nucleardatapy 0.2.0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/__init__.py +3 -1
- nucleardatapy/astro/setup_gw.py +18 -18
- nucleardatapy/astro/setup_mr.py +9 -1
- nucleardatapy/astro/setup_mup.py +10 -10
- nucleardatapy/corr/setup_EsymDen.py +0 -5
- nucleardatapy/corr/setup_EsymLsym.py +50 -17
- nucleardatapy/corr/setup_KsatQsat.py +170 -69
- nucleardatapy/crust/setup_crust.py +403 -120
- nucleardatapy/data/astro/NICER/J0740+6620.dat +1 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK22.dat +83 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK24.dat +74 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK25.dat +130 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK26.dat +81 -0
- nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-NM.dat → 2006-BHF-Av18-E2A-NM.dat} +8 -8
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-SM.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.2.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.4.dat +11 -0
- nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
- nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
- nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
- nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
- nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
- nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
- nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +0 -4
- nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +0 -1
- nucleardatapy/env.py +1 -1
- nucleardatapy/eos/__init__.py +4 -3
- nucleardatapy/eos/setupCC.py +429 -0
- nucleardatapy/eos/setup_am.py +71 -34
- nucleardatapy/eos/setup_am_Beq.py +48 -17
- nucleardatapy/eos/setup_am_Leq.py +81 -50
- nucleardatapy/fig/__init__.py +29 -7
- nucleardatapy/fig/astro_setupGW_fig.py +5 -5
- nucleardatapy/fig/astro_setupMR_fig.py +12 -10
- nucleardatapy/fig/astro_setupMasses_fig.py +4 -4
- nucleardatapy/fig/astro_setupMtov_fig.py +4 -4
- nucleardatapy/fig/astro_setupMup_fig.py +5 -5
- nucleardatapy/fig/corr_setupEsymDen_fig.py +12 -5
- nucleardatapy/fig/corr_setupEsymLsym_fig.py +18 -5
- nucleardatapy/fig/corr_setupKsatQsat_fig.py +19 -15
- nucleardatapy/fig/crust_setupCrust_fig.py +7 -7
- nucleardatapy/fig/eos_setupAMBeq_fig.py +1338 -64
- nucleardatapy/fig/eos_setupAMLeq_fig.py +200 -68
- nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +364 -0
- nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +337 -0
- nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +343 -0
- nucleardatapy/fig/eos_setupAM_fig.py +470 -47
- nucleardatapy/fig/eos_setupCC_fig.py +240 -0
- nucleardatapy/fig/hnuc_setupChart_fig.py +2 -2
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +4 -4
- nucleardatapy/fig/matter_all_fig.py +954 -0
- nucleardatapy/fig/matter_setupCheck_fig.py +103 -0
- nucleardatapy/fig/matter_setupFFGLep_fig.py +70 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +268 -104
- nucleardatapy/fig/matter_setupHIC_fig.py +98 -58
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +267 -51
- nucleardatapy/fig/matter_setupMicro_LP_fig.py +175 -78
- nucleardatapy/fig/matter_setupMicro_band_fig.py +116 -47
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +264 -34
- nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +41 -18
- nucleardatapy/fig/matter_setupMicro_fig.py +332 -98
- nucleardatapy/fig/matter_setupMicro_gap_fig.py +219 -92
- nucleardatapy/fig/matter_setupNEPStats_fig.py +96 -0
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +201 -61
- nucleardatapy/fig/matter_setupPheno_fig.py +392 -85
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +286 -0
- nucleardatapy/fig/nuc_setupBEExp_fig.py +232 -70
- nucleardatapy/fig/nuc_setupBETheo_fig.py +344 -0
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +59 -0
- nucleardatapy/fig/nuc_setupRchExp_fig.py +139 -0
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +143 -0
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +88 -0
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +133 -0
- nucleardatapy/hello.py +6 -0
- nucleardatapy/hnuc/__init__.py +3 -3
- nucleardatapy/hnuc/{setup_be1L_exp.py → setup_re1L_exp.py} +6 -6
- nucleardatapy/hnuc/{setup_be1Xi_exp.py → setup_re1Xi_exp.py} +5 -5
- nucleardatapy/hnuc/{setup_be2L_exp.py → setup_re2L_exp.py} +6 -6
- nucleardatapy/matter/__init__.py +14 -13
- nucleardatapy/matter/setup_check.py +97 -0
- nucleardatapy/matter/setup_ffg.py +72 -38
- nucleardatapy/matter/setup_hic.py +91 -74
- nucleardatapy/matter/setup_micro.py +1698 -1019
- nucleardatapy/matter/setup_micro_band.py +11 -6
- nucleardatapy/matter/setup_micro_effmass.py +55 -2
- nucleardatapy/matter/setup_micro_esym.py +39 -34
- nucleardatapy/matter/setup_micro_gap.py +26 -19
- nucleardatapy/matter/setup_micro_lp.py +20 -19
- nucleardatapy/matter/setup_nep.py +175 -92
- nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
- nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
- nucleardatapy/matter/setup_pheno.py +121 -45
- nucleardatapy/matter/setup_pheno_esym.py +14 -19
- nucleardatapy/nuc/__init__.py +2 -2
- nucleardatapy/nuc/setup_be_exp.py +345 -333
- nucleardatapy/nuc/setup_be_theo.py +366 -178
- nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
- nucleardatapy/nuc/setup_rch_exp.py +49 -6
- nucleardatapy/nuc/setup_rch_theo.py +72 -3
- nucleardatapy/nuc/{setup_nskin_exp.py → setup_rnp_exp.py} +59 -65
- nucleardatapy/nuc/{setup_nskin_theo.py → setup_rnp_theo.py} +35 -39
- nucleardatapy-1.0.0.dist-info/METADATA +553 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/RECORD +156 -128
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/WHEEL +1 -1
- tests/test_corr_setupKsatQsat.py +3 -1
- tests/test_matter_setupMicro.py +37 -10
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
- nucleardatapy/fig/matter_ENM_fig.py +0 -119
- nucleardatapy/fig/matter_ESM_fig.py +0 -119
- nucleardatapy/fig/matter_Esym_fig.py +0 -122
- nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
- nucleardatapy-0.2.0.dist-info/METADATA +0 -115
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-AM.dat → 2006-BHF-Av18-E2A-AM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-SM.dat → 2006-BHF-Av18-E2A-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-NM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-SelfEnergy.dat → 2006-BHF-Av18-GAP-NM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-SM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-SelfEnergy.dat → 2006-BHF-Av18-GAP-SM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL59.dat → 2019-MBPT-NM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL69.dat → 2019-MBPT-NM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL59.dat → 2019-MBPT-SM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL69.dat → 2019-MBPT-SM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-NM.csv → 2020-MBPT-NM.csv} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-SM.csv → 2020-MBPT-SM.csv} +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/208Pb.dat +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/48Ca.dat +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info/licenses}/LICENSE +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -3,11 +3,11 @@ import matplotlib.pyplot as plt
|
|
|
3
3
|
|
|
4
4
|
import nucleardatapy as nuda
|
|
5
5
|
|
|
6
|
-
def matter_setupMicro_gap_1s0_fig(
|
|
6
|
+
def matter_setupMicro_gap_1s0_fig(pname, models, matter="NM"):
|
|
7
7
|
"""
|
|
8
8
|
Plot the correlation between Esym and Lsym.\
|
|
9
|
-
The plot is
|
|
10
|
-
[0]: Esym - Lsym correlation plot
|
|
9
|
+
The plot is 2x2 with:\
|
|
10
|
+
[0,0]: Esym - Lsym correlation plot
|
|
11
11
|
|
|
12
12
|
:param pname: name of the figure (*.png)
|
|
13
13
|
:type pname: str.
|
|
@@ -16,76 +16,93 @@ def matter_setupMicro_gap_1s0_fig( pname, models, matter = 'NM' ):
|
|
|
16
16
|
|
|
17
17
|
"""
|
|
18
18
|
#
|
|
19
|
-
print(f
|
|
19
|
+
print(f"Plot name: {pname}")
|
|
20
20
|
#
|
|
21
|
-
print(
|
|
21
|
+
print("models:", models)
|
|
22
22
|
#
|
|
23
|
-
fig, axs = plt.subplots(2,2)
|
|
24
|
-
fig.
|
|
25
|
-
fig.subplots_adjust(left=0.12, bottom=0.12, right=None, top=0.8, wspace=0.05, hspace=0.05 )
|
|
23
|
+
fig, axs = plt.subplots(2, 2)
|
|
24
|
+
fig.subplots_adjust( left=0.12, bottom=0.12, right=0.95, top=0.85, wspace=0.05, hspace=0.05 )
|
|
26
25
|
#
|
|
27
|
-
axs[0,0].set_ylabel(r
|
|
28
|
-
axs[0,0].set_xlim([0, 0.
|
|
26
|
+
axs[0,0].set_ylabel(r"$\Delta_{1S0}$ (MeV)", fontsize="14")
|
|
27
|
+
axs[0,0].set_xlim([0, 0.09])
|
|
29
28
|
axs[0,0].set_ylim([0, 3.0])
|
|
30
|
-
axs[0,0].tick_params(
|
|
29
|
+
axs[0,0].tick_params("x", labelbottom=False)
|
|
31
30
|
#
|
|
32
31
|
axs[0,1].set_xlim([0, 1.6])
|
|
33
32
|
axs[0,1].set_ylim([0, 3.0])
|
|
34
|
-
axs[0,1].tick_params(
|
|
35
|
-
axs[0,1].tick_params(
|
|
33
|
+
axs[0,1].tick_params("x", labelbottom=False)
|
|
34
|
+
axs[0,1].tick_params("y", labelleft=False)
|
|
36
35
|
#
|
|
37
|
-
axs[1,0].set_ylabel(r
|
|
38
|
-
axs[1,0].set_xlabel(r
|
|
39
|
-
axs[1,0].set_xlim([0, 0.
|
|
40
|
-
axs[1,0].set_ylim([0, 0.
|
|
36
|
+
axs[1,0].set_ylabel(r"$\Delta_{1S0}/E_F$", fontsize="14")
|
|
37
|
+
axs[1,0].set_xlabel(r"$n_\text{nuc}$ (fm$^{-3}$)", fontsize="14")
|
|
38
|
+
axs[1,0].set_xlim([0, 0.09])
|
|
39
|
+
axs[1,0].set_ylim([0, 0.65])
|
|
41
40
|
#
|
|
42
|
-
axs[1,1].set_xlabel(r
|
|
41
|
+
axs[1,1].set_xlabel(r"$k_{F}$ (fm$^{-1}$)", fontsize="14")
|
|
43
42
|
axs[1,1].set_xlim([0, 1.6])
|
|
44
|
-
axs[1,1].set_ylim([0, 0.
|
|
45
|
-
axs[1,1].tick_params(
|
|
43
|
+
axs[1,1].set_ylim([0, 0.65])
|
|
44
|
+
axs[1,1].tick_params("y", labelleft=False)
|
|
46
45
|
#
|
|
47
46
|
for model in models:
|
|
48
47
|
#
|
|
49
|
-
gap = nuda.matter.setupMicroGap(
|
|
48
|
+
gap = nuda.matter.setupMicroGap(model=model, matter=matter)
|
|
50
49
|
#
|
|
51
|
-
if matter.lower() ==
|
|
50
|
+
if matter.lower() == "nm":
|
|
52
51
|
if gap.nm_gap_1s0 is not None:
|
|
53
52
|
if gap.nm_gap_1s0_err is not None:
|
|
54
|
-
axs[0,0].errorbar(
|
|
55
|
-
|
|
56
|
-
axs[1
|
|
57
|
-
|
|
53
|
+
axs[0, 0].errorbar(gap.nm_den_1s0, gap.nm_gap_1s0, yerr=gap.nm_gap_1s0_err,
|
|
54
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle, label=gap.label )
|
|
55
|
+
axs[0, 1].errorbar(gap.nm_kfn_1s0, gap.nm_gap_1s0, yerr=gap.nm_gap_1s0_err,
|
|
56
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
57
|
+
axs[1, 0].errorbar(gap.nm_den_1s0, gap.nm_gap_1s0 / nuda.eF_n(gap.nm_kfn_1s0), yerr=gap.nm_gap_1s0_err / nuda.eF_n(gap.nm_kfn_1s0),
|
|
58
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
59
|
+
axs[1, 1].errorbar(gap.nm_kfn_1s0, gap.nm_gap_1s0 / nuda.eF_n(gap.nm_kfn_1s0), yerr=gap.nm_gap_1s0_err / nuda.eF_n(gap.nm_kfn_1s0),
|
|
60
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
58
61
|
else:
|
|
59
|
-
axs[0,0].plot(
|
|
60
|
-
|
|
61
|
-
axs[1
|
|
62
|
-
|
|
63
|
-
|
|
62
|
+
axs[0, 0].plot(gap.nm_den_1s0, gap.nm_gap_1s0,
|
|
63
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle, label=gap.label)
|
|
64
|
+
axs[0, 1].plot(gap.nm_kfn_1s0, gap.nm_gap_1s0,
|
|
65
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
66
|
+
axs[1, 0].plot(gap.nm_den_1s0, gap.nm_gap_1s0 / nuda.eF_n(gap.nm_kfn_1s0),
|
|
67
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
68
|
+
axs[1, 1].plot(gap.nm_kfn_1s0, gap.nm_gap_1s0 / nuda.eF_n(gap.nm_kfn_1s0),
|
|
69
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
70
|
+
elif matter.lower() == "sm":
|
|
64
71
|
if gap.sm_gap_1s0 is not None:
|
|
65
72
|
if gap.sm_gap_1s0_err is not None:
|
|
66
|
-
axs[0,0].errorbar(
|
|
67
|
-
|
|
68
|
-
axs[1
|
|
69
|
-
|
|
73
|
+
axs[0, 0].errorbar(gap.sm_den_1s0, gap.sm_gap_1s0, yerr=gap.sm_gap_1s0_err,
|
|
74
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle, label=gap.label )
|
|
75
|
+
axs[0, 1].errorbar(gap.sm_kfn_1s0, gap.sm_gap_1s0, yerr=gap.sm_gap_1s0_err,
|
|
76
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
77
|
+
axs[1, 0].errorbar(gap.sm_den_1s0, gap.sm_gap_1s0 / (2*nuda.eF_n(gap.sm_kfn_1s0)), yerr=gap.sm_gap_1s0_err / nuda.eF_n(gap.sm_kfn_1s0),
|
|
78
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
79
|
+
axs[1, 1].errorbar(gap.sm_kfn_1s0, gap.sm_gap_1s0 / (2*nuda.eF_n(gap.sm_kfn_1s0)), yerr=gap.sm_gap_1s0_err / nuda.eF_n(gap.sm_kfn_1s0),
|
|
80
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
70
81
|
else:
|
|
71
|
-
axs[0,0].plot(
|
|
72
|
-
|
|
73
|
-
axs[1
|
|
74
|
-
|
|
75
|
-
|
|
82
|
+
axs[0, 0].plot(gap.sm_den_1s0, gap.sm_gap_1s0,
|
|
83
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle, label=gap.label )
|
|
84
|
+
axs[0, 1].plot(gap.sm_kfn_1s0, gap.sm_gap_1s0,
|
|
85
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
86
|
+
axs[1, 0].plot(gap.sm_den_1s0, gap.sm_gap_1s0 / (2*nuda.eF_n(gap.sm_kfn_1s0)),
|
|
87
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
88
|
+
axs[1, 1].plot(gap.sm_kfn_1s0, gap.sm_gap_1s0 / (2*nuda.eF_n(gap.sm_kfn_1s0)),
|
|
89
|
+
marker=gap.marker, markevery=gap.every, linestyle=gap.lstyle )
|
|
90
|
+
if nuda.env.verb_output:
|
|
91
|
+
gap.print_outputs()
|
|
76
92
|
#
|
|
77
|
-
#axs[1,0].legend(loc='upper right',fontsize='8')
|
|
78
|
-
fig.legend(loc=
|
|
93
|
+
# axs[1,0].legend(loc='upper right',fontsize='8')
|
|
94
|
+
fig.legend(loc="upper left", bbox_to_anchor=(0.1, 1.0), columnspacing=2, fontsize="8", ncol=3, frameon=False )
|
|
79
95
|
#
|
|
80
96
|
if pname is not None:
|
|
81
|
-
|
|
82
|
-
|
|
97
|
+
plt.savefig(pname, dpi=300)
|
|
98
|
+
plt.close()
|
|
83
99
|
|
|
84
|
-
|
|
100
|
+
|
|
101
|
+
def matter_setupMicro_gap_3pf2_fig(pname, models, matter="NM"):
|
|
85
102
|
"""
|
|
86
103
|
Plot the correlation between Esym and Lsym.\
|
|
87
|
-
The plot is
|
|
88
|
-
[0]: Esym - Lsym correlation plot
|
|
104
|
+
The plot is 2x2 with:\
|
|
105
|
+
[0,0]: Esym - Lsym correlation plot
|
|
89
106
|
|
|
90
107
|
:param pname: name of the figure (*.png)
|
|
91
108
|
:type pname: str.
|
|
@@ -94,68 +111,178 @@ def matter_setupMicro_gap_3pf2_fig( pname, models, matter = 'NM' ):
|
|
|
94
111
|
|
|
95
112
|
"""
|
|
96
113
|
#
|
|
97
|
-
print(f
|
|
114
|
+
print(f"Plot name: {pname}")
|
|
98
115
|
#
|
|
99
116
|
# plot 3PF2 pairing gap in NM
|
|
100
|
-
print(
|
|
117
|
+
print("models:", models)
|
|
101
118
|
#
|
|
102
|
-
fig, axs = plt.subplots(2,2)
|
|
103
|
-
fig.tight_layout()
|
|
104
|
-
fig.subplots_adjust(left=0.12, bottom=0.12, right=
|
|
119
|
+
fig, axs = plt.subplots(2, 2)
|
|
120
|
+
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
121
|
+
fig.subplots_adjust(left=0.12, bottom=0.12, right=0.95, top=0.85, wspace=0.05, hspace=0.05 )
|
|
105
122
|
#
|
|
106
|
-
axs[0,0].set_ylabel(r
|
|
107
|
-
axs[0,0].set_xlim([0, 0.38])
|
|
108
|
-
axs[0,0].set_ylim([0, 0.6])
|
|
109
|
-
axs[0,0].tick_params(
|
|
123
|
+
axs[0, 0].set_ylabel(r"$\Delta_{3PF2}$ (MeV)", fontsize="14")
|
|
124
|
+
axs[0, 0].set_xlim([0, 0.38])
|
|
125
|
+
axs[0, 0].set_ylim([0, 0.6])
|
|
126
|
+
axs[0, 0].tick_params("x", labelbottom=False)
|
|
110
127
|
#
|
|
111
|
-
axs[0,1].set_xlim([0.6, 2.3])
|
|
112
|
-
axs[0,1].set_ylim([0, 0.6])
|
|
113
|
-
axs[0,1].tick_params(
|
|
114
|
-
axs[0,1].tick_params(
|
|
128
|
+
axs[0, 1].set_xlim([0.6, 2.3])
|
|
129
|
+
axs[0, 1].set_ylim([0, 0.6])
|
|
130
|
+
axs[0, 1].tick_params("x", labelbottom=False)
|
|
131
|
+
axs[0, 1].tick_params("y", labelleft=False)
|
|
115
132
|
#
|
|
116
|
-
axs[1,0].set_ylabel(r
|
|
117
|
-
axs[1,0].set_xlabel(r
|
|
118
|
-
axs[1,0].set_xlim([0, 0.38])
|
|
119
|
-
axs[1,0].set_ylim([0, 0.78])
|
|
133
|
+
axs[1, 0].set_ylabel(r"$100\times \Delta_{3PF2}/E_F$", fontsize="14")
|
|
134
|
+
axs[1, 0].set_xlabel(r"$n_\text{nuc}$ (fm$^{-3}$)", fontsize="14")
|
|
135
|
+
axs[1, 0].set_xlim([0, 0.38])
|
|
136
|
+
axs[1, 0].set_ylim([0, 0.78])
|
|
120
137
|
#
|
|
121
|
-
axs[1,1].set_xlabel(r
|
|
122
|
-
axs[1,1].set_xlim([0.6, 2.3])
|
|
123
|
-
axs[1,1].set_ylim([0, 0.78])
|
|
124
|
-
axs[1,1].tick_params(
|
|
138
|
+
axs[1, 1].set_xlabel(r"$k_{F}$ (fm$^{-1}$)", fontsize="14")
|
|
139
|
+
axs[1, 1].set_xlim([0.6, 2.3])
|
|
140
|
+
axs[1, 1].set_ylim([0, 0.78])
|
|
141
|
+
axs[1, 1].tick_params("y", labelleft=False)
|
|
125
142
|
#
|
|
126
143
|
for model in models:
|
|
127
144
|
#
|
|
128
|
-
gap = nuda.matter.setupMicroGap(
|
|
145
|
+
gap = nuda.matter.setupMicroGap(model=model, matter=matter)
|
|
129
146
|
#
|
|
130
|
-
if matter.lower() ==
|
|
147
|
+
if matter.lower() == "nm":
|
|
131
148
|
if gap.nm_gap_3pf2 is not None:
|
|
132
149
|
if gap.nm_gap_3pf2_err is not None:
|
|
133
|
-
axs[0,0].errorbar(
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
150
|
+
axs[0, 0].errorbar(
|
|
151
|
+
gap.nm_den_3pf2,
|
|
152
|
+
gap.nm_gap_3pf2,
|
|
153
|
+
yerr=gap.nm_gap_3pf2_err,
|
|
154
|
+
marker=gap.marker,
|
|
155
|
+
markevery=gap.every,
|
|
156
|
+
linestyle=gap.lstyle,
|
|
157
|
+
label=gap.label,
|
|
158
|
+
)
|
|
159
|
+
axs[0, 1].errorbar(
|
|
160
|
+
gap.nm_kfn_3pf2,
|
|
161
|
+
gap.nm_gap_3pf2,
|
|
162
|
+
yerr=gap.nm_gap_3pf2_err,
|
|
163
|
+
marker=gap.marker,
|
|
164
|
+
markevery=gap.every,
|
|
165
|
+
linestyle=gap.lstyle,
|
|
166
|
+
)
|
|
167
|
+
axs[1, 0].errorbar(
|
|
168
|
+
gap.nm_den_3pf2,
|
|
169
|
+
100 * gap.nm_gap_3pf2 / nuda.eF_n(gap.nm_kfn_3pf2),
|
|
170
|
+
yerr=gap.nm_gap_3pf2_err / nuda.eF_n(gap.nm_kfn_3pf2),
|
|
171
|
+
marker=gap.marker,
|
|
172
|
+
markevery=gap.every,
|
|
173
|
+
linestyle=gap.lstyle,
|
|
174
|
+
)
|
|
175
|
+
axs[1, 1].errorbar(
|
|
176
|
+
gap.nm_kfn_3pf2,
|
|
177
|
+
100 * gap.nm_gap_3pf2 / nuda.eF_n(gap.nm_kfn_3pf2),
|
|
178
|
+
yerr=gap.nm_gap_3pf2_err / nuda.eF_n(gap.nm_kfn_3pf2),
|
|
179
|
+
marker=gap.marker,
|
|
180
|
+
markevery=gap.every,
|
|
181
|
+
linestyle=gap.lstyle,
|
|
182
|
+
)
|
|
137
183
|
else:
|
|
138
|
-
axs[0,0].plot(
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
184
|
+
axs[0, 0].plot(
|
|
185
|
+
gap.nm_den_3pf2,
|
|
186
|
+
gap.nm_gap_3pf2,
|
|
187
|
+
marker=gap.marker,
|
|
188
|
+
markevery=gap.every,
|
|
189
|
+
linestyle=gap.lstyle,
|
|
190
|
+
label=gap.label,
|
|
191
|
+
)
|
|
192
|
+
axs[0, 1].plot(
|
|
193
|
+
gap.nm_kfn_3pf2,
|
|
194
|
+
gap.nm_gap_3pf2,
|
|
195
|
+
marker=gap.marker,
|
|
196
|
+
markevery=gap.every,
|
|
197
|
+
linestyle=gap.lstyle,
|
|
198
|
+
)
|
|
199
|
+
axs[1, 0].plot(
|
|
200
|
+
gap.nm_den_3pf2,
|
|
201
|
+
100 * gap.nm_gap_3pf2 / nuda.eF_n(gap.nm_kfn_3pf2),
|
|
202
|
+
marker=gap.marker,
|
|
203
|
+
markevery=gap.every,
|
|
204
|
+
linestyle=gap.lstyle,
|
|
205
|
+
)
|
|
206
|
+
axs[1, 1].plot(
|
|
207
|
+
gap.nm_kfn_3pf2,
|
|
208
|
+
100 * gap.nm_gap_3pf2 / nuda.eF_n(gap.nm_kfn_3pf2),
|
|
209
|
+
marker=gap.marker,
|
|
210
|
+
markevery=gap.every,
|
|
211
|
+
linestyle=gap.lstyle,
|
|
212
|
+
)
|
|
213
|
+
elif matter.lower() == "sm":
|
|
143
214
|
if gap.sm_gap_3pf2 is not None:
|
|
144
215
|
if gap.sm_gap_3pf2_err is not None:
|
|
145
|
-
axs[0,0].errorbar(
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
216
|
+
axs[0, 0].errorbar(
|
|
217
|
+
gap.sm_den_3pf2,
|
|
218
|
+
gap.sm_gap_3pf2,
|
|
219
|
+
yerr=gap.sm_gap_3pf2_err,
|
|
220
|
+
marker=gap.marker,
|
|
221
|
+
markevery=gap.every,
|
|
222
|
+
linestyle=gap.lstyle,
|
|
223
|
+
label=gap.label,
|
|
224
|
+
)
|
|
225
|
+
axs[0, 1].errorbar(
|
|
226
|
+
gap.sm_kfn_3pf2,
|
|
227
|
+
gap.sm_gap_3pf2,
|
|
228
|
+
yerr=gap.sm_gap_3pf2_err,
|
|
229
|
+
marker=gap.marker,
|
|
230
|
+
markevery=gap.every,
|
|
231
|
+
linestyle=gap.lstyle,
|
|
232
|
+
)
|
|
233
|
+
axs[1, 0].errorbar(
|
|
234
|
+
gap.sm_den_3pf2,
|
|
235
|
+
100 * gap.sm_gap_3pf2 / (2*nuda.eF_n(gap.sm_kfn_3pf2)),
|
|
236
|
+
yerr=gap.sm_gap_3pf2_err / (2*nuda.eF_n(gap.sm_kfn_3pf2)),
|
|
237
|
+
marker=gap.marker,
|
|
238
|
+
markevery=gap.every,
|
|
239
|
+
linestyle=gap.lstyle,
|
|
240
|
+
)
|
|
241
|
+
axs[1, 1].errorbar(
|
|
242
|
+
gap.sm_kfn_3pf2,
|
|
243
|
+
100 * gap.sm_gap_3pf2 / (2*nuda.eF_n(gap.sm_kfn_3pf2)),
|
|
244
|
+
yerr=gap.sm_gap_3pf2_err / (2*nuda.eF_n(gap.sm_kfn_3pf2)),
|
|
245
|
+
marker=gap.marker,
|
|
246
|
+
markevery=gap.every,
|
|
247
|
+
linestyle=gap.lstyle,
|
|
248
|
+
)
|
|
149
249
|
else:
|
|
150
|
-
axs[0,0].plot(
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
250
|
+
axs[0, 0].plot(
|
|
251
|
+
gap.sm_den_3pf2,
|
|
252
|
+
gap.sm_gap_3pf2,
|
|
253
|
+
marker=gap.marker,
|
|
254
|
+
markevery=gap.every,
|
|
255
|
+
linestyle=gap.lstyle,
|
|
256
|
+
label=gap.label,
|
|
257
|
+
)
|
|
258
|
+
axs[0, 1].plot(
|
|
259
|
+
gap.sm_kfn_3pf2,
|
|
260
|
+
gap.sm_gap_3pf2,
|
|
261
|
+
marker=gap.marker,
|
|
262
|
+
markevery=gap.every,
|
|
263
|
+
linestyle=gap.lstyle,
|
|
264
|
+
)
|
|
265
|
+
axs[1, 0].plot(
|
|
266
|
+
gap.sm_den_3pf2,
|
|
267
|
+
100 * gap.sm_gap_3pf2 / (2*nuda.eF_n(gap.sm_kfn_3pf2)),
|
|
268
|
+
marker=gap.marker,
|
|
269
|
+
markevery=gap.every,
|
|
270
|
+
linestyle=gap.lstyle,
|
|
271
|
+
)
|
|
272
|
+
axs[1, 1].plot(
|
|
273
|
+
gap.sm_kfn_3pf2,
|
|
274
|
+
100 * gap.sm_gap_3pf2 / (2*nuda.eF_n(gap.sm_kfn_3pf2)),
|
|
275
|
+
marker=gap.marker,
|
|
276
|
+
markevery=gap.every,
|
|
277
|
+
linestyle=gap.lstyle,
|
|
278
|
+
)
|
|
279
|
+
if nuda.env.verb_output:
|
|
280
|
+
gap.print_outputs()
|
|
155
281
|
#
|
|
156
|
-
#axs[1,0].legend(loc='upper right',fontsize='8')
|
|
157
|
-
fig.legend(loc=
|
|
282
|
+
# axs[1,0].legend(loc='upper right',fontsize='8')
|
|
283
|
+
fig.legend(loc="upper left", bbox_to_anchor=(0.1, 0.95), columnspacing=2, fontsize="8", ncol=3, frameon=False )
|
|
158
284
|
#
|
|
159
285
|
if pname is not None:
|
|
160
|
-
|
|
161
|
-
|
|
286
|
+
plt.savefig(pname, dpi=300)
|
|
287
|
+
plt.close()
|
|
288
|
+
#
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
import nucleardatapy as nuda
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def matter_setupNEPStats_fig(pname, models):
|
|
8
|
+
"""
|
|
9
|
+
Plot nucleonic energy per particle E/A in matter.\
|
|
10
|
+
The plot is 5x2 with:\
|
|
11
|
+
[0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
|
|
12
|
+
|
|
13
|
+
:param pname: name of the figure (*.png)
|
|
14
|
+
:type pname: str.
|
|
15
|
+
:param models: models to run on.
|
|
16
|
+
:type models: array of str.
|
|
17
|
+
|
|
18
|
+
"""
|
|
19
|
+
#
|
|
20
|
+
print(f"Plot name: {pname}")
|
|
21
|
+
#
|
|
22
|
+
fig, axs = plt.subplots(5, 2)
|
|
23
|
+
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
24
|
+
fig.subplots_adjust( left=0.12, bottom=0.06, right=0.95, top=0.9, wspace=0.3, hspace=0.4 )
|
|
25
|
+
#
|
|
26
|
+
axs[0, 0].set_ylabel(r"$E_\text{sat}$")
|
|
27
|
+
axs[0, 0].set_xlim([-16.5, -15])
|
|
28
|
+
axs[1, 0].set_ylabel(r"$n_\text{sat}$")
|
|
29
|
+
axs[1, 0].set_xlim([0.14, 0.18])
|
|
30
|
+
axs[2, 0].set_ylabel(r"$K_\text{sat}$")
|
|
31
|
+
axs[2, 0].set_xlim([180, 360])
|
|
32
|
+
axs[3, 0].set_ylabel(r"$Q_\text{sat}$")
|
|
33
|
+
axs[3, 0].set_xlim([-1000, 1000])
|
|
34
|
+
axs[4, 0].set_ylabel(r"$m_\text{sat}^{*}/m$")
|
|
35
|
+
axs[4, 0].set_xlim([0.35, 1.2])
|
|
36
|
+
axs[0, 1].set_ylabel(r"$E_\text{sym}$")
|
|
37
|
+
axs[0, 1].set_xlim([26, 40])
|
|
38
|
+
axs[1, 1].set_ylabel(r"$L_\text{sym}$")
|
|
39
|
+
axs[1, 1].set_xlim([0, 120])
|
|
40
|
+
axs[2, 1].set_ylabel(r"$K_\text{sym}$")
|
|
41
|
+
axs[2, 1].set_xlim([-400, 220])
|
|
42
|
+
axs[3, 1].set_ylabel(r"$Q_\text{sym}$")
|
|
43
|
+
axs[3, 1].set_xlim([-50, 900])
|
|
44
|
+
axs[4, 1].set_ylabel(r"$\Delta m_\text{sat}^{*}/m$")
|
|
45
|
+
axs[4, 1].set_xlim([-0.5, 1.1])
|
|
46
|
+
#
|
|
47
|
+
# Built distribution of NEP
|
|
48
|
+
#
|
|
49
|
+
for model in models:
|
|
50
|
+
#
|
|
51
|
+
dist = nuda.matter.setupNEPStat_model(model)
|
|
52
|
+
#
|
|
53
|
+
xbins = np.arange(-16.5, -15.0, 0.15)
|
|
54
|
+
if len(dist.Esat) != 0:
|
|
55
|
+
axs[0, 0].hist(dist.Esat, bins=xbins, alpha=0.5, weights=1/len(dist.Esat) * np.ones(len(dist.Esat)) )
|
|
56
|
+
xbins = np.arange(0.14, 0.18, 0.004)
|
|
57
|
+
if len(dist.nsat) != 0:
|
|
58
|
+
axs[1, 0].hist(dist.nsat, bins=xbins, alpha=0.5, weights=1/len(dist.nsat) * np.ones(len(dist.nsat)) )
|
|
59
|
+
xbins = np.arange(180, 320, 20)
|
|
60
|
+
if len(dist.Ksat) != 0:
|
|
61
|
+
axs[2, 0].hist(dist.Ksat, bins=xbins, alpha=0.5, weights=1/len(dist.Ksat) * np.ones(len(dist.Ksat)), label=model )
|
|
62
|
+
xbins = np.arange(-1000, 1000, 200)
|
|
63
|
+
if len(dist.Qsat) != 0:
|
|
64
|
+
axs[3, 0].hist(dist.Qsat, bins=xbins, alpha=0.5, weights=1/len(dist.Qsat) * np.ones(len(dist.Qsat)) )
|
|
65
|
+
xbins = np.arange(0.5, 1.2, 0.1)
|
|
66
|
+
if len(dist.msat) != 0:
|
|
67
|
+
axs[4, 0].hist(dist.msat, bins=xbins, alpha=0.5, weights=1/len(dist.msat) * np.ones(len(dist.msat)) )
|
|
68
|
+
xbins = np.arange(25, 40, 1.0)
|
|
69
|
+
if len(dist.Esym) != 0:
|
|
70
|
+
axs[0, 1].hist(dist.Esym, bins=xbins, alpha=0.5, weights=1/len(dist.Esym) * np.ones(len(dist.Esym)) )
|
|
71
|
+
xbins = np.arange(0, 120, 10)
|
|
72
|
+
if len(dist.Lsym) != 0:
|
|
73
|
+
axs[1, 1].hist(dist.Lsym, bins=xbins, alpha=0.5, weights=1/len(dist.Lsym) * np.ones(len(dist.Lsym)) )
|
|
74
|
+
xbins = np.arange(-400, 400, 100)
|
|
75
|
+
if len(dist.Ksym) != 0:
|
|
76
|
+
axs[2, 1].hist(dist.Ksym, bins=xbins, alpha=0.5, weights=1/len(dist.Ksym) * np.ones(len(dist.Ksym)) )
|
|
77
|
+
xbins = np.arange(0, 1100, 100)
|
|
78
|
+
if len(dist.Qsym) != 0:
|
|
79
|
+
axs[3, 1].hist(dist.Qsym, bins=xbins, alpha=0.5, weights=1/len(dist.Qsym) * np.ones(len(dist.Qsym)) )
|
|
80
|
+
xbins = np.arange(-0.6, 1.0, 0.1)
|
|
81
|
+
if len(dist.Dmsat) != 0:
|
|
82
|
+
axs[4, 1].hist(dist.Dmsat, bins=xbins, alpha=0.5, weights=1/len(dist.Dmsat) * np.ones(len(dist.Dmsat)) )
|
|
83
|
+
#
|
|
84
|
+
# axs[0,0].legend(loc='lower right',fontsize='10',ncol=2)
|
|
85
|
+
fig.legend(
|
|
86
|
+
loc="upper left",
|
|
87
|
+
bbox_to_anchor=(0.02, 0.99),
|
|
88
|
+
columnspacing=2,
|
|
89
|
+
fontsize="7.5",
|
|
90
|
+
ncol=7,
|
|
91
|
+
frameon=False,
|
|
92
|
+
)
|
|
93
|
+
#
|
|
94
|
+
if pname is not None:
|
|
95
|
+
plt.savefig(pname, dpi=300)
|
|
96
|
+
plt.close()
|