noshot 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/__init__.py +1 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +112 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +111 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +134 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +115 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +123 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/2_ANOVA.csv +769 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +126 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA.ipynb +134 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +119 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Two Way ANOVA.ipynb +138 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/reaction_time.csv +5 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sample_data.csv +16 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sleep_deprivation.csv +4 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/3_Linear.csv +4802 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +113 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +118 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression.ipynb +148 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/house_rate.csv +22 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +128 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression.ipynb +145 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/default.csv +1001 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/hours_scores_records.csv +101 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +256 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +157 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +178 -0
- noshot/data/AIDS CN NLP/AIDS/3. Genetic Algorithm/Genetic.ipynb +95 -0
- noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +74 -0
- noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +103 -0
- noshot/data/AIDS CN NLP/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +182 -0
- noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +120 -0
- noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +125 -0
- noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/Random Sampling.ipynb +73 -0
- noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test Hash Function.ipynb +141 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test.ipynb +151 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/1_heart.csv +304 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/Independent T Test.ipynb +119 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/Paired T Test.ipynb +118 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test Hash Function.ipynb +142 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test.ipynb +158 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/AIDS CN NLP/AIDS/Others (AllinOne)/All In One.ipynb +4581 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/chat.java +81 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +65 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +44 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +229 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/file_to_send.txt +2 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/filetransfer.java +119 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/rmi.java +56 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.awk +25 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.tcl +81 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.awk +27 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.tcl +153 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +27 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +86 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +86 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +28 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +78 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +79 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +27 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +163 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/DV.tcl +111 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/LS.tcl +106 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/analysis.awk +36 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/analysis.awk +20 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/broadcast.tcl +76 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/multicast.tcl +103 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/DHCP.java +125 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/procedure.png +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/1-Prereqs.py +18 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/2-Chi2test.py +83 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/2-T-test.py +79 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/3-WSD-nb.py +53 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/4-Hindle-Rooth.py +53 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/5-HMM-Trellis.py +82 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/6-HMM-Viterbi.py +16 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/7-PCFG-parsetree.py +15 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Chi2test.ipynb +285 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Hindle-Rooth.ipynb +179 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +1461 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 11 NMT.ipynb +2307 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/PCFG.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Prereqs.ipynb +131 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/T test.ipynb +252 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/TFIDF BOW.ipynb +171 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Trellis.ipynb +244 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/WSD.ipynb +645 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Word2Vec.ipynb +93 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +370 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +6 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +274 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +905 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/test.txt +1 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +272 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +332 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +549 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +1 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +817 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +332 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +231 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +507 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +255 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +159 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +282 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +670 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +613 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +74 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +480 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +445 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +105 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +87 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +11 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +83 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +201 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +185 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Backward-Procedure.ipynb +597 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Bag_of.ipynb +1422 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/CYK-algorithm.ipynb +1067 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Forward-Procedure.ipynb +477 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/LSTM.ipynb +1290 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +1461 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 11 NMT.ipynb +2307 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-4.ipynb +216 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-5.ipynb +216 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/abc.txt +6 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/ex-1-nltk.ipynb +711 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/ex-2-nlp.ipynb +267 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/exp8&9.ipynb +305 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/hind.ipynb +287 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/lab66.ipynb +752 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/leb_3.ipynb +612 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_1.ipynb +3008 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_2.ipynb +3095 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlplab-9.ipynb +295 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nltk-ex-4.ipynb +506 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text1.txt +48 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text2.txt +8 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text3.txt +48 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/translation-rnn.ipynb +812 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/word2vector.ipynb +173 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Backward Procedure Algorithm.ipynb +179 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Chi Square Collocation.ipynb +208 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Collocation (T test).ipynb +188 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Experiment 1.ipynb +437 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Forward Procedure Algorithm.ipynb +132 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Hindle Rooth.ipynb +414 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/MachineTranslation.ipynb +368 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +86 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +112 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/PCFG Inside Probability.ipynb +451 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Text Generation using LSTM.ipynb +297 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Viterbi.ipynb +310 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Word Sense Disambiguation.ipynb +335 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/10.Text Generation using LSTM.ipynb +316 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/11.Machine Translation.ipynb +868 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/2.T and Chi2 Test.ipynb +204 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +234 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/4.Hinddle and Rooth.ipynb +128 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/5.Forward and Backward.ipynb +149 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/6.Viterbi.ipynb +111 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG Parse Tree.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG using cyk.ipynb +101 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +310 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/9.Word2Vector.ipynb +78 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/NLP ALL In One.ipynb +2619 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/sample1.txt +15 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/sample2.txt +4 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +312 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +185 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/3. Naive Bayes WSD.ipynb +199 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/4. Hinddle and Rooth.ipynb +151 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +164 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/7. PCFG using CYK.ipynb +383 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/8. BOW and TF-IDF.ipynb +252 -0
- noshot/data/AIDS CN NLP/Ubuntu CN Lab.iso +0 -0
- noshot/main.py +47 -0
- noshot-0.1.0.dist-info/LICENSE.txt +21 -0
- noshot-0.1.0.dist-info/METADATA +65 -0
- noshot-0.1.0.dist-info/RECORD +210 -0
- noshot-0.1.0.dist-info/WHEEL +5 -0
- noshot-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,368 @@
|
|
1
|
+
{
|
2
|
+
"nbformat": 4,
|
3
|
+
"nbformat_minor": 0,
|
4
|
+
"metadata": {
|
5
|
+
"colab": {
|
6
|
+
"provenance": []
|
7
|
+
},
|
8
|
+
"kernelspec": {
|
9
|
+
"name": "python3",
|
10
|
+
"display_name": "Python 3"
|
11
|
+
},
|
12
|
+
"language_info": {
|
13
|
+
"name": "python"
|
14
|
+
}
|
15
|
+
},
|
16
|
+
"cells": [
|
17
|
+
{
|
18
|
+
"cell_type": "code",
|
19
|
+
"execution_count": 3,
|
20
|
+
"metadata": {
|
21
|
+
"colab": {
|
22
|
+
"base_uri": "https://localhost:8080/"
|
23
|
+
},
|
24
|
+
"id": "zENcxjEgujKJ",
|
25
|
+
"outputId": "362ebde0-1e55-4348-8b20-26452b0a73f8"
|
26
|
+
},
|
27
|
+
"outputs": [
|
28
|
+
{
|
29
|
+
"output_type": "stream",
|
30
|
+
"name": "stdout",
|
31
|
+
"text": [
|
32
|
+
"Epoch 1/100\n",
|
33
|
+
"1/1 [==============================] - 6s 6s/step - loss: 1.7966\n",
|
34
|
+
"Epoch 2/100\n",
|
35
|
+
"1/1 [==============================] - 0s 106ms/step - loss: 1.7062\n",
|
36
|
+
"Epoch 3/100\n",
|
37
|
+
"1/1 [==============================] - 0s 81ms/step - loss: 1.6074\n",
|
38
|
+
"Epoch 4/100\n",
|
39
|
+
"1/1 [==============================] - 0s 85ms/step - loss: 1.4785\n",
|
40
|
+
"Epoch 5/100\n",
|
41
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 1.2971\n",
|
42
|
+
"Epoch 6/100\n",
|
43
|
+
"1/1 [==============================] - 0s 98ms/step - loss: 1.0567\n",
|
44
|
+
"Epoch 7/100\n",
|
45
|
+
"1/1 [==============================] - 0s 86ms/step - loss: 0.8632\n",
|
46
|
+
"Epoch 8/100\n",
|
47
|
+
"1/1 [==============================] - 0s 88ms/step - loss: 0.8974\n",
|
48
|
+
"Epoch 9/100\n",
|
49
|
+
"1/1 [==============================] - 0s 90ms/step - loss: 0.8852\n",
|
50
|
+
"Epoch 10/100\n",
|
51
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.7900\n",
|
52
|
+
"Epoch 11/100\n",
|
53
|
+
"1/1 [==============================] - 0s 88ms/step - loss: 0.6897\n",
|
54
|
+
"Epoch 12/100\n",
|
55
|
+
"1/1 [==============================] - 0s 92ms/step - loss: 0.6299\n",
|
56
|
+
"Epoch 13/100\n",
|
57
|
+
"1/1 [==============================] - 0s 160ms/step - loss: 0.6176\n",
|
58
|
+
"Epoch 14/100\n",
|
59
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.6267\n",
|
60
|
+
"Epoch 15/100\n",
|
61
|
+
"1/1 [==============================] - 0s 83ms/step - loss: 0.6141\n",
|
62
|
+
"Epoch 16/100\n",
|
63
|
+
"1/1 [==============================] - 0s 105ms/step - loss: 0.5719\n",
|
64
|
+
"Epoch 17/100\n",
|
65
|
+
"1/1 [==============================] - 0s 97ms/step - loss: 0.5219\n",
|
66
|
+
"Epoch 18/100\n",
|
67
|
+
"1/1 [==============================] - 0s 96ms/step - loss: 0.4834\n",
|
68
|
+
"Epoch 19/100\n",
|
69
|
+
"1/1 [==============================] - 0s 89ms/step - loss: 0.4616\n",
|
70
|
+
"Epoch 20/100\n",
|
71
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.4495\n",
|
72
|
+
"Epoch 21/100\n",
|
73
|
+
"1/1 [==============================] - 0s 92ms/step - loss: 0.4351\n",
|
74
|
+
"Epoch 22/100\n",
|
75
|
+
"1/1 [==============================] - 0s 110ms/step - loss: 0.4095\n",
|
76
|
+
"Epoch 23/100\n",
|
77
|
+
"1/1 [==============================] - 0s 102ms/step - loss: 0.3753\n",
|
78
|
+
"Epoch 24/100\n",
|
79
|
+
"1/1 [==============================] - 0s 83ms/step - loss: 0.3472\n",
|
80
|
+
"Epoch 25/100\n",
|
81
|
+
"1/1 [==============================] - 0s 83ms/step - loss: 0.3378\n",
|
82
|
+
"Epoch 26/100\n",
|
83
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.3338\n",
|
84
|
+
"Epoch 27/100\n",
|
85
|
+
"1/1 [==============================] - 0s 88ms/step - loss: 0.3129\n",
|
86
|
+
"Epoch 28/100\n",
|
87
|
+
"1/1 [==============================] - 0s 138ms/step - loss: 0.2845\n",
|
88
|
+
"Epoch 29/100\n",
|
89
|
+
"1/1 [==============================] - 0s 143ms/step - loss: 0.2683\n",
|
90
|
+
"Epoch 30/100\n",
|
91
|
+
"1/1 [==============================] - 0s 160ms/step - loss: 0.2653\n",
|
92
|
+
"Epoch 31/100\n",
|
93
|
+
"1/1 [==============================] - 0s 175ms/step - loss: 0.2588\n",
|
94
|
+
"Epoch 32/100\n",
|
95
|
+
"1/1 [==============================] - 0s 168ms/step - loss: 0.2416\n",
|
96
|
+
"Epoch 33/100\n",
|
97
|
+
"1/1 [==============================] - 0s 171ms/step - loss: 0.2245\n",
|
98
|
+
"Epoch 34/100\n",
|
99
|
+
"1/1 [==============================] - 0s 183ms/step - loss: 0.2164\n",
|
100
|
+
"Epoch 35/100\n",
|
101
|
+
"1/1 [==============================] - 0s 160ms/step - loss: 0.2073\n",
|
102
|
+
"Epoch 36/100\n",
|
103
|
+
"1/1 [==============================] - 0s 154ms/step - loss: 0.1906\n",
|
104
|
+
"Epoch 37/100\n",
|
105
|
+
"1/1 [==============================] - 0s 158ms/step - loss: 0.1772\n",
|
106
|
+
"Epoch 38/100\n",
|
107
|
+
"1/1 [==============================] - 0s 174ms/step - loss: 0.1718\n",
|
108
|
+
"Epoch 39/100\n",
|
109
|
+
"1/1 [==============================] - 0s 170ms/step - loss: 0.1637\n",
|
110
|
+
"Epoch 40/100\n",
|
111
|
+
"1/1 [==============================] - 0s 154ms/step - loss: 0.1494\n",
|
112
|
+
"Epoch 41/100\n",
|
113
|
+
"1/1 [==============================] - 0s 138ms/step - loss: 0.1374\n",
|
114
|
+
"Epoch 42/100\n",
|
115
|
+
"1/1 [==============================] - 0s 164ms/step - loss: 0.1292\n",
|
116
|
+
"Epoch 43/100\n",
|
117
|
+
"1/1 [==============================] - 0s 159ms/step - loss: 0.1183\n",
|
118
|
+
"Epoch 44/100\n",
|
119
|
+
"1/1 [==============================] - 0s 183ms/step - loss: 0.1055\n",
|
120
|
+
"Epoch 45/100\n",
|
121
|
+
"1/1 [==============================] - 0s 168ms/step - loss: 0.0958\n",
|
122
|
+
"Epoch 46/100\n",
|
123
|
+
"1/1 [==============================] - 0s 190ms/step - loss: 0.0875\n",
|
124
|
+
"Epoch 47/100\n",
|
125
|
+
"1/1 [==============================] - 0s 125ms/step - loss: 0.0775\n",
|
126
|
+
"Epoch 48/100\n",
|
127
|
+
"1/1 [==============================] - 0s 96ms/step - loss: 0.0669\n",
|
128
|
+
"Epoch 49/100\n",
|
129
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.0581\n",
|
130
|
+
"Epoch 50/100\n",
|
131
|
+
"1/1 [==============================] - 0s 97ms/step - loss: 0.0528\n",
|
132
|
+
"Epoch 51/100\n",
|
133
|
+
"1/1 [==============================] - 0s 115ms/step - loss: 0.0515\n",
|
134
|
+
"Epoch 52/100\n",
|
135
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.0513\n",
|
136
|
+
"Epoch 53/100\n",
|
137
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.0482\n",
|
138
|
+
"Epoch 54/100\n",
|
139
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.0409\n",
|
140
|
+
"Epoch 55/100\n",
|
141
|
+
"1/1 [==============================] - 0s 92ms/step - loss: 0.0331\n",
|
142
|
+
"Epoch 56/100\n",
|
143
|
+
"1/1 [==============================] - 0s 89ms/step - loss: 0.0279\n",
|
144
|
+
"Epoch 57/100\n",
|
145
|
+
"1/1 [==============================] - 0s 100ms/step - loss: 0.0248\n",
|
146
|
+
"Epoch 58/100\n",
|
147
|
+
"1/1 [==============================] - 0s 98ms/step - loss: 0.0227\n",
|
148
|
+
"Epoch 59/100\n",
|
149
|
+
"1/1 [==============================] - 0s 109ms/step - loss: 0.0208\n",
|
150
|
+
"Epoch 60/100\n",
|
151
|
+
"1/1 [==============================] - 0s 110ms/step - loss: 0.0191\n",
|
152
|
+
"Epoch 61/100\n",
|
153
|
+
"1/1 [==============================] - 0s 140ms/step - loss: 0.0175\n",
|
154
|
+
"Epoch 62/100\n",
|
155
|
+
"1/1 [==============================] - 0s 148ms/step - loss: 0.0160\n",
|
156
|
+
"Epoch 63/100\n",
|
157
|
+
"1/1 [==============================] - 0s 115ms/step - loss: 0.0144\n",
|
158
|
+
"Epoch 64/100\n",
|
159
|
+
"1/1 [==============================] - 0s 109ms/step - loss: 0.0127\n",
|
160
|
+
"Epoch 65/100\n",
|
161
|
+
"1/1 [==============================] - 0s 107ms/step - loss: 0.0112\n",
|
162
|
+
"Epoch 66/100\n",
|
163
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.0100\n",
|
164
|
+
"Epoch 67/100\n",
|
165
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.0089\n",
|
166
|
+
"Epoch 68/100\n",
|
167
|
+
"1/1 [==============================] - 0s 84ms/step - loss: 0.0080\n",
|
168
|
+
"Epoch 69/100\n",
|
169
|
+
"1/1 [==============================] - 0s 108ms/step - loss: 0.0072\n",
|
170
|
+
"Epoch 70/100\n",
|
171
|
+
"1/1 [==============================] - 0s 105ms/step - loss: 0.0066\n",
|
172
|
+
"Epoch 71/100\n",
|
173
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.0061\n",
|
174
|
+
"Epoch 72/100\n",
|
175
|
+
"1/1 [==============================] - 0s 92ms/step - loss: 0.0058\n",
|
176
|
+
"Epoch 73/100\n",
|
177
|
+
"1/1 [==============================] - 0s 99ms/step - loss: 0.0055\n",
|
178
|
+
"Epoch 74/100\n",
|
179
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.0052\n",
|
180
|
+
"Epoch 75/100\n",
|
181
|
+
"1/1 [==============================] - 0s 100ms/step - loss: 0.0049\n",
|
182
|
+
"Epoch 76/100\n",
|
183
|
+
"1/1 [==============================] - 0s 98ms/step - loss: 0.0046\n",
|
184
|
+
"Epoch 77/100\n",
|
185
|
+
"1/1 [==============================] - 0s 112ms/step - loss: 0.0043\n",
|
186
|
+
"Epoch 78/100\n",
|
187
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.0041\n",
|
188
|
+
"Epoch 79/100\n",
|
189
|
+
"1/1 [==============================] - 0s 88ms/step - loss: 0.0038\n",
|
190
|
+
"Epoch 80/100\n",
|
191
|
+
"1/1 [==============================] - 0s 95ms/step - loss: 0.0036\n",
|
192
|
+
"Epoch 81/100\n",
|
193
|
+
"1/1 [==============================] - 0s 100ms/step - loss: 0.0034\n",
|
194
|
+
"Epoch 82/100\n",
|
195
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.0032\n",
|
196
|
+
"Epoch 83/100\n",
|
197
|
+
"1/1 [==============================] - 0s 98ms/step - loss: 0.0030\n",
|
198
|
+
"Epoch 84/100\n",
|
199
|
+
"1/1 [==============================] - 0s 93ms/step - loss: 0.0029\n",
|
200
|
+
"Epoch 85/100\n",
|
201
|
+
"1/1 [==============================] - 0s 102ms/step - loss: 0.0027\n",
|
202
|
+
"Epoch 86/100\n",
|
203
|
+
"1/1 [==============================] - 0s 84ms/step - loss: 0.0026\n",
|
204
|
+
"Epoch 87/100\n",
|
205
|
+
"1/1 [==============================] - 0s 98ms/step - loss: 0.0025\n",
|
206
|
+
"Epoch 88/100\n",
|
207
|
+
"1/1 [==============================] - 0s 106ms/step - loss: 0.0024\n",
|
208
|
+
"Epoch 89/100\n",
|
209
|
+
"1/1 [==============================] - 0s 95ms/step - loss: 0.0023\n",
|
210
|
+
"Epoch 90/100\n",
|
211
|
+
"1/1 [==============================] - 0s 92ms/step - loss: 0.0023\n",
|
212
|
+
"Epoch 91/100\n",
|
213
|
+
"1/1 [==============================] - 0s 98ms/step - loss: 0.0022\n",
|
214
|
+
"Epoch 92/100\n",
|
215
|
+
"1/1 [==============================] - 0s 86ms/step - loss: 0.0021\n",
|
216
|
+
"Epoch 93/100\n",
|
217
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.0021\n",
|
218
|
+
"Epoch 94/100\n",
|
219
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.0020\n",
|
220
|
+
"Epoch 95/100\n",
|
221
|
+
"1/1 [==============================] - 0s 92ms/step - loss: 0.0019\n",
|
222
|
+
"Epoch 96/100\n",
|
223
|
+
"1/1 [==============================] - 0s 87ms/step - loss: 0.0019\n",
|
224
|
+
"Epoch 97/100\n",
|
225
|
+
"1/1 [==============================] - 0s 95ms/step - loss: 0.0018\n",
|
226
|
+
"Epoch 98/100\n",
|
227
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.0018\n",
|
228
|
+
"Epoch 99/100\n",
|
229
|
+
"1/1 [==============================] - 0s 91ms/step - loss: 0.0017\n",
|
230
|
+
"Epoch 100/100\n",
|
231
|
+
"1/1 [==============================] - 0s 88ms/step - loss: 0.0017\n",
|
232
|
+
"1/1 [==============================] - 0s 482ms/step\n",
|
233
|
+
"1/1 [==============================] - 0s 488ms/step\n",
|
234
|
+
"1/1 [==============================] - 0s 27ms/step\n",
|
235
|
+
"1/1 [==============================] - 0s 26ms/step\n",
|
236
|
+
"1/1 [==============================] - 0s 28ms/step\n",
|
237
|
+
"1/1 [==============================] - 0s 33ms/step\n",
|
238
|
+
"1/1 [==============================] - 0s 34ms/step\n",
|
239
|
+
"1/1 [==============================] - 0s 29ms/step\n",
|
240
|
+
"1/1 [==============================] - 0s 35ms/step\n",
|
241
|
+
"1/1 [==============================] - 0s 42ms/step\n",
|
242
|
+
"1/1 [==============================] - 0s 32ms/step\n",
|
243
|
+
"1/1 [==============================] - 0s 40ms/step\n",
|
244
|
+
"Input Sentence: hello how are you\n",
|
245
|
+
"Translation: salut comment ca va <START> <START> <START> <START> <START> <START> <START>\n"
|
246
|
+
]
|
247
|
+
}
|
248
|
+
],
|
249
|
+
"source": [
|
250
|
+
"import numpy as np\n",
|
251
|
+
"import tensorflow as tf\n",
|
252
|
+
"from tensorflow.keras.models import Model\n",
|
253
|
+
"from tensorflow.keras.layers import Input, LSTM, Dense\n",
|
254
|
+
"\n",
|
255
|
+
"# Define the input and target language vocabularies\n",
|
256
|
+
"input_vocab = ['hello', 'how', 'are', 'you']\n",
|
257
|
+
"target_vocab = ['<START>', '<END>','salut', 'comment', 'ca', 'va']\n",
|
258
|
+
"\n",
|
259
|
+
"# Define the maximum sequence length for input and target sentences\n",
|
260
|
+
"max_seq_length = 10\n",
|
261
|
+
"\n",
|
262
|
+
"# Create dictionaries to map words to indices and vice versa\n",
|
263
|
+
"input_word2idx = {word: idx for idx, word in enumerate(input_vocab)}\n",
|
264
|
+
"input_idx2word = {idx: word for idx, word in enumerate(input_vocab)}\n",
|
265
|
+
"target_word2idx = {word: idx for idx, word in enumerate(target_vocab)}\n",
|
266
|
+
"target_idx2word = {idx: word for idx, word in enumerate(target_vocab)}\n",
|
267
|
+
"\n",
|
268
|
+
"# Define the encoder model\n",
|
269
|
+
"encoder_input = Input(shape=(None,))\n",
|
270
|
+
"encoder_embedding = tf.keras.layers.Embedding(len(input_vocab), 256)(encoder_input)\n",
|
271
|
+
"encoder_lstm = LSTM(256, return_state=True)\n",
|
272
|
+
"encoder_outputs, state_h, state_c = encoder_lstm(encoder_embedding)\n",
|
273
|
+
"encoder_states = [state_h, state_c]\n",
|
274
|
+
"\n",
|
275
|
+
"# Define the decoder model\n",
|
276
|
+
"decoder_input = Input(shape=(None,))\n",
|
277
|
+
"decoder_embedding = tf.keras.layers.Embedding(len(target_vocab), 256)(decoder_input)\n",
|
278
|
+
"decoder_lstm = LSTM(256, return_sequences=True, return_state=True)\n",
|
279
|
+
"decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)\n",
|
280
|
+
"decoder_dense = Dense(len(target_vocab), activation='softmax')\n",
|
281
|
+
"decoder_outputs = decoder_dense(decoder_outputs)\n",
|
282
|
+
"\n",
|
283
|
+
"# Create the model\n",
|
284
|
+
"model = Model([encoder_input, decoder_input], decoder_outputs)\n",
|
285
|
+
"\n",
|
286
|
+
"# Compile the model\n",
|
287
|
+
"model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')\n",
|
288
|
+
"\n",
|
289
|
+
"# Generate training data\n",
|
290
|
+
"input_sentences = ['hello how are you', 'how are you']\n",
|
291
|
+
"target_sentences = ['salut comment ca va', 'comment ca va']\n",
|
292
|
+
"encoder_input_data = np.zeros((len(input_sentences), max_seq_length), dtype='float32')\n",
|
293
|
+
"decoder_input_data = np.zeros((len(target_sentences), max_seq_length), dtype='float32')\n",
|
294
|
+
"decoder_target_data = np.zeros((len(target_sentences), max_seq_length), dtype='float32')\n",
|
295
|
+
"\n",
|
296
|
+
"for i, (input_sentence, target_sentence) in enumerate(zip(input_sentences, target_sentences)):\n",
|
297
|
+
" for t, word in enumerate(input_sentence.split()):\n",
|
298
|
+
" encoder_input_data[i, t] = input_word2idx[word]\n",
|
299
|
+
" for t, word in enumerate(target_sentence.split()):\n",
|
300
|
+
" if t == 0:\n",
|
301
|
+
" decoder_input_data[i, t] = target_word2idx['<START>']\n",
|
302
|
+
" else:\n",
|
303
|
+
" decoder_input_data[i, t] = target_word2idx[word]\n",
|
304
|
+
" decoder_target_data[i, t] = target_word2idx[word]\n",
|
305
|
+
"\n",
|
306
|
+
"\n",
|
307
|
+
"# Train the model\n",
|
308
|
+
"model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=2, epochs=100)\n",
|
309
|
+
"\n",
|
310
|
+
"# Define the inference models\n",
|
311
|
+
"encoder_model = Model(encoder_input, encoder_states)\n",
|
312
|
+
"\n",
|
313
|
+
"decoder_state_input_h = Input(shape=(256,))\n",
|
314
|
+
"decoder_state_input_c = Input(shape=(256,))\n",
|
315
|
+
"decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]\n",
|
316
|
+
"\n",
|
317
|
+
"decoder_outputs, state_h, state_c = decoder_lstm(decoder_embedding, initial_state=decoder_states_inputs)\n",
|
318
|
+
"decoder_states = [state_h, state_c]\n",
|
319
|
+
"decoder_outputs = decoder_dense(decoder_outputs)\n",
|
320
|
+
"\n",
|
321
|
+
"decoder_model = Model([decoder_input] + decoder_states_inputs, [decoder_outputs] + decoder_states)\n",
|
322
|
+
"\n",
|
323
|
+
"# Translate a sentence\n",
|
324
|
+
"def translate_sentence(input_sentence):\n",
|
325
|
+
" input_tokens = [input_word2idx[word] for word in input_sentence.split()]\n",
|
326
|
+
" input_seq = tf.keras.preprocessing.sequence.pad_sequences([input_tokens], maxlen=max_seq_length, padding='post')\n",
|
327
|
+
" states_value = encoder_model.predict(input_seq)\n",
|
328
|
+
" \n",
|
329
|
+
" target_seq = np.zeros((1, 1))\n",
|
330
|
+
" target_seq[0, 0] = target_word2idx['<START>']\n",
|
331
|
+
" \n",
|
332
|
+
" stop_condition = False\n",
|
333
|
+
" translated_sentence = ''\n",
|
334
|
+
" \n",
|
335
|
+
" while not stop_condition:\n",
|
336
|
+
" output_tokens, h, c = decoder_model.predict([target_seq] + states_value)\n",
|
337
|
+
" sampled_token_index = np.argmax(output_tokens[0, -1, :])\n",
|
338
|
+
" sampled_word = target_idx2word[sampled_token_index]\n",
|
339
|
+
" translated_sentence += ' ' + sampled_word\n",
|
340
|
+
" \n",
|
341
|
+
" if sampled_word == '<END>' or len(translated_sentence.split()) > max_seq_length:\n",
|
342
|
+
" stop_condition = True\n",
|
343
|
+
" \n",
|
344
|
+
" target_seq = np.zeros((1, 1))\n",
|
345
|
+
" target_seq[0, 0] = sampled_token_index\n",
|
346
|
+
" \n",
|
347
|
+
" states_value = [h, c]\n",
|
348
|
+
" \n",
|
349
|
+
" return translated_sentence.strip()\n",
|
350
|
+
"\n",
|
351
|
+
"# Test the translation function\n",
|
352
|
+
"input_sentence = 'hello how are you'\n",
|
353
|
+
"translation = translate_sentence(input_sentence)\n",
|
354
|
+
"print('Input Sentence:', input_sentence)\n",
|
355
|
+
"print('Translation:', translation)\n"
|
356
|
+
]
|
357
|
+
},
|
358
|
+
{
|
359
|
+
"cell_type": "code",
|
360
|
+
"source": [],
|
361
|
+
"metadata": {
|
362
|
+
"id": "s8OQagR9u1GY"
|
363
|
+
},
|
364
|
+
"execution_count": null,
|
365
|
+
"outputs": []
|
366
|
+
}
|
367
|
+
]
|
368
|
+
}
|
@@ -0,0 +1,86 @@
|
|
1
|
+
{
|
2
|
+
"nbformat": 4,
|
3
|
+
"nbformat_minor": 0,
|
4
|
+
"metadata": {
|
5
|
+
"colab": {
|
6
|
+
"provenance": []
|
7
|
+
},
|
8
|
+
"kernelspec": {
|
9
|
+
"name": "python3",
|
10
|
+
"display_name": "Python 3"
|
11
|
+
},
|
12
|
+
"language_info": {
|
13
|
+
"name": "python"
|
14
|
+
}
|
15
|
+
},
|
16
|
+
"cells": [
|
17
|
+
{
|
18
|
+
"cell_type": "code",
|
19
|
+
"source": [
|
20
|
+
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
21
|
+
"from sklearn.model_selection import train_test_split\n",
|
22
|
+
"from sklearn.neural_network import MLPClassifier\n",
|
23
|
+
"\n",
|
24
|
+
"# Define the text data and labels\n",
|
25
|
+
"texts = ['This is a good movie',\n",
|
26
|
+
" 'I really enjoyed the book',\n",
|
27
|
+
" 'The restaurant has excellent food',\n",
|
28
|
+
" 'I did not like the concert',\n",
|
29
|
+
" 'The weather today is beautiful',\n",
|
30
|
+
" 'i hate this show',\n",
|
31
|
+
" 'i hate that boy']\n",
|
32
|
+
"\n",
|
33
|
+
"labels = ['positive', 'positive', 'positive', 'negative', 'positive','negative','negative']\n",
|
34
|
+
"\n",
|
35
|
+
"# Split the data into training and testing sets\n",
|
36
|
+
"X_train, X_test, y_train, y_test = train_test_split(texts, labels, test_size=0.2, random_state=42)\n",
|
37
|
+
"\n",
|
38
|
+
"# Vectorize the text data\n",
|
39
|
+
"vectorizer = CountVectorizer()\n",
|
40
|
+
"X_train = vectorizer.fit_transform(X_train)\n",
|
41
|
+
"X_test = vectorizer.transform(X_test)\n",
|
42
|
+
"\n",
|
43
|
+
"# Initialize and train the MLP classifier\n",
|
44
|
+
"mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=1000, random_state=42)\n",
|
45
|
+
"mlp.fit(X_train, y_train)\n",
|
46
|
+
"\n",
|
47
|
+
"# Evaluate the classifier on the test set\n",
|
48
|
+
"accuracy = mlp.score(X_test, y_test)\n",
|
49
|
+
"print(\"Accuracy:\", accuracy)\n",
|
50
|
+
"\n",
|
51
|
+
"# Make predictions on new data\n",
|
52
|
+
"new_texts = ['The movie was average', 'I hate the new album']\n",
|
53
|
+
"new_text_vectors = vectorizer.transform(new_texts)\n",
|
54
|
+
"predictions = mlp.predict(new_text_vectors)\n",
|
55
|
+
"print(\"Predictions:\", predictions)\n"
|
56
|
+
],
|
57
|
+
"metadata": {
|
58
|
+
"colab": {
|
59
|
+
"base_uri": "https://localhost:8080/"
|
60
|
+
},
|
61
|
+
"id": "zO5ACNeLrxrA",
|
62
|
+
"outputId": "732d5b12-39d7-4a4a-e240-9509d5016cc9"
|
63
|
+
},
|
64
|
+
"execution_count": null,
|
65
|
+
"outputs": [
|
66
|
+
{
|
67
|
+
"output_type": "stream",
|
68
|
+
"name": "stdout",
|
69
|
+
"text": [
|
70
|
+
"Accuracy: 0.5\n",
|
71
|
+
"Predictions: ['positive' 'negative']\n"
|
72
|
+
]
|
73
|
+
}
|
74
|
+
]
|
75
|
+
},
|
76
|
+
{
|
77
|
+
"cell_type": "code",
|
78
|
+
"source": [],
|
79
|
+
"metadata": {
|
80
|
+
"id": "bIhs1lRZsa-w"
|
81
|
+
},
|
82
|
+
"execution_count": null,
|
83
|
+
"outputs": []
|
84
|
+
}
|
85
|
+
]
|
86
|
+
}
|
@@ -0,0 +1,112 @@
|
|
1
|
+
{
|
2
|
+
"nbformat": 4,
|
3
|
+
"nbformat_minor": 0,
|
4
|
+
"metadata": {
|
5
|
+
"colab": {
|
6
|
+
"provenance": []
|
7
|
+
},
|
8
|
+
"kernelspec": {
|
9
|
+
"name": "python3",
|
10
|
+
"display_name": "Python 3"
|
11
|
+
},
|
12
|
+
"language_info": {
|
13
|
+
"name": "python"
|
14
|
+
}
|
15
|
+
},
|
16
|
+
"cells": [
|
17
|
+
{
|
18
|
+
"cell_type": "code",
|
19
|
+
"execution_count": null,
|
20
|
+
"metadata": {
|
21
|
+
"colab": {
|
22
|
+
"base_uri": "https://localhost:8080/"
|
23
|
+
},
|
24
|
+
"id": "iKCv_ddTtLfj",
|
25
|
+
"outputId": "9bc5c8fe-e290-4f9f-8dfc-07b049e3d032"
|
26
|
+
},
|
27
|
+
"outputs": [
|
28
|
+
{
|
29
|
+
"output_type": "stream",
|
30
|
+
"name": "stdout",
|
31
|
+
"text": [
|
32
|
+
"Epoch 1/10\n",
|
33
|
+
"1/1 [==============================] - 2s 2s/step - loss: 0.6106 - accuracy: 0.8000\n",
|
34
|
+
"Epoch 2/10\n",
|
35
|
+
"1/1 [==============================] - 0s 15ms/step - loss: 0.5906 - accuracy: 0.8000\n",
|
36
|
+
"Epoch 3/10\n",
|
37
|
+
"1/1 [==============================] - 0s 16ms/step - loss: 0.5712 - accuracy: 0.8000\n",
|
38
|
+
"Epoch 4/10\n",
|
39
|
+
"1/1 [==============================] - 0s 15ms/step - loss: 0.5523 - accuracy: 0.8000\n",
|
40
|
+
"Epoch 5/10\n",
|
41
|
+
"1/1 [==============================] - 0s 13ms/step - loss: 0.5339 - accuracy: 1.0000\n",
|
42
|
+
"Epoch 6/10\n",
|
43
|
+
"1/1 [==============================] - 0s 13ms/step - loss: 0.5158 - accuracy: 1.0000\n",
|
44
|
+
"Epoch 7/10\n",
|
45
|
+
"1/1 [==============================] - 0s 13ms/step - loss: 0.4982 - accuracy: 1.0000\n",
|
46
|
+
"Epoch 8/10\n",
|
47
|
+
"1/1 [==============================] - 0s 11ms/step - loss: 0.4810 - accuracy: 1.0000\n",
|
48
|
+
"Epoch 9/10\n",
|
49
|
+
"1/1 [==============================] - 0s 12ms/step - loss: 0.4644 - accuracy: 1.0000\n",
|
50
|
+
"Epoch 10/10\n",
|
51
|
+
"1/1 [==============================] - 0s 12ms/step - loss: 0.4482 - accuracy: 1.0000\n",
|
52
|
+
"1/1 [==============================] - 0s 193ms/step - loss: 0.6465 - accuracy: 0.5000\n",
|
53
|
+
"Accuracy: 0.5\n"
|
54
|
+
]
|
55
|
+
}
|
56
|
+
],
|
57
|
+
"source": [
|
58
|
+
"import numpy as np\n",
|
59
|
+
"import tensorflow as tf\n",
|
60
|
+
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
61
|
+
"from sklearn.model_selection import train_test_split\n",
|
62
|
+
"\n",
|
63
|
+
"# Sample text data\n",
|
64
|
+
"texts = [\n",
|
65
|
+
" \"This is a positive review\",\n",
|
66
|
+
" \"I enjoyed the movie a lot\",\n",
|
67
|
+
" \"Great performance by the actors\",\n",
|
68
|
+
" \"The plot was intriguing\",\n",
|
69
|
+
" \"Negative feedback about the service\",\n",
|
70
|
+
" \"Disappointed with the product quality\",\n",
|
71
|
+
" \"Worst experience ever\"\n",
|
72
|
+
"]\n",
|
73
|
+
"\n",
|
74
|
+
"# Sample labels\n",
|
75
|
+
"labels = [1, 1, 1, 1, 0, 0, 0]\n",
|
76
|
+
"\n",
|
77
|
+
"# Convert text data into numerical feature vectors\n",
|
78
|
+
"vectorizer = CountVectorizer()\n",
|
79
|
+
"X = vectorizer.fit_transform(texts).toarray()\n",
|
80
|
+
"y = np.array(labels)\n",
|
81
|
+
"\n",
|
82
|
+
"# Split the data into training and testing sets\n",
|
83
|
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
84
|
+
"\n",
|
85
|
+
"# Define the MLP architecture\n",
|
86
|
+
"n_features = X_train.shape[1]\n",
|
87
|
+
"n_classes = 2\n",
|
88
|
+
"n_hidden_units = 100\n",
|
89
|
+
"\n",
|
90
|
+
"# Convert labels to one-hot encoding\n",
|
91
|
+
"y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=n_classes)\n",
|
92
|
+
"\n",
|
93
|
+
"# Create the MLP model\n",
|
94
|
+
"model = tf.keras.Sequential([\n",
|
95
|
+
" tf.keras.layers.Dense(n_hidden_units, activation='relu', input_shape=(n_features,)),\n",
|
96
|
+
" tf.keras.layers.Dense(n_classes, activation='softmax')\n",
|
97
|
+
"])\n",
|
98
|
+
"\n",
|
99
|
+
"# Compile the model\n",
|
100
|
+
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
101
|
+
"\n",
|
102
|
+
"# Train the model\n",
|
103
|
+
"model.fit(X_train, y_train_encoded, epochs=10, batch_size=16)\n",
|
104
|
+
"\n",
|
105
|
+
"# Evaluate the model on the testing set\n",
|
106
|
+
"y_test_encoded = tf.keras.utils.to_categorical(y_test, num_classes=n_classes)\n",
|
107
|
+
"loss, accuracy = model.evaluate(X_test, y_test_encoded)\n",
|
108
|
+
"print(\"Accuracy:\", accuracy)\n"
|
109
|
+
]
|
110
|
+
}
|
111
|
+
]
|
112
|
+
}
|