno.label )
|
|
309
|
+
axs[0, 1].plot( pheno.sm_kf, pheno.sm_pre, linestyle=lstyle )
|
|
310
|
+
axs[1, 0].plot( pheno.sm_den, pheno.sm_pre / nuda.pre_nr(pheno.sm_kf), linestyle=lstyle )
|
|
311
|
+
axs[1, 1].plot( pheno.sm_kf, pheno.sm_pre / nuda.pre_nr(pheno.sm_kf), linestyle=lstyle )
|
|
312
|
+
if nuda.env.verb_output: pheno.print_outputs()
|
|
313
|
+
#
|
|
314
|
+
#
|
|
315
|
+
# if model != 'Skyrme':
|
|
114
316
|
# axs[0,0].legend(loc='upper right',fontsize='8', ncol=2)
|
|
115
|
-
fig.legend(
|
|
317
|
+
fig.legend(
|
|
318
|
+
loc="upper left",
|
|
319
|
+
bbox_to_anchor=(0.1, 1.0),
|
|
320
|
+
columnspacing=2,
|
|
321
|
+
fontsize="8",
|
|
322
|
+
ncol=4,
|
|
323
|
+
frameon=False,
|
|
324
|
+
)
|
|
116
325
|
#
|
|
117
326
|
#
|
|
118
327
|
if pname is not None:
|
|
119
328
|
plt.savefig(pname, dpi=300)
|
|
120
329
|
plt.close()
|
|
121
|
-
#
|
|
330
|
+
#
|
|
331
|
+
|
|
332
|
+
def matter_setupPheno_cs2_fig(pname, model, band):
|
|
333
|
+
"""
|
|
334
|
+
Plot nucleonic sound speed in matter.\
|
|
335
|
+
The plot is 1x2 with:\
|
|
336
|
+
[0]: cs2 versus den. [1]: cs2 versus kfn.\
|
|
337
|
+
|
|
338
|
+
:param pname: name of the figure (*.png)
|
|
339
|
+
:type pname: str.
|
|
340
|
+
:param model: class of model considered.
|
|
341
|
+
:type model: str.
|
|
342
|
+
:param band: object instantiated on the reference band.
|
|
343
|
+
:type band: object.
|
|
344
|
+
:param matter: can be 'SM' or 'NM'.
|
|
345
|
+
:type matter: str.
|
|
346
|
+
|
|
347
|
+
"""
|
|
348
|
+
#
|
|
349
|
+
print(f"Plot name: {pname}")
|
|
350
|
+
matter = band.matter
|
|
351
|
+
#
|
|
352
|
+
# plot
|
|
353
|
+
#
|
|
354
|
+
fig, axs = plt.subplots(1, 2)
|
|
355
|
+
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
356
|
+
fig.subplots_adjust(
|
|
357
|
+
left=0.15, bottom=0.12, right=0.95, top=0.88, wspace=0.05, hspace=0.05
|
|
358
|
+
)
|
|
359
|
+
#
|
|
360
|
+
axs[0].set_xlabel(r"$n_\text{nuc}$ (fm$^{-3}$)", fontsize="14")
|
|
361
|
+
axs[1].set_xlabel(r"$k_{F_n}$ (fm$^{-1}$)", fontsize="14")
|
|
362
|
+
axs[0].set_xlim([0, 0.33])
|
|
363
|
+
axs[1].set_xlim([0.5, 1.9])
|
|
364
|
+
#
|
|
365
|
+
axs[1].tick_params("y", labelleft=False)
|
|
366
|
+
#
|
|
367
|
+
if matter.lower() == "nm":
|
|
368
|
+
axs[0].set_ylabel(r"$c_\text{s,NM}^2/c^2$", fontsize="14")
|
|
369
|
+
axs[0].set_ylim([-0.05, 0.3])
|
|
370
|
+
axs[1].set_ylim([-0.05, 0.3])
|
|
371
|
+
elif matter.lower() == "sm":
|
|
372
|
+
axs[0].set_ylabel(r"$c_\text{s,SM}^2/c^2$", fontsize="14")
|
|
373
|
+
axs[0].set_ylim([-0.05, 0.2])
|
|
374
|
+
axs[1].set_ylim([-0.05, 0.2])
|
|
375
|
+
#
|
|
376
|
+
params, params_lower = nuda.matter.pheno_params(model=model)
|
|
377
|
+
#
|
|
378
|
+
for param in params:
|
|
379
|
+
#
|
|
380
|
+
pheno = nuda.matter.setupPheno(model=model, param=param)
|
|
381
|
+
#
|
|
382
|
+
check = nuda.matter.setupCheck(eos=pheno, band=band)
|
|
383
|
+
#
|
|
384
|
+
if check.isInside:
|
|
385
|
+
lstyle = "solid"
|
|
386
|
+
else:
|
|
387
|
+
lstyle = "dashed"
|
|
388
|
+
#
|
|
389
|
+
if matter.lower() == "nm":
|
|
390
|
+
#
|
|
391
|
+
if any(pheno.nm_cs2):
|
|
392
|
+
#
|
|
393
|
+
if model == "Skyrme" and check.isInside:
|
|
394
|
+
axs[0].plot( pheno.nm_den[:-1], pheno.nm_cs2[:-1], linestyle=lstyle, label=pheno.label )
|
|
395
|
+
elif model == "Skyrme" and check.isOutside:
|
|
396
|
+
axs[0].plot( pheno.nm_den[:-1], pheno.nm_cs2[:-1], linestyle=lstyle )
|
|
397
|
+
else:
|
|
398
|
+
axs[0].plot( pheno.nm_den[:-1], pheno.nm_cs2[:-1], linestyle=lstyle, label=pheno.label )
|
|
399
|
+
axs[1].plot( pheno.nm_kfn[:-1], pheno.nm_cs2[:-1], linestyle=lstyle )
|
|
400
|
+
#
|
|
401
|
+
#
|
|
402
|
+
elif matter.lower() == "sm":
|
|
403
|
+
#
|
|
404
|
+
if any(pheno.sm_pre):
|
|
405
|
+
if model == "Skyrme" and check.isInside:
|
|
406
|
+
axs[0].plot( pheno.sm_den[:-1], pheno.sm_cs2[:-1], linestyle=lstyle, label=pheno.label )
|
|
407
|
+
elif model == "Skyrme" and check.isOutside:
|
|
408
|
+
axs[0].plot( pheno.sm_den[:-1], pheno.sm_cs2[:-1], linestyle=lstyle )
|
|
409
|
+
else:
|
|
410
|
+
axs[0].plot( pheno.sm_den[:-1], pheno.sm_cs2[:-1], linestyle=lstyle, label=pheno.label )
|
|
411
|
+
axs[1].plot( pheno.sm_kf[:-1], pheno.sm_cs2[:-1], linestyle=lstyle )
|
|
412
|
+
if nuda.env.verb_output: pheno.print_outputs()
|
|
413
|
+
#
|
|
414
|
+
#
|
|
415
|
+
fig.legend(
|
|
416
|
+
loc="upper left",
|
|
417
|
+
bbox_to_anchor=(0.1, 1.0),
|
|
418
|
+
columnspacing=2,
|
|
419
|
+
fontsize="8",
|
|
420
|
+
ncol=4,
|
|
421
|
+
frameon=False,
|
|
422
|
+
)
|
|
423
|
+
#
|
|
424
|
+
#
|
|
425
|
+
if pname is not None:
|
|
426
|
+
plt.savefig(pname, dpi=300)
|
|
427
|
+
plt.close()
|
|
428
|
+
#
|