nucleardatapy 0.2.0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/__init__.py +3 -1
- nucleardatapy/astro/setup_gw.py +18 -18
- nucleardatapy/astro/setup_mr.py +9 -1
- nucleardatapy/astro/setup_mup.py +10 -10
- nucleardatapy/corr/setup_EsymDen.py +0 -5
- nucleardatapy/corr/setup_EsymLsym.py +50 -17
- nucleardatapy/corr/setup_KsatQsat.py +170 -69
- nucleardatapy/crust/setup_crust.py +403 -120
- nucleardatapy/data/astro/NICER/J0740+6620.dat +1 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK22.dat +83 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK24.dat +74 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK25.dat +130 -0
- nucleardatapy/data/crust/2018-PCPFDDG-BSK26.dat +81 -0
- nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-NM.dat → 2006-BHF-Av18-E2A-NM.dat} +8 -8
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-SM.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.2.dat +11 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-effmass-beta0.4.dat +11 -0
- nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
- nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
- nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
- nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
- nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
- nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
- nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +0 -4
- nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +0 -1
- nucleardatapy/env.py +1 -1
- nucleardatapy/eos/__init__.py +4 -3
- nucleardatapy/eos/setupCC.py +429 -0
- nucleardatapy/eos/setup_am.py +71 -34
- nucleardatapy/eos/setup_am_Beq.py +48 -17
- nucleardatapy/eos/setup_am_Leq.py +81 -50
- nucleardatapy/fig/__init__.py +29 -7
- nucleardatapy/fig/astro_setupGW_fig.py +5 -5
- nucleardatapy/fig/astro_setupMR_fig.py +12 -10
- nucleardatapy/fig/astro_setupMasses_fig.py +4 -4
- nucleardatapy/fig/astro_setupMtov_fig.py +4 -4
- nucleardatapy/fig/astro_setupMup_fig.py +5 -5
- nucleardatapy/fig/corr_setupEsymDen_fig.py +12 -5
- nucleardatapy/fig/corr_setupEsymLsym_fig.py +18 -5
- nucleardatapy/fig/corr_setupKsatQsat_fig.py +19 -15
- nucleardatapy/fig/crust_setupCrust_fig.py +7 -7
- nucleardatapy/fig/eos_setupAMBeq_fig.py +1338 -64
- nucleardatapy/fig/eos_setupAMLeq_fig.py +200 -68
- nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +364 -0
- nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +337 -0
- nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +343 -0
- nucleardatapy/fig/eos_setupAM_fig.py +470 -47
- nucleardatapy/fig/eos_setupCC_fig.py +240 -0
- nucleardatapy/fig/hnuc_setupChart_fig.py +2 -2
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +4 -4
- nucleardatapy/fig/matter_all_fig.py +954 -0
- nucleardatapy/fig/matter_setupCheck_fig.py +103 -0
- nucleardatapy/fig/matter_setupFFGLep_fig.py +70 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +268 -104
- nucleardatapy/fig/matter_setupHIC_fig.py +98 -58
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +267 -51
- nucleardatapy/fig/matter_setupMicro_LP_fig.py +175 -78
- nucleardatapy/fig/matter_setupMicro_band_fig.py +116 -47
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +264 -34
- nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +41 -18
- nucleardatapy/fig/matter_setupMicro_fig.py +332 -98
- nucleardatapy/fig/matter_setupMicro_gap_fig.py +219 -92
- nucleardatapy/fig/matter_setupNEPStats_fig.py +96 -0
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +201 -61
- nucleardatapy/fig/matter_setupPheno_fig.py +392 -85
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +286 -0
- nucleardatapy/fig/nuc_setupBEExp_fig.py +232 -70
- nucleardatapy/fig/nuc_setupBETheo_fig.py +344 -0
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +59 -0
- nucleardatapy/fig/nuc_setupRchExp_fig.py +139 -0
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +143 -0
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +88 -0
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +133 -0
- nucleardatapy/hello.py +6 -0
- nucleardatapy/hnuc/__init__.py +3 -3
- nucleardatapy/hnuc/{setup_be1L_exp.py → setup_re1L_exp.py} +6 -6
- nucleardatapy/hnuc/{setup_be1Xi_exp.py → setup_re1Xi_exp.py} +5 -5
- nucleardatapy/hnuc/{setup_be2L_exp.py → setup_re2L_exp.py} +6 -6
- nucleardatapy/matter/__init__.py +14 -13
- nucleardatapy/matter/setup_check.py +97 -0
- nucleardatapy/matter/setup_ffg.py +72 -38
- nucleardatapy/matter/setup_hic.py +91 -74
- nucleardatapy/matter/setup_micro.py +1698 -1019
- nucleardatapy/matter/setup_micro_band.py +11 -6
- nucleardatapy/matter/setup_micro_effmass.py +55 -2
- nucleardatapy/matter/setup_micro_esym.py +39 -34
- nucleardatapy/matter/setup_micro_gap.py +26 -19
- nucleardatapy/matter/setup_micro_lp.py +20 -19
- nucleardatapy/matter/setup_nep.py +175 -92
- nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
- nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
- nucleardatapy/matter/setup_pheno.py +121 -45
- nucleardatapy/matter/setup_pheno_esym.py +14 -19
- nucleardatapy/nuc/__init__.py +2 -2
- nucleardatapy/nuc/setup_be_exp.py +345 -333
- nucleardatapy/nuc/setup_be_theo.py +366 -178
- nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
- nucleardatapy/nuc/setup_rch_exp.py +49 -6
- nucleardatapy/nuc/setup_rch_theo.py +72 -3
- nucleardatapy/nuc/{setup_nskin_exp.py → setup_rnp_exp.py} +59 -65
- nucleardatapy/nuc/{setup_nskin_theo.py → setup_rnp_theo.py} +35 -39
- nucleardatapy-1.0.0.dist-info/METADATA +553 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/RECORD +156 -128
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/WHEEL +1 -1
- tests/test_corr_setupKsatQsat.py +3 -1
- tests/test_matter_setupMicro.py +37 -10
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
- nucleardatapy/fig/matter_ENM_fig.py +0 -119
- nucleardatapy/fig/matter_ESM_fig.py +0 -119
- nucleardatapy/fig/matter_Esym_fig.py +0 -122
- nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
- nucleardatapy-0.2.0.dist-info/METADATA +0 -115
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-AM.dat → 2006-BHF-Av18-E2A-AM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-E2A-SM.dat → 2006-BHF-Av18-E2A-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-Esym2-SM.dat → 2006-BHF-Av18-Esym2-SM.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-NM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-NM-SelfEnergy.dat → 2006-BHF-Av18-GAP-NM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-FreeSpectrum.dat → 2006-BHF-Av18-GAP-SM-FreeSpectrum.dat} +0 -0
- /nucleardatapy/data/matter/micro/2006-BHF/{2006-BHF-GAP-SM-SelfEnergy.dat → 2006-BHF-Av18-GAP-SM-SelfEnergy.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL59.dat → 2019-MBPT-NM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-NM-DHSL69.dat → 2019-MBPT-NM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL59.dat → 2019-MBPT-SM-DHSL59.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2020-MBPT-SM-DHSL69.dat → 2019-MBPT-SM-DHSL69.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-NM.csv → 2020-MBPT-NM.csv} +0 -0
- /nucleardatapy/data/matter/micro/{2023-MBPT-SM.csv → 2020-MBPT-SM.csv} +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/208Pb.dat +0 -0
- /nucleardatapy/data/nuclei/{nskin → rnp}/48Ca.dat +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info/licenses}/LICENSE +0 -0
- {nucleardatapy-0.2.0.dist-info → nucleardatapy-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -1,24 +1,24 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import sys
|
|
3
|
-
import math
|
|
4
1
|
import numpy as np # 1.15.0
|
|
2
|
+
import os
|
|
5
3
|
from scipy.interpolate import CubicSpline
|
|
6
4
|
from scipy.optimize import curve_fit
|
|
7
5
|
import random
|
|
8
6
|
|
|
9
7
|
import nucleardatapy as nuda
|
|
10
8
|
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
9
|
+
|
|
10
|
+
def uncertainty_stat(den, err="MBPT"):
|
|
11
|
+
if err.lower() == "qmc":
|
|
12
|
+
return 0.21 * (den / nuda.cst.nsat)
|
|
13
|
+
elif err.lower() == "mbpt":
|
|
14
|
+
return 0.07 * (den / nuda.cst.nsat)
|
|
16
15
|
else:
|
|
17
|
-
print(
|
|
18
|
-
print(
|
|
19
|
-
print(
|
|
16
|
+
print("no model uncertainty is given")
|
|
17
|
+
print("err:", err)
|
|
18
|
+
print("exit()")
|
|
20
19
|
exit()
|
|
21
20
|
|
|
21
|
+
|
|
22
22
|
def micro_mbs():
|
|
23
23
|
"""
|
|
24
24
|
Return a list of many-bodys (mbs) approaches available in this toolkit and print them all on the prompt.
|
|
@@ -27,16 +27,19 @@ def micro_mbs():
|
|
|
27
27
|
:rtype: list[str].
|
|
28
28
|
"""
|
|
29
29
|
#
|
|
30
|
-
if nuda.env.verb:
|
|
30
|
+
if nuda.env.verb:
|
|
31
|
+
print("\nEnter micro_mbs()")
|
|
31
32
|
#
|
|
32
|
-
mbs = [
|
|
33
|
-
mbs_lower = [
|
|
33
|
+
mbs = ["VAR", "AFDMC", "BHF2", "BHF23", "QMC", "MBPT", "NLEFT"]
|
|
34
|
+
mbs_lower = [item.lower() for item in mbs]
|
|
34
35
|
#
|
|
35
|
-
if nuda.env.verb:
|
|
36
|
+
if nuda.env.verb:
|
|
37
|
+
print("Exit micro_mbs()")
|
|
36
38
|
#
|
|
37
39
|
return mbs, mbs_lower
|
|
38
40
|
|
|
39
|
-
|
|
41
|
+
|
|
42
|
+
def micro_models_mb(mb):
|
|
40
43
|
"""
|
|
41
44
|
Return a list with the name of the models available in this toolkit \
|
|
42
45
|
for a given mb appoach and print them all on the prompt.
|
|
@@ -44,7 +47,7 @@ def micro_models_mb( mb ):
|
|
|
44
47
|
:param mb: The mb approach for which there are parametrizations. \
|
|
45
48
|
They should be chosen among the following options: 'VAR', 'AFDMC', 'BHF', 'QMC', 'MBPT', 'NLEFT'.
|
|
46
49
|
:type mb: str.
|
|
47
|
-
:return: The list of parametrizations.
|
|
50
|
+
:return: The list of parametrizations.
|
|
48
51
|
|
|
49
52
|
These models are the following ones: \
|
|
50
53
|
If `mb` == 'VAR': \
|
|
@@ -55,274 +58,256 @@ def micro_models_mb( mb ):
|
|
|
55
58
|
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
56
59
|
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7', \
|
|
57
60
|
'2022-AFDMC-NM',
|
|
58
|
-
If `mb` == '
|
|
59
|
-
'2006-BHF-AM', \
|
|
61
|
+
If `mb` == 'BHF2': \
|
|
60
62
|
'2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
61
63
|
'2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
62
64
|
'2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14',\
|
|
65
|
+
If `mb` == 'BHF23': \
|
|
66
|
+
'2006-BHF-AM-Av18', \
|
|
63
67
|
'2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', '2024-BHF-AM-23BF-CDBONN', \
|
|
64
68
|
'2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', '2024-BHF-AM-23BF-NSC97d', \
|
|
65
69
|
'2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14',\
|
|
66
70
|
'2024-BHF-AM-23BFmicro-Av18', '2024-BHF-AM-23BFmicro-BONNB', '2024-BHF-AM-23BFmicro-NSC93',\
|
|
67
71
|
If `mb` == 'QMC': \
|
|
68
72
|
'2008-QMC-NM-swave', '2010-QMC-NM-AV4', '2009-DLQMC-NM', \
|
|
69
|
-
'
|
|
73
|
+
'2014-AFQMC-NM', '2016-QMC-NM', \
|
|
70
74
|
'2018-QMC-NM', '2024-QMC-NM', \
|
|
71
75
|
If `mb` == 'MBPT': \
|
|
72
|
-
'2010-MBPT-NM', '2020-MBPT-AM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69'
|
|
76
|
+
'2013-MBPT-NM', '2010-MBPT-NM', '2020-MBPT-AM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69'
|
|
73
77
|
If `mb` == 'NLEFT': \
|
|
74
78
|
'2024-NLEFT-AM', \
|
|
75
79
|
"""
|
|
76
80
|
#
|
|
77
|
-
if nuda.env.verb:
|
|
81
|
+
if nuda.env.verb:
|
|
82
|
+
print("\nEnter micro_models_mb()")
|
|
78
83
|
#
|
|
79
|
-
#print('mb:',mb)
|
|
80
|
-
if mb.lower() ==
|
|
81
|
-
models = [
|
|
82
|
-
elif mb.lower() ==
|
|
83
|
-
models = [
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
elif mb.lower() ==
|
|
101
|
-
models = [
|
|
84
|
+
# print('mb:',mb)
|
|
85
|
+
if mb.lower() == "var":
|
|
86
|
+
models = ["1981-VAR-AM-FP", "1998-VAR-AM-APR", "1998-VAR-AM-APR-fit"]
|
|
87
|
+
elif mb.lower() == "afdmc":
|
|
88
|
+
models = [
|
|
89
|
+
"2012-AFDMC-NM-RES-1",
|
|
90
|
+
"2012-AFDMC-NM-RES-2",
|
|
91
|
+
"2012-AFDMC-NM-RES-3",
|
|
92
|
+
"2012-AFDMC-NM-RES-4",
|
|
93
|
+
"2012-AFDMC-NM-RES-5",
|
|
94
|
+
"2012-AFDMC-NM-RES-6",
|
|
95
|
+
"2012-AFDMC-NM-RES-7",
|
|
96
|
+
"2012-AFDMC-NM-FIT-1",
|
|
97
|
+
"2012-AFDMC-NM-FIT-2",
|
|
98
|
+
"2012-AFDMC-NM-FIT-3",
|
|
99
|
+
"2012-AFDMC-NM-FIT-4",
|
|
100
|
+
"2012-AFDMC-NM-FIT-5",
|
|
101
|
+
"2012-AFDMC-NM-FIT-6",
|
|
102
|
+
"2012-AFDMC-NM-FIT-7",
|
|
103
|
+
"2022-AFDMC-NM",
|
|
104
|
+
]
|
|
105
|
+
elif mb.lower() == "bhf2":
|
|
106
|
+
models = [
|
|
107
|
+
"2024-BHF-AM-2BF-Av18",
|
|
108
|
+
"2024-BHF-AM-2BF-BONN",
|
|
109
|
+
"2024-BHF-AM-2BF-CDBONN",
|
|
110
|
+
"2024-BHF-AM-2BF-NSC97a",
|
|
111
|
+
"2024-BHF-AM-2BF-NSC97b",
|
|
112
|
+
"2024-BHF-AM-2BF-NSC97c",
|
|
113
|
+
"2024-BHF-AM-2BF-NSC97d",
|
|
114
|
+
"2024-BHF-AM-2BF-NSC97e",
|
|
115
|
+
"2024-BHF-AM-2BF-NSC97f",
|
|
116
|
+
]
|
|
117
|
+
# models = [ '2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
118
|
+
# '2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
119
|
+
# '2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14' ]
|
|
120
|
+
elif mb.lower() == "bhf23":
|
|
121
|
+
models = [
|
|
122
|
+
"2006-BHF-AM-Av18",
|
|
123
|
+
"2024-BHF-AM-23BF-Av18",
|
|
124
|
+
"2024-BHF-AM-23BF-BONN",
|
|
125
|
+
"2024-BHF-AM-23BF-CDBONN",
|
|
126
|
+
"2024-BHF-AM-23BF-NSC97a",
|
|
127
|
+
"2024-BHF-AM-23BF-NSC97b",
|
|
128
|
+
"2024-BHF-AM-23BF-NSC97c",
|
|
129
|
+
"2024-BHF-AM-23BF-NSC97d",
|
|
130
|
+
"2024-BHF-AM-23BF-NSC97e",
|
|
131
|
+
"2024-BHF-AM-23BF-NSC97f",
|
|
132
|
+
]
|
|
133
|
+
# models = [ '2006-BHF-AM-Av18', '2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', \
|
|
134
|
+
# '2024-BHF-AM-23BF-CDBONN', '2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', \
|
|
135
|
+
# '2024-BHF-AM-23BF-NSC97d', '2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14' ]
|
|
136
|
+
elif mb.lower() == "qmc":
|
|
137
|
+
models = [
|
|
138
|
+
"2008-QMC-NM-swave",
|
|
139
|
+
"2010-QMC-NM-AV4",
|
|
140
|
+
"2009-DLQMC-NM",
|
|
141
|
+
"2014-AFQMC-NM",
|
|
142
|
+
"2016-QMC-NM",
|
|
143
|
+
"2018-QMC-NM",
|
|
144
|
+
"2024-QMC-NM",
|
|
145
|
+
]
|
|
146
|
+
elif mb.lower() == "mbpt":
|
|
147
|
+
models = [
|
|
148
|
+
"2013-MBPT-NM",
|
|
149
|
+
"2016-MBPT-AM",
|
|
150
|
+
"2019-MBPT-AM-L59",
|
|
151
|
+
"2019-MBPT-AM-L69",
|
|
152
|
+
"2020-MBPT-AM",
|
|
153
|
+
]
|
|
154
|
+
# '2010-MBPT-NM' is removed because they do not provide e2a, only pressure
|
|
155
|
+
elif mb.lower() == "nleft":
|
|
156
|
+
models = ["2024-NLEFT-AM"]
|
|
102
157
|
#
|
|
103
|
-
if nuda.env.verb:
|
|
158
|
+
if nuda.env.verb:
|
|
159
|
+
print("models available in the toolkit:", models)
|
|
104
160
|
#
|
|
105
|
-
models_lower = [
|
|
161
|
+
models_lower = [item.lower() for item in models]
|
|
106
162
|
#
|
|
107
|
-
if nuda.env.verb:
|
|
163
|
+
if nuda.env.verb:
|
|
164
|
+
print("\nExit micro_models_mb()")
|
|
108
165
|
#
|
|
109
166
|
return models, models_lower
|
|
110
167
|
|
|
111
|
-
|
|
168
|
+
|
|
169
|
+
def micro_models_mbs(mbs):
|
|
112
170
|
#
|
|
113
|
-
if nuda.env.verb:
|
|
171
|
+
if nuda.env.verb:
|
|
172
|
+
print("\nEnter micro_models_mbs()")
|
|
114
173
|
#
|
|
115
|
-
#print('mbs:',mbs)
|
|
174
|
+
# print('mbs:',mbs)
|
|
116
175
|
#
|
|
117
176
|
models = []
|
|
118
177
|
for mb in mbs:
|
|
119
|
-
new_models, new_models_lower = micro_models_mb(
|
|
120
|
-
models.extend(
|
|
178
|
+
new_models, new_models_lower = micro_models_mb(mb)
|
|
179
|
+
models.extend(new_models)
|
|
121
180
|
#
|
|
122
|
-
if nuda.env.verb:
|
|
181
|
+
if nuda.env.verb:
|
|
182
|
+
print("models available in the toolkit:", models)
|
|
123
183
|
#
|
|
124
|
-
models_lower = [
|
|
184
|
+
models_lower = [item.lower() for item in models]
|
|
125
185
|
#
|
|
126
|
-
if nuda.env.verb:
|
|
186
|
+
if nuda.env.verb:
|
|
187
|
+
print("Exit micro_models_mbs()")
|
|
127
188
|
#
|
|
128
189
|
return models, models_lower
|
|
129
190
|
|
|
191
|
+
|
|
130
192
|
def micro_models():
|
|
131
193
|
#
|
|
132
|
-
if nuda.env.verb:
|
|
194
|
+
if nuda.env.verb:
|
|
195
|
+
print("\nEnter micro_models()")
|
|
133
196
|
#
|
|
134
197
|
mbs, mbs_lower = micro_mbs()
|
|
135
|
-
#print('mbs:',mbs)
|
|
136
|
-
#
|
|
137
|
-
models, models_lower = micro_models_mbs( mbs )
|
|
138
|
-
#
|
|
139
|
-
if nuda.env.verb: print("Exit micro_models()")
|
|
140
|
-
#
|
|
141
|
-
return models, models_lower
|
|
142
|
-
|
|
143
|
-
def micro_models_old():
|
|
144
|
-
"""
|
|
145
|
-
Return a list with the name of the models available in this toolkit and \
|
|
146
|
-
print them all on the prompt. These models are the following ones: \
|
|
147
|
-
'1981-VAR-AM-FP', '1998-VAR-AM-APR', '1998-VAR-AM-APR-fit', '2006-BHF-AM*', \
|
|
148
|
-
'2012-AFDMC-NM-RES-1', '2012-AFDMC-NM-RES-2', '2012-AFDMC-NM-RES-3', '2012-AFDMC-NM-RES-4', \
|
|
149
|
-
'2012-AFDMC-NM-RES-5', '2012-AFDMC-NM-RES-6', '2012-AFDMC-NM-RES-7', \
|
|
150
|
-
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
151
|
-
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7', \
|
|
152
|
-
'2008-QMC-NM-swave', '2010-QMC-NM-AV4', '2009-DLQMC-NM', '2010-MBPT-NM', \
|
|
153
|
-
'2013-QMC-NM', '2014-AFQMC-NM', '2016-QMC-NM', '2016-MBPT-AM', \
|
|
154
|
-
'2018-QMC-NM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69', \
|
|
155
|
-
'2020-MBPT-AM', '2022-AFDMC-NM', '2024-NLEFT-AM', \
|
|
156
|
-
'2006-BHF-AM', \
|
|
157
|
-
'2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
158
|
-
'2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
159
|
-
'2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14',\
|
|
160
|
-
'2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', '2024-BHF-AM-23BF-CDBONN', \
|
|
161
|
-
'2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', '2024-BHF-AM-23BF-NSC97d', \
|
|
162
|
-
'2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14',\
|
|
163
|
-
'2024-BHF-AM-23BFmicro-Av18', '2024-BHF-AM-23BFmicro-BONNB', '2024-BHF-AM-23BFmicro-NSC93',\
|
|
164
|
-
'2024-QMC-NM'
|
|
165
|
-
|
|
166
|
-
:return: The list of models.
|
|
167
|
-
:rtype: list[str].
|
|
168
|
-
"""
|
|
169
|
-
#
|
|
170
|
-
if nuda.env.verb: print("\nEnter micro_models_old()")
|
|
171
|
-
#
|
|
172
|
-
models = [ '1981-VAR-AM-FP', '1998-VAR-AM-APR', '1998-VAR-AM-APR-fit', \
|
|
173
|
-
'2008-QMC-NM-swave', '2010-QMC-NM-AV4', '2009-DLQMC-NM', '2010-MBPT-NM', \
|
|
174
|
-
'2012-AFDMC-NM-RES-1', '2012-AFDMC-NM-RES-2', '2012-AFDMC-NM-RES-3', '2012-AFDMC-NM-RES-4', \
|
|
175
|
-
'2012-AFDMC-NM-RES-5', '2012-AFDMC-NM-RES-6', '2012-AFDMC-NM-RES-7', \
|
|
176
|
-
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
177
|
-
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7',
|
|
178
|
-
'2013-QMC-NM', '2014-AFQMC-NM', '2016-QMC-NM', '2016-MBPT-AM', \
|
|
179
|
-
'2018-QMC-NM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69', \
|
|
180
|
-
'2020-MBPT-AM', '2022-AFDMC-NM', '2024-NLEFT-AM', \
|
|
181
|
-
'2006-BHF-AM', \
|
|
182
|
-
'2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
183
|
-
'2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
184
|
-
'2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14',\
|
|
185
|
-
'2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', '2024-BHF-AM-23BF-CDBONN', \
|
|
186
|
-
'2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', '2024-BHF-AM-23BF-NSC97d', \
|
|
187
|
-
'2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14', '2024-QMC-NM' ]
|
|
198
|
+
# print('mbs:',mbs)
|
|
188
199
|
#
|
|
189
|
-
|
|
190
|
-
models_lower = [ item.lower() for item in models ]
|
|
200
|
+
models, models_lower = micro_models_mbs(mbs)
|
|
191
201
|
#
|
|
192
|
-
if nuda.env.verb:
|
|
202
|
+
if nuda.env.verb:
|
|
203
|
+
print("Exit micro_models()")
|
|
193
204
|
#
|
|
194
205
|
return models, models_lower
|
|
195
206
|
|
|
196
|
-
def micro_models_mb_matter(
|
|
207
|
+
def micro_models_mb_matter(mb, matter):
|
|
197
208
|
"""
|
|
198
209
|
matter can be 'sm', 'SM' or 'nm', 'NM'
|
|
199
210
|
"""
|
|
200
211
|
#
|
|
201
|
-
if nuda.env.verb:
|
|
202
|
-
|
|
203
|
-
print('For mb (in SM):',mb)
|
|
204
|
-
#
|
|
205
|
-
models, models_lower = micro_models()
|
|
206
|
-
#
|
|
207
|
-
models2 = []
|
|
208
|
-
for j,model in enumerate(models):
|
|
209
|
-
if mb in model and '2BF' not in model and ( matter.upper() in model or 'AM' in model ):
|
|
210
|
-
models2.append( model )
|
|
211
|
-
#print(' models:',model)
|
|
212
|
-
#
|
|
213
|
-
print('models2:',models2)
|
|
214
|
-
models2_lower = [ item.lower() for item in models2 ]
|
|
215
|
-
#
|
|
216
|
-
return models2, models2_lower
|
|
217
|
-
|
|
218
|
-
def micro_models_mb_SM( mb ):
|
|
219
|
-
"""
|
|
220
|
-
"""
|
|
221
|
-
#
|
|
222
|
-
if nuda.env.verb: print("\nEnter micro_models_mb_SM()")
|
|
212
|
+
if nuda.env.verb:
|
|
213
|
+
print("\nEnter micro_models_mb_matter()")
|
|
223
214
|
#
|
|
224
|
-
print(
|
|
215
|
+
print("For mb (in " + matter + "):", mb)
|
|
225
216
|
#
|
|
226
|
-
models, models_lower =
|
|
217
|
+
models, models_lower = micro_models_mb(mb)
|
|
227
218
|
#
|
|
228
219
|
models2 = []
|
|
229
|
-
for j,model in enumerate(models):
|
|
230
|
-
if
|
|
231
|
-
models2.append(
|
|
232
|
-
#print(' models:',model)
|
|
220
|
+
for j, model in enumerate(models):
|
|
221
|
+
if matter.upper() in model or "AM" in model:
|
|
222
|
+
models2.append(model)
|
|
233
223
|
#
|
|
234
|
-
print(
|
|
235
|
-
models2_lower = [
|
|
236
|
-
#
|
|
237
|
-
return models2, models2_lower
|
|
238
|
-
|
|
239
|
-
def micro_models_mb_NM( mb ):
|
|
240
|
-
"""
|
|
241
|
-
"""
|
|
242
|
-
#
|
|
243
|
-
if nuda.env.verb: print("\nEnter micro_models_mb_NM()")
|
|
244
|
-
#
|
|
245
|
-
print('For mb (in NM):',mb)
|
|
246
|
-
#
|
|
247
|
-
models, models_lower = micro_models()
|
|
248
|
-
#
|
|
249
|
-
models2 = []
|
|
250
|
-
for j,model in enumerate(models):
|
|
251
|
-
if mb in model and '2BF' not in model and ( 'NM' in model or 'AM' in model ):
|
|
252
|
-
models2.append( model )
|
|
253
|
-
#print(' models:',model)
|
|
254
|
-
#
|
|
255
|
-
print('models2:',models2)
|
|
256
|
-
models2_lower = [ item.lower() for item in models2 ]
|
|
224
|
+
print("models2:", models2)
|
|
225
|
+
models2_lower = [item.lower() for item in models2]
|
|
257
226
|
#
|
|
258
227
|
return models2, models2_lower
|
|
259
228
|
|
|
260
229
|
# Define functions for APRfit
|
|
261
230
|
|
|
262
|
-
def APRfit_compute(
|
|
263
|
-
p53 = 5.0/3.0
|
|
264
|
-
p83 = 8.0/3.0
|
|
265
|
-
asy = 1.0-2.0*x
|
|
231
|
+
def APRfit_compute(n, x):
|
|
232
|
+
p53 = 5.0 / 3.0
|
|
233
|
+
p83 = 8.0 / 3.0
|
|
234
|
+
asy = 1.0 - 2.0 * x
|
|
266
235
|
n2 = n * n
|
|
267
|
-
G = (
|
|
268
|
-
Hk =
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
236
|
+
G = (3.0 * np.pi**2) ** p53 / (5.0 * np.pi**2)
|
|
237
|
+
Hk = (
|
|
238
|
+
G
|
|
239
|
+
* nuda.cst.hbc**2
|
|
240
|
+
/ (2.0 * nuda.cst.mnuc2_approx)
|
|
241
|
+
* n**p53
|
|
242
|
+
* ((1 - x) ** p53 + x**p53)
|
|
243
|
+
)
|
|
244
|
+
Hm = (
|
|
245
|
+
G
|
|
246
|
+
* (p3 * ((1 - x) ** p53 + x**p53) + p5 * ((1 - x) ** p83 + x**p83))
|
|
247
|
+
* n**p83
|
|
248
|
+
* np.exp(-p4 * n)
|
|
249
|
+
)
|
|
250
|
+
g1L = -n2 * (p1 + p2 * n + p6 * n2 + (p10 + p11 * n) * np.exp(-(p9**2) * n2))
|
|
251
|
+
g2L = -n2 * (p12 / n + p7 + p8 * n + p13 * np.exp(-(p9**2) * n2))
|
|
252
|
+
g1H = g1L - n2 * (p17 * (n - p19) + p21 * (n - p19) ** 2) * np.exp(p18 * (n - p19))
|
|
253
|
+
g2H = g2L - n2 * (p15 * (n - p20) + p14 * (n - p20) ** 2) * np.exp(p16 * (n - p20))
|
|
254
|
+
HdL = g1L * (1.0 - asy**2) + g2L * asy**2
|
|
255
|
+
HdH = g1H * (1.0 - asy**2) + g2H * asy**2
|
|
276
256
|
#
|
|
277
257
|
HL = Hk + Hm + HdL
|
|
278
258
|
HH = Hk + Hm + HdH
|
|
279
259
|
#
|
|
280
|
-
nt = 0.32-0.12*(1-2*x)**2
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
for ind,den in enumerate(n):
|
|
260
|
+
nt = 0.32 - 0.12 * (1 - 2 * x) ** 2 # transition density in fm^-3
|
|
261
|
+
eps = np.zeros(len(n))
|
|
262
|
+
for ind, den in enumerate(n):
|
|
284
263
|
if den < nt:
|
|
285
|
-
|
|
264
|
+
eps[ind] = HL[ind]
|
|
286
265
|
indref = ind
|
|
287
|
-
#print(ind,den,HL[ind],' low')
|
|
288
266
|
else:
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
#print('indref:',indref,'/',len(n))
|
|
292
|
-
#imin = max( 0, indref-2 )
|
|
293
|
-
#imax = min( len(n), indref+3 )
|
|
294
|
-
#for ind in range(imin,imax+1):
|
|
295
|
-
#xh = ( n[ind] - n[imin] ) / ( n[imax] - n[imin] )
|
|
296
|
-
#print('ind:',ind,' xh',xh)
|
|
297
|
-
#e2v[ind] = (1-xh)*e2v[imin] + xh*e2v[imax]
|
|
298
|
-
return e2v
|
|
267
|
+
eps[ind] = HH[ind]
|
|
268
|
+
return eps
|
|
299
269
|
|
|
300
|
-
def func_GCR_e2a(den,a,alfa,b,beta):
|
|
301
|
-
return a * (den/nuda.cst.nsat)**alfa + b * (den/nuda.cst.nsat)**beta
|
|
270
|
+
def func_GCR_e2a(den, a, alfa, b, beta):
|
|
271
|
+
return a * (den / nuda.cst.nsat) ** alfa + b * (den / nuda.cst.nsat) ** beta
|
|
302
272
|
|
|
303
|
-
def func_GCR_pre(den,a,alfa,b,beta):
|
|
304
|
-
return den * (
|
|
273
|
+
def func_GCR_pre(den, a, alfa, b, beta):
|
|
274
|
+
return den * (
|
|
275
|
+
a * alfa * (den / nuda.cst.nsat) ** alfa
|
|
276
|
+
+ b * beta * (den / nuda.cst.nsat) ** beta
|
|
277
|
+
)
|
|
305
278
|
|
|
306
|
-
def func_GCR_cs2(den,a,alfa,b,beta):
|
|
307
|
-
dp_dn =
|
|
308
|
-
|
|
309
|
-
|
|
279
|
+
def func_GCR_cs2(den, a, alfa, b, beta):
|
|
280
|
+
dp_dn = (
|
|
281
|
+
a * alfa * (alfa + 1.0) * (den / nuda.cst.nsat) ** alfa
|
|
282
|
+
+ b * beta * (beta + 1.0) * (den / nuda.cst.nsat) ** beta
|
|
283
|
+
)
|
|
284
|
+
h2a = (
|
|
285
|
+
nuda.cst.mnuc2
|
|
286
|
+
+ func_GCR_e2a(den, a, alfa, b, beta)
|
|
287
|
+
+ func_GCR_pre(den, a, alfa, b, beta) / den
|
|
288
|
+
)
|
|
289
|
+
return dp_dn / h2a
|
|
310
290
|
|
|
311
|
-
def func_e2a_NLEFT2024(
|
|
291
|
+
def func_e2a_NLEFT2024(kfn, b, c, d):
|
|
312
292
|
a = 1.0
|
|
313
|
-
func = a + b*kfn + c*kfn**2 + d*kfn**3
|
|
314
|
-
return func * nuda.effg_nr(
|
|
293
|
+
func = a + b * kfn + c * kfn**2 + d * kfn**3
|
|
294
|
+
return func * nuda.effg_nr(kfn)
|
|
315
295
|
|
|
316
|
-
def func_pre_NLEFT2024(
|
|
317
|
-
func =
|
|
318
|
-
|
|
319
|
-
|
|
296
|
+
def func_pre_NLEFT2024(kfn, den, b, c, d):
|
|
297
|
+
func = (
|
|
298
|
+
nuda.cst.two
|
|
299
|
+
+ nuda.cst.three * b * kfn
|
|
300
|
+
+ nuda.cst.four * c * kfn**2
|
|
301
|
+
+ nuda.cst.five * d * kfn**3
|
|
302
|
+
)
|
|
303
|
+
return func * nuda.cst.third * den * nuda.effg_nr(kfn)
|
|
320
304
|
|
|
321
|
-
def func_dpredn_NLEFT2024(
|
|
305
|
+
def func_dpredn_NLEFT2024(kfn, den, b, c, d):
|
|
322
306
|
func = nuda.cst.four + 9.0 * b * kfn + 20.0 * c * kfn**2 + 25.0 * d * kfn**3
|
|
323
|
-
return func_pre_NLEFT2024(
|
|
307
|
+
return func_pre_NLEFT2024(kfn, den, b, c, d) / den + func * nuda.effg_nr(kfn) / 9.0
|
|
324
308
|
|
|
325
|
-
|
|
309
|
+
|
|
310
|
+
class setupMicro:
|
|
326
311
|
"""
|
|
327
312
|
Instantiate the object with microscopic results choosen \
|
|
328
313
|
by the toolkit practitioner.
|
|
@@ -335,7 +320,7 @@ class setupMicro():
|
|
|
335
320
|
'2012-AFDMC-NM-RES-5', '2012-AFDMC-NM-RES-6', '2012-AFDMC-NM-RES-7', \
|
|
336
321
|
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
337
322
|
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7', \
|
|
338
|
-
'2013-
|
|
323
|
+
'2013-MBPT-NM', '2014-AFQMC-NM', '2016-QMC-NM', '2016-MBPT-AM', \
|
|
339
324
|
'2018-QMC-NM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69', \
|
|
340
325
|
'2020-MBPT-AM', '2022-AFDMC-NM', '2024-NLEFT-AM', \
|
|
341
326
|
'2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
@@ -350,8 +335,11 @@ class setupMicro():
|
|
|
350
335
|
|
|
351
336
|
**Attributes:**
|
|
352
337
|
"""
|
|
338
|
+
|
|
353
339
|
#
|
|
354
|
-
def __init__(
|
|
340
|
+
def __init__(
|
|
341
|
+
self, model="1998-VAR-AM-APR", var1=np.linspace(0.01, 0.4, 20), var2=0.0
|
|
342
|
+
):
|
|
355
343
|
"""
|
|
356
344
|
Parameters
|
|
357
345
|
----------
|
|
@@ -361,277 +349,381 @@ class setupMicro():
|
|
|
361
349
|
var1 = np.array([0.1,0.15,0.16,0.17,0.2,0.25])
|
|
362
350
|
"""
|
|
363
351
|
#
|
|
364
|
-
if nuda.env.verb:
|
|
352
|
+
if nuda.env.verb:
|
|
353
|
+
print("Enter setupMicro()")
|
|
365
354
|
#
|
|
366
355
|
#: Attribute model.
|
|
367
356
|
self.model = model
|
|
368
|
-
if nuda.env.verb:
|
|
369
|
-
|
|
357
|
+
if nuda.env.verb:
|
|
358
|
+
print("model:", model)
|
|
359
|
+
print("model -> ", model)
|
|
370
360
|
#
|
|
371
|
-
self = setupMicro.init_self(
|
|
361
|
+
self = setupMicro.init_self(self)
|
|
372
362
|
#
|
|
373
363
|
# read var and define den, asy and xpr:
|
|
374
|
-
self.den = var1[:]
|
|
375
|
-
self.asy = var2
|
|
376
|
-
self.kfn = nuda.kf_n(
|
|
377
|
-
self.xpr = (
|
|
378
|
-
#print('den:',self.den)
|
|
379
|
-
#print('asy:',self.asy)
|
|
380
|
-
#print('xpr:',self.xpr)
|
|
364
|
+
self.den = var1[:] # density n_b=n_n+n_p
|
|
365
|
+
self.asy = var2 # asymmetry parameter = (n_n-n_p)/n_b
|
|
366
|
+
self.kfn = nuda.kf_n((1.0 + self.asy) / 2.0 * self.den)
|
|
367
|
+
self.xpr = (1.0 - self.asy) / 2.0 # proton fraction = n_p/n_b
|
|
368
|
+
# print('den:',self.den)
|
|
369
|
+
# print('asy:',self.asy)
|
|
370
|
+
# print('xpr:',self.xpr)
|
|
381
371
|
#
|
|
382
372
|
models, models_lower = micro_models()
|
|
383
373
|
#
|
|
384
374
|
if model.lower() not in models_lower:
|
|
385
|
-
print(
|
|
386
|
-
|
|
387
|
-
|
|
375
|
+
print(
|
|
376
|
+
"setup_micro: The model name ", model, " is not in the list of models."
|
|
377
|
+
)
|
|
378
|
+
print("setup_micro: list of models:", models)
|
|
379
|
+
print("setup_micro: -- Exit the code --")
|
|
388
380
|
exit()
|
|
389
381
|
#
|
|
390
|
-
|
|
382
|
+
# ==============================
|
|
383
|
+
# Read files associated to model
|
|
384
|
+
# ==============================
|
|
385
|
+
#
|
|
386
|
+
self.nm_rmass = nuda.cst.mnc2
|
|
387
|
+
self.sm_rmass = 0.5 * (nuda.cst.mnc2 + nuda.cst.mpc2)
|
|
388
|
+
self.rmass = (1.0 - self.xpr) * nuda.cst.mnc2 + self.xpr * nuda.cst.mpc2
|
|
389
|
+
#
|
|
390
|
+
if model.lower() == "1981-var-am-fp":
|
|
391
391
|
#
|
|
392
392
|
self.flag_nm = True
|
|
393
393
|
self.flag_sm = True
|
|
394
394
|
self.flag_kf = True
|
|
395
395
|
self.flag_den = False
|
|
396
396
|
#
|
|
397
|
-
file_in1 = os.path.join(nuda.param.path_data,
|
|
398
|
-
file_in2 = os.path.join(nuda.param.path_data,
|
|
399
|
-
if nuda.env.verb: print(
|
|
400
|
-
if nuda.env.verb: print(
|
|
401
|
-
self.ref =
|
|
397
|
+
file_in1 = os.path.join( nuda.param.path_data, "matter/micro/1981-VAR-NM-FP.dat" )
|
|
398
|
+
file_in2 = os.path.join( nuda.param.path_data, "matter/micro/1981-VAR-SM-FP.dat" )
|
|
399
|
+
if nuda.env.verb: print("Reads file:", file_in1)
|
|
400
|
+
if nuda.env.verb: print("Reads file:", file_in2)
|
|
401
|
+
self.ref = "Friedman and Pandharipande, Nucl. Phys. A. 361, 502 (1981)"
|
|
402
402
|
self.note = "write here notes about this EOS."
|
|
403
|
-
self.label =
|
|
404
|
-
self.marker =
|
|
403
|
+
self.label = "FP-1981"
|
|
404
|
+
self.marker = "o"
|
|
405
405
|
self.every = 1
|
|
406
|
-
|
|
407
|
-
self.
|
|
408
|
-
self.
|
|
409
|
-
self.
|
|
410
|
-
self.
|
|
406
|
+
self.e_err = False
|
|
407
|
+
self.p_err = False
|
|
408
|
+
self.cs2_err = False
|
|
409
|
+
self.linestyle = "solid"
|
|
410
|
+
self.nm_den, self.nm_e2a_int = np.loadtxt( file_in1, usecols=(0, 1), unpack=True )
|
|
411
|
+
self.sm_den, self.sm_e2a_int = np.loadtxt( file_in2, usecols=(0, 1), unpack=True )
|
|
412
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
413
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
414
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
415
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
411
416
|
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
412
417
|
self.sm_kfn = nuda.kf_n( nuda.cst.half * self.sm_den )
|
|
413
|
-
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err=
|
|
414
|
-
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den,err=
|
|
415
|
-
self.
|
|
416
|
-
self.
|
|
418
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den, err="MBPT") * self.nm_e2a_int )
|
|
419
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den, err="MBPT") * self.sm_e2a_int )
|
|
420
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
421
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
417
422
|
#
|
|
418
|
-
elif model.lower() ==
|
|
423
|
+
elif model.lower() == "1998-var-am-apr":
|
|
419
424
|
#
|
|
420
425
|
self.flag_nm = True
|
|
421
426
|
self.flag_sm = True
|
|
422
427
|
self.flag_kf = False
|
|
423
428
|
self.flag_den = True
|
|
424
429
|
#
|
|
425
|
-
file_in1 = os.path.join(nuda.param.path_data,
|
|
426
|
-
file_in2 = os.path.join(nuda.param.path_data,
|
|
427
|
-
if nuda.env.verb: print(
|
|
428
|
-
if nuda.env.verb: print(
|
|
429
|
-
self.ref =
|
|
430
|
+
file_in1 = os.path.join( nuda.param.path_data, "matter/micro/1998-VAR-NM-APR.dat" )
|
|
431
|
+
file_in2 = os.path.join( nuda.param.path_data, "matter/micro/1998-VAR-SM-APR.dat" )
|
|
432
|
+
if nuda.env.verb: print("Reads file:", file_in1)
|
|
433
|
+
if nuda.env.verb: print("Reads file:", file_in2)
|
|
434
|
+
self.ref = ( "Akmal, Pandharipande and Ravenhall, Phys. Rev. C 58, 1804 (1998)" )
|
|
430
435
|
self.note = "write here notes about this EOS."
|
|
431
|
-
self.label =
|
|
432
|
-
self.marker =
|
|
436
|
+
self.label = "APR-1998"
|
|
437
|
+
self.marker = "^"
|
|
433
438
|
self.every = 1
|
|
434
|
-
|
|
435
|
-
self.
|
|
436
|
-
self.
|
|
437
|
-
self.
|
|
438
|
-
self.
|
|
439
|
-
self.
|
|
440
|
-
self.
|
|
441
|
-
self.
|
|
442
|
-
self.
|
|
443
|
-
self.
|
|
444
|
-
self.
|
|
445
|
-
|
|
446
|
-
|
|
439
|
+
self.e_err = False
|
|
440
|
+
self.p_err = False
|
|
441
|
+
self.cs2_err = False
|
|
442
|
+
self.linestyle = "solid"
|
|
443
|
+
self.nm_den, self.nm_e2a_int = np.loadtxt( file_in1, usecols=(0, 1), unpack=True )
|
|
444
|
+
self.sm_den, self.sm_e2a_int = np.loadtxt( file_in2, usecols=(0, 1), unpack=True )
|
|
445
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
446
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
447
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
448
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
449
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
450
|
+
self.sm_kfn = nuda.kf_n(nuda.cst.half * self.sm_den)
|
|
451
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den, err="MBPT") * self.nm_e2a_int )
|
|
452
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den, err="MBPT") * self.sm_e2a_int )
|
|
453
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
454
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
455
|
+
#
|
|
456
|
+
elif model.lower() == "1998-var-am-apr-fit":
|
|
447
457
|
#
|
|
448
458
|
self.flag_nm = True
|
|
449
459
|
self.flag_sm = True
|
|
450
460
|
self.flag_kf = False
|
|
451
461
|
self.flag_den = False
|
|
452
462
|
#
|
|
453
|
-
self.ref =
|
|
463
|
+
self.ref = ( "Akmal, Pandharipande and Ravenhall, Phys. Rev. C 58, 1804 (1998)" )
|
|
454
464
|
self.note = "Use interpolation functions suggested in APR paper."
|
|
455
|
-
self.label =
|
|
456
|
-
self.marker =
|
|
465
|
+
self.label = "APR-1998-Fit"
|
|
466
|
+
self.marker = "."
|
|
457
467
|
self.every = 1
|
|
458
|
-
self.
|
|
468
|
+
self.e_err = False
|
|
469
|
+
self.p_err = False
|
|
470
|
+
self.cs2_err = False
|
|
471
|
+
self.linestyle = "dashed"
|
|
459
472
|
# Define constants for APRfit and for A18+dv+UIX*
|
|
460
473
|
global p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21
|
|
461
|
-
(
|
|
462
|
-
|
|
474
|
+
(
|
|
475
|
+
p1,
|
|
476
|
+
p2,
|
|
477
|
+
p3,
|
|
478
|
+
p4,
|
|
479
|
+
p5,
|
|
480
|
+
p6,
|
|
481
|
+
p7,
|
|
482
|
+
p8,
|
|
483
|
+
p9,
|
|
484
|
+
p10,
|
|
485
|
+
p11,
|
|
486
|
+
p12,
|
|
487
|
+
p13,
|
|
488
|
+
p14,
|
|
489
|
+
p15,
|
|
490
|
+
p16,
|
|
491
|
+
p17,
|
|
492
|
+
p18,
|
|
493
|
+
p19,
|
|
494
|
+
p20,
|
|
495
|
+
p21,
|
|
496
|
+
) = (
|
|
497
|
+
337.2,
|
|
498
|
+
-382.0,
|
|
499
|
+
89.8,
|
|
500
|
+
0.457,
|
|
501
|
+
-59.0,
|
|
502
|
+
-19.1,
|
|
503
|
+
214.6,
|
|
504
|
+
-384.0,
|
|
505
|
+
6.4,
|
|
506
|
+
69.0,
|
|
507
|
+
-33.0,
|
|
508
|
+
0.35,
|
|
509
|
+
0.0,
|
|
510
|
+
0.0,
|
|
511
|
+
287.0,
|
|
512
|
+
-1.54,
|
|
513
|
+
175.0,
|
|
514
|
+
-1.45,
|
|
515
|
+
0.32,
|
|
516
|
+
0.195,
|
|
517
|
+
0.0,
|
|
518
|
+
)
|
|
463
519
|
#
|
|
464
520
|
# energy per unit volume
|
|
465
|
-
self.
|
|
521
|
+
self.eps_int = APRfit_compute( self.den, self.xpr )
|
|
466
522
|
# energy per particle
|
|
467
|
-
self.
|
|
468
|
-
self.
|
|
469
|
-
self.
|
|
523
|
+
self.e2a_int = self.eps_int / self.den
|
|
524
|
+
self.e2a = self.rmass + self.e2a_int
|
|
525
|
+
self.eps = self.e2a * self.den
|
|
526
|
+
self.e2a_err = np.abs( uncertainty_stat(self.den, err="MBPT") * self.e2a_int )
|
|
527
|
+
self.eps_err = self.e2a_err * self.den
|
|
470
528
|
# pressure as the first derivative of E/A
|
|
471
|
-
cs_e2a = CubicSpline( self.den, self.
|
|
472
|
-
#pre = n**2 * np.gradient( e2a, n)
|
|
529
|
+
cs_e2a = CubicSpline( self.den, self.e2a_int )
|
|
530
|
+
# pre = n**2 * np.gradient( e2a, n)
|
|
473
531
|
self.pre = self.den**2 * cs_e2a( self.den, 1 )
|
|
474
532
|
# chemical potential
|
|
475
|
-
self.chempot = ( self.
|
|
533
|
+
#self.chempot = ( self.eps + self.pre ) / self.den
|
|
476
534
|
# enthalpy
|
|
477
|
-
self.h2a =
|
|
535
|
+
self.h2a = self.e2a + self.pre / self.den
|
|
478
536
|
# sound speed
|
|
479
537
|
cs_pre = CubicSpline( self.den, self.pre )
|
|
480
538
|
self.cs2 = cs_pre( self.den, 1 ) / self.h2a
|
|
481
539
|
#
|
|
482
|
-
elif model.lower() ==
|
|
540
|
+
elif model.lower() == "2006-bhf-am-av18":
|
|
483
541
|
#
|
|
484
542
|
self.flag_nm = True
|
|
485
543
|
self.flag_sm = True
|
|
486
544
|
self.flag_kf = False
|
|
487
|
-
self.flag_den =
|
|
545
|
+
self.flag_den = True
|
|
488
546
|
#
|
|
489
|
-
file_in1 = os.path.join(nuda.param.path_data,
|
|
490
|
-
file_in2 = os.path.join(nuda.param.path_data,
|
|
491
|
-
if nuda.env.verb: print(
|
|
492
|
-
if nuda.env.verb: print(
|
|
493
|
-
self.ref =
|
|
547
|
+
file_in1 = os.path.join( nuda.param.path_data, "matter/micro/2006-BHF/2006-BHF-Av18-E2A-NM.dat" )
|
|
548
|
+
file_in2 = os.path.join( nuda.param.path_data, "matter/micro/2006-BHF/2006-BHF-Av18-E2A-SM.dat" )
|
|
549
|
+
if nuda.env.verb: print("Reads file:", file_in1)
|
|
550
|
+
if nuda.env.verb: print("Reads file:", file_in2)
|
|
551
|
+
self.ref = "L.G. Cao, U. Lombardo, C.W. Shen, N.V. Giai, Phys. Rev. C 73, 014313 (2006)"
|
|
494
552
|
self.note = ""
|
|
495
|
-
self.label =
|
|
496
|
-
self.marker =
|
|
553
|
+
self.label = "BHF-2006-23BF-Av18"
|
|
554
|
+
self.marker = "o"
|
|
497
555
|
self.every = 1
|
|
498
|
-
|
|
499
|
-
self.
|
|
500
|
-
|
|
501
|
-
self.
|
|
502
|
-
|
|
503
|
-
self.
|
|
504
|
-
self.
|
|
505
|
-
self.
|
|
506
|
-
self.
|
|
507
|
-
|
|
508
|
-
self.
|
|
509
|
-
|
|
510
|
-
self.
|
|
511
|
-
self.sm_kfn = nuda.kf_n(
|
|
512
|
-
self.
|
|
513
|
-
self.
|
|
514
|
-
|
|
515
|
-
|
|
556
|
+
self.linestyle = "solid"
|
|
557
|
+
self.e_err = False
|
|
558
|
+
self.p_err = False
|
|
559
|
+
self.cs2_err = False
|
|
560
|
+
#
|
|
561
|
+
self.nm_den, self.nm_e2a_int = np.loadtxt( file_in1, usecols=(0, 1), unpack=True )
|
|
562
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
563
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
564
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den, err="MBPT") * self.nm_e2a_int )
|
|
565
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
566
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
567
|
+
#
|
|
568
|
+
self.sm_den, self.sm_e2a_int = np.loadtxt( file_in2, usecols=(0, 1), unpack=True )
|
|
569
|
+
self.sm_kfn = nuda.kf_n(nuda.cst.half * self.sm_den)
|
|
570
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
571
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den, err="MBPT") * self.sm_e2a_int )
|
|
572
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
573
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
574
|
+
#
|
|
575
|
+
elif model.lower() == "2008-qmc-nm-swave":
|
|
516
576
|
#
|
|
517
577
|
self.flag_nm = True
|
|
518
578
|
self.flag_sm = False
|
|
519
579
|
self.flag_kf = True
|
|
520
580
|
self.flag_den = False
|
|
521
581
|
#
|
|
522
|
-
file_in = os.path.join(
|
|
523
|
-
|
|
524
|
-
|
|
582
|
+
file_in = os.path.join(
|
|
583
|
+
nuda.param.path_data, "matter/micro/2008-QMC-NM-swave.dat"
|
|
584
|
+
)
|
|
585
|
+
if nuda.env.verb:
|
|
586
|
+
print("Reads file:", file_in)
|
|
587
|
+
self.ref = "A. Gezerlis and J. Carlson PRC 81, 025803 (2010)"
|
|
525
588
|
self.note = ""
|
|
526
|
-
self.label =
|
|
527
|
-
self.marker =
|
|
589
|
+
self.label = "QMC-swave-2008"
|
|
590
|
+
self.marker = "o"
|
|
528
591
|
self.every = 1
|
|
529
|
-
|
|
530
|
-
self.
|
|
531
|
-
self.
|
|
532
|
-
|
|
533
|
-
self.
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
self.
|
|
537
|
-
self.
|
|
538
|
-
|
|
539
|
-
|
|
592
|
+
self.linestyle = "solid"
|
|
593
|
+
self.e_err = True
|
|
594
|
+
self.p_err = False
|
|
595
|
+
self.cs2_err = False
|
|
596
|
+
self.nm_kfn, gap2ef, gap2ef_err, e2effg, e2effg_err = np.loadtxt(
|
|
597
|
+
file_in, usecols=(0, 1, 2, 3, 4), unpack=True
|
|
598
|
+
)
|
|
599
|
+
self.nm_den = nuda.den_n(self.nm_kfn)
|
|
600
|
+
self.nm_e2a_int = e2effg * nuda.effg_nr(self.nm_kfn)
|
|
601
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
602
|
+
self.nm_e2a_err = e2effg_err * nuda.effg_nr(self.nm_kfn)
|
|
603
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
604
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
605
|
+
#
|
|
606
|
+
elif model.lower() == "2009-afdmc-nm":
|
|
540
607
|
#
|
|
541
608
|
self.flag_nm = True
|
|
542
609
|
self.flag_sm = False
|
|
543
610
|
self.flag_kf = True
|
|
544
611
|
self.flag_den = False
|
|
545
612
|
#
|
|
546
|
-
file_in = os.path.join(
|
|
547
|
-
|
|
548
|
-
|
|
613
|
+
file_in = os.path.join(
|
|
614
|
+
nuda.param.path_data, "matter/micro/2009-AFDMC-NM.dat"
|
|
615
|
+
)
|
|
616
|
+
if nuda.env.verb:
|
|
617
|
+
print("Reads file:", file_in)
|
|
618
|
+
self.ref = "S. Gandolfi, A.Y. Illarionov, F. Pederiva, K.E. Schmidt, S. Fantoni, Phys. Rev. C 80, 045802 (2009)."
|
|
549
619
|
self.note = ""
|
|
550
|
-
self.label =
|
|
551
|
-
self.marker =
|
|
620
|
+
self.label = "AFDMC-2009"
|
|
621
|
+
self.marker = "o"
|
|
552
622
|
self.every = 1
|
|
553
|
-
|
|
554
|
-
self.
|
|
555
|
-
self.
|
|
556
|
-
|
|
557
|
-
self.
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
self.
|
|
561
|
-
|
|
562
|
-
|
|
623
|
+
self.linestyle = "solid"
|
|
624
|
+
self.e_err = True
|
|
625
|
+
self.p_err = False
|
|
626
|
+
self.cs2_err = False
|
|
627
|
+
self.nm_kfn, self.nm_e2a_int, self.nm_e2a_err = np.loadtxt(
|
|
628
|
+
file_in, usecols=(0, 1, 2), unpack=True
|
|
629
|
+
)
|
|
630
|
+
self.nm_den = nuda.den_n(self.nm_kfn)
|
|
631
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
632
|
+
# self.nm_e2a_err = abs( 0.01 * self.nm_e2a )
|
|
633
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
634
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
635
|
+
#
|
|
636
|
+
elif model.lower() == "2009-dlqmc-nm":
|
|
563
637
|
#
|
|
564
638
|
self.flag_nm = True
|
|
565
639
|
self.flag_sm = False
|
|
566
640
|
self.flag_kf = True
|
|
567
641
|
self.flag_den = False
|
|
568
642
|
#
|
|
569
|
-
file_in = os.path.join(
|
|
570
|
-
|
|
571
|
-
|
|
643
|
+
file_in = os.path.join(
|
|
644
|
+
nuda.param.path_data, "matter/micro/2009-dQMC-NM.dat"
|
|
645
|
+
)
|
|
646
|
+
if nuda.env.verb:
|
|
647
|
+
print("Reads file:", file_in)
|
|
648
|
+
self.ref = "T. Abe, R. Seki, Phys. Rev. C 79, 054002 (2009)"
|
|
572
649
|
self.note = ""
|
|
573
|
-
self.label =
|
|
574
|
-
self.marker =
|
|
650
|
+
self.label = "dLQMC-2009"
|
|
651
|
+
self.marker = "v"
|
|
575
652
|
self.every = 1
|
|
576
|
-
|
|
577
|
-
self.
|
|
578
|
-
self.
|
|
579
|
-
|
|
580
|
-
self.
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
self.
|
|
584
|
-
self.
|
|
585
|
-
|
|
586
|
-
|
|
653
|
+
self.linestyle = "solid"
|
|
654
|
+
self.e_err = True
|
|
655
|
+
self.p_err = False
|
|
656
|
+
self.cs2_err = False
|
|
657
|
+
self.nm_kfn, gap2ef, gap2ef_err, e2effg, e2effg_err = np.loadtxt(
|
|
658
|
+
file_in, usecols=(0, 1, 2, 3, 4), unpack=True
|
|
659
|
+
)
|
|
660
|
+
self.nm_den = nuda.den_n(self.nm_kfn)
|
|
661
|
+
self.nm_e2a_int = np.array(e2effg * nuda.effg_nr(self.nm_kfn))
|
|
662
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
663
|
+
self.nm_e2a_err = e2effg_err * nuda.effg_nr(self.nm_kfn)
|
|
664
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
665
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
666
|
+
#
|
|
667
|
+
elif model.lower() == "2010-qmc-nm-av4":
|
|
587
668
|
#
|
|
588
669
|
self.flag_nm = True
|
|
589
670
|
self.flag_sm = False
|
|
590
671
|
self.flag_kf = True
|
|
591
672
|
self.flag_den = False
|
|
592
673
|
#
|
|
593
|
-
file_in = os.path.join(
|
|
594
|
-
|
|
595
|
-
|
|
674
|
+
file_in = os.path.join(
|
|
675
|
+
nuda.param.path_data, "matter/micro/2010-QMC-NM-AV4.dat"
|
|
676
|
+
)
|
|
677
|
+
if nuda.env.verb:
|
|
678
|
+
print("Reads file:", file_in)
|
|
679
|
+
self.ref = "A. Gezerlis and J. Carlson PRC 81, 025803 (2010)"
|
|
596
680
|
self.note = ""
|
|
597
|
-
self.label =
|
|
598
|
-
self.marker =
|
|
681
|
+
self.label = "QMC-AV4-2008"
|
|
682
|
+
self.marker = "s"
|
|
599
683
|
self.every = 1
|
|
600
|
-
|
|
601
|
-
self.
|
|
602
|
-
self.
|
|
603
|
-
|
|
604
|
-
self.
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
self.
|
|
608
|
-
self.
|
|
609
|
-
|
|
610
|
-
|
|
684
|
+
self.e_err = True
|
|
685
|
+
self.p_err = False
|
|
686
|
+
self.cs2_err = False
|
|
687
|
+
self.linestyle = "solid"
|
|
688
|
+
self.nm_kfn, gap2ef, gap2ef_err, e2effg, e2effg_err = np.loadtxt(
|
|
689
|
+
file_in, usecols=(0, 1, 2, 3, 4), unpack=True
|
|
690
|
+
)
|
|
691
|
+
self.nm_den = nuda.den_n(self.nm_kfn)
|
|
692
|
+
self.nm_e2a_int = np.array(e2effg * nuda.effg_nr(self.nm_kfn))
|
|
693
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
694
|
+
self.nm_e2a_err = e2effg_err * nuda.effg_nr(self.nm_kfn)
|
|
695
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
696
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
697
|
+
#
|
|
698
|
+
elif model.lower() == "2010-mbpt-nm":
|
|
611
699
|
#
|
|
612
700
|
self.flag_nm = True
|
|
613
701
|
self.flag_sm = False
|
|
614
702
|
self.flag_kf = False
|
|
615
703
|
self.flag_den = False
|
|
616
704
|
#
|
|
617
|
-
file_in = os.path.join(
|
|
618
|
-
|
|
619
|
-
|
|
705
|
+
file_in = os.path.join(
|
|
706
|
+
nuda.param.path_data, "matter/micro/2010-NM-Hebeler.dat"
|
|
707
|
+
)
|
|
708
|
+
if nuda.env.verb:
|
|
709
|
+
print("Reads file:", file_in)
|
|
710
|
+
self.ref = "K. Hebeler, et al, Phys. Rev. Lett. 105, 161102 (2010)"
|
|
620
711
|
self.note = "chiral NN forces with SRG and leading 3N forces."
|
|
621
|
-
self.label =
|
|
622
|
-
self.marker =
|
|
712
|
+
self.label = "MBPT-2010"
|
|
713
|
+
self.marker = "s"
|
|
623
714
|
self.every = 1
|
|
624
|
-
|
|
625
|
-
self.
|
|
626
|
-
self.
|
|
627
|
-
|
|
628
|
-
|
|
629
|
-
|
|
715
|
+
self.e_err = False
|
|
716
|
+
self.p_err = False
|
|
717
|
+
self.cs2_err = False
|
|
718
|
+
self.linestyle = "solid"
|
|
719
|
+
self.nm_den, self.nm_pre = np.loadtxt(file_in, usecols=(0, 1), unpack=True)
|
|
720
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
721
|
+
# self.nm_pre_err = np.abs( 0.01 * self.nm_pre )
|
|
630
722
|
#
|
|
631
723
|
# chemical potential
|
|
632
|
-
#self.nm_chempot = ( self.nm_pre + self.
|
|
724
|
+
# self.nm_chempot = ( self.nm_pre + self.nm_eps ) / self.nm_den
|
|
633
725
|
#
|
|
634
|
-
elif
|
|
726
|
+
elif "2012-afdmc-nm-res" in model.lower():
|
|
635
727
|
#
|
|
636
728
|
self.flag_nm = True
|
|
637
729
|
self.flag_sm = False
|
|
@@ -639,33 +731,53 @@ class setupMicro():
|
|
|
639
731
|
self.flag_den = True
|
|
640
732
|
#
|
|
641
733
|
# We do not have the data for this model, but we have a fit of the data
|
|
642
|
-
k=int(model.split(sep=
|
|
643
|
-
#print('k:',k)
|
|
644
|
-
file_in = os.path.join(
|
|
645
|
-
|
|
646
|
-
|
|
647
|
-
|
|
648
|
-
|
|
649
|
-
self.
|
|
650
|
-
|
|
651
|
-
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
|
|
734
|
+
k = int(model.split(sep="-")[4])
|
|
735
|
+
# print('k:',k)
|
|
736
|
+
file_in = os.path.join(
|
|
737
|
+
nuda.param.path_data, "matter/micro/2012-AFDMC-NM-" + str(k) + ".dat"
|
|
738
|
+
)
|
|
739
|
+
if nuda.env.verb:
|
|
740
|
+
print("Reads file:", file_in)
|
|
741
|
+
self.ref = (
|
|
742
|
+
"S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801(R) (2012)."
|
|
743
|
+
)
|
|
744
|
+
self.note = (
|
|
745
|
+
"We have the data for this model, which are used for the fit in the next section."
|
|
746
|
+
)
|
|
747
|
+
self.label = "AFDMC-2012-" + str(k)
|
|
748
|
+
self.marker = "s"
|
|
749
|
+
self.every = 3
|
|
750
|
+
if k == 1:
|
|
751
|
+
self.every = 4
|
|
752
|
+
if k == 7:
|
|
753
|
+
self.every = 4
|
|
754
|
+
self.e_err = True
|
|
755
|
+
self.p_err = False
|
|
756
|
+
self.cs2_err = False
|
|
757
|
+
self.linestyle = "solid"
|
|
758
|
+
# self.linestyle = 'None'
|
|
759
|
+
if k in [1, 7]:
|
|
760
|
+
self.nm_den, ETOT, ETOT_ERR = np.loadtxt(
|
|
761
|
+
file_in, usecols=(0, 1, 2), unpack=True
|
|
762
|
+
)
|
|
763
|
+
elif k in [2, 3, 4, 5, 6]:
|
|
764
|
+
V0, MU, self.nm_den, ETOT, ETOT_ERR = np.loadtxt(
|
|
765
|
+
file_in, usecols=(0, 1, 2, 3, 4), unpack=True
|
|
766
|
+
)
|
|
656
767
|
else:
|
|
657
|
-
print(
|
|
768
|
+
print("The value of k is no correct ", k)
|
|
658
769
|
exit()
|
|
659
|
-
self.nm_kfn = nuda.kf_n(
|
|
660
|
-
self.
|
|
661
|
-
self.
|
|
662
|
-
self.
|
|
663
|
-
self.
|
|
664
|
-
|
|
665
|
-
#self.
|
|
666
|
-
#self.
|
|
667
|
-
#
|
|
668
|
-
|
|
770
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
771
|
+
self.nm_e2a_int = ETOT # / 66.0
|
|
772
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
773
|
+
self.nm_e2a_err = ETOT_ERR # / 66.0
|
|
774
|
+
self.nm_eps = self.nm_den * self.nm_e2a
|
|
775
|
+
self.nm_eps_err = self.nm_den * self.nm_e2a_err
|
|
776
|
+
# self.nm_pre =
|
|
777
|
+
# self.nm_chempot =
|
|
778
|
+
# self.nm_cs2 =
|
|
779
|
+
#
|
|
780
|
+
elif "2012-afdmc-nm-fit" in model.lower():
|
|
669
781
|
#
|
|
670
782
|
self.flag_nm = True
|
|
671
783
|
self.flag_sm = False
|
|
@@ -673,235 +785,351 @@ class setupMicro():
|
|
|
673
785
|
self.flag_den = False
|
|
674
786
|
#
|
|
675
787
|
# We do not have the data for this model, but we have a fit of the data
|
|
676
|
-
k=int(model.split(sep=
|
|
677
|
-
#print('k:',k)
|
|
678
|
-
file_in = os.path.join(
|
|
679
|
-
|
|
680
|
-
|
|
681
|
-
|
|
682
|
-
|
|
683
|
-
self.
|
|
788
|
+
k = int(model.split(sep="-")[4])
|
|
789
|
+
# print('k:',k)
|
|
790
|
+
file_in = os.path.join(
|
|
791
|
+
nuda.param.path_data, "matter/micro/2012-AFDMC-NM-fit.dat"
|
|
792
|
+
)
|
|
793
|
+
if nuda.env.verb:
|
|
794
|
+
print("Reads file:", file_in)
|
|
795
|
+
self.ref = (
|
|
796
|
+
"S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801(R) (2012)."
|
|
797
|
+
)
|
|
798
|
+
self.note = (
|
|
799
|
+
"This is the fit using the data from the previous section."
|
|
800
|
+
)
|
|
801
|
+
self.label = "AFDMC-2012-" + str(k) + "-FIT"
|
|
802
|
+
self.marker = "s"
|
|
684
803
|
self.every = 1
|
|
685
|
-
self.
|
|
686
|
-
|
|
687
|
-
|
|
804
|
+
self.e_err = True
|
|
805
|
+
self.p_err = False
|
|
806
|
+
self.cs2_err = False
|
|
807
|
+
self.linestyle = "dashed"
|
|
808
|
+
ind, a, alfa, b, beta = np.loadtxt(
|
|
809
|
+
file_in, usecols=(0, 1, 2, 3, 4), unpack=True
|
|
810
|
+
)
|
|
811
|
+
# name = np.loadtxt( file_in, usecols=(5), unpack = True )
|
|
688
812
|
nmodel = np.size(alfa)
|
|
689
|
-
#print('nmodel:',nmodel)
|
|
813
|
+
# print('nmodel:',nmodel)
|
|
690
814
|
if k < 0 or k > nmodel:
|
|
691
|
-
print(
|
|
692
|
-
print(
|
|
815
|
+
print("issue with the model number k:", k)
|
|
816
|
+
print("exit")
|
|
693
817
|
exit()
|
|
694
|
-
#for i in range(nmodel):
|
|
818
|
+
# for i in range(nmodel):
|
|
695
819
|
# print('i:',i,' ind:',ind[i],' a:',a[i],' alfa:',alfa[i],' b:',b[i],' beta:',beta[i])
|
|
696
|
-
self.nm_den_fit = 0.04 + 0.45 * np.arange(self.nden+1)/float(self.nden)
|
|
697
|
-
self.nm_kfn_fit = nuda.kf_n(
|
|
820
|
+
self.nm_den_fit = 0.04 + 0.45 * np.arange(self.nden + 1) / float(self.nden)
|
|
821
|
+
self.nm_kfn_fit = nuda.kf_n(self.nm_den_fit)
|
|
698
822
|
# energy in NM
|
|
699
|
-
self.
|
|
700
|
-
|
|
701
|
-
|
|
702
|
-
self.
|
|
823
|
+
self.nm_e2a_int_fit = func_GCR_e2a(
|
|
824
|
+
self.nm_den_fit, a[k - 1], alfa[k - 1], b[k - 1], beta[k - 1]
|
|
825
|
+
)
|
|
826
|
+
self.nm_e2a_fit = self.nm_rmass + self.nm_e2a_int_fit
|
|
827
|
+
self.nm_e2a_fit_err = np.abs(
|
|
828
|
+
uncertainty_stat(self.nm_den_fit, err="MBPT") * self.nm_e2a_fit
|
|
829
|
+
)
|
|
830
|
+
self.nm_eps_fit = self.nm_den_fit * self.nm_e2a_fit
|
|
831
|
+
self.nm_eps_fit_err = self.nm_den_fit * self.nm_e2a_fit_err
|
|
703
832
|
# pressure in NM
|
|
704
|
-
self.nm_pre_fit = func_GCR_pre(
|
|
833
|
+
self.nm_pre_fit = func_GCR_pre(
|
|
834
|
+
self.nm_den_fit, a[k - 1], alfa[k - 1], b[k - 1], beta[k - 1]
|
|
835
|
+
)
|
|
705
836
|
# chemical potential
|
|
706
|
-
self.nm_chempot_fit = (
|
|
837
|
+
#self.nm_chempot_fit = (self.nm_pre_fit + self.nm_eps_fit) / self.nm_den_fit
|
|
707
838
|
# enthalpy per particle
|
|
708
|
-
self.nm_h2a_fit =
|
|
839
|
+
self.nm_h2a_fit = self.nm_e2a_fit + self.nm_pre_fit / self.nm_den_fit
|
|
709
840
|
# sound speed in NM
|
|
710
|
-
self.nm_cs2_fit = func_GCR_cs2(
|
|
841
|
+
self.nm_cs2_fit = func_GCR_cs2(
|
|
842
|
+
self.nm_den_fit, a[k - 1], alfa[k - 1], b[k - 1], beta[k - 1]
|
|
843
|
+
)
|
|
711
844
|
#
|
|
712
845
|
self.nm_den = self.nm_den_fit
|
|
713
846
|
self.nm_kfn = self.nm_kfn_fit
|
|
714
|
-
self.
|
|
847
|
+
self.nm_e2a_int = self.nm_e2a_fit
|
|
848
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
715
849
|
self.nm_e2a_err = self.nm_e2a_fit_err
|
|
716
|
-
self.
|
|
717
|
-
self.
|
|
850
|
+
self.nm_eps = self.nm_eps_fit
|
|
851
|
+
self.nm_eps_err = self.nm_eps_fit_err
|
|
718
852
|
self.nm_pre = self.nm_pre_fit
|
|
719
|
-
self.nm_chempot = self.nm_chempot_fit
|
|
853
|
+
#self.nm_chempot = self.nm_chempot_fit
|
|
720
854
|
self.nm_cs2 = self.nm_cs2_fit
|
|
721
855
|
#
|
|
722
|
-
elif model.lower() ==
|
|
856
|
+
elif model.lower() == "2013-mbpt-nm":
|
|
723
857
|
#
|
|
724
858
|
self.flag_nm = True
|
|
725
859
|
self.flag_sm = False
|
|
726
860
|
self.flag_kf = False
|
|
727
|
-
self.flag_den =
|
|
861
|
+
self.flag_den = True
|
|
728
862
|
#
|
|
729
|
-
file_in = os.path.join(nuda.param.path_data,
|
|
730
|
-
if nuda.env.verb:
|
|
731
|
-
|
|
863
|
+
file_in = os.path.join(nuda.param.path_data, "matter/micro/2013-MBPT-NM.dat")
|
|
864
|
+
if nuda.env.verb:
|
|
865
|
+
print("Reads file:", file_in)
|
|
866
|
+
self.ref = "I. Tews et al., PRL 110, 032504 (2013)"
|
|
732
867
|
self.note = "write here notes about this EOS."
|
|
733
|
-
self.label =
|
|
734
|
-
self.marker =
|
|
868
|
+
self.label = "MBPT-2013"
|
|
869
|
+
self.marker = "s"
|
|
735
870
|
self.every = 1
|
|
736
|
-
|
|
737
|
-
self.
|
|
738
|
-
self.
|
|
739
|
-
|
|
740
|
-
|
|
741
|
-
|
|
742
|
-
|
|
743
|
-
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
|
|
871
|
+
self.linestyle = "solid"
|
|
872
|
+
self.e_err = True
|
|
873
|
+
self.p_err = False
|
|
874
|
+
self.cs2_err = False
|
|
875
|
+
(
|
|
876
|
+
self.nm_den,
|
|
877
|
+
self.nm_e2a_int_low,
|
|
878
|
+
self.nm_e2a_int_up,
|
|
879
|
+
self.nm_pre_low,
|
|
880
|
+
self.nm_pre_up,
|
|
881
|
+
) = np.loadtxt(file_in, usecols=(0, 1, 2, 3, 4), unpack=True)
|
|
882
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
883
|
+
self.nm_e2a_int = np.array(0.5 * (self.nm_e2a_int_up + self.nm_e2a_int_low))
|
|
884
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
885
|
+
self.nm_e2a_err = 0.5 * (self.nm_e2a_int_up - self.nm_e2a_int_low)
|
|
886
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
887
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
888
|
+
self.nm_pre = 0.5 * (self.nm_pre_up + self.nm_pre_low)
|
|
889
|
+
self.nm_pre_err = 0.5 * (self.nm_pre_up - self.nm_pre_low)
|
|
747
890
|
#
|
|
748
891
|
# chemical potential
|
|
749
|
-
self.nm_chempot = (
|
|
750
|
-
|
|
892
|
+
#self.nm_chempot = (
|
|
893
|
+
# np.array(self.nm_pre) + np.array(self.nm_eps)
|
|
894
|
+
#) / np.array(self.nm_den)
|
|
895
|
+
#self.nm_chempot_err = (
|
|
896
|
+
# np.array(self.nm_pre_err) + np.array(self.nm_eps_err)
|
|
897
|
+
#) / np.array(self.nm_den)
|
|
751
898
|
#
|
|
752
899
|
# enthalpy
|
|
753
|
-
self.nm_h2a =
|
|
900
|
+
self.nm_h2a = self.nm_e2a + self.nm_pre / self.nm_den
|
|
754
901
|
#
|
|
755
902
|
# sound speed
|
|
756
|
-
x = np.insert(
|
|
757
|
-
y = np.insert(
|
|
758
|
-
cs_nm_pre = CubicSpline(
|
|
759
|
-
nm_cs2 = cs_nm_pre(
|
|
903
|
+
x = np.insert(self.nm_den, 0, 0.0)
|
|
904
|
+
y = np.insert(self.nm_pre, 0, 0.0)
|
|
905
|
+
cs_nm_pre = CubicSpline(x, y)
|
|
906
|
+
self.nm_cs2 = cs_nm_pre(self.nm_den, 1) / self.nm_h2a
|
|
760
907
|
#
|
|
761
|
-
elif model.lower() ==
|
|
908
|
+
elif model.lower() == "2014-afqmc-nm":
|
|
762
909
|
#
|
|
763
910
|
self.flag_nm = True
|
|
764
911
|
self.flag_sm = False
|
|
765
912
|
self.flag_kf = True
|
|
766
913
|
self.flag_den = False
|
|
767
914
|
#
|
|
768
|
-
file_in = os.path.join(
|
|
769
|
-
|
|
770
|
-
|
|
915
|
+
file_in = os.path.join(
|
|
916
|
+
nuda.param.path_data, "matter/micro/2014-AFQMC-NM.dat"
|
|
917
|
+
)
|
|
918
|
+
if nuda.env.verb:
|
|
919
|
+
print("Reads file:", file_in)
|
|
920
|
+
self.ref = "G. Wlazłowski, J.W. Holt, S. Moroz, A. Bulgac, and K.J. Roche Phys. Rev. Lett. 113, 182503 (2014)"
|
|
771
921
|
self.note = "write here notes about this EOS."
|
|
772
|
-
self.label =
|
|
773
|
-
self.marker =
|
|
922
|
+
self.label = "AFQMC-2014"
|
|
923
|
+
self.marker = "s"
|
|
774
924
|
self.every = 1
|
|
775
|
-
|
|
776
|
-
self.
|
|
777
|
-
|
|
778
|
-
self.
|
|
779
|
-
self.
|
|
780
|
-
|
|
781
|
-
|
|
782
|
-
self.
|
|
783
|
-
self.
|
|
784
|
-
|
|
785
|
-
|
|
925
|
+
self.e_err = False
|
|
926
|
+
self.p_err = False
|
|
927
|
+
self.cs2_err = False
|
|
928
|
+
self.linestyle = "solid"
|
|
929
|
+
self.nm_den, self.nm_e2a_int_2bf, self.nm_e2a_int_23bf = np.loadtxt(
|
|
930
|
+
file_in, usecols=(0, 1, 2), unpack=True
|
|
931
|
+
)
|
|
932
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
933
|
+
self.nm_e2a_int = self.nm_e2a_int_23bf
|
|
934
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
935
|
+
self.nm_e2a_err = np.abs(
|
|
936
|
+
uncertainty_stat(self.nm_den, err="MBPT") * self.nm_e2a_int
|
|
937
|
+
)
|
|
938
|
+
# self.nm_e2a_err = np.abs( 0.01 * self.nm_e2a )
|
|
939
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
940
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
941
|
+
#
|
|
942
|
+
elif model.lower() == "2016-qmc-nm":
|
|
786
943
|
#
|
|
787
944
|
self.flag_nm = True
|
|
788
945
|
self.flag_sm = False
|
|
789
946
|
self.flag_kf = True
|
|
790
947
|
self.flag_den = False
|
|
791
948
|
#
|
|
792
|
-
file_in = os.path.join(nuda.param.path_data,
|
|
793
|
-
if nuda.env.verb:
|
|
794
|
-
|
|
949
|
+
file_in = os.path.join(nuda.param.path_data, "matter/micro/2016-QMC-NM.dat")
|
|
950
|
+
if nuda.env.verb:
|
|
951
|
+
print("Reads file:", file_in)
|
|
952
|
+
self.ref = " I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, Phys. Rev. C 93, 024305 (2016)."
|
|
795
953
|
self.note = ""
|
|
796
|
-
self.label =
|
|
797
|
-
self.marker =
|
|
798
|
-
|
|
799
|
-
self.
|
|
954
|
+
self.label = "QMC-2016"
|
|
955
|
+
self.marker = "s"
|
|
956
|
+
self.linestyle = "solid"
|
|
957
|
+
self.e_err = True
|
|
958
|
+
self.p_err = False
|
|
959
|
+
self.cs2_err = False
|
|
800
960
|
self.every = 1
|
|
801
|
-
self.nm_den, self.
|
|
802
|
-
|
|
803
|
-
|
|
804
|
-
self.
|
|
805
|
-
self.
|
|
806
|
-
self.
|
|
807
|
-
self.
|
|
808
|
-
|
|
809
|
-
|
|
961
|
+
self.nm_den, self.nm_e2a_int_low, self.nm_e2a_int_up = np.loadtxt(
|
|
962
|
+
file_in, usecols=(0, 1, 2), unpack=True
|
|
963
|
+
)
|
|
964
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
965
|
+
self.nm_e2a_int = np.array(0.5 * (self.nm_e2a_int_up + self.nm_e2a_int_low))
|
|
966
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
967
|
+
self.nm_e2a_err = 0.5 * (self.nm_e2a_int_up - self.nm_e2a_int_low)
|
|
968
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
969
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
970
|
+
#
|
|
971
|
+
elif model.lower() == "2016-mbpt-am":
|
|
810
972
|
#
|
|
811
973
|
self.flag_nm = True
|
|
812
974
|
self.flag_sm = True
|
|
813
975
|
self.flag_kf = False
|
|
814
976
|
self.flag_den = True
|
|
815
977
|
#
|
|
816
|
-
self.ref =
|
|
978
|
+
self.ref = (
|
|
979
|
+
"C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93, 054314 (2016)."
|
|
980
|
+
)
|
|
817
981
|
self.note = ""
|
|
818
|
-
self.label =
|
|
819
|
-
self.marker =
|
|
820
|
-
|
|
821
|
-
self.
|
|
982
|
+
self.label = "MBPT-2016"
|
|
983
|
+
self.marker = "s"
|
|
984
|
+
self.linestyle = "solid"
|
|
985
|
+
self.e_err = True
|
|
986
|
+
self.p_err = False
|
|
987
|
+
self.cs2_err = False
|
|
822
988
|
self.every = 4
|
|
823
989
|
# read the results for the 7 hamiltonians
|
|
824
|
-
length = np.zeros(
|
|
825
|
-
den = np.zeros(
|
|
826
|
-
e2a = np.zeros(
|
|
827
|
-
e2a_up = np.zeros(
|
|
828
|
-
e2a_low = np.zeros(
|
|
829
|
-
e2a_av = np.zeros(
|
|
830
|
-
e2a_err = np.zeros(
|
|
831
|
-
for i in range(0,11):
|
|
832
|
-
beta = i/10.0
|
|
833
|
-
if i<10:
|
|
834
|
-
file_in = os.path.join(
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
|
|
990
|
+
length = np.zeros((11), dtype=int)
|
|
991
|
+
den = np.zeros((11, 35))
|
|
992
|
+
e2a = np.zeros((10, 11, 35))
|
|
993
|
+
e2a_up = np.zeros((11, 35))
|
|
994
|
+
e2a_low = np.zeros((11, 35))
|
|
995
|
+
e2a_av = np.zeros((11, 35))
|
|
996
|
+
e2a_err = np.zeros((11, 35))
|
|
997
|
+
for i in range(0, 11):
|
|
998
|
+
beta = i / 10.0
|
|
999
|
+
if i < 10:
|
|
1000
|
+
file_in = os.path.join(
|
|
1001
|
+
nuda.param.path_data,
|
|
1002
|
+
"matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0."
|
|
1003
|
+
+ str(i)
|
|
1004
|
+
+ ".txt",
|
|
1005
|
+
)
|
|
1006
|
+
if i == 10:
|
|
1007
|
+
file_in = os.path.join(
|
|
1008
|
+
nuda.param.path_data,
|
|
1009
|
+
"matter/micro/2016-MBPT-AM/EOS_spec_4_beta_1.0.txt",
|
|
1010
|
+
)
|
|
1011
|
+
if nuda.env.verb:
|
|
1012
|
+
print("Reads file:", file_in)
|
|
1013
|
+
deni, e2a_1, e2a_2, e2a_3, e2a_4, e2a_5, e2a_6, e2a_7 = np.genfromtxt(
|
|
1014
|
+
file_in, usecols=(0, 1, 2, 3, 4, 5, 6, 7), comments="#", unpack=True
|
|
1015
|
+
)
|
|
839
1016
|
length[i] = len(deni)
|
|
840
|
-
den[i,0:length[i]] = deni
|
|
841
|
-
den_n = deni * (1.0+beta)/2.0
|
|
842
|
-
e2a[1,i,0:length[i]] = e2a_1
|
|
843
|
-
e2a[2,i,0:length[i]] = e2a_2
|
|
844
|
-
e2a[3,i,0:length[i]] = e2a_3
|
|
845
|
-
e2a[4,i,0:length[i]] = e2a_4
|
|
846
|
-
e2a[5,i,0:length[i]] = e2a_5
|
|
847
|
-
e2a[6,i,0:length[i]] = e2a_6
|
|
848
|
-
e2a[7,i,0:length[i]] = e2a_7
|
|
1017
|
+
den[i, 0 : length[i]] = deni
|
|
1018
|
+
den_n = deni * (1.0 + beta) / 2.0
|
|
1019
|
+
e2a[1, i, 0 : length[i]] = e2a_1
|
|
1020
|
+
e2a[2, i, 0 : length[i]] = e2a_2
|
|
1021
|
+
e2a[3, i, 0 : length[i]] = e2a_3
|
|
1022
|
+
e2a[4, i, 0 : length[i]] = e2a_4
|
|
1023
|
+
e2a[5, i, 0 : length[i]] = e2a_5
|
|
1024
|
+
e2a[6, i, 0 : length[i]] = e2a_6
|
|
1025
|
+
e2a[7, i, 0 : length[i]] = e2a_7
|
|
849
1026
|
# performs average and compute boundaries
|
|
850
|
-
e2a_up[i,0:length[i]] = e2a_1
|
|
851
|
-
e2a_low[i,0:length[i]] = e2a_1
|
|
1027
|
+
e2a_up[i, 0 : length[i]] = e2a_1
|
|
1028
|
+
e2a_low[i, 0 : length[i]] = e2a_1
|
|
852
1029
|
for j in range(length[i]):
|
|
853
|
-
for k in range(2,8):
|
|
854
|
-
if e2a[k,i,j] > e2a_up[i,j]:
|
|
855
|
-
|
|
856
|
-
|
|
857
|
-
|
|
858
|
-
|
|
1030
|
+
for k in range(2, 8):
|
|
1031
|
+
if e2a[k, i, j] > e2a_up[i, j]:
|
|
1032
|
+
e2a_up[i, j] = e2a[k, i, j]
|
|
1033
|
+
if e2a[k, i, j] < e2a_low[i, j]:
|
|
1034
|
+
e2a_low[i, j] = e2a[k, i, j]
|
|
1035
|
+
e2a_av[i, j] = 0.5 * (e2a_up[i, j] + e2a_low[i, j])
|
|
1036
|
+
e2a_err[i, j] = 0.5 * (e2a_up[i, j] - e2a_low[i, j])
|
|
1037
|
+
if nuda.env.verb:
|
|
1038
|
+
print("length:", length[:])
|
|
859
1039
|
# NM
|
|
860
|
-
self.nm_den = np.array(
|
|
861
|
-
self.nm_kfn = nuda.kf_n(
|
|
862
|
-
self.
|
|
863
|
-
self.
|
|
864
|
-
self.
|
|
865
|
-
self.
|
|
866
|
-
self.
|
|
867
|
-
self.
|
|
1040
|
+
self.nm_den = np.array(den[10, :])
|
|
1041
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
1042
|
+
self.nm_e2a_int_up = e2a_up[10, :]
|
|
1043
|
+
self.nm_e2a_int_low = e2a_low[10, :]
|
|
1044
|
+
self.nm_e2a_int = np.array(e2a_av[10, :])
|
|
1045
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
1046
|
+
self.nm_e2a_err = e2a_err[10, :]
|
|
1047
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1048
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
868
1049
|
# SM
|
|
869
|
-
self.sm_den = np.array(
|
|
870
|
-
self.sm_kfn = nuda.kf_n(
|
|
871
|
-
self.
|
|
872
|
-
self.
|
|
873
|
-
self.
|
|
874
|
-
self.
|
|
875
|
-
self.
|
|
876
|
-
self.
|
|
1050
|
+
self.sm_den = np.array(den[0, :])
|
|
1051
|
+
self.sm_kfn = nuda.kf_n(nuda.cst.half * self.sm_den)
|
|
1052
|
+
self.sm_e2a_int_up = e2a_up[0, :]
|
|
1053
|
+
self.sm_e2a_int_low = e2a_low[0, :]
|
|
1054
|
+
self.sm_e2a_int = np.array(e2a_av[0, :])
|
|
1055
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
1056
|
+
self.sm_e2a_err = e2a_err[0, :]
|
|
1057
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
1058
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
1059
|
+
# AM
|
|
1060
|
+
self.am_den = np.zeros((11,35))
|
|
1061
|
+
self.am_xn = np.zeros((11))
|
|
1062
|
+
self.am_xp = np.zeros((11))
|
|
1063
|
+
self.am_kfn = np.zeros((11,35))
|
|
1064
|
+
self.am_rmass = np.zeros((11))
|
|
1065
|
+
self.am_e2a_int = np.zeros((11,8,35))
|
|
1066
|
+
self.am_eps_int = np.zeros((11,8,35))
|
|
1067
|
+
self.am_e2a = np.zeros((11,8,35))
|
|
1068
|
+
self.am_eps = np.zeros((11,8,35))
|
|
1069
|
+
self.am_e2a_int_av = np.zeros((11,35))
|
|
1070
|
+
self.am_e2a_int_err = np.zeros((11,35))
|
|
1071
|
+
self.am_eps_int_av = np.zeros((11,35))
|
|
1072
|
+
self.am_eps_int_err = np.zeros((11,35))
|
|
1073
|
+
self.am_e2a_av = np.zeros((11,35))
|
|
1074
|
+
self.am_e2a_err = np.zeros((11,35))
|
|
1075
|
+
self.am_eps_av = np.zeros((11,35))
|
|
1076
|
+
self.am_eps_err = np.zeros((11,35))
|
|
1077
|
+
for i in range(0, 11):
|
|
1078
|
+
self.am_den[i] = np.array(den[i, :])
|
|
1079
|
+
self.am_xn[i] = 0.5*(1.0+i/10.0)
|
|
1080
|
+
self.am_xp[i] = 0.5*(1.0-i/10.0)
|
|
1081
|
+
self.am_kfn[i] = nuda.kf_n( self.am_xn[i] * self.am_den[i] )
|
|
1082
|
+
self.am_rmass[i] = self.am_xn[i] * nuda.cst.mnc2 + self.am_xp[i] * nuda.cst.mpc2
|
|
1083
|
+
for j in range(1, 8):
|
|
1084
|
+
self.am_e2a_int[i,j] = np.array(e2a[j,i,:])
|
|
1085
|
+
self.am_eps_int[i,j] = self.am_e2a_int[i,j] * self.am_den[i]
|
|
1086
|
+
self.am_e2a[i,j] = self.am_rmass[i] + self.am_e2a_int[i,j]
|
|
1087
|
+
self.am_eps[i,j] = self.am_e2a[i,j] * self.am_den[i]
|
|
1088
|
+
self.am_e2a_int_av[i] = np.array(e2a_av[i, :])
|
|
1089
|
+
self.am_e2a_int_err[i] = np.array(e2a_err[i, :])
|
|
1090
|
+
self.am_eps_int_av[i] = self.am_e2a_int_av[i] * self.am_den[i]
|
|
1091
|
+
self.am_eps_int_err[i] = self.am_e2a_int_err[i] * self.am_den[i]
|
|
1092
|
+
self.am_e2a_av[i] = self.am_rmass[i] + self.am_e2a_int_av[i]
|
|
1093
|
+
self.am_e2a_err[i] = self.am_rmass[i] + self.am_e2a_int_err[i]
|
|
1094
|
+
self.am_eps_av[i] = self.am_e2a_av[i] * self.am_den[i]
|
|
1095
|
+
self.am_eps_err[i] = self.am_e2a_err[i] * self.am_den[i]
|
|
877
1096
|
#
|
|
878
1097
|
# Note: here I define the pressure as the derivative of the centroid energy
|
|
879
1098
|
# It would however be better to compute the presure for each models and only
|
|
880
1099
|
# after that, estimate the centroid and uncertainty.
|
|
881
1100
|
#
|
|
882
|
-
elif model.lower() ==
|
|
1101
|
+
elif model.lower() == "2018-qmc-nm":
|
|
883
1102
|
#
|
|
884
1103
|
self.flag_nm = True
|
|
885
1104
|
self.flag_sm = False
|
|
886
1105
|
self.flag_kf = True
|
|
887
1106
|
self.flag_den = False
|
|
888
1107
|
#
|
|
889
|
-
file_in = os.path.join(nuda.param.path_data,
|
|
890
|
-
if nuda.env.verb:
|
|
891
|
-
|
|
1108
|
+
file_in = os.path.join(nuda.param.path_data, "matter/micro/2018-QMC-NM.dat")
|
|
1109
|
+
if nuda.env.verb:
|
|
1110
|
+
print("Reads file:", file_in)
|
|
1111
|
+
self.ref = "I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astroph. J. 860(2), 149 (2018)."
|
|
892
1112
|
self.note = ""
|
|
893
|
-
self.label =
|
|
894
|
-
self.marker =
|
|
1113
|
+
self.label = "QMC-2018"
|
|
1114
|
+
self.marker = "s"
|
|
895
1115
|
self.every = 2
|
|
896
|
-
|
|
897
|
-
self.
|
|
898
|
-
self.
|
|
899
|
-
|
|
900
|
-
|
|
901
|
-
|
|
902
|
-
|
|
903
|
-
|
|
904
|
-
|
|
1116
|
+
self.linestyle = "solid"
|
|
1117
|
+
self.e_err = True
|
|
1118
|
+
self.p_err = False
|
|
1119
|
+
self.cs2_err = False
|
|
1120
|
+
(
|
|
1121
|
+
self.nm_den,
|
|
1122
|
+
self.nm_e2a_int_low,
|
|
1123
|
+
self.nm_e2a_int_up,
|
|
1124
|
+
self.nm_e2a_int,
|
|
1125
|
+
self.nm_e2a_err,
|
|
1126
|
+
) = np.loadtxt(file_in, usecols=(0, 1, 2, 3, 4), unpack=True)
|
|
1127
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
1128
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
1129
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1130
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
1131
|
+
#
|
|
1132
|
+
elif model.lower() == "2019-mbpt-am-l59":
|
|
905
1133
|
#
|
|
906
1134
|
self.flag_nm = True
|
|
907
1135
|
self.flag_sm = True
|
|
@@ -911,28 +1139,63 @@ class setupMicro():
|
|
|
911
1139
|
# here, the L59 case is compute alone, it would be interesting to compute the uncertainty
|
|
912
1140
|
# in the previous MBPT calculation (based on H1-H7) adding this new calculation.
|
|
913
1141
|
#
|
|
914
|
-
file_in1 = os.path.join(
|
|
915
|
-
|
|
916
|
-
|
|
917
|
-
|
|
918
|
-
|
|
1142
|
+
file_in1 = os.path.join(
|
|
1143
|
+
nuda.param.path_data, "matter/micro/2019-MBPT-SM-DHSL59.dat"
|
|
1144
|
+
)
|
|
1145
|
+
file_in2 = os.path.join(
|
|
1146
|
+
nuda.param.path_data, "matter/micro/2019-MBPT-NM-DHSL59.dat"
|
|
1147
|
+
)
|
|
1148
|
+
if nuda.env.verb:
|
|
1149
|
+
print("Reads file1:", file_in1)
|
|
1150
|
+
if nuda.env.verb:
|
|
1151
|
+
print("Reads file2:", file_in2)
|
|
1152
|
+
self.ref = "C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)"
|
|
919
1153
|
self.note = ""
|
|
920
|
-
self.label =
|
|
921
|
-
self.marker =
|
|
1154
|
+
self.label = "MBPT-2019-L59"
|
|
1155
|
+
self.marker = "s"
|
|
922
1156
|
self.every = 2
|
|
923
|
-
|
|
924
|
-
self.
|
|
925
|
-
|
|
926
|
-
self.
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
|
|
930
|
-
|
|
931
|
-
|
|
932
|
-
|
|
933
|
-
|
|
934
|
-
|
|
935
|
-
|
|
1157
|
+
self.e_err = False
|
|
1158
|
+
self.p_err = False
|
|
1159
|
+
self.cs2_err = False
|
|
1160
|
+
self.linestyle = "solid"
|
|
1161
|
+
(
|
|
1162
|
+
self.sm_kfn,
|
|
1163
|
+
self.sm_den,
|
|
1164
|
+
Kin,
|
|
1165
|
+
HF_tot,
|
|
1166
|
+
Scnd_tot,
|
|
1167
|
+
Trd_tot,
|
|
1168
|
+
Fth_tot,
|
|
1169
|
+
self.sm_e2a_int,
|
|
1170
|
+
) = np.loadtxt(
|
|
1171
|
+
file_in1, usecols=(0, 1, 2, 3, 4, 5, 6, 7), comments="#", unpack=True
|
|
1172
|
+
)
|
|
1173
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
1174
|
+
self.sm_e2a_err = np.abs(
|
|
1175
|
+
uncertainty_stat(self.sm_den, err="MBPT") * self.sm_e2a_int
|
|
1176
|
+
)
|
|
1177
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
1178
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
1179
|
+
(
|
|
1180
|
+
self.nm_kfn,
|
|
1181
|
+
self.nm_den,
|
|
1182
|
+
Kin,
|
|
1183
|
+
HF_tot,
|
|
1184
|
+
Scnd_tot,
|
|
1185
|
+
Trd_tot,
|
|
1186
|
+
Fth_tot,
|
|
1187
|
+
self.nm_e2a_int,
|
|
1188
|
+
) = np.loadtxt(
|
|
1189
|
+
file_in2, usecols=(0, 1, 2, 3, 4, 5, 6, 7), comments="#", unpack=True
|
|
1190
|
+
)
|
|
1191
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
1192
|
+
self.nm_e2a_err = np.abs(
|
|
1193
|
+
uncertainty_stat(self.nm_den, err="MBPT") * self.nm_e2a_int
|
|
1194
|
+
)
|
|
1195
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1196
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
1197
|
+
#
|
|
1198
|
+
elif model.lower() == "2019-mbpt-am-l69":
|
|
936
1199
|
#
|
|
937
1200
|
self.flag_nm = True
|
|
938
1201
|
self.flag_sm = True
|
|
@@ -941,582 +1204,998 @@ class setupMicro():
|
|
|
941
1204
|
#
|
|
942
1205
|
# same remarck as for L59
|
|
943
1206
|
#
|
|
944
|
-
file_in1 = os.path.join(
|
|
945
|
-
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
|
|
1207
|
+
file_in1 = os.path.join(
|
|
1208
|
+
nuda.param.path_data, "matter/micro/2019-MBPT-SM-DHSL69.dat"
|
|
1209
|
+
)
|
|
1210
|
+
file_in2 = os.path.join(
|
|
1211
|
+
nuda.param.path_data, "matter/micro/2019-MBPT-NM-DHSL69.dat"
|
|
1212
|
+
)
|
|
1213
|
+
if nuda.env.verb:
|
|
1214
|
+
print("Reads file1:", file_in1)
|
|
1215
|
+
if nuda.env.verb:
|
|
1216
|
+
print("Reads file2:", file_in2)
|
|
1217
|
+
self.ref = "C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)"
|
|
949
1218
|
self.note = ""
|
|
950
|
-
self.label =
|
|
951
|
-
self.marker =
|
|
1219
|
+
self.label = "MBPT-2019-L69"
|
|
1220
|
+
self.marker = "s"
|
|
952
1221
|
self.every = 2
|
|
953
|
-
|
|
954
|
-
self.
|
|
955
|
-
|
|
956
|
-
self.
|
|
957
|
-
|
|
958
|
-
|
|
959
|
-
|
|
960
|
-
|
|
961
|
-
|
|
962
|
-
|
|
963
|
-
|
|
964
|
-
|
|
965
|
-
|
|
1222
|
+
self.e_err = False
|
|
1223
|
+
self.p_err = False
|
|
1224
|
+
self.cs2_err = False
|
|
1225
|
+
self.linestyle = "solid"
|
|
1226
|
+
(
|
|
1227
|
+
self.sm_kfn,
|
|
1228
|
+
self.sm_den,
|
|
1229
|
+
Kin,
|
|
1230
|
+
HF_tot,
|
|
1231
|
+
Scnd_tot,
|
|
1232
|
+
Trd_tot,
|
|
1233
|
+
Fth_tot,
|
|
1234
|
+
self.sm_e2a_int,
|
|
1235
|
+
) = np.loadtxt(
|
|
1236
|
+
file_in1, usecols=(0, 1, 2, 3, 4, 5, 6, 7), comments="#", unpack=True
|
|
1237
|
+
)
|
|
1238
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
1239
|
+
self.sm_e2a_err = np.abs(
|
|
1240
|
+
uncertainty_stat(self.sm_den, err="MBPT") * self.sm_e2a_int
|
|
1241
|
+
)
|
|
1242
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
1243
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
1244
|
+
(
|
|
1245
|
+
self.nm_kfn,
|
|
1246
|
+
self.nm_den,
|
|
1247
|
+
Kin,
|
|
1248
|
+
HF_tot,
|
|
1249
|
+
Scnd_tot,
|
|
1250
|
+
Trd_tot,
|
|
1251
|
+
Fth_tot,
|
|
1252
|
+
self.nm_e2a_int,
|
|
1253
|
+
) = np.loadtxt(
|
|
1254
|
+
file_in2, usecols=(0, 1, 2, 3, 4, 5, 6, 7), comments="#", unpack=True
|
|
1255
|
+
)
|
|
1256
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
1257
|
+
self.nm_e2a_err = np.abs(
|
|
1258
|
+
uncertainty_stat(self.nm_den, err="MBPT") * self.nm_e2a_int
|
|
1259
|
+
)
|
|
1260
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1261
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
1262
|
+
#
|
|
1263
|
+
elif model.lower() == "2020-mbpt-am":
|
|
966
1264
|
#
|
|
967
1265
|
self.flag_nm = True
|
|
968
1266
|
self.flag_sm = True
|
|
969
1267
|
self.flag_kf = False
|
|
970
1268
|
self.flag_den = True
|
|
971
1269
|
#
|
|
972
|
-
file_in1 = os.path.join(
|
|
973
|
-
|
|
974
|
-
|
|
975
|
-
|
|
976
|
-
|
|
1270
|
+
file_in1 = os.path.join(
|
|
1271
|
+
nuda.param.path_data, "matter/micro/2020-MBPT-SM.csv"
|
|
1272
|
+
)
|
|
1273
|
+
file_in2 = os.path.join(
|
|
1274
|
+
nuda.param.path_data, "matter/micro/2020-MBPT-NM.csv"
|
|
1275
|
+
)
|
|
1276
|
+
if nuda.env.verb:
|
|
1277
|
+
print("Reads file1:", file_in1)
|
|
1278
|
+
if nuda.env.verb:
|
|
1279
|
+
print("Reads file2:", file_in2)
|
|
1280
|
+
self.ref = "C. Drischler, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Phys. Rev. Lett. 125(20), 202702 (2020).; C. Drischler, J. A. Melendez, R. J. Furnstahl, and D. R. Phillips, Phys. Rev. C 102, 054315"
|
|
977
1281
|
self.note = ""
|
|
978
|
-
self.label =
|
|
979
|
-
self.marker =
|
|
980
|
-
|
|
1282
|
+
self.label = "MBPT-2020"
|
|
1283
|
+
self.marker = "o"
|
|
1284
|
+
self.linestyle = "solid"
|
|
981
1285
|
self.every = 6
|
|
982
|
-
self.
|
|
983
|
-
self.
|
|
984
|
-
|
|
985
|
-
|
|
986
|
-
|
|
987
|
-
|
|
1286
|
+
self.e_err = True
|
|
1287
|
+
self.p_err = False
|
|
1288
|
+
self.cs2_err = False
|
|
1289
|
+
(
|
|
1290
|
+
self.sm_den,
|
|
1291
|
+
self.sm_e2a_lo,
|
|
1292
|
+
self.sm_e2a_lo_err,
|
|
1293
|
+
self.sm_e2a_nlo,
|
|
1294
|
+
self.sm_e2a_nlo_err,
|
|
1295
|
+
self.sm_e2a_n2lo,
|
|
1296
|
+
self.sm_e2a_n2lo_err,
|
|
1297
|
+
self.sm_e2a_n3lo,
|
|
1298
|
+
self.sm_e2a_n3lo_err,
|
|
1299
|
+
) = np.loadtxt(
|
|
1300
|
+
file_in1,
|
|
1301
|
+
usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8),
|
|
1302
|
+
delimiter=",",
|
|
1303
|
+
comments="#",
|
|
1304
|
+
unpack=True,
|
|
1305
|
+
)
|
|
1306
|
+
self.sm_kfn = nuda.kf_n(nuda.cst.half * self.sm_den)
|
|
1307
|
+
self.sm_e2a_int = self.sm_e2a_n3lo
|
|
1308
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
988
1309
|
self.sm_e2a_err = self.sm_e2a_n3lo_err
|
|
989
|
-
self.
|
|
990
|
-
self.
|
|
991
|
-
|
|
992
|
-
self.
|
|
993
|
-
|
|
994
|
-
|
|
995
|
-
|
|
1310
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
1311
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
1312
|
+
(
|
|
1313
|
+
self.nm_den,
|
|
1314
|
+
self.nm_e2a_lo,
|
|
1315
|
+
self.nm_e2a_lo_err,
|
|
1316
|
+
self.nm_e2a_nlo,
|
|
1317
|
+
self.nm_e2a_nlo_err,
|
|
1318
|
+
self.nm_e2a_n2lo,
|
|
1319
|
+
self.nm_e2a_n2lo_err,
|
|
1320
|
+
self.nm_e2a_n3lo,
|
|
1321
|
+
self.nm_e2a_n3lo_err,
|
|
1322
|
+
) = np.loadtxt(
|
|
1323
|
+
file_in2,
|
|
1324
|
+
usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8),
|
|
1325
|
+
delimiter=",",
|
|
1326
|
+
comments="#",
|
|
1327
|
+
unpack=True,
|
|
1328
|
+
)
|
|
1329
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
1330
|
+
self.nm_e2a_int = self.nm_e2a_n3lo
|
|
1331
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
996
1332
|
self.nm_e2a_err = self.nm_e2a_n3lo_err
|
|
997
|
-
self.
|
|
998
|
-
self.
|
|
1333
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1334
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
999
1335
|
#
|
|
1000
|
-
elif model.lower() ==
|
|
1336
|
+
elif model.lower() == "2022-afdmc-nm":
|
|
1001
1337
|
#
|
|
1002
1338
|
self.flag_nm = True
|
|
1003
1339
|
self.flag_sm = False
|
|
1004
1340
|
self.flag_kf = False
|
|
1005
1341
|
self.flag_den = True
|
|
1006
1342
|
#
|
|
1007
|
-
file_in = os.path.join(
|
|
1008
|
-
|
|
1009
|
-
|
|
1343
|
+
file_in = os.path.join(
|
|
1344
|
+
nuda.param.path_data, "matter/micro/2022-AFDMC-NM.csv"
|
|
1345
|
+
)
|
|
1346
|
+
if nuda.env.verb:
|
|
1347
|
+
print("Reads file:", file_in)
|
|
1348
|
+
self.ref = "S. Gandolfi, G. Palkanoglou, J. Carlson, A. Gezerlis, K.E. Schmidt, Condensed Matter 7(1) (2022)."
|
|
1010
1349
|
self.note = ""
|
|
1011
|
-
self.label =
|
|
1012
|
-
self.linestyle =
|
|
1013
|
-
self.marker =
|
|
1014
|
-
|
|
1350
|
+
self.label = "AFDMC+corr.-2022"
|
|
1351
|
+
self.linestyle = "solid"
|
|
1352
|
+
self.marker = "o"
|
|
1353
|
+
self.linestyle = "solid"
|
|
1015
1354
|
self.every = 1
|
|
1016
|
-
self.
|
|
1355
|
+
self.e_err = True
|
|
1356
|
+
self.p_err = False
|
|
1357
|
+
self.cs2_err = False
|
|
1017
1358
|
# read e2a
|
|
1018
|
-
self.nm_kfn, e2effg, e2effg_err = np.loadtxt(
|
|
1019
|
-
|
|
1020
|
-
|
|
1021
|
-
self.
|
|
1359
|
+
self.nm_kfn, e2effg, e2effg_err = np.loadtxt(
|
|
1360
|
+
file_in, usecols=(0, 1, 2), delimiter=",", comments="#", unpack=True
|
|
1361
|
+
)
|
|
1362
|
+
self.nm_den = nuda.den_n(self.nm_kfn)
|
|
1363
|
+
self.nm_e2a_int = e2effg * nuda.effg_nr(self.nm_kfn)
|
|
1364
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
1365
|
+
self.nm_e2a_err = e2effg_err * nuda.effg_nr(self.nm_kfn)
|
|
1022
1366
|
#
|
|
1023
|
-
self.
|
|
1024
|
-
self.
|
|
1025
|
-
#self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
1026
|
-
#self.nm_e2a_err = self.nm_e2v_err / self.nm_den
|
|
1367
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1368
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
1027
1369
|
#
|
|
1028
|
-
elif model.lower() ==
|
|
1370
|
+
elif model.lower() == "2024-nleft-am":
|
|
1029
1371
|
#
|
|
1030
|
-
#print('enter here:',model)
|
|
1372
|
+
# print('enter here:',model)
|
|
1031
1373
|
self.flag_nm = True
|
|
1032
1374
|
self.flag_sm = True
|
|
1033
1375
|
self.flag_kf = False
|
|
1034
1376
|
self.flag_den = False
|
|
1035
1377
|
#
|
|
1036
|
-
file_in1 = os.path.join(
|
|
1037
|
-
|
|
1038
|
-
|
|
1039
|
-
|
|
1040
|
-
|
|
1378
|
+
file_in1 = os.path.join(
|
|
1379
|
+
nuda.param.path_data, "matter/micro/2024-NLEFT-SM.dat"
|
|
1380
|
+
)
|
|
1381
|
+
file_in2 = os.path.join(
|
|
1382
|
+
nuda.param.path_data, "matter/micro/2024-NLEFT-NM.dat"
|
|
1383
|
+
)
|
|
1384
|
+
if nuda.env.verb:
|
|
1385
|
+
print("Reads file1:", file_in1)
|
|
1386
|
+
if nuda.env.verb:
|
|
1387
|
+
print("Reads file2:", file_in2)
|
|
1388
|
+
self.ref = (
|
|
1389
|
+
"S. Elhatisari, L. Bovermann, Y.-Z. Ma et al., Nature 630, 59 (2024)."
|
|
1390
|
+
)
|
|
1041
1391
|
self.note = ""
|
|
1042
|
-
self.label =
|
|
1043
|
-
self.marker =
|
|
1044
|
-
|
|
1392
|
+
self.label = "NLEFT-2024"
|
|
1393
|
+
self.marker = "s"
|
|
1394
|
+
self.linestyle = "solid"
|
|
1045
1395
|
self.every = 2
|
|
1046
|
-
self.
|
|
1396
|
+
self.e_err = True
|
|
1397
|
+
self.p_err = False
|
|
1398
|
+
self.cs2_err = False
|
|
1047
1399
|
#
|
|
1048
1400
|
# Read SM results
|
|
1049
1401
|
#
|
|
1050
|
-
|
|
1051
|
-
|
|
1052
|
-
|
|
1053
|
-
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
|
|
1058
|
-
|
|
1402
|
+
(
|
|
1403
|
+
self.sm_A,
|
|
1404
|
+
self.sm_L,
|
|
1405
|
+
self.sm_den,
|
|
1406
|
+
self.sm_etot_int_2bf,
|
|
1407
|
+
self.sm_etot_2bf_err,
|
|
1408
|
+
self.sm_etot_int,
|
|
1409
|
+
self.sm_etot_err,
|
|
1410
|
+
) = np.loadtxt(
|
|
1411
|
+
file_in1,
|
|
1412
|
+
usecols=(0, 1, 2, 3, 4, 5, 6),
|
|
1413
|
+
comments="#",
|
|
1414
|
+
unpack=True,
|
|
1415
|
+
delimiter=",",
|
|
1416
|
+
)
|
|
1417
|
+
self.sm_kfn = nuda.kf_n(nuda.cst.half * self.sm_den)
|
|
1418
|
+
self.sm_e2a_int_data = self.sm_etot_int / self.sm_A
|
|
1419
|
+
self.sm_e2a_err_data = self.sm_etot_err / self.sm_A
|
|
1420
|
+
self.sm_e2a_int_2bf_data = self.sm_etot_int_2bf / self.sm_A
|
|
1421
|
+
self.sm_e2a_2bf_err_data = self.sm_etot_2bf_err / self.sm_A
|
|
1422
|
+
self.sm_e2a_data = self.sm_rmass + self.sm_e2a_int_data
|
|
1423
|
+
self.sm_eps_data = self.sm_e2a_data * self.sm_den
|
|
1424
|
+
self.sm_eps_err_data = self.sm_e2a_err_data * self.sm_den
|
|
1059
1425
|
# fit with EFFG
|
|
1060
1426
|
xdata = self.sm_kfn
|
|
1061
|
-
ydata = self.
|
|
1062
|
-
sm_popt, sm_pcov = curve_fit(
|
|
1063
|
-
print(
|
|
1064
|
-
print(
|
|
1427
|
+
ydata = self.sm_e2a_int_data
|
|
1428
|
+
sm_popt, sm_pcov = curve_fit(func_e2a_NLEFT2024, xdata, ydata)
|
|
1429
|
+
print("sm_popt:", sm_popt)
|
|
1430
|
+
print("sm_pcov:", sm_pcov)
|
|
1065
1431
|
self.sm_pfit = sm_popt
|
|
1066
|
-
self.sm_perr = np.sqrt(
|
|
1432
|
+
self.sm_perr = np.sqrt(np.diag(sm_pcov))
|
|
1067
1433
|
# analyse the uncertainties for e2a, pre, cs2
|
|
1068
|
-
self.sm_pcerr = np.zeros(
|
|
1069
|
-
self.
|
|
1070
|
-
self.
|
|
1071
|
-
self.
|
|
1072
|
-
self.
|
|
1434
|
+
self.sm_pcerr = np.zeros((100, 3), dtype=float)
|
|
1435
|
+
self.sm_e2a_int = func_e2a_NLEFT2024(xdata, *self.sm_pfit)
|
|
1436
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
1437
|
+
self.sm_e2a_int_min = self.sm_e2a_int.copy()
|
|
1438
|
+
self.sm_e2a_int_max = self.sm_e2a_int.copy()
|
|
1439
|
+
self.sm_pre = func_pre_NLEFT2024(xdata, self.sm_den, *self.sm_pfit)
|
|
1073
1440
|
self.sm_pre_min = self.sm_pre.copy()
|
|
1074
1441
|
self.sm_pre_max = self.sm_pre.copy()
|
|
1075
|
-
self.sm_dpredn = func_dpredn_NLEFT2024(
|
|
1442
|
+
self.sm_dpredn = func_dpredn_NLEFT2024(xdata, self.sm_den, *self.sm_pfit)
|
|
1076
1443
|
self.sm_dpredn_min = self.sm_dpredn.copy()
|
|
1077
1444
|
self.sm_dpredn_max = self.sm_dpredn.copy()
|
|
1078
1445
|
for k in range(100):
|
|
1079
|
-
b = self.sm_pfit[0] + 0.1*(random.random()-0.5)*self.sm_perr[0]
|
|
1080
|
-
c = self.sm_pfit[1] + 0.1*(random.random()-0.5)*self.sm_perr[1]
|
|
1081
|
-
d = self.sm_pfit[2] + 0.1*(random.random()-0.5)*self.sm_perr[2]
|
|
1082
|
-
self.sm_pcerr[k,0] = b
|
|
1083
|
-
self.sm_pcerr[k,1] = c
|
|
1084
|
-
self.sm_pcerr[k,2] = d
|
|
1085
|
-
param = np.array(
|
|
1446
|
+
b = self.sm_pfit[0] + 0.1 * (random.random() - 0.5) * self.sm_perr[0]
|
|
1447
|
+
c = self.sm_pfit[1] + 0.1 * (random.random() - 0.5) * self.sm_perr[1]
|
|
1448
|
+
d = self.sm_pfit[2] + 0.1 * (random.random() - 0.5) * self.sm_perr[2]
|
|
1449
|
+
self.sm_pcerr[k, 0] = b
|
|
1450
|
+
self.sm_pcerr[k, 1] = c
|
|
1451
|
+
self.sm_pcerr[k, 2] = d
|
|
1452
|
+
param = np.array([b, c, d])
|
|
1086
1453
|
# e2a
|
|
1087
|
-
af = func_e2a_NLEFT2024(
|
|
1088
|
-
for l,val in enumerate(af):
|
|
1089
|
-
if val > self.
|
|
1090
|
-
|
|
1091
|
-
|
|
1454
|
+
af = func_e2a_NLEFT2024(xdata, *param)
|
|
1455
|
+
for l, val in enumerate(af):
|
|
1456
|
+
if val > self.sm_e2a_int_max[l]:
|
|
1457
|
+
self.sm_e2a_int_max[l] = val
|
|
1458
|
+
if val < self.sm_e2a_int_min[l]:
|
|
1459
|
+
self.sm_e2a_int_min[l] = val
|
|
1460
|
+
self.sm_e2a_err = 0.5 * (self.sm_e2a_int_max - self.sm_e2a_int_min)
|
|
1092
1461
|
# pre
|
|
1093
|
-
af = func_pre_NLEFT2024(
|
|
1094
|
-
for l,val in enumerate(af):
|
|
1095
|
-
if val > self.sm_pre_max[l]:
|
|
1096
|
-
|
|
1097
|
-
|
|
1462
|
+
af = func_pre_NLEFT2024(xdata, self.sm_den, *param)
|
|
1463
|
+
for l, val in enumerate(af):
|
|
1464
|
+
if val > self.sm_pre_max[l]:
|
|
1465
|
+
self.sm_pre_max[l] = val
|
|
1466
|
+
if val < self.sm_pre_min[l]:
|
|
1467
|
+
self.sm_pre_min[l] = val
|
|
1468
|
+
self.sm_pre_err = 0.5 * (self.sm_pre_max - self.sm_pre_min)
|
|
1098
1469
|
# dpdn
|
|
1099
|
-
af = func_dpredn_NLEFT2024(
|
|
1100
|
-
for l,val in enumerate(af):
|
|
1101
|
-
if val > self.sm_dpredn_max[l]:
|
|
1102
|
-
|
|
1103
|
-
|
|
1104
|
-
|
|
1105
|
-
|
|
1106
|
-
#
|
|
1107
|
-
|
|
1108
|
-
|
|
1470
|
+
af = func_dpredn_NLEFT2024(xdata, self.sm_den, *param)
|
|
1471
|
+
for l, val in enumerate(af):
|
|
1472
|
+
if val > self.sm_dpredn_max[l]:
|
|
1473
|
+
self.sm_dpredn_max[l] = val
|
|
1474
|
+
if val < self.sm_dpredn_min[l]:
|
|
1475
|
+
self.sm_dpredn_min[l] = val
|
|
1476
|
+
self.sm_dpredn_err = 0.5 * (self.sm_dpredn_max - self.sm_dpredn_min)
|
|
1477
|
+
# print('sm_pcerr:',self.sm_pcerr)
|
|
1478
|
+
# self.sm_e2a = self.sm_e2a_fit
|
|
1479
|
+
# self.sm_e2a_err = self.sm_e2a_fit_err
|
|
1480
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
1481
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
1109
1482
|
#
|
|
1110
1483
|
# Read NM results
|
|
1111
|
-
self.nm_A, self.nm_L, self.nm_den, self.
|
|
1112
|
-
|
|
1113
|
-
|
|
1114
|
-
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
|
|
1484
|
+
self.nm_A, self.nm_L, self.nm_den, self.nm_etot_int, self.nm_etot_err = (
|
|
1485
|
+
np.loadtxt(
|
|
1486
|
+
file_in2,
|
|
1487
|
+
usecols=(0, 1, 2, 3, 4),
|
|
1488
|
+
comments="#",
|
|
1489
|
+
unpack=True,
|
|
1490
|
+
delimiter=",",
|
|
1491
|
+
)
|
|
1492
|
+
)
|
|
1493
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
1494
|
+
self.nm_e2a_int_data = self.nm_etot_int / self.nm_A
|
|
1495
|
+
self.nm_e2a_err_data = self.nm_etot_err / self.nm_A
|
|
1496
|
+
self.nm_e2a_data = self.nm_rmass + self.nm_e2a_int_data
|
|
1497
|
+
self.nm_eps_data = self.nm_e2a_data * self.nm_den
|
|
1498
|
+
self.nm_eps_err_data = self.nm_e2a_err_data * self.nm_den
|
|
1118
1499
|
# fit with EFFG
|
|
1119
1500
|
xdata = self.nm_kfn
|
|
1120
|
-
ydata = self.
|
|
1121
|
-
nm_popt, nm_pcov = curve_fit(
|
|
1122
|
-
print(
|
|
1123
|
-
print(
|
|
1501
|
+
ydata = self.nm_e2a_int_data
|
|
1502
|
+
nm_popt, nm_pcov = curve_fit(func_e2a_NLEFT2024, xdata, ydata)
|
|
1503
|
+
print("nm_popt:", nm_popt)
|
|
1504
|
+
print("nm_pcov:", nm_pcov)
|
|
1124
1505
|
self.nm_pfit = nm_popt
|
|
1125
|
-
self.nm_perr = np.sqrt(
|
|
1126
|
-
self.nm_pcerr = np.zeros(
|
|
1127
|
-
self.
|
|
1128
|
-
self.
|
|
1129
|
-
self.
|
|
1130
|
-
self.
|
|
1506
|
+
self.nm_perr = np.sqrt(np.diag(nm_pcov))
|
|
1507
|
+
self.nm_pcerr = np.zeros((100, 3), dtype=float)
|
|
1508
|
+
self.nm_e2a_int = func_e2a_NLEFT2024(xdata, *self.nm_pfit)
|
|
1509
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
1510
|
+
self.nm_e2a_int_min = self.nm_e2a_int.copy()
|
|
1511
|
+
self.nm_e2a_int_max = self.nm_e2a_int.copy()
|
|
1512
|
+
self.nm_pre = func_pre_NLEFT2024(xdata, self.nm_den, *self.nm_pfit)
|
|
1131
1513
|
self.nm_pre_min = self.nm_pre.copy()
|
|
1132
1514
|
self.nm_pre_max = self.nm_pre.copy()
|
|
1133
|
-
self.nm_dpredn = func_dpredn_NLEFT2024(
|
|
1515
|
+
self.nm_dpredn = func_dpredn_NLEFT2024(xdata, self.nm_den, *self.nm_pfit)
|
|
1134
1516
|
self.nm_dpredn_min = self.nm_dpredn.copy()
|
|
1135
1517
|
self.nm_dpredn_max = self.nm_dpredn.copy()
|
|
1136
1518
|
for k in range(100):
|
|
1137
|
-
b = self.nm_pfit[0] + 0.2*(random.random()-0.5)*self.nm_perr[0]
|
|
1138
|
-
c = self.nm_pfit[1] + 0.2*(random.random()-0.5)*self.nm_perr[1]
|
|
1139
|
-
d = self.nm_pfit[2] + 0.2*(random.random()-0.5)*self.nm_perr[2]
|
|
1140
|
-
self.nm_pcerr[k,0] = b
|
|
1141
|
-
self.nm_pcerr[k,1] = c
|
|
1142
|
-
self.nm_pcerr[k,2] = d
|
|
1143
|
-
param = np.array(
|
|
1519
|
+
b = self.nm_pfit[0] + 0.2 * (random.random() - 0.5) * self.nm_perr[0]
|
|
1520
|
+
c = self.nm_pfit[1] + 0.2 * (random.random() - 0.5) * self.nm_perr[1]
|
|
1521
|
+
d = self.nm_pfit[2] + 0.2 * (random.random() - 0.5) * self.nm_perr[2]
|
|
1522
|
+
self.nm_pcerr[k, 0] = b
|
|
1523
|
+
self.nm_pcerr[k, 1] = c
|
|
1524
|
+
self.nm_pcerr[k, 2] = d
|
|
1525
|
+
param = np.array([b, c, d])
|
|
1144
1526
|
# e2a
|
|
1145
|
-
af = func_e2a_NLEFT2024(
|
|
1146
|
-
for l,val in enumerate(af):
|
|
1147
|
-
if val > self.
|
|
1148
|
-
|
|
1149
|
-
|
|
1527
|
+
af = func_e2a_NLEFT2024(xdata, *param)
|
|
1528
|
+
for l, val in enumerate(af):
|
|
1529
|
+
if val > self.nm_e2a_int_max[l]:
|
|
1530
|
+
self.nm_e2a_int_max[l] = val
|
|
1531
|
+
if val < self.nm_e2a_int_min[l]:
|
|
1532
|
+
self.nm_e2a_int_min[l] = val
|
|
1533
|
+
self.nm_e2a_err = 0.5 * (self.nm_e2a_int_max - self.nm_e2a_int_min)
|
|
1150
1534
|
# pre
|
|
1151
|
-
af = func_pre_NLEFT2024(
|
|
1152
|
-
for l,val in enumerate(af):
|
|
1153
|
-
if val > self.nm_pre_max[l]:
|
|
1154
|
-
|
|
1155
|
-
|
|
1535
|
+
af = func_pre_NLEFT2024(xdata, self.nm_den, *param)
|
|
1536
|
+
for l, val in enumerate(af):
|
|
1537
|
+
if val > self.nm_pre_max[l]:
|
|
1538
|
+
self.nm_pre_max[l] = val
|
|
1539
|
+
if val < self.nm_pre_min[l]:
|
|
1540
|
+
self.nm_pre_min[l] = val
|
|
1541
|
+
self.nm_pre_err = 0.5 * (self.nm_pre_max - self.nm_pre_min)
|
|
1156
1542
|
# dpdn
|
|
1157
|
-
af = func_dpredn_NLEFT2024(
|
|
1158
|
-
for l,val in enumerate(af):
|
|
1159
|
-
if val > self.nm_dpredn_max[l]:
|
|
1160
|
-
|
|
1161
|
-
|
|
1162
|
-
|
|
1163
|
-
|
|
1164
|
-
#
|
|
1165
|
-
|
|
1166
|
-
|
|
1543
|
+
af = func_dpredn_NLEFT2024(xdata, self.nm_den, *param)
|
|
1544
|
+
for l, val in enumerate(af):
|
|
1545
|
+
if val > self.nm_dpredn_max[l]:
|
|
1546
|
+
self.nm_dpredn_max[l] = val
|
|
1547
|
+
if val < self.nm_dpredn_min[l]:
|
|
1548
|
+
self.nm_dpredn_min[l] = val
|
|
1549
|
+
self.nm_dpredn_err = 0.5 * (self.nm_dpredn_max - self.nm_dpredn_min)
|
|
1550
|
+
# print('nm_pcerr:',self.nm_pcerr)
|
|
1551
|
+
# self.nm_e2a = self.nm_e2a_fit
|
|
1552
|
+
# self.nm_e2a_err = self.nm_e2a_fit_err
|
|
1553
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1554
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
1167
1555
|
self.nm_pre = self.nm_pre
|
|
1168
1556
|
self.nm_pre_err = self.nm_pre_err
|
|
1169
1557
|
self.nm_dpredn = self.nm_dpredn
|
|
1170
1558
|
self.nm_dpredn_err = self.nm_dpredn_err
|
|
1171
1559
|
#
|
|
1172
1560
|
# chemical potential
|
|
1173
|
-
self.nm_chempot = (
|
|
1174
|
-
|
|
1175
|
-
|
|
1176
|
-
self.
|
|
1561
|
+
#self.nm_chempot = (
|
|
1562
|
+
# np.array(self.nm_pre) + np.array(self.nm_eps)
|
|
1563
|
+
#) / np.array(self.nm_den)
|
|
1564
|
+
#self.nm_chempot_err = (
|
|
1565
|
+
# np.array(self.nm_pre_err) + np.array(self.nm_eps_err)
|
|
1566
|
+
#) / np.array(self.nm_den)
|
|
1567
|
+
#self.sm_chempot = (
|
|
1568
|
+
# np.array(self.sm_pre) + np.array(self.sm_eps)
|
|
1569
|
+
#) / np.array(self.sm_den)
|
|
1570
|
+
#self.sm_chempot_err = (
|
|
1571
|
+
# np.array(self.sm_pre_err) + np.array(self.sm_eps_err)
|
|
1572
|
+
#) / np.array(self.sm_den)
|
|
1177
1573
|
#
|
|
1178
1574
|
# enthalpy
|
|
1179
|
-
self.sm_h2a =
|
|
1575
|
+
self.sm_h2a = self.sm_e2a + self.sm_pre / self.sm_den
|
|
1180
1576
|
self.sm_h2a_err = self.sm_e2a_err + self.sm_pre_err / self.sm_den
|
|
1181
|
-
self.nm_h2a =
|
|
1577
|
+
self.nm_h2a = self.nm_e2a + self.nm_pre / self.nm_den
|
|
1182
1578
|
self.nm_h2a_err = self.nm_e2a_err + self.nm_pre_err / self.nm_den
|
|
1183
1579
|
#
|
|
1184
1580
|
# sound speed
|
|
1185
1581
|
self.sm_cs2 = self.sm_dpredn / self.sm_h2a
|
|
1186
|
-
self.sm_cs2_err = np.abs(
|
|
1187
|
-
|
|
1582
|
+
self.sm_cs2_err = np.abs(self.sm_dpredn_err / self.sm_h2a) + np.abs(
|
|
1583
|
+
self.sm_dpredn * self.sm_h2a_err / self.sm_h2a
|
|
1584
|
+
)
|
|
1188
1585
|
self.nm_cs2 = self.nm_dpredn / self.nm_h2a
|
|
1189
|
-
self.nm_cs2_err = np.abs(
|
|
1190
|
-
|
|
1586
|
+
self.nm_cs2_err = np.abs(self.nm_dpredn_err / self.nm_h2a) + np.abs(
|
|
1587
|
+
self.nm_dpredn * self.nm_h2a_err / self.nm_h2a
|
|
1588
|
+
)
|
|
1191
1589
|
#
|
|
1192
|
-
elif
|
|
1590
|
+
elif "2024-bhf-am" in model.lower():
|
|
1193
1591
|
#
|
|
1194
1592
|
self.flag_nm = True
|
|
1195
1593
|
self.flag_sm = True
|
|
1196
1594
|
self.flag_kf = False
|
|
1197
1595
|
self.flag_den = True
|
|
1198
1596
|
# 2BF
|
|
1199
|
-
if model.lower() ==
|
|
1200
|
-
file_in1 = os.path.join(
|
|
1201
|
-
|
|
1202
|
-
|
|
1203
|
-
|
|
1204
|
-
|
|
1205
|
-
|
|
1206
|
-
|
|
1207
|
-
|
|
1208
|
-
|
|
1209
|
-
|
|
1210
|
-
|
|
1211
|
-
|
|
1212
|
-
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
|
|
1216
|
-
|
|
1217
|
-
|
|
1218
|
-
self.label =
|
|
1219
|
-
elif model.lower() ==
|
|
1220
|
-
file_in1 = os.path.join(
|
|
1221
|
-
|
|
1222
|
-
|
|
1223
|
-
|
|
1224
|
-
|
|
1225
|
-
|
|
1226
|
-
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1236
|
-
|
|
1237
|
-
|
|
1238
|
-
self.label =
|
|
1239
|
-
elif model.lower() ==
|
|
1240
|
-
file_in1 = os.path.join(
|
|
1241
|
-
|
|
1242
|
-
|
|
1597
|
+
if model.lower() == "2024-bhf-am-2bf-av8p":
|
|
1598
|
+
file_in1 = os.path.join(
|
|
1599
|
+
nuda.param.path_data,
|
|
1600
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_Av8p2BF.dat",
|
|
1601
|
+
)
|
|
1602
|
+
file_in2 = os.path.join(
|
|
1603
|
+
nuda.param.path_data,
|
|
1604
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_Av8p2BF.dat",
|
|
1605
|
+
)
|
|
1606
|
+
self.label = "BHF-2024-2BF-Av8p"
|
|
1607
|
+
elif model.lower() == "2024-bhf-am-2bf-av18":
|
|
1608
|
+
file_in1 = os.path.join(
|
|
1609
|
+
nuda.param.path_data,
|
|
1610
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_Av182BF.dat",
|
|
1611
|
+
)
|
|
1612
|
+
file_in2 = os.path.join(
|
|
1613
|
+
nuda.param.path_data,
|
|
1614
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_Av182BF.dat",
|
|
1615
|
+
)
|
|
1616
|
+
self.label = "BHF-2024-2BF-Av18"
|
|
1617
|
+
elif model.lower() == "2024-bhf-am-2bf-bonn":
|
|
1618
|
+
file_in1 = os.path.join(
|
|
1619
|
+
nuda.param.path_data,
|
|
1620
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_BONN2BF.dat",
|
|
1621
|
+
)
|
|
1622
|
+
file_in2 = os.path.join(
|
|
1623
|
+
nuda.param.path_data,
|
|
1624
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_BONN2BF.dat",
|
|
1625
|
+
)
|
|
1626
|
+
self.label = "BHF-2024-2BF-Bonn"
|
|
1627
|
+
elif model.lower() == "2024-bhf-am-2bf-cdbonn":
|
|
1628
|
+
file_in1 = os.path.join(
|
|
1629
|
+
nuda.param.path_data,
|
|
1630
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_CDBONN2BF.dat",
|
|
1631
|
+
)
|
|
1632
|
+
file_in2 = os.path.join(
|
|
1633
|
+
nuda.param.path_data,
|
|
1634
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_CDBONN2BF.dat",
|
|
1635
|
+
)
|
|
1636
|
+
self.label = "BHF-2024-2BF-CDBonn"
|
|
1637
|
+
elif model.lower() == "2024-bhf-am-2bf-sscv14":
|
|
1638
|
+
file_in1 = os.path.join(
|
|
1639
|
+
nuda.param.path_data,
|
|
1640
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_SSCV142BF.dat",
|
|
1641
|
+
)
|
|
1642
|
+
file_in2 = os.path.join(
|
|
1643
|
+
nuda.param.path_data,
|
|
1644
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_SSCV142BF.dat",
|
|
1645
|
+
)
|
|
1646
|
+
self.label = "BHF-2024-2BF-SSCV14"
|
|
1647
|
+
elif model.lower() == "2024-bhf-am-2bf-nsc97a":
|
|
1648
|
+
file_in1 = os.path.join(
|
|
1649
|
+
nuda.param.path_data,
|
|
1650
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97a2BF.dat",
|
|
1651
|
+
)
|
|
1652
|
+
file_in2 = os.path.join(
|
|
1653
|
+
nuda.param.path_data,
|
|
1654
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97a2BF.dat",
|
|
1655
|
+
)
|
|
1656
|
+
self.label = "BHF-2024-2BF-NSC97a"
|
|
1657
|
+
elif model.lower() == "2024-bhf-am-2bf-nsc97b":
|
|
1658
|
+
file_in1 = os.path.join(
|
|
1659
|
+
nuda.param.path_data,
|
|
1660
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97b2BF.dat",
|
|
1661
|
+
)
|
|
1662
|
+
file_in2 = os.path.join(
|
|
1663
|
+
nuda.param.path_data,
|
|
1664
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97b2BF.dat",
|
|
1665
|
+
)
|
|
1666
|
+
self.label = "BHF-2024-2BF-NSC97b"
|
|
1667
|
+
elif model.lower() == "2024-bhf-am-2bf-nsc97c":
|
|
1668
|
+
file_in1 = os.path.join(
|
|
1669
|
+
nuda.param.path_data,
|
|
1670
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97c2BF.dat",
|
|
1671
|
+
)
|
|
1672
|
+
file_in2 = os.path.join(
|
|
1673
|
+
nuda.param.path_data,
|
|
1674
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97c2BF.dat",
|
|
1675
|
+
)
|
|
1676
|
+
self.label = "BHF-2024-2BF-NSC97c"
|
|
1677
|
+
elif model.lower() == "2024-bhf-am-2bf-nsc97d":
|
|
1678
|
+
file_in1 = os.path.join(
|
|
1679
|
+
nuda.param.path_data,
|
|
1680
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97d2BF.dat",
|
|
1681
|
+
)
|
|
1682
|
+
file_in2 = os.path.join(
|
|
1683
|
+
nuda.param.path_data,
|
|
1684
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97d2BF.dat",
|
|
1685
|
+
)
|
|
1686
|
+
self.label = "BHF-2024-2BF-NSC97d"
|
|
1687
|
+
elif model.lower() == "2024-bhf-am-2bf-nsc97e":
|
|
1688
|
+
file_in1 = os.path.join(
|
|
1689
|
+
nuda.param.path_data,
|
|
1690
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97e2BF.dat",
|
|
1691
|
+
)
|
|
1692
|
+
file_in2 = os.path.join(
|
|
1693
|
+
nuda.param.path_data,
|
|
1694
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97e2BF.dat",
|
|
1695
|
+
)
|
|
1696
|
+
self.label = "BHF-2024-2BF-NSC97e"
|
|
1697
|
+
elif model.lower() == "2024-bhf-am-2bf-nsc97f":
|
|
1698
|
+
file_in1 = os.path.join(
|
|
1699
|
+
nuda.param.path_data,
|
|
1700
|
+
"matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97f2BF.dat",
|
|
1701
|
+
)
|
|
1702
|
+
file_in2 = os.path.join(
|
|
1703
|
+
nuda.param.path_data,
|
|
1704
|
+
"matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97f2BF.dat",
|
|
1705
|
+
)
|
|
1706
|
+
self.label = "BHF-2024-2BF-NSC97f"
|
|
1243
1707
|
# 2+3BF
|
|
1244
|
-
elif model.lower() ==
|
|
1245
|
-
file_in1 = os.path.join(
|
|
1246
|
-
|
|
1247
|
-
|
|
1248
|
-
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
|
|
1254
|
-
|
|
1255
|
-
|
|
1256
|
-
|
|
1257
|
-
|
|
1258
|
-
|
|
1259
|
-
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
|
|
1263
|
-
self.label =
|
|
1264
|
-
elif model.lower() ==
|
|
1265
|
-
file_in1 = os.path.join(
|
|
1266
|
-
|
|
1267
|
-
|
|
1268
|
-
|
|
1269
|
-
|
|
1270
|
-
|
|
1271
|
-
|
|
1272
|
-
|
|
1273
|
-
|
|
1274
|
-
|
|
1275
|
-
|
|
1276
|
-
|
|
1277
|
-
|
|
1278
|
-
|
|
1279
|
-
|
|
1280
|
-
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
|
-
self.label =
|
|
1284
|
-
elif model.lower() ==
|
|
1285
|
-
file_in1 = os.path.join(
|
|
1286
|
-
|
|
1287
|
-
|
|
1288
|
-
|
|
1289
|
-
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
|
|
1293
|
-
|
|
1294
|
-
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
|
|
1298
|
-
|
|
1299
|
-
|
|
1300
|
-
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1708
|
+
elif model.lower() == "2024-bhf-am-23bf-av8p":
|
|
1709
|
+
file_in1 = os.path.join(
|
|
1710
|
+
nuda.param.path_data,
|
|
1711
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_Av8p23BF.dat",
|
|
1712
|
+
)
|
|
1713
|
+
file_in2 = os.path.join(
|
|
1714
|
+
nuda.param.path_data,
|
|
1715
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_Av8p23BF.dat",
|
|
1716
|
+
)
|
|
1717
|
+
self.label = "BHF-2024-23BF-Av8p"
|
|
1718
|
+
elif model.lower() == "2024-bhf-am-23bf-av18":
|
|
1719
|
+
file_in1 = os.path.join(
|
|
1720
|
+
nuda.param.path_data,
|
|
1721
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_Av1823BF.dat",
|
|
1722
|
+
)
|
|
1723
|
+
file_in2 = os.path.join(
|
|
1724
|
+
nuda.param.path_data,
|
|
1725
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_Av1823BF.dat",
|
|
1726
|
+
)
|
|
1727
|
+
self.label = "BHF-2024-23BF-Av18"
|
|
1728
|
+
elif model.lower() == "2024-bhf-am-23bfmicro-av18":
|
|
1729
|
+
file_in1 = os.path.join(
|
|
1730
|
+
nuda.param.path_data,
|
|
1731
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_Av1823BFmicro.dat",
|
|
1732
|
+
)
|
|
1733
|
+
file_in2 = os.path.join(
|
|
1734
|
+
nuda.param.path_data,
|
|
1735
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_Av1823BFmicro.dat",
|
|
1736
|
+
)
|
|
1737
|
+
self.label = "BHF-2024-23BFmicro-Av18"
|
|
1738
|
+
elif model.lower() == "2024-bhf-am-23bf-bonn":
|
|
1739
|
+
file_in1 = os.path.join(
|
|
1740
|
+
nuda.param.path_data,
|
|
1741
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_BONN23BF.dat",
|
|
1742
|
+
)
|
|
1743
|
+
file_in2 = os.path.join(
|
|
1744
|
+
nuda.param.path_data,
|
|
1745
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_BONN23BF.dat",
|
|
1746
|
+
)
|
|
1747
|
+
self.label = "BHF-2024-23BF-Bonn"
|
|
1748
|
+
elif model.lower() == "2024-bhf-am-23bfmicro-bonnb":
|
|
1749
|
+
file_in1 = os.path.join(
|
|
1750
|
+
nuda.param.path_data,
|
|
1751
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_BONNB23BFmicro.dat",
|
|
1752
|
+
)
|
|
1753
|
+
file_in2 = os.path.join(
|
|
1754
|
+
nuda.param.path_data,
|
|
1755
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_BONNB23BFmicro.dat",
|
|
1756
|
+
)
|
|
1757
|
+
self.label = "BHF-2024-23BFMicro-BonnB"
|
|
1758
|
+
elif model.lower() == "2024-bhf-am-23bf-cdbonn":
|
|
1759
|
+
file_in1 = os.path.join(
|
|
1760
|
+
nuda.param.path_data,
|
|
1761
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_CDBONN23BF.dat",
|
|
1762
|
+
)
|
|
1763
|
+
file_in2 = os.path.join(
|
|
1764
|
+
nuda.param.path_data,
|
|
1765
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_CDBONN23BF.dat",
|
|
1766
|
+
)
|
|
1767
|
+
self.label = "BHF-2024-23BF-CDBonn"
|
|
1768
|
+
elif model.lower() == "2024-bhf-am-23bf-sscv14":
|
|
1769
|
+
file_in1 = os.path.join(
|
|
1770
|
+
nuda.param.path_data,
|
|
1771
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_SSCV1423BF.dat",
|
|
1772
|
+
)
|
|
1773
|
+
file_in2 = os.path.join(
|
|
1774
|
+
nuda.param.path_data,
|
|
1775
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_SSCV1423BF.dat",
|
|
1776
|
+
)
|
|
1777
|
+
self.label = "BHF-2024-23BF-SSCV14"
|
|
1778
|
+
elif model.lower() == "2024-bhf-am-23bfmicro-nsc93":
|
|
1779
|
+
file_in1 = os.path.join(
|
|
1780
|
+
nuda.param.path_data,
|
|
1781
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC9323BFmicro.dat",
|
|
1782
|
+
)
|
|
1783
|
+
file_in2 = os.path.join(
|
|
1784
|
+
nuda.param.path_data,
|
|
1785
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC9323BFmicro.dat",
|
|
1786
|
+
)
|
|
1787
|
+
self.label = "BHF-2024-23BFmicro-NSC93"
|
|
1788
|
+
elif model.lower() == "2024-bhf-am-23bf-nsc97a":
|
|
1789
|
+
file_in1 = os.path.join(
|
|
1790
|
+
nuda.param.path_data,
|
|
1791
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97a23BF.dat",
|
|
1792
|
+
)
|
|
1793
|
+
file_in2 = os.path.join(
|
|
1794
|
+
nuda.param.path_data,
|
|
1795
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97a23BF.dat",
|
|
1796
|
+
)
|
|
1797
|
+
self.label = "BHF-2024-23BF-NSC97a"
|
|
1798
|
+
elif model.lower() == "2024-bhf-am-23bf-nsc97b":
|
|
1799
|
+
file_in1 = os.path.join(
|
|
1800
|
+
nuda.param.path_data,
|
|
1801
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97b23BF.dat",
|
|
1802
|
+
)
|
|
1803
|
+
file_in2 = os.path.join(
|
|
1804
|
+
nuda.param.path_data,
|
|
1805
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97b23BF.dat",
|
|
1806
|
+
)
|
|
1807
|
+
self.label = "BHF-2024-23BF-NSC97b"
|
|
1808
|
+
elif model.lower() == "2024-bhf-am-23bf-nsc97c":
|
|
1809
|
+
file_in1 = os.path.join(
|
|
1810
|
+
nuda.param.path_data,
|
|
1811
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97c23BF.dat",
|
|
1812
|
+
)
|
|
1813
|
+
file_in2 = os.path.join(
|
|
1814
|
+
nuda.param.path_data,
|
|
1815
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97c23BF.dat",
|
|
1816
|
+
)
|
|
1817
|
+
self.label = "BHF-2024-23BF-NSC97c"
|
|
1818
|
+
elif model.lower() == "2024-bhf-am-23bf-nsc97d":
|
|
1819
|
+
file_in1 = os.path.join(
|
|
1820
|
+
nuda.param.path_data,
|
|
1821
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97d23BF.dat",
|
|
1822
|
+
)
|
|
1823
|
+
file_in2 = os.path.join(
|
|
1824
|
+
nuda.param.path_data,
|
|
1825
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97d23BF.dat",
|
|
1826
|
+
)
|
|
1827
|
+
self.label = "BHF-2024-23BF-NSC9d7"
|
|
1828
|
+
elif model.lower() == "2024-bhf-am-23bf-nsc97e":
|
|
1829
|
+
file_in1 = os.path.join(
|
|
1830
|
+
nuda.param.path_data,
|
|
1831
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97e23BF.dat",
|
|
1832
|
+
)
|
|
1833
|
+
file_in2 = os.path.join(
|
|
1834
|
+
nuda.param.path_data,
|
|
1835
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97e23BF.dat",
|
|
1836
|
+
)
|
|
1837
|
+
self.label = "BHF-2024-23BF-NSC97e"
|
|
1838
|
+
elif model.lower() == "2024-bhf-am-23bf-nsc97f":
|
|
1839
|
+
file_in1 = os.path.join(
|
|
1840
|
+
nuda.param.path_data,
|
|
1841
|
+
"matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97f23BF.dat",
|
|
1842
|
+
)
|
|
1843
|
+
file_in2 = os.path.join(
|
|
1844
|
+
nuda.param.path_data,
|
|
1845
|
+
"matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97f23BF.dat",
|
|
1846
|
+
)
|
|
1847
|
+
self.label = "BHF-2024-23BF-NSC97f"
|
|
1848
|
+
#
|
|
1849
|
+
if nuda.env.verb:
|
|
1850
|
+
print("Reads file:", file_in1)
|
|
1851
|
+
if nuda.env.verb:
|
|
1852
|
+
print("Reads file:", file_in2)
|
|
1853
|
+
self.ref = (
|
|
1854
|
+
"I. Vida\\~na, J. Margueron, H.J. Schulze, Universe 10, 5 (2024)."
|
|
1855
|
+
)
|
|
1304
1856
|
self.note = ""
|
|
1305
|
-
self.marker =
|
|
1306
|
-
|
|
1857
|
+
self.marker = "o"
|
|
1858
|
+
self.linestyle = "solid"
|
|
1307
1859
|
self.every = 2
|
|
1308
|
-
self.
|
|
1309
|
-
|
|
1310
|
-
self.
|
|
1311
|
-
|
|
1312
|
-
|
|
1313
|
-
|
|
1860
|
+
self.e_err = False
|
|
1861
|
+
self.p_err = False
|
|
1862
|
+
self.cs2_err = False
|
|
1863
|
+
#
|
|
1864
|
+
(
|
|
1865
|
+
self.sm_den,
|
|
1866
|
+
self.sm_vS0T0,
|
|
1867
|
+
self.sm_vS0T1,
|
|
1868
|
+
self.sm_vS1T0,
|
|
1869
|
+
self.sm_vS1T1,
|
|
1870
|
+
self.sm_vtot,
|
|
1871
|
+
self.sm_kin,
|
|
1872
|
+
self.sm_etot,
|
|
1873
|
+
) = np.loadtxt(
|
|
1874
|
+
file_in1, usecols=(0, 1, 2, 3, 4, 5, 6, 7), comments="#", unpack=True
|
|
1875
|
+
)
|
|
1876
|
+
self.sm_den_min = min(self.sm_den)
|
|
1877
|
+
self.sm_den_max = max(self.sm_den)
|
|
1878
|
+
self.sm_kfn = nuda.kf_n(nuda.cst.half * self.sm_den)
|
|
1314
1879
|
self.sm_kf = self.sm_kfn
|
|
1315
|
-
self.
|
|
1316
|
-
self.
|
|
1317
|
-
self.
|
|
1318
|
-
|
|
1319
|
-
|
|
1320
|
-
self.
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
|
|
1325
|
-
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
|
|
1329
|
-
|
|
1880
|
+
self.sm_e2a_int = self.sm_etot
|
|
1881
|
+
self.sm_e2a = self.sm_rmass + self.sm_e2a_int
|
|
1882
|
+
self.sm_e2a_err = np.abs(
|
|
1883
|
+
uncertainty_stat(self.sm_den, err="MBPT") * self.sm_e2a_int
|
|
1884
|
+
)
|
|
1885
|
+
self.sm_eps = self.sm_e2a * self.sm_den
|
|
1886
|
+
self.sm_eps_err = self.sm_e2a_err * self.sm_den
|
|
1887
|
+
#
|
|
1888
|
+
(
|
|
1889
|
+
self.nm_den,
|
|
1890
|
+
self.nm_vS0T0,
|
|
1891
|
+
self.nm_vS0T1,
|
|
1892
|
+
self.nm_vS1T0,
|
|
1893
|
+
self.nm_vS1T1,
|
|
1894
|
+
self.nm_vtot,
|
|
1895
|
+
self.nm_kin,
|
|
1896
|
+
self.nm_etot,
|
|
1897
|
+
) = np.loadtxt(
|
|
1898
|
+
file_in2, usecols=(0, 1, 2, 3, 4, 5, 6, 7), comments="#", unpack=True
|
|
1899
|
+
)
|
|
1900
|
+
self.nm_den_min = min(self.sm_den)
|
|
1901
|
+
self.sm_den_max = max(self.sm_den)
|
|
1902
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
1903
|
+
self.nm_e2a_int = self.nm_etot
|
|
1904
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
1905
|
+
self.nm_e2a_err = np.abs(
|
|
1906
|
+
uncertainty_stat(self.nm_den, err="MBPT") * self.nm_e2a_int
|
|
1907
|
+
)
|
|
1908
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1909
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
1910
|
+
#
|
|
1911
|
+
elif model.lower() == "2024-qmc-nm":
|
|
1330
1912
|
#
|
|
1331
1913
|
self.flag_nm = True
|
|
1332
1914
|
self.flag_sm = False
|
|
1333
1915
|
self.flag_kf = False
|
|
1334
1916
|
self.flag_den = True
|
|
1335
1917
|
#
|
|
1336
|
-
file_in = os.path.join(nuda.param.path_data,
|
|
1337
|
-
if nuda.env.verb:
|
|
1338
|
-
|
|
1918
|
+
file_in = os.path.join(nuda.param.path_data, "matter/micro/2024-DMC-NM.dat")
|
|
1919
|
+
if nuda.env.verb:
|
|
1920
|
+
print("Reads file:", file_in)
|
|
1921
|
+
self.ref = "I. Tews, R. Somasundaram, D. Lonardoni, H. Göttling, R. Seutin, J. Carlson, S. Gandolfi, K. Hebeler, A. Schwenk, arXiv:2407.08979 [nucl-th]"
|
|
1339
1922
|
self.note = ""
|
|
1340
|
-
self.label =
|
|
1341
|
-
self.marker =
|
|
1923
|
+
self.label = "QMC-2024"
|
|
1924
|
+
self.marker = "s"
|
|
1342
1925
|
self.every = 1
|
|
1343
|
-
|
|
1344
|
-
self.
|
|
1345
|
-
self.
|
|
1346
|
-
|
|
1347
|
-
|
|
1348
|
-
|
|
1349
|
-
|
|
1350
|
-
|
|
1926
|
+
self.linestyle = "solid"
|
|
1927
|
+
self.e_err = True
|
|
1928
|
+
self.p_err = False
|
|
1929
|
+
self.cs2_err = False
|
|
1930
|
+
(
|
|
1931
|
+
self.nm_den,
|
|
1932
|
+
self.nm_e2a_int,
|
|
1933
|
+
self.nm_e2a_err_stat,
|
|
1934
|
+
self.nm_e2a_err_ekm,
|
|
1935
|
+
self.nm_e2a_err_gp,
|
|
1936
|
+
) = np.loadtxt(file_in, usecols=(0, 1, 2, 3, 4), unpack=True)
|
|
1937
|
+
self.nm_kfn = nuda.kf_n(self.nm_den)
|
|
1938
|
+
self.nm_e2a = self.nm_rmass + self.nm_e2a_int
|
|
1939
|
+
self.nm_e2a_err = (
|
|
1940
|
+
self.nm_e2a_err_stat + self.nm_e2a_err_ekm + self.nm_e2a_err_gp
|
|
1941
|
+
)
|
|
1942
|
+
self.nm_eps = self.nm_e2a * self.nm_den
|
|
1943
|
+
self.nm_eps_err = self.nm_e2a_err * self.nm_den
|
|
1944
|
+
#
|
|
1945
|
+
# ==============================
|
|
1946
|
+
# END OF
|
|
1947
|
+
# Read files associated to model
|
|
1948
|
+
# ==============================
|
|
1949
|
+
#
|
|
1950
|
+
# ==============================
|
|
1951
|
+
# Compute thermodynamic quantities
|
|
1952
|
+
# ==============================
|
|
1953
|
+
#
|
|
1954
|
+
print('flag_nm:',self.flag_nm)
|
|
1955
|
+
print('flag_sm:',self.flag_sm)
|
|
1956
|
+
print('flag_kf:',self.flag_kf)
|
|
1957
|
+
print('flag_den:',self.flag_den)
|
|
1351
1958
|
#
|
|
1352
1959
|
if self.flag_nm:
|
|
1960
|
+
#
|
|
1353
1961
|
if self.flag_kf:
|
|
1962
|
+
#
|
|
1354
1963
|
# pressure in NM
|
|
1355
|
-
x = np.insert(
|
|
1356
|
-
y = np.insert(
|
|
1357
|
-
cs_nm_e2a = CubicSpline(
|
|
1358
|
-
self.nm_pre = np.array( nuda.cst.
|
|
1359
|
-
y_err = np.insert(
|
|
1360
|
-
cs_nm_e2a_err = CubicSpline(
|
|
1361
|
-
self.nm_pre_err = nuda.cst.
|
|
1964
|
+
x = np.insert(self.nm_kfn, 0, 0.0)
|
|
1965
|
+
y = np.insert(self.nm_e2a_int, 0, 0.0)
|
|
1966
|
+
cs_nm_e2a = CubicSpline(x, y)
|
|
1967
|
+
self.nm_pre = np.array( nuda.cst.third * self.nm_kfn * self.nm_den * cs_nm_e2a(self.nm_kfn, 1) )
|
|
1968
|
+
y_err = np.insert(self.nm_e2a_err, 0, 0.0)
|
|
1969
|
+
cs_nm_e2a_err = CubicSpline(x, y_err)
|
|
1970
|
+
self.nm_pre_err = np.array( nuda.cst.third * self.nm_kfn * self.nm_den * cs_nm_e2a_err(self.nm_kfn, 1) )
|
|
1362
1971
|
# chemical potential
|
|
1363
|
-
self.nm_chempot = ( np.array(self.nm_pre) + np.array(self.
|
|
1364
|
-
self.nm_chempot_err = ( np.array(self.nm_pre_err) + np.array(self.
|
|
1972
|
+
#self.nm_chempot = ( np.array(self.nm_pre) + np.array(self.nm_eps) ) / np.array(self.nm_den)
|
|
1973
|
+
#self.nm_chempot_err = ( np.array(self.nm_pre_err) + np.array(self.nm_eps_err) ) / np.array(self.nm_den)
|
|
1365
1974
|
#
|
|
1366
1975
|
# enthalpy
|
|
1367
|
-
self.nm_h2a =
|
|
1976
|
+
self.nm_h2a = self.nm_e2a + self.nm_pre / self.nm_den
|
|
1977
|
+
#
|
|
1978
|
+
# sound speed as density derivative
|
|
1979
|
+
x = np.insert(self.nm_den, 0, 0.0)
|
|
1980
|
+
y = np.insert(self.nm_pre, 0, 0.0)
|
|
1981
|
+
cs_nm_pre = CubicSpline(x, y)
|
|
1982
|
+
self.nm_cs2 = cs_nm_pre(self.nm_den, 1) / self.nm_h2a
|
|
1983
|
+
#
|
|
1984
|
+
# sound speed as kF derivative
|
|
1985
|
+
#x = np.insert(self.nm_kfn, 0, 0.0)
|
|
1986
|
+
#y = np.insert(self.nm_pre, 0, 0.0)
|
|
1987
|
+
#cs_nm_pre = CubicSpline(x, y)
|
|
1988
|
+
#self.nm_cs2 = nuda.cst.third * self.nm_kfn / self.nm_den * cs_nm_pre(self.nm_den, 1) / self.nm_h2a
|
|
1989
|
+
#
|
|
1990
|
+
# calculate the last element for cs2 since the derivative is numerical
|
|
1991
|
+
#y = np.insert(self.nm_cs2, 0, 0.0)
|
|
1992
|
+
#cs_nm_cs2 = CubicSpline(x[:-2], y[:-2])
|
|
1993
|
+
#self.nm_cs2[-1] = cs_nm_cs2(self.nm_den[-1])
|
|
1368
1994
|
#
|
|
1369
|
-
# sound speed
|
|
1370
|
-
x = np.insert( self.nm_den, 0, 0.0 )
|
|
1371
|
-
y = np.insert( self.nm_pre, 0, 0.0 )
|
|
1372
|
-
cs_nm_pre = CubicSpline( x, y )
|
|
1373
|
-
nm_cs2 = cs_nm_pre( self.nm_den, 1) / self.nm_h2a
|
|
1374
1995
|
if self.flag_den:
|
|
1996
|
+
#
|
|
1375
1997
|
# pressure in NM
|
|
1376
|
-
x = np.insert(
|
|
1377
|
-
y = np.insert(
|
|
1378
|
-
cs_nm_e2a = CubicSpline(
|
|
1379
|
-
self.nm_pre = np.array( cs_nm_e2a(
|
|
1380
|
-
y_err = np.insert(
|
|
1381
|
-
cs_nm_e2a_err = CubicSpline(
|
|
1382
|
-
self.nm_pre_err = cs_nm_e2a_err(
|
|
1998
|
+
x = np.insert(self.nm_den, 0, 0.0)
|
|
1999
|
+
y = np.insert(self.nm_e2a_int, 0, 0.0)
|
|
2000
|
+
cs_nm_e2a = CubicSpline(x, y)
|
|
2001
|
+
self.nm_pre = np.array(self.nm_den**2 * cs_nm_e2a(self.nm_den, 1))
|
|
2002
|
+
y_err = np.insert(self.nm_e2a_err, 0, 0.0)
|
|
2003
|
+
cs_nm_e2a_err = CubicSpline(x, y_err)
|
|
2004
|
+
self.nm_pre_err = self.nm_den**2 * cs_nm_e2a_err(self.nm_den, 1)
|
|
1383
2005
|
#
|
|
1384
2006
|
# chemical potential
|
|
1385
|
-
self.nm_chempot = ( np.array(self.nm_pre) + np.array(self.
|
|
1386
|
-
self.nm_chempot_err = ( np.array(self.nm_pre_err) + np.array(self.
|
|
2007
|
+
#self.nm_chempot = ( np.array(self.nm_pre) + np.array(self.nm_eps) ) / np.array(self.nm_den)
|
|
2008
|
+
#self.nm_chempot_err = ( np.array(self.nm_pre_err) + np.array(self.nm_eps_err) ) / np.array(self.nm_den)
|
|
1387
2009
|
#
|
|
1388
2010
|
# enthalpy
|
|
1389
|
-
self.nm_h2a =
|
|
2011
|
+
self.nm_h2a = self.nm_e2a + self.nm_pre / self.nm_den
|
|
1390
2012
|
#
|
|
1391
2013
|
# sound speed
|
|
1392
|
-
x = np.insert(
|
|
1393
|
-
y = np.insert(
|
|
1394
|
-
cs_nm_pre = CubicSpline(
|
|
1395
|
-
nm_cs2 = cs_nm_pre(
|
|
2014
|
+
x = np.insert(self.nm_den, 0, 0.0)
|
|
2015
|
+
y = np.insert(self.nm_pre, 0, 0.0)
|
|
2016
|
+
cs_nm_pre = CubicSpline(x, y)
|
|
2017
|
+
self.nm_cs2 = cs_nm_pre(self.nm_den, 1) / self.nm_h2a
|
|
2018
|
+
#
|
|
1396
2019
|
#
|
|
1397
2020
|
if self.flag_sm:
|
|
2021
|
+
#
|
|
1398
2022
|
if self.flag_kf:
|
|
2023
|
+
#
|
|
1399
2024
|
# pressure in SM
|
|
1400
|
-
x = np.insert(
|
|
1401
|
-
y = np.insert(
|
|
1402
|
-
cs_sm_e2a = CubicSpline(
|
|
1403
|
-
self.sm_pre = np.array( nuda.cst.
|
|
1404
|
-
y_err = np.insert(
|
|
1405
|
-
cs_sm_e2a_err = CubicSpline(
|
|
1406
|
-
self.sm_pre_err = nuda.cst.
|
|
2025
|
+
x = np.insert(self.sm_kfn, 0, 0.0)
|
|
2026
|
+
y = np.insert(self.sm_e2a_int, 0, 0.0)
|
|
2027
|
+
cs_sm_e2a = CubicSpline(x, y)
|
|
2028
|
+
self.sm_pre = np.array( nuda.cst.third * self.sm_kfn * self.sm_den * cs_sm_e2a(self.sm_kfn, 1) )
|
|
2029
|
+
y_err = np.insert(self.sm_e2a_err, 0, 0.0)
|
|
2030
|
+
cs_sm_e2a_err = CubicSpline(x, y_err)
|
|
2031
|
+
self.sm_pre_err = ( nuda.cst.third * self.sm_kfn * self.sm_den * cs_sm_e2a_err(self.sm_kfn, 1) )
|
|
1407
2032
|
#
|
|
1408
2033
|
# chemical potential
|
|
1409
|
-
self.sm_chempot = ( np.array(self.sm_pre) + np.array(self.
|
|
1410
|
-
self.sm_chempot_err = ( np.array(self.sm_pre_err) + np.array(self.
|
|
2034
|
+
#self.sm_chempot = ( np.array(self.sm_pre) + np.array(self.sm_eps) ) / np.array(self.sm_den)
|
|
2035
|
+
#self.sm_chempot_err = ( np.array(self.sm_pre_err) + np.array(self.sm_eps_err) ) / np.array(self.sm_den)
|
|
1411
2036
|
#
|
|
1412
2037
|
# enthalpy
|
|
1413
|
-
self.sm_h2a =
|
|
2038
|
+
self.sm_h2a = self.sm_e2a + self.sm_pre / self.sm_den
|
|
1414
2039
|
#
|
|
1415
|
-
# sound speed
|
|
1416
|
-
x = np.insert(
|
|
1417
|
-
y = np.insert(
|
|
1418
|
-
cs_sm_pre = CubicSpline(
|
|
1419
|
-
sm_cs2 = cs_sm_pre(
|
|
2040
|
+
# sound speed as density derivative
|
|
2041
|
+
x = np.insert(self.sm_den, 0, 0.0)
|
|
2042
|
+
y = np.insert(self.sm_pre, 0, 0.0)
|
|
2043
|
+
cs_sm_pre = CubicSpline(x, y)
|
|
2044
|
+
self.sm_cs2 = cs_sm_pre(self.sm_den, 1) / self.sm_h2a
|
|
2045
|
+
#
|
|
2046
|
+
# sound speed as kF derivative
|
|
2047
|
+
#x = np.insert(self.nm_kfn, 0, 0.0)
|
|
2048
|
+
#y = np.insert(self.sm_pre, 0, 0.0)
|
|
2049
|
+
#cs_sm_pre = CubicSpline(x, y)
|
|
2050
|
+
#self.sm_cs2 = np.array( nuda.cst.third * self.sm_kfn / self.sm_den * cs_sm_pre(self.sm_den, 1) / self.sm_h2a )
|
|
1420
2051
|
#
|
|
1421
2052
|
if self.flag_den:
|
|
2053
|
+
#
|
|
1422
2054
|
# pressure in NM
|
|
1423
|
-
x = np.insert(
|
|
1424
|
-
y = np.insert(
|
|
1425
|
-
cs_sm_e2a = CubicSpline(
|
|
1426
|
-
self.sm_pre = np.array( cs_sm_e2a(
|
|
1427
|
-
y_err = np.insert(
|
|
1428
|
-
cs_sm_e2a_err = CubicSpline(
|
|
1429
|
-
self.sm_pre_err = cs_sm_e2a_err(
|
|
2055
|
+
x = np.insert(self.sm_den, 0, 0.0)
|
|
2056
|
+
y = np.insert(self.sm_e2a_int, 0, 0.0)
|
|
2057
|
+
cs_sm_e2a = CubicSpline(x, y)
|
|
2058
|
+
self.sm_pre = np.array( self.sm_den**2 * cs_sm_e2a(self.sm_den, 1) )
|
|
2059
|
+
y_err = np.insert(self.sm_e2a_err, 0, 0.0)
|
|
2060
|
+
cs_sm_e2a_err = CubicSpline(x, y_err)
|
|
2061
|
+
self.sm_pre_err = self.sm_den**2 * cs_sm_e2a_err(self.sm_den, 1)
|
|
1430
2062
|
#
|
|
1431
2063
|
# chemical potential
|
|
1432
|
-
self.sm_chempot = ( np.array(self.sm_pre) + np.array(self.
|
|
1433
|
-
self.sm_chempot_err = ( np.array(self.sm_pre_err) + np.array(self.
|
|
2064
|
+
#self.sm_chempot = ( np.array(self.sm_pre) + np.array(self.sm_eps) ) / np.array(self.sm_den)
|
|
2065
|
+
#self.sm_chempot_err = ( np.array(self.sm_pre_err) + np.array(self.sm_eps_err) ) / np.array(self.sm_den)
|
|
1434
2066
|
#
|
|
1435
2067
|
# enthalpy
|
|
1436
|
-
self.sm_h2a =
|
|
2068
|
+
self.sm_h2a = self.sm_e2a + self.sm_pre / self.sm_den
|
|
1437
2069
|
#
|
|
1438
2070
|
# sound speed
|
|
1439
|
-
x = np.insert(
|
|
1440
|
-
y = np.insert(
|
|
1441
|
-
cs_sm_pre = CubicSpline(
|
|
1442
|
-
sm_cs2 = cs_sm_pre(
|
|
2071
|
+
#x = np.insert(self.sm_den, 0, 0.0)
|
|
2072
|
+
y = np.insert(self.sm_pre, 0, 0.0)
|
|
2073
|
+
cs_sm_pre = CubicSpline(x, y)
|
|
2074
|
+
self.sm_cs2 = cs_sm_pre(self.sm_den, 1) / self.sm_h2a
|
|
1443
2075
|
#
|
|
2076
|
+
#
|
|
2077
|
+
#
|
|
2078
|
+
# ==============================
|
|
2079
|
+
# END OF
|
|
2080
|
+
# Compute thermodynamic quantities
|
|
2081
|
+
# ==============================
|
|
1444
2082
|
#
|
|
1445
|
-
self.den_unit =
|
|
1446
|
-
self.kf_unit =
|
|
1447
|
-
self.e2a_unit =
|
|
1448
|
-
self.
|
|
1449
|
-
self.pre_unit =
|
|
2083
|
+
self.den_unit = "fm$^{-3}$"
|
|
2084
|
+
self.kf_unit = "fm$^{-1}$"
|
|
2085
|
+
self.e2a_unit = "MeV"
|
|
2086
|
+
self.eps_unit = "MeV fm$^{-3}$"
|
|
2087
|
+
self.pre_unit = "MeV fm$^{-3}$"
|
|
1450
2088
|
#
|
|
1451
|
-
if nuda.env.verb:
|
|
2089
|
+
if nuda.env.verb:
|
|
2090
|
+
print("Exit setupMicro()")
|
|
1452
2091
|
#
|
|
1453
|
-
|
|
2092
|
+
|
|
2093
|
+
def print_outputs(self):
|
|
1454
2094
|
"""
|
|
1455
2095
|
Method which print outputs on terminal's screen.
|
|
1456
2096
|
"""
|
|
1457
2097
|
#
|
|
1458
|
-
if nuda.env.verb:
|
|
2098
|
+
if nuda.env.verb:
|
|
2099
|
+
print("Enter print_outputs()")
|
|
1459
2100
|
#
|
|
1460
2101
|
print("- Print output:")
|
|
1461
|
-
print(" model:",self.model)
|
|
1462
|
-
print(" ref: ",self.ref)
|
|
1463
|
-
print(" label:",self.label)
|
|
1464
|
-
print(" note: ",self.note)
|
|
1465
|
-
print(" self.sm_den: ",self.sm_den)
|
|
1466
|
-
print(" self.sm_effmass: ",self.sm_effmass)
|
|
1467
|
-
#if any(self.sm_den): print(f" sm_den: {np.round(self.sm_den,3)} in {self.den_unit}")
|
|
1468
|
-
if self.den is not None:
|
|
1469
|
-
|
|
1470
|
-
if self.
|
|
1471
|
-
|
|
1472
|
-
if self.
|
|
1473
|
-
|
|
1474
|
-
if self.
|
|
1475
|
-
|
|
1476
|
-
if self.
|
|
1477
|
-
|
|
1478
|
-
if self.
|
|
1479
|
-
|
|
1480
|
-
if self.
|
|
1481
|
-
|
|
1482
|
-
if self.
|
|
1483
|
-
|
|
1484
|
-
if self.
|
|
1485
|
-
|
|
1486
|
-
if self.
|
|
1487
|
-
|
|
1488
|
-
if self.
|
|
1489
|
-
|
|
1490
|
-
if self.
|
|
1491
|
-
|
|
1492
|
-
if self.
|
|
1493
|
-
|
|
1494
|
-
if self.
|
|
1495
|
-
|
|
1496
|
-
if self.
|
|
1497
|
-
|
|
2102
|
+
print(" model:", self.model)
|
|
2103
|
+
print(" ref: ", self.ref)
|
|
2104
|
+
print(" label:", self.label)
|
|
2105
|
+
print(" note: ", self.note)
|
|
2106
|
+
print(" self.sm_den: ", self.sm_den)
|
|
2107
|
+
print(" self.sm_effmass: ", self.sm_effmass)
|
|
2108
|
+
# if any(self.sm_den): print(f" sm_den: {np.round(self.sm_den,3)} in {self.den_unit}")
|
|
2109
|
+
if self.den is not None:
|
|
2110
|
+
print(f" den: {np.round(self.den,3)} in {self.den_unit}")
|
|
2111
|
+
if self.kfn is not None:
|
|
2112
|
+
print(f" kfn: {np.round(self.den,3)} in {self.kf_unit}")
|
|
2113
|
+
if self.asy is not None:
|
|
2114
|
+
print(f" asy: {np.round(self.asy,3)}")
|
|
2115
|
+
if self.e2a is not None:
|
|
2116
|
+
print(f" e2a: {np.round(self.e2a,3)} in {self.e2a_unit}")
|
|
2117
|
+
if self.eps is not None:
|
|
2118
|
+
print(f" eps: {np.round(self.eps,3)} in {self.eps_unit}")
|
|
2119
|
+
if self.pre is not None:
|
|
2120
|
+
print(f" pre: {np.round(self.pre,3)} in {self.pre_unit}")
|
|
2121
|
+
if self.cs2 is not None:
|
|
2122
|
+
print(f" cs2: {np.round(self.cs2,2)}")
|
|
2123
|
+
if self.sm_den is not None:
|
|
2124
|
+
print(f" sm_den: {np.round(self.sm_den,3)} in {self.den_unit}")
|
|
2125
|
+
if self.sm_kfn is not None:
|
|
2126
|
+
print(f" sm_kfn: {np.round(self.sm_kfn,3)} in {self.kf_unit}")
|
|
2127
|
+
#if self.sm_chempot is not None:
|
|
2128
|
+
# print(f" sm_chempot: {np.round(self.sm_chempot,3)} in {self.e2a_unit}")
|
|
2129
|
+
if self.sm_effmass is not None:
|
|
2130
|
+
print(f" sm_effmass: {np.round(self.sm_effmass,3)}")
|
|
2131
|
+
if self.sm_e2a is not None:
|
|
2132
|
+
print(f" sm_e2a: {np.round(self.sm_e2a,3)} in {self.e2a_unit}")
|
|
2133
|
+
if self.sm_e2a_err is not None:
|
|
2134
|
+
print(f" sm_e2a_err: {np.round(self.sm_e2a_err,3)} in {self.e2a_unit}")
|
|
2135
|
+
if self.sm_e2a_fit is not None:
|
|
2136
|
+
print(f" sm_e2a_fit: {np.round(self.sm_e2a_fit,3)} in {self.e2a_unit}")
|
|
2137
|
+
if self.sm_e2a_fit_err is not None:
|
|
2138
|
+
print(
|
|
2139
|
+
f" sm_e2a_fit_err: {np.round(self.sm_e2a_fit_err,3)} in {self.e2a_unit}"
|
|
2140
|
+
)
|
|
2141
|
+
if self.sm_eps is not None:
|
|
2142
|
+
print(f" sm_eps: {np.round(self.sm_eps,3)} in {self.eps_unit}")
|
|
2143
|
+
if self.sm_eps_err is not None:
|
|
2144
|
+
print(f" sm_eps_err: {np.round(self.sm_eps_err,3)} in {self.eps_unit}")
|
|
2145
|
+
if self.sm_pre is not None:
|
|
2146
|
+
print(f" sm_pre: {np.round(self.sm_pre,3)} in {self.pre_unit}")
|
|
2147
|
+
if self.sm_cs2 is not None:
|
|
2148
|
+
print(f" sm_cs2: {np.round(self.sm_cs2,3)}")
|
|
2149
|
+
#
|
|
2150
|
+
if self.nm_den is not None:
|
|
2151
|
+
print(f" nm_den: {np.round(self.nm_den,3)} in {self.den_unit}")
|
|
2152
|
+
if self.nm_kfn is not None:
|
|
2153
|
+
print(f" nm_kfn: {np.round(self.nm_kfn,3)} in {self.kf_unit}")
|
|
2154
|
+
#if self.nm_chempot is not None:
|
|
2155
|
+
# print(f" nm_chempot: {np.round(self.nm_chempot,3)} in {self.e2a_unit}")
|
|
2156
|
+
if self.nm_effmass is not None:
|
|
2157
|
+
print(f" nm_effmass: {np.round(self.nm_effmass,3)}")
|
|
2158
|
+
if self.nm_e2a is not None:
|
|
2159
|
+
print(f" nm_e2a: {np.round(self.nm_e2a,3)} in {self.e2a_unit}")
|
|
2160
|
+
if self.nm_e2a_err is not None:
|
|
2161
|
+
print(f" nm_e2a_err: {np.round(self.nm_e2a_err,3)} in {self.e2a_unit}")
|
|
2162
|
+
if self.nm_e2a_fit is not None:
|
|
2163
|
+
print(f" nm_e2a_fit: {np.round(self.nm_e2a_fit,3)} in {self.e2a_unit}")
|
|
2164
|
+
if self.nm_e2a_fit_err is not None:
|
|
2165
|
+
print(f" nm_e2a_fit_err: {np.round(self.nm_e2a_fit_err,3)} in {self.e2a_unit}" )
|
|
2166
|
+
if self.nm_eps is not None:
|
|
2167
|
+
print(f" nm_eps: {np.round(self.nm_eps,3)} in {self.eps_unit}")
|
|
2168
|
+
if self.nm_eps_err is not None:
|
|
2169
|
+
print(f" nm_eps_err: {np.round(self.nm_eps_err,3)} in {self.eps_unit}")
|
|
2170
|
+
if self.nm_pre is not None:
|
|
2171
|
+
print(f" nm_pre: {np.round(self.nm_pre,3)} in {self.pre_unit}")
|
|
2172
|
+
if self.nm_cs2 is not None:
|
|
2173
|
+
print(f" nm_cs2: {np.round(self.nm_cs2,3)}")
|
|
1498
2174
|
#
|
|
1499
|
-
if nuda.env.verb:
|
|
2175
|
+
if nuda.env.verb:
|
|
2176
|
+
print("Exit print_outputs()")
|
|
1500
2177
|
#
|
|
1501
|
-
|
|
2178
|
+
|
|
2179
|
+
def init_self(self):
|
|
1502
2180
|
"""
|
|
1503
2181
|
Initialize variables in self.
|
|
1504
2182
|
"""
|
|
1505
2183
|
#
|
|
1506
|
-
if nuda.env.verb:
|
|
2184
|
+
if nuda.env.verb:
|
|
2185
|
+
print("Enter init_self()")
|
|
1507
2186
|
#
|
|
1508
2187
|
#: Attribute the number of points for the density.
|
|
1509
|
-
self.nden = 10
|
|
2188
|
+
self.nden = 10
|
|
1510
2189
|
#: Attribute providing the full reference to the paper to be citted.
|
|
1511
|
-
self.ref =
|
|
2190
|
+
self.ref = ""
|
|
1512
2191
|
#: Attribute providing additional notes about the data.
|
|
1513
|
-
self.note =
|
|
2192
|
+
self.note = ""
|
|
1514
2193
|
#: Attribute the plot linestyle.
|
|
1515
2194
|
self.linestyle = None
|
|
1516
2195
|
#: Attribute the plot to discriminate True uncertainties from False ones.
|
|
1517
2196
|
self.err = False
|
|
1518
2197
|
#: Attribute the plot label data.
|
|
1519
|
-
self.label =
|
|
2198
|
+
self.label = ""
|
|
1520
2199
|
#: Attribute the plot marker.
|
|
1521
2200
|
self.marker = None
|
|
1522
2201
|
#: Attribute the plot every data.
|
|
@@ -1531,7 +2210,7 @@ class setupMicro():
|
|
|
1531
2210
|
#: Attribute the energy per particle.
|
|
1532
2211
|
self.e2a = None
|
|
1533
2212
|
#: Attribute the energy per unit volume.
|
|
1534
|
-
self.
|
|
2213
|
+
self.eps = None
|
|
1535
2214
|
#: Attribute the pressure.
|
|
1536
2215
|
self.pre = None
|
|
1537
2216
|
#: Attribute the sound speed.
|
|
@@ -1557,13 +2236,13 @@ class setupMicro():
|
|
|
1557
2236
|
#: Attribute the symmetric matter Fermi momentum.
|
|
1558
2237
|
self.sm_kf = None
|
|
1559
2238
|
#: Attribute the neutron matter chemical potential.
|
|
1560
|
-
self.nm_chempot = None
|
|
2239
|
+
#self.nm_chempot = None
|
|
1561
2240
|
#: Attribute the uncertainty in the neutron matter chemical potential.
|
|
1562
|
-
self.nm_chempot_err = None
|
|
2241
|
+
#self.nm_chempot_err = None
|
|
1563
2242
|
#: Attribute the symmetric matter chemical potential.
|
|
1564
|
-
self.sm_chempot = None
|
|
2243
|
+
#self.sm_chempot = None
|
|
1565
2244
|
#: Attribute the uncertainty in the symmetric matter chemical potential.
|
|
1566
|
-
self.sm_chempot_err = None
|
|
2245
|
+
#self.sm_chempot_err = None
|
|
1567
2246
|
#: Attribute the neutron matter effective mass.
|
|
1568
2247
|
self.nm_effmass = None
|
|
1569
2248
|
#: Attribute the symmetric matter effective mass.
|
|
@@ -1605,13 +2284,13 @@ class setupMicro():
|
|
|
1605
2284
|
#: Attribute the symmetric matter total potential per particle.
|
|
1606
2285
|
self.sm_vtot = None
|
|
1607
2286
|
#: Attribute the neutron matter energy per unit volume.
|
|
1608
|
-
self.
|
|
2287
|
+
self.nm_eps = None
|
|
1609
2288
|
#: Attribute the uncertainty in the neutron matter energy per unit volume.
|
|
1610
|
-
self.
|
|
2289
|
+
self.nm_eps_err = None
|
|
1611
2290
|
#: Attribute the symmetric matter energy per unit volume.
|
|
1612
|
-
self.
|
|
2291
|
+
self.sm_eps = None
|
|
1613
2292
|
#: Attribute the uncertainty in the symmetric matter energy per unit volume.
|
|
1614
|
-
self.
|
|
2293
|
+
self.sm_eps_err = None
|
|
1615
2294
|
#: Attribute the neutron matter pressure.
|
|
1616
2295
|
self.nm_pre = None
|
|
1617
2296
|
#: Attribute the uncertainty in the neutron matter pressure.
|
|
@@ -1629,7 +2308,7 @@ class setupMicro():
|
|
|
1629
2308
|
#: Attribute the uncertainty in the symmetric matter sound speed.
|
|
1630
2309
|
self.sm_cs2_err = None
|
|
1631
2310
|
#
|
|
1632
|
-
if nuda.env.verb:
|
|
2311
|
+
if nuda.env.verb:
|
|
2312
|
+
print("Exit init_self()")
|
|
1633
2313
|
#
|
|
1634
|
-
return self
|
|
1635
|
-
|
|
2314
|
+
return self
|