nucleardatapy 0.2.0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/__init__.py +3 -1
- nucleardatapy/astro/setup_gw.py +18 -18
- nucleardatapy/astro/setup_mr.py +9 -1
- nucleardatapy/astro/setup_mup.py +10 -10
- nucleardatapy/corr/setup_EsymDen.py +0 -5
- nucleardatapy/corr/setup_EsymLsym.py +50 -17
- nucleardatapy/corr/setup_KsatQsat.py +170 -69
- nucleardatapy/crust/setup_crust.py +403 -120
- nucleardatapy/data/astro/NICER/J0740+6620.dat +1 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK22.dat +83 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK24.dat +74 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK25.dat +130 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK26.dat +81 -0
- nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-NM.dat → 2006-BHF-Av18-E2A-NM.dat} +8 -8
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-SM.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.2.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.4.dat +11 -0
- nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
- nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
- nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
- nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
- nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
- nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
- nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +0 -4
- nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +0 -1
- nucleardatapy/env.py +1 -1
- nucleardatapy/eos/__init__.py +4 -3
- nucleardatapy/eos/setupCC.py +429 -0
- nucleardatapy/eos/setup_am.py +71 -34
- nucleardatapy/eos/setup_am_Beq.py +48 -17
- nucleardatapy/eos/setup_am_Leq.py +81 -50
- nucleardatapy/fig/__init__.py +29 -7
- nucleardatapy/fig/astro_setupGW_fig.py +5 -5
- nucleardatapy/fig/astro_setupMR_fig.py +12 -10
- nucleardatapy/fig/astro_setupMasses_fig.py +4 -4
- nucleardatapy/fig/astro_setupMtov_fig.py +4 -4
- nucleardatapy/fig/astro_setupMup_fig.py +5 -5
- nucleardatapy/fig/corr_setupEsymDen_fig.py +12 -5
- nucleardatapy/fig/corr_setupEsymLsym_fig.py +18 -5
- nucleardatapy/fig/corr_setupKsatQsat_fig.py +19 -15
- nucleardatapy/fig/crust_setupCrust_fig.py +7 -7
- nucleardatapy/fig/eos_setupAMBeq_fig.py +1338 -64
- nucleardatapy/fig/eos_setupAMLeq_fig.py +200 -68
- nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +364 -0
- nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +337 -0
- nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +343 -0
- nucleardatapy/fig/eos_setupAM_fig.py +470 -47
- nucleardatapy/fig/eos_setupCC_fig.py +240 -0
- nucleardatapy/fig/hnuc_setupChart_fig.py +2 -2
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +4 -4
- nucleardatapy/fig/matter_all_fig.py +954 -0
- nucleardatapy/fig/matter_setupCheck_fig.py +103 -0
- nucleardatapy/fig/matter_setupFFGLep_fig.py +70 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +268 -104
- nucleardatapy/fig/matter_setupHIC_fig.py +98 -58
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +267 -51
- nucleardatapy/fig/matter_setupMicro_LP_fig.py +175 -78
- nucleardatapy/fig/matter_setupMicro_band_fig.py +116 -47
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +264 -34
- nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +41 -18
- nucleardatapy/fig/matter_setupMicro_fig.py +332 -98
- nucleardatapy/fig/matter_setupMicro_gap_fig.py +219 -92
- nucleardatapy/fig/matter_setupNEPStats_fig.py +96 -0
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +201 -61
- nucleardatapy/fig/matter_setupPheno_fig.py +392 -85
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +286 -0
- nucleardatapy/fig/nuc_setupBEExp_fig.py +232 -70
- nucleardatapy/fig/nuc_setupBETheo_fig.py +344 -0
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +59 -0
- nucleardatapy/fig/nuc_setupRchExp_fig.py +139 -0
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +143 -0
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +88 -0
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +133 -0
- nucleardatapy/hello.py +6 -0
- nucleardatapy/hnuc/__init__.py +3 -3
- nucleardatapy/hnuc/{setup_be1L_exp.py → setup_re1L_exp.py} +6 -6
- nucleardatapy/hnuc/{setup_be1Xi_exp.py → setup_re1Xi_exp.py} +5 -5
- nucleardatapy/hnuc/{setup_be2L_exp.py → setup_re2L_exp.py} +6 -6
- nucleardatapy/matter/__init__.py +14 -13
- nucleardatapy/matter/setup_check.py +97 -0
- nucleardatapy/matter/setup_ffg.py +72 -38
- nucleardatapy/matter/setup_hic.py +91 -74
- nucleardatapy/matter/setup_micro.py +1698 -1019
- nucleardatapy/matter/setup_micro_band.py +11 -6
- nucleardatapy/matter/setup_micro_effmass.py +55 -2
- nucleardatapy/matter/setup_micro_esym.py +39 -34
- nucleardatapy/matter/setup_micro_gap.py +26 -19
- nucleardatapy/matter/setup_micro_lp.py +20 -19
- nucleardatapy/matter/setup_nep.py +175 -92
- nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
- nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
- nucleardatapy/matter/setup_pheno.py +121 -45
- nucleardatapy/matter/setup_pheno_esym.py +14 -19
- nucleardatapy/nuc/__init__.py +2 -2
- nucleardatapy/nuc/setup_be_exp.py +345 -333
- nucleardatapy/nuc/setup_be_theo.py +366 -178
- nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
- nucleardatapy/nuc/setup_rch_exp.py +49 -6
- nucleardatapy/nuc/setup_rch_theo.py +72 -3
- nucleardatapy/nuc/{setup_nskin_exp.py → setup_rnp_exp.py} +59 -65
- nucleardatapy/nuc/{setup_nskin_theo.py → setup_rnp_theo.py} +35 -39
- nucleardatapy-1.0.0.dist-info/METADATA +553 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/RECORD +156 -128
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/WHEEL +1 -1
- tests/test_corr_setupKsatQsat.py +3 -1
- tests/test_matter_setupMicro.py +37 -10
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
- nucleardatapy/fig/matter_ENM_fig.py +0 -119
- nucleardatapy/fig/matter_ESM_fig.py +0 -119
- nucleardatapy/fig/matter_Esym_fig.py +0 -122
- nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
- nucleardatapy-0.2.0.dist-info/METADATA +0 -115
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-AM.dat → 2006-BHF-Av18-E2A-AM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-SM.dat → 2006-BHF-Av18-E2A-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-NM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-SelfEnergy.dat → 2006-BHF-Av18-GAP-NM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-SM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-SelfEnergy.dat → 2006-BHF-Av18-GAP-SM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL59.dat → 2019-MBPT-NM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL69.dat → 2019-MBPT-NM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL59.dat → 2019-MBPT-SM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL69.dat → 2019-MBPT-SM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-NM.csv → 2020-MBPT-NM.csv} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-SM.csv → 2020-MBPT-SM.csv} +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/208Pb.dat +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/48Ca.dat +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info/licenses}/LICENSE +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -3,7 +3,7 @@ import matplotlib.pyplot as plt
|
|
|
3
3
|
|
|
4
4
|
import nucleardatapy as nuda
|
|
5
5
|
|
|
6
|
-
def
|
|
6
|
+
def eos_setupAM_e2a_fig( pname, micro_mbs, pheno_models, band ):
|
|
7
7
|
"""
|
|
8
8
|
Plot nuclear chart (N versus Z).\
|
|
9
9
|
The plot is 1x2 with:\
|
|
@@ -22,60 +22,483 @@ def eos_setupAM_e_fig( pname, models_micro, models_pheno, asy ):
|
|
|
22
22
|
#
|
|
23
23
|
print(f'Plot name: {pname}')
|
|
24
24
|
#
|
|
25
|
-
fig, axs = plt.subplots(
|
|
26
|
-
|
|
27
|
-
fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.95, wspace=0.05, hspace=0.3 )
|
|
25
|
+
fig, axs = plt.subplots(3,2)
|
|
26
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.9, wspace=0.05, hspace=0.05 )
|
|
28
27
|
#
|
|
29
|
-
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
30
|
-
axs[0].set_ylabel(r'$
|
|
31
|
-
axs[0].set_xlim([0, 0.
|
|
32
|
-
axs[0].set_ylim([-
|
|
28
|
+
#axs[0,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
29
|
+
axs[0,0].set_ylabel(r'$e_\text{lep}^\text{int}$ (MeV)',fontsize='14')
|
|
30
|
+
axs[0,0].set_xlim([0, 0.33])
|
|
31
|
+
axs[0,0].set_ylim([-2, 38])
|
|
32
|
+
axs[0,0].tick_params('x', labelbottom=False)
|
|
33
33
|
#
|
|
34
|
-
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
35
|
-
|
|
36
|
-
axs[1].
|
|
37
|
-
axs[1].
|
|
38
|
-
axs[1].tick_params('
|
|
34
|
+
#axs[0,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
35
|
+
axs[0,1].set_xlim([0, 0.33])
|
|
36
|
+
axs[0,1].set_ylim([-2, 38])
|
|
37
|
+
axs[0,1].tick_params('y', labelleft=False)
|
|
38
|
+
axs[0,1].tick_params('x', labelbottom=False)
|
|
39
39
|
#
|
|
40
|
-
|
|
40
|
+
#axs[1,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
41
|
+
axs[1,0].set_ylabel(r'$e_\text{nuc}^\text{int}$ (MeV)',fontsize='14')
|
|
42
|
+
axs[1,0].set_xlim([0, 0.33])
|
|
43
|
+
axs[1,0].set_ylim([-10, 30])
|
|
44
|
+
axs[1,0].tick_params('x', labelbottom=False)
|
|
45
|
+
#
|
|
46
|
+
#axs[1,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
47
|
+
axs[1,1].set_xlim([0, 0.33])
|
|
48
|
+
axs[1,1].set_ylim([-10, 30])
|
|
49
|
+
axs[1,1].tick_params('y', labelleft=False)
|
|
50
|
+
axs[1,1].tick_params('x', labelbottom=False)
|
|
51
|
+
#
|
|
52
|
+
axs[2,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
53
|
+
axs[2,0].set_ylabel(r'$e_\text{tot}^\text{int}$ (MeV)',fontsize='14')
|
|
54
|
+
axs[2,0].set_xlim([0, 0.33])
|
|
55
|
+
axs[2,0].set_ylim([-2, 38])
|
|
56
|
+
#
|
|
57
|
+
axs[2,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
58
|
+
axs[2,1].set_xlim([0, 0.33])
|
|
59
|
+
axs[2,1].set_ylim([-2, 38])
|
|
60
|
+
axs[2,1].tick_params('y', labelleft=False)
|
|
61
|
+
#
|
|
62
|
+
# fix the asymmetry parameters
|
|
63
|
+
#
|
|
64
|
+
asys = [ 0.6, 0.8 ]
|
|
65
|
+
#
|
|
66
|
+
mb_check = []
|
|
67
|
+
model_check = []
|
|
68
|
+
#
|
|
69
|
+
for asy in asys:
|
|
70
|
+
#
|
|
71
|
+
print('asy:',asy)
|
|
72
|
+
#
|
|
73
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
74
|
+
#
|
|
75
|
+
print('mb:',mb,kmb)
|
|
76
|
+
#
|
|
77
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
78
|
+
#models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
79
|
+
#
|
|
80
|
+
print('models:',models)
|
|
81
|
+
#
|
|
82
|
+
if mb == 'VAR':
|
|
83
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
84
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
85
|
+
#
|
|
86
|
+
for model in models:
|
|
87
|
+
#
|
|
88
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
89
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
90
|
+
#
|
|
91
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
92
|
+
#
|
|
93
|
+
if check.isInside:
|
|
94
|
+
lstyle = 'solid'
|
|
95
|
+
else:
|
|
96
|
+
lstyle = 'dashed'
|
|
97
|
+
continue
|
|
98
|
+
#
|
|
99
|
+
if micro.e2a_lep is not None:
|
|
100
|
+
if mb in mb_check:
|
|
101
|
+
print('model:',model)
|
|
102
|
+
print('den:',micro.den)
|
|
103
|
+
print('e2a_lep:',micro.e2a_lep)
|
|
104
|
+
axs[0,0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
105
|
+
axs[1,0].plot( micro.den, micro.e2a_int_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
106
|
+
axs[2,0].plot( micro.den, micro.e2a_int_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
107
|
+
else:
|
|
108
|
+
mb_check.append(mb)
|
|
109
|
+
print('mb:',mb)
|
|
110
|
+
print('model:',model)
|
|
111
|
+
print('den:',micro.den)
|
|
112
|
+
print('e2a_lep:',micro.e2a_lep)
|
|
113
|
+
axs[0,0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
114
|
+
axs[1,0].plot( micro.den, micro.e2a_int_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
115
|
+
axs[2,0].plot( micro.den, micro.e2a_int_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
116
|
+
# end of model
|
|
117
|
+
# end of mb
|
|
118
|
+
#
|
|
119
|
+
for kmodel,model in enumerate(pheno_models):
|
|
120
|
+
#
|
|
121
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
122
|
+
#
|
|
123
|
+
for param in params:
|
|
124
|
+
#
|
|
125
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
126
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
127
|
+
#
|
|
128
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
129
|
+
#
|
|
130
|
+
if check.isInside:
|
|
131
|
+
lstyle = 'solid'
|
|
132
|
+
else:
|
|
133
|
+
lstyle = 'dashed'
|
|
134
|
+
continue
|
|
135
|
+
#
|
|
136
|
+
if pheno.e2a_lep is not None:
|
|
137
|
+
print('model:',model,' param:',param)
|
|
138
|
+
if model in model_check:
|
|
139
|
+
axs[0,1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
140
|
+
axs[1,1].plot( pheno.den, pheno.e2a_int_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
141
|
+
axs[2,1].plot( pheno.den, pheno.e2a_int_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
142
|
+
else:
|
|
143
|
+
model_check.append(model)
|
|
144
|
+
axs[0,1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
145
|
+
axs[1,1].plot( pheno.den, pheno.e2a_int_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
146
|
+
axs[2,1].plot( pheno.den, pheno.e2a_int_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
147
|
+
# end of param
|
|
148
|
+
# end of model
|
|
149
|
+
#
|
|
150
|
+
axs[0,0].text(0.02,0,'microscopic models',fontsize='10')
|
|
151
|
+
axs[0,1].text(0.02,0,'phenomenological models',fontsize='10')
|
|
152
|
+
#
|
|
153
|
+
axs[0,0].text(0.1,30,r'$\delta=0.6$',fontsize='10')
|
|
154
|
+
axs[0,1].text(0.1,30,r'$\delta=0.6$',fontsize='10')
|
|
155
|
+
axs[0,0].text(0.1,13,r'$\delta=0.8$',fontsize='10')
|
|
156
|
+
axs[0,1].text(0.1,13,r'$\delta=0.8$',fontsize='10')
|
|
157
|
+
#
|
|
158
|
+
axs[1,0].text(0.1,-2,r'$\delta=0.6$',fontsize='10')
|
|
159
|
+
axs[1,1].text(0.1,-2,r'$\delta=0.6$',fontsize='10')
|
|
160
|
+
axs[1,0].text(0.1,7,r'$\delta=0.8$',fontsize='10')
|
|
161
|
+
axs[1,1].text(0.1,7,r'$\delta=0.8$',fontsize='10')
|
|
162
|
+
#
|
|
163
|
+
axs[2,0].text(0.1,27,r'$\delta=0.6$',fontsize='10')
|
|
164
|
+
axs[2,1].text(0.1,27,r'$\delta=0.6$',fontsize='10')
|
|
165
|
+
axs[2,0].text(0.1,15,r'$\delta=0.8$',fontsize='10')
|
|
166
|
+
axs[2,1].text(0.1,15,r'$\delta=0.8$',fontsize='10')
|
|
167
|
+
#
|
|
168
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.1,1.0),columnspacing=2,fontsize='8',ncol=6,frameon=False)
|
|
169
|
+
#
|
|
170
|
+
if pname is not None:
|
|
171
|
+
plt.savefig(pname, dpi=200)
|
|
172
|
+
plt.close()
|
|
173
|
+
#
|
|
174
|
+
|
|
175
|
+
def eos_setupAM_pre_fig( pname, micro_mbs, pheno_models, band ):
|
|
176
|
+
"""
|
|
177
|
+
Plot nuclear chart (N versus Z).\
|
|
178
|
+
The plot is 1x2 with:\
|
|
179
|
+
[0]: nuclear chart.
|
|
180
|
+
|
|
181
|
+
:param pname: name of the figure (*.png)
|
|
182
|
+
:type pname: str.
|
|
183
|
+
:param table: table.
|
|
184
|
+
:type table: str.
|
|
185
|
+
:param version: version of table to run on.
|
|
186
|
+
:type version: str.
|
|
187
|
+
:param theo_tables: object instantiated on the reference band.
|
|
188
|
+
:type theo_tables: object.
|
|
189
|
+
|
|
190
|
+
"""
|
|
191
|
+
#
|
|
192
|
+
print(f'Plot name: {pname}')
|
|
193
|
+
#
|
|
194
|
+
fig, axs = plt.subplots(3,2)
|
|
195
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.9, wspace=0.05, hspace=0.05 )
|
|
196
|
+
#
|
|
197
|
+
#axs[0,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
198
|
+
axs[0,0].set_ylabel(r'$p_\text{lep}$ (MeV fm$^{-3}$)',fontsize='14')
|
|
199
|
+
axs[0,0].set_xlim([0, 0.33])
|
|
200
|
+
axs[0,0].set_ylim([-1, 4])
|
|
201
|
+
axs[0,0].tick_params('x', labelbottom=False)
|
|
202
|
+
#
|
|
203
|
+
#axs[0,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
204
|
+
axs[0,1].set_xlim([0, 0.33])
|
|
205
|
+
axs[0,1].set_ylim([-1, 4])
|
|
206
|
+
axs[0,1].tick_params('y', labelleft=False)
|
|
207
|
+
axs[0,1].tick_params('x', labelbottom=False)
|
|
208
|
+
#
|
|
209
|
+
#axs[1,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
210
|
+
axs[1,0].set_ylabel(r'$p_\text{nuc}$ (MeV fm$^{-3}$)',fontsize='14')
|
|
211
|
+
axs[1,0].set_xlim([0, 0.33])
|
|
212
|
+
axs[1,0].set_ylim([-2, 15])
|
|
213
|
+
axs[1,0].tick_params('x', labelbottom=False)
|
|
214
|
+
#
|
|
215
|
+
#axs[1,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
216
|
+
axs[1,1].set_xlim([0, 0.33])
|
|
217
|
+
axs[1,1].set_ylim([-2, 15])
|
|
218
|
+
axs[1,1].tick_params('y', labelleft=False)
|
|
219
|
+
axs[1,1].tick_params('x', labelbottom=False)
|
|
220
|
+
#
|
|
221
|
+
axs[2,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
222
|
+
axs[2,0].set_ylabel(r'$p_\text{tot}$ (MeV fm$^{-3}$)',fontsize='14')
|
|
223
|
+
axs[2,0].set_xlim([0, 0.33])
|
|
224
|
+
axs[2,0].set_ylim([-2, 15])
|
|
225
|
+
#
|
|
226
|
+
axs[2,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
227
|
+
axs[2,1].set_xlim([0, 0.33])
|
|
228
|
+
axs[2,1].set_ylim([-2, 15])
|
|
229
|
+
axs[2,1].tick_params('y', labelleft=False)
|
|
230
|
+
#
|
|
231
|
+
# fix the asymmetry parameters
|
|
232
|
+
#
|
|
233
|
+
asys = [ 0.6, 0.8 ]
|
|
234
|
+
#
|
|
235
|
+
mb_check = []
|
|
236
|
+
model_check = []
|
|
237
|
+
#
|
|
238
|
+
for asy in asys:
|
|
239
|
+
#
|
|
240
|
+
print('asy:',asy)
|
|
241
|
+
#
|
|
242
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
243
|
+
#
|
|
244
|
+
print('mb:',mb,kmb)
|
|
245
|
+
#
|
|
246
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
247
|
+
#models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
248
|
+
#
|
|
249
|
+
print('models:',models)
|
|
250
|
+
#
|
|
251
|
+
if mb == 'VAR':
|
|
252
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
253
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
254
|
+
#
|
|
255
|
+
for model in models:
|
|
256
|
+
#
|
|
257
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
258
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
259
|
+
#
|
|
260
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
261
|
+
#
|
|
262
|
+
if check.isInside:
|
|
263
|
+
lstyle = 'solid'
|
|
264
|
+
else:
|
|
265
|
+
lstyle = 'dashed'
|
|
266
|
+
continue
|
|
267
|
+
#
|
|
268
|
+
if micro.pre_lep is not None:
|
|
269
|
+
if mb in mb_check:
|
|
270
|
+
print('model:',model)
|
|
271
|
+
print('den:',micro.den)
|
|
272
|
+
print('pre_lep:',micro.pre_lep)
|
|
273
|
+
axs[0,0].plot( micro.den, micro.pre_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
274
|
+
axs[1,0].plot( micro.den, micro.pre_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
275
|
+
axs[2,0].plot( micro.den, micro.pre_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
276
|
+
else:
|
|
277
|
+
mb_check.append(mb)
|
|
278
|
+
print('mb:',mb)
|
|
279
|
+
print('model:',model)
|
|
280
|
+
print('den:',micro.den)
|
|
281
|
+
print('e2a_lep:',micro.e2a_lep)
|
|
282
|
+
axs[0,0].plot( micro.den, micro.pre_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
283
|
+
axs[1,0].plot( micro.den, micro.pre_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
284
|
+
axs[2,0].plot( micro.den, micro.pre_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
285
|
+
# end of model
|
|
286
|
+
# end of mb
|
|
41
287
|
#
|
|
42
|
-
|
|
43
|
-
|
|
288
|
+
for kmodel,model in enumerate(pheno_models):
|
|
289
|
+
#
|
|
290
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
291
|
+
#
|
|
292
|
+
for param in params:
|
|
293
|
+
#
|
|
294
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
295
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
296
|
+
#
|
|
297
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
298
|
+
#
|
|
299
|
+
if check.isInside:
|
|
300
|
+
lstyle = 'solid'
|
|
301
|
+
else:
|
|
302
|
+
lstyle = 'dashed'
|
|
303
|
+
continue
|
|
304
|
+
#
|
|
305
|
+
if pheno.pre_lep is not None:
|
|
306
|
+
print('model:',model,' param:',param)
|
|
307
|
+
if model in model_check:
|
|
308
|
+
axs[0,1].plot( pheno.den, pheno.pre_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
309
|
+
axs[1,1].plot( pheno.den, pheno.pre_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
310
|
+
axs[2,1].plot( pheno.den, pheno.pre_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
311
|
+
else:
|
|
312
|
+
model_check.append(model)
|
|
313
|
+
axs[0,1].plot( pheno.den, pheno.pre_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
314
|
+
axs[1,1].plot( pheno.den, pheno.pre_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
315
|
+
axs[2,1].plot( pheno.den, pheno.pre_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
316
|
+
# end of param
|
|
317
|
+
# end of model
|
|
318
|
+
#
|
|
319
|
+
axs[0,0].text(0.02,3.5,'microscopic models',fontsize='10')
|
|
320
|
+
axs[0,1].text(0.02,3.5,'phenomenological models',fontsize='10')
|
|
321
|
+
#
|
|
322
|
+
axs[0,0].text(0.1,2,r'$\delta=0.6$',fontsize='10')
|
|
323
|
+
axs[0,1].text(0.1,2,r'$\delta=0.6$',fontsize='10')
|
|
324
|
+
axs[0,0].text(0.1,-0.5,r'$\delta=0.8$',fontsize='10')
|
|
325
|
+
axs[0,1].text(0.1,-0.5,r'$\delta=0.8$',fontsize='10')
|
|
326
|
+
#
|
|
327
|
+
axs[1,0].text(0.1,-1.5,r'$\delta=0.6$',fontsize='10')
|
|
328
|
+
axs[1,1].text(0.1,-1.5,r'$\delta=0.6$',fontsize='10')
|
|
329
|
+
axs[1,0].text(0.1,3,r'$\delta=0.8$',fontsize='10')
|
|
330
|
+
axs[1,1].text(0.1,3,r'$\delta=0.8$',fontsize='10')
|
|
331
|
+
#
|
|
332
|
+
axs[2,0].text(0.1,3,r'$\delta=0.6$',fontsize='10')
|
|
333
|
+
axs[2,1].text(0.1,3,r'$\delta=0.6$',fontsize='10')
|
|
334
|
+
axs[2,0].text(0.1,-1,r'$\delta=0.8$',fontsize='10')
|
|
335
|
+
axs[2,1].text(0.1,-1,r'$\delta=0.8$',fontsize='10')
|
|
336
|
+
#
|
|
337
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.1,1.0),columnspacing=2,fontsize='8',ncol=6,frameon=False)
|
|
338
|
+
#
|
|
339
|
+
if pname is not None:
|
|
340
|
+
plt.savefig(pname, dpi=200)
|
|
341
|
+
plt.close()
|
|
342
|
+
#
|
|
343
|
+
|
|
344
|
+
def eos_setupAM_cs2_fig( pname, micro_mbs, pheno_models, band ):
|
|
345
|
+
"""
|
|
346
|
+
Plot nuclear chart (N versus Z).\
|
|
347
|
+
The plot is 1x2 with:\
|
|
348
|
+
[0]: nuclear chart.
|
|
349
|
+
|
|
350
|
+
:param pname: name of the figure (*.png)
|
|
351
|
+
:type pname: str.
|
|
352
|
+
:param table: table.
|
|
353
|
+
:type table: str.
|
|
354
|
+
:param version: version of table to run on.
|
|
355
|
+
:type version: str.
|
|
356
|
+
:param theo_tables: object instantiated on the reference band.
|
|
357
|
+
:type theo_tables: object.
|
|
358
|
+
|
|
359
|
+
"""
|
|
360
|
+
#
|
|
361
|
+
print(f'Plot name: {pname}')
|
|
362
|
+
#
|
|
363
|
+
fig, axs = plt.subplots(3,2)
|
|
364
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.9, wspace=0.05, hspace=0.05 )
|
|
365
|
+
#
|
|
366
|
+
#axs[0,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
367
|
+
axs[0,0].set_ylabel(r'$c_\text{s,lep}^2/c^2$',fontsize='14')
|
|
368
|
+
axs[0,0].set_xlim([0, 0.33])
|
|
369
|
+
axs[0,0].set_ylim([0.2, 0.5])
|
|
370
|
+
axs[0,0].tick_params('x', labelbottom=False)
|
|
371
|
+
#
|
|
372
|
+
#axs[0,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
373
|
+
axs[0,1].set_xlim([0, 0.33])
|
|
374
|
+
axs[0,1].set_ylim([0.2, 0.5])
|
|
375
|
+
axs[0,1].tick_params('y', labelleft=False)
|
|
376
|
+
axs[0,1].tick_params('x', labelbottom=False)
|
|
377
|
+
#
|
|
378
|
+
#axs[1,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
379
|
+
axs[1,0].set_ylabel(r'$c_\text{s,nuc}^2/c^2$',fontsize='14')
|
|
380
|
+
axs[1,0].set_xlim([0, 0.33])
|
|
381
|
+
axs[1,0].set_ylim([-0.05, 0.25])
|
|
382
|
+
axs[1,0].tick_params('x', labelbottom=False)
|
|
383
|
+
#
|
|
384
|
+
#axs[1,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
|
|
385
|
+
axs[1,1].set_xlim([0, 0.33])
|
|
386
|
+
axs[1,1].set_ylim([-0.05, 0.25])
|
|
387
|
+
axs[1,1].tick_params('y', labelleft=False)
|
|
388
|
+
axs[1,1].tick_params('x', labelbottom=False)
|
|
389
|
+
#
|
|
390
|
+
axs[2,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
391
|
+
axs[2,0].set_ylabel(r'$c_\text{s,tot}^2/c^2$',fontsize='14')
|
|
392
|
+
axs[2,0].set_xlim([0, 0.33])
|
|
393
|
+
axs[2,0].set_ylim([-0.05, 0.25])
|
|
394
|
+
#
|
|
395
|
+
axs[2,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
396
|
+
axs[2,1].set_xlim([0, 0.33])
|
|
397
|
+
axs[2,1].set_ylim([-0.05, 0.25])
|
|
398
|
+
axs[2,1].tick_params('y', labelleft=False)
|
|
399
|
+
#
|
|
400
|
+
# fix the asymmetry parameters
|
|
401
|
+
#
|
|
402
|
+
asys = [ 0.6, 0.8 ]
|
|
403
|
+
#
|
|
404
|
+
mb_check = []
|
|
405
|
+
model_check = []
|
|
406
|
+
#
|
|
407
|
+
for asy in asys:
|
|
44
408
|
#
|
|
45
|
-
|
|
46
|
-
print('model:',model)
|
|
47
|
-
#print('den:',am.den)
|
|
48
|
-
#print('e2a:',am.e2a_nuc)
|
|
49
|
-
axs[0].plot( am.den, am.e2a_nuc, marker='o', linestyle=am.linestyle, label=am.label, markevery=am.every )
|
|
50
|
-
axs[0].text(0.02,12,'microscopic models',fontsize='10')
|
|
51
|
-
axs[0].text(0.02,10,r'for $\delta=$'+str(asy),fontsize='10')
|
|
52
|
-
#axs[0].legend(loc='upper left',fontsize='8', ncol=3)
|
|
53
|
-
#axs[0].legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
|
|
54
|
-
#
|
|
55
|
-
for model in models_pheno:
|
|
409
|
+
print('asy:',asy)
|
|
56
410
|
#
|
|
57
|
-
|
|
411
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
412
|
+
#
|
|
413
|
+
print('mb:',mb,kmb)
|
|
414
|
+
#
|
|
415
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
416
|
+
#models, models_lower = nuda.matter.micro_models_mb( mb )
|
|
417
|
+
#
|
|
418
|
+
print('models:',models)
|
|
419
|
+
#
|
|
420
|
+
if mb == 'VAR':
|
|
421
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
422
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
423
|
+
#
|
|
424
|
+
for model in models:
|
|
425
|
+
#
|
|
426
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
427
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
428
|
+
#
|
|
429
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
430
|
+
#
|
|
431
|
+
if check.isInside:
|
|
432
|
+
lstyle = 'solid'
|
|
433
|
+
else:
|
|
434
|
+
lstyle = 'dashed'
|
|
435
|
+
continue
|
|
436
|
+
#
|
|
437
|
+
if micro.cs2_lep is not None:
|
|
438
|
+
if mb in mb_check:
|
|
439
|
+
axs[0,0].plot( micro.den, micro.cs2_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
440
|
+
axs[1,0].plot( micro.den, micro.cs2_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
441
|
+
axs[2,0].plot( micro.den, micro.cs2_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
442
|
+
else:
|
|
443
|
+
mb_check.append(mb)
|
|
444
|
+
axs[0,0].plot( micro.den, micro.cs2_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
445
|
+
axs[1,0].plot( micro.den, micro.cs2_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
446
|
+
axs[2,0].plot( micro.den, micro.cs2_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
447
|
+
# end of model
|
|
448
|
+
# end of mb
|
|
58
449
|
#
|
|
59
|
-
for
|
|
60
|
-
#
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
#
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
450
|
+
for kmodel,model in enumerate(pheno_models):
|
|
451
|
+
#
|
|
452
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
453
|
+
#
|
|
454
|
+
for param in params:
|
|
455
|
+
#
|
|
456
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
457
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
458
|
+
#
|
|
459
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
460
|
+
#
|
|
461
|
+
if check.isInside:
|
|
462
|
+
lstyle = 'solid'
|
|
463
|
+
else:
|
|
464
|
+
lstyle = 'dashed'
|
|
465
|
+
continue
|
|
466
|
+
#
|
|
467
|
+
if pheno.cs2_lep is not None:
|
|
468
|
+
print('model:',model,' param:',param)
|
|
469
|
+
if model in model_check:
|
|
470
|
+
axs[0,1].plot( pheno.den, pheno.cs2_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
471
|
+
axs[1,1].plot( pheno.den, pheno.cs2_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
472
|
+
axs[2,1].plot( pheno.den, pheno.cs2_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
473
|
+
else:
|
|
474
|
+
model_check.append(model)
|
|
475
|
+
axs[0,1].plot( pheno.den, pheno.cs2_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
476
|
+
axs[1,1].plot( pheno.den, pheno.cs2_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
477
|
+
axs[2,1].plot( pheno.den, pheno.cs2_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
478
|
+
# end of param
|
|
479
|
+
# end of model
|
|
480
|
+
#
|
|
481
|
+
axs[0,0].text(0.02,0.45,'microscopic models',fontsize='10')
|
|
482
|
+
axs[0,1].text(0.02,0.45,'phenomenological models',fontsize='10')
|
|
483
|
+
#
|
|
484
|
+
axs[0,0].text(0.1,0.4,r'$\delta=0.6$',fontsize='10')
|
|
485
|
+
axs[0,1].text(0.1,0.4,r'$\delta=0.6$',fontsize='10')
|
|
486
|
+
axs[0,0].text(0.1,0.3,r'$\delta=0.8$',fontsize='10')
|
|
487
|
+
axs[0,1].text(0.1,0.3,r'$\delta=0.8$',fontsize='10')
|
|
488
|
+
#
|
|
489
|
+
axs[1,0].text(0.1,0.2,r'$\delta=0.6$',fontsize='10')
|
|
490
|
+
axs[1,1].text(0.1,0.2,r'$\delta=0.6$',fontsize='10')
|
|
491
|
+
axs[1,0].text(0.1,0.15,r'$\delta=0.8$',fontsize='10')
|
|
492
|
+
axs[1,1].text(0.1,0.15,r'$\delta=0.8$',fontsize='10')
|
|
493
|
+
#
|
|
494
|
+
axs[2,0].text(0.1,0.2,r'$\delta=0.6$',fontsize='10')
|
|
495
|
+
axs[2,1].text(0.1,0.2,r'$\delta=0.6$',fontsize='10')
|
|
496
|
+
axs[2,0].text(0.1,0.15,r'$\delta=0.8$',fontsize='10')
|
|
497
|
+
axs[2,1].text(0.1,0.15,r'$\delta=0.8$',fontsize='10')
|
|
498
|
+
#
|
|
499
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.1,1.0),columnspacing=2,fontsize='8',ncol=6,frameon=False)
|
|
78
500
|
#
|
|
79
501
|
if pname is not None:
|
|
80
502
|
plt.savefig(pname, dpi=200)
|
|
81
503
|
plt.close()
|
|
504
|
+
#
|