noshot 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (210) hide show
  1. noshot/__init__.py +1 -0
  2. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +112 -0
  3. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +111 -0
  4. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +134 -0
  5. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +115 -0
  6. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +123 -0
  7. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/2_ANOVA.csv +769 -0
  8. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +126 -0
  9. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA.ipynb +134 -0
  10. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +119 -0
  11. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Two Way ANOVA.ipynb +138 -0
  12. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/reaction_time.csv +5 -0
  13. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sample_data.csv +16 -0
  14. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sleep_deprivation.csv +4 -0
  15. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/3_Linear.csv +4802 -0
  16. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +113 -0
  17. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +118 -0
  18. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression.ipynb +148 -0
  19. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/house_rate.csv +22 -0
  20. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +128 -0
  21. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression.ipynb +145 -0
  22. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/default.csv +1001 -0
  23. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/hours_scores_records.csv +101 -0
  24. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +256 -0
  25. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +157 -0
  26. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +178 -0
  27. noshot/data/AIDS CN NLP/AIDS/3. Genetic Algorithm/Genetic.ipynb +95 -0
  28. noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +74 -0
  29. noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +103 -0
  30. noshot/data/AIDS CN NLP/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +182 -0
  31. noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +120 -0
  32. noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +125 -0
  33. noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/Random Sampling.ipynb +73 -0
  34. noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/height_weight_bmi.csv +8389 -0
  35. noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test Hash Function.ipynb +141 -0
  36. noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test.ipynb +151 -0
  37. noshot/data/AIDS CN NLP/AIDS/8. Z Test/height_weight_bmi.csv +8389 -0
  38. noshot/data/AIDS CN NLP/AIDS/9. T Test/1_heart.csv +304 -0
  39. noshot/data/AIDS CN NLP/AIDS/9. T Test/Independent T Test.ipynb +119 -0
  40. noshot/data/AIDS CN NLP/AIDS/9. T Test/Paired T Test.ipynb +118 -0
  41. noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test Hash Function.ipynb +142 -0
  42. noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test.ipynb +158 -0
  43. noshot/data/AIDS CN NLP/AIDS/9. T Test/height_weight_bmi.csv +8389 -0
  44. noshot/data/AIDS CN NLP/AIDS/9. T Test/iq_test.csv +0 -0
  45. noshot/data/AIDS CN NLP/AIDS/Others (AllinOne)/All In One.ipynb +4581 -0
  46. noshot/data/AIDS CN NLP/CN/1. Chat Application/chat.java +81 -0
  47. noshot/data/AIDS CN NLP/CN/1. Chat Application/output.png +0 -0
  48. noshot/data/AIDS CN NLP/CN/1. Chat Application/procedure.png +0 -0
  49. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +65 -0
  50. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +44 -0
  51. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  52. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  53. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +229 -0
  54. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  55. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  56. noshot/data/AIDS CN NLP/CN/2. File Transfer/file_to_send.txt +2 -0
  57. noshot/data/AIDS CN NLP/CN/2. File Transfer/filetransfer.java +119 -0
  58. noshot/data/AIDS CN NLP/CN/2. File Transfer/output.png +0 -0
  59. noshot/data/AIDS CN NLP/CN/2. File Transfer/procedure.png +0 -0
  60. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  61. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  62. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/rmi.java +56 -0
  63. noshot/data/AIDS CN NLP/CN/4. Wired Network/output.png +0 -0
  64. noshot/data/AIDS CN NLP/CN/4. Wired Network/procedure.png +0 -0
  65. noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.awk +25 -0
  66. noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.tcl +81 -0
  67. noshot/data/AIDS CN NLP/CN/5. Wireless Network/output.png +0 -0
  68. noshot/data/AIDS CN NLP/CN/5. Wireless Network/procedure.png +0 -0
  69. noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.awk +27 -0
  70. noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.tcl +153 -0
  71. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +27 -0
  72. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  73. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +86 -0
  74. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +86 -0
  75. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +28 -0
  76. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  77. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +78 -0
  78. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +79 -0
  79. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +27 -0
  80. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +163 -0
  81. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  82. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  83. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/DV.tcl +111 -0
  84. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/LS.tcl +106 -0
  85. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/analysis.awk +36 -0
  86. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  87. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  88. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/analysis.awk +20 -0
  89. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/broadcast.tcl +76 -0
  90. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/multicast.tcl +103 -0
  91. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  92. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  93. noshot/data/AIDS CN NLP/CN/9. DHCP/DHCP.java +125 -0
  94. noshot/data/AIDS CN NLP/CN/9. DHCP/output.png +0 -0
  95. noshot/data/AIDS CN NLP/CN/9. DHCP/procedure.png +0 -0
  96. noshot/data/AIDS CN NLP/NLP/NLP 1/1-Prereqs.py +18 -0
  97. noshot/data/AIDS CN NLP/NLP/NLP 1/2-Chi2test.py +83 -0
  98. noshot/data/AIDS CN NLP/NLP/NLP 1/2-T-test.py +79 -0
  99. noshot/data/AIDS CN NLP/NLP/NLP 1/3-WSD-nb.py +53 -0
  100. noshot/data/AIDS CN NLP/NLP/NLP 1/4-Hindle-Rooth.py +53 -0
  101. noshot/data/AIDS CN NLP/NLP/NLP 1/5-HMM-Trellis.py +82 -0
  102. noshot/data/AIDS CN NLP/NLP/NLP 1/6-HMM-Viterbi.py +16 -0
  103. noshot/data/AIDS CN NLP/NLP/NLP 1/7-PCFG-parsetree.py +15 -0
  104. noshot/data/AIDS CN NLP/NLP/NLP 1/Chi2test.ipynb +285 -0
  105. noshot/data/AIDS CN NLP/NLP/NLP 1/Hindle-Rooth.ipynb +179 -0
  106. noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +1461 -0
  107. noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 11 NMT.ipynb +2307 -0
  108. noshot/data/AIDS CN NLP/NLP/NLP 1/PCFG.ipynb +134 -0
  109. noshot/data/AIDS CN NLP/NLP/NLP 1/Prereqs.ipynb +131 -0
  110. noshot/data/AIDS CN NLP/NLP/NLP 1/T test.ipynb +252 -0
  111. noshot/data/AIDS CN NLP/NLP/NLP 1/TFIDF BOW.ipynb +171 -0
  112. noshot/data/AIDS CN NLP/NLP/NLP 1/Trellis.ipynb +244 -0
  113. noshot/data/AIDS CN NLP/NLP/NLP 1/WSD.ipynb +645 -0
  114. noshot/data/AIDS CN NLP/NLP/NLP 1/Word2Vec.ipynb +93 -0
  115. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +370 -0
  116. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +6 -0
  117. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +274 -0
  118. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +905 -0
  119. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/test.txt +1 -0
  120. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +272 -0
  121. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +332 -0
  122. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +549 -0
  123. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +1 -0
  124. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +817 -0
  125. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +332 -0
  126. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +231 -0
  127. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +507 -0
  128. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +134 -0
  129. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +255 -0
  130. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +159 -0
  131. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +282 -0
  132. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +670 -0
  133. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +613 -0
  134. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +74 -0
  135. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +480 -0
  136. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +445 -0
  137. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +105 -0
  138. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +87 -0
  139. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +11 -0
  140. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +83 -0
  141. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +201 -0
  142. noshot/data/AIDS CN NLP/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +185 -0
  143. noshot/data/AIDS CN NLP/NLP/NLP 3/Backward-Procedure.ipynb +597 -0
  144. noshot/data/AIDS CN NLP/NLP/NLP 3/Bag_of.ipynb +1422 -0
  145. noshot/data/AIDS CN NLP/NLP/NLP 3/CYK-algorithm.ipynb +1067 -0
  146. noshot/data/AIDS CN NLP/NLP/NLP 3/Forward-Procedure.ipynb +477 -0
  147. noshot/data/AIDS CN NLP/NLP/NLP 3/LSTM.ipynb +1290 -0
  148. noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +1461 -0
  149. noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 11 NMT.ipynb +2307 -0
  150. noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-4.ipynb +216 -0
  151. noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-5.ipynb +216 -0
  152. noshot/data/AIDS CN NLP/NLP/NLP 3/abc.txt +6 -0
  153. noshot/data/AIDS CN NLP/NLP/NLP 3/ex-1-nltk.ipynb +711 -0
  154. noshot/data/AIDS CN NLP/NLP/NLP 3/ex-2-nlp.ipynb +267 -0
  155. noshot/data/AIDS CN NLP/NLP/NLP 3/exp8&9.ipynb +305 -0
  156. noshot/data/AIDS CN NLP/NLP/NLP 3/hind.ipynb +287 -0
  157. noshot/data/AIDS CN NLP/NLP/NLP 3/lab66.ipynb +752 -0
  158. noshot/data/AIDS CN NLP/NLP/NLP 3/leb_3.ipynb +612 -0
  159. noshot/data/AIDS CN NLP/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  160. noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_1.ipynb +3008 -0
  161. noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_2.ipynb +3095 -0
  162. noshot/data/AIDS CN NLP/NLP/NLP 3/nlplab-9.ipynb +295 -0
  163. noshot/data/AIDS CN NLP/NLP/NLP 3/nltk-ex-4.ipynb +506 -0
  164. noshot/data/AIDS CN NLP/NLP/NLP 3/text1.txt +48 -0
  165. noshot/data/AIDS CN NLP/NLP/NLP 3/text2.txt +8 -0
  166. noshot/data/AIDS CN NLP/NLP/NLP 3/text3.txt +48 -0
  167. noshot/data/AIDS CN NLP/NLP/NLP 3/translation-rnn.ipynb +812 -0
  168. noshot/data/AIDS CN NLP/NLP/NLP 3/word2vector.ipynb +173 -0
  169. noshot/data/AIDS CN NLP/NLP/NLP 4/Backward Procedure Algorithm.ipynb +179 -0
  170. noshot/data/AIDS CN NLP/NLP/NLP 4/Chi Square Collocation.ipynb +208 -0
  171. noshot/data/AIDS CN NLP/NLP/NLP 4/Collocation (T test).ipynb +188 -0
  172. noshot/data/AIDS CN NLP/NLP/NLP 4/Experiment 1.ipynb +437 -0
  173. noshot/data/AIDS CN NLP/NLP/NLP 4/Forward Procedure Algorithm.ipynb +132 -0
  174. noshot/data/AIDS CN NLP/NLP/NLP 4/Hindle Rooth.ipynb +414 -0
  175. noshot/data/AIDS CN NLP/NLP/NLP 4/MachineTranslation.ipynb +368 -0
  176. noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +86 -0
  177. noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +112 -0
  178. noshot/data/AIDS CN NLP/NLP/NLP 4/PCFG Inside Probability.ipynb +451 -0
  179. noshot/data/AIDS CN NLP/NLP/NLP 4/Text Generation using LSTM.ipynb +297 -0
  180. noshot/data/AIDS CN NLP/NLP/NLP 4/Viterbi.ipynb +310 -0
  181. noshot/data/AIDS CN NLP/NLP/NLP 4/Word Sense Disambiguation.ipynb +335 -0
  182. noshot/data/AIDS CN NLP/NLP/NLP 5/10.Text Generation using LSTM.ipynb +316 -0
  183. noshot/data/AIDS CN NLP/NLP/NLP 5/11.Machine Translation.ipynb +868 -0
  184. noshot/data/AIDS CN NLP/NLP/NLP 5/2.T and Chi2 Test.ipynb +204 -0
  185. noshot/data/AIDS CN NLP/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +234 -0
  186. noshot/data/AIDS CN NLP/NLP/NLP 5/4.Hinddle and Rooth.ipynb +128 -0
  187. noshot/data/AIDS CN NLP/NLP/NLP 5/5.Forward and Backward.ipynb +149 -0
  188. noshot/data/AIDS CN NLP/NLP/NLP 5/6.Viterbi.ipynb +111 -0
  189. noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG Parse Tree.ipynb +134 -0
  190. noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG using cyk.ipynb +101 -0
  191. noshot/data/AIDS CN NLP/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +310 -0
  192. noshot/data/AIDS CN NLP/NLP/NLP 5/9.Word2Vector.ipynb +78 -0
  193. noshot/data/AIDS CN NLP/NLP/NLP 5/NLP ALL In One.ipynb +2619 -0
  194. noshot/data/AIDS CN NLP/NLP/NLP 5/sample1.txt +15 -0
  195. noshot/data/AIDS CN NLP/NLP/NLP 5/sample2.txt +4 -0
  196. noshot/data/AIDS CN NLP/NLP/NLP 5/word2vec_model.bin +0 -0
  197. noshot/data/AIDS CN NLP/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +312 -0
  198. noshot/data/AIDS CN NLP/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +185 -0
  199. noshot/data/AIDS CN NLP/NLP/NLP 6/3. Naive Bayes WSD.ipynb +199 -0
  200. noshot/data/AIDS CN NLP/NLP/NLP 6/4. Hinddle and Rooth.ipynb +151 -0
  201. noshot/data/AIDS CN NLP/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +164 -0
  202. noshot/data/AIDS CN NLP/NLP/NLP 6/7. PCFG using CYK.ipynb +383 -0
  203. noshot/data/AIDS CN NLP/NLP/NLP 6/8. BOW and TF-IDF.ipynb +252 -0
  204. noshot/data/AIDS CN NLP/Ubuntu CN Lab.iso +0 -0
  205. noshot/main.py +47 -0
  206. noshot-0.1.0.dist-info/LICENSE.txt +21 -0
  207. noshot-0.1.0.dist-info/METADATA +65 -0
  208. noshot-0.1.0.dist-info/RECORD +210 -0
  209. noshot-0.1.0.dist-info/WHEEL +5 -0
  210. noshot-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,255 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "3be05c09",
6
+ "metadata": {},
7
+ "source": [
8
+ "# Hidden Markov Model - Forward and backward algorithm\n",
9
+ "\n",
10
+ "\"Code credits: [**V Tarun Thothadri**](https://github.com/TarunThothadri)\""
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": 1,
16
+ "id": "96e855aa",
17
+ "metadata": {},
18
+ "outputs": [
19
+ {
20
+ "name": "stdout",
21
+ "output_type": "stream",
22
+ "text": [
23
+ "Enter no of states : 2\n",
24
+ "Enter state 1 : cp\n",
25
+ "Enter initial probability of the state 1 : 1.0\n",
26
+ "Enter state 2 : ip\n",
27
+ "Enter initial probability of the state 2 : 0.0\n",
28
+ "Enter stp from cp to cp : 0.7\n",
29
+ "Enter stp from cp to ip : 0.3\n",
30
+ "Enter stp from ip to cp : 0.5\n",
31
+ "Enter stp from ip to ip : 0.5\n",
32
+ "Enter no of observations : 3\n",
33
+ "Enter observation 1 : lem\n",
34
+ "Enter observation 2 : ice\n",
35
+ "Enter observation 3 : cola\n",
36
+ "Enter probability of getting lem from cp : 0.3\n",
37
+ "Enter probability of getting ice from cp : 0.1\n",
38
+ "Enter probability of getting cola from cp : 0.6\n",
39
+ "Enter probability of getting lem from ip : 0.2\n",
40
+ "Enter probability of getting ice from ip : 0.7\n",
41
+ "Enter probability of getting cola from ip : 0.1\n",
42
+ "['cp', 'ip']\n",
43
+ "[1.0, 0.0]\n",
44
+ "[[0.7, 0.3], [0.5, 0.5]]\n",
45
+ "['lem', 'ice', 'cola']\n",
46
+ "[[0.3, 0.1, 0.6], [0.2, 0.7, 0.1]]\n"
47
+ ]
48
+ }
49
+ ],
50
+ "source": [
51
+ "'''states = ['cp','ip']\n",
52
+ "ls = len(states)\n",
53
+ "\n",
54
+ "#Initial Probability\n",
55
+ "ip = [1.0,0.0]\n",
56
+ "\n",
57
+ "#State transition probability\n",
58
+ "stp = [[0.7,0.3],\n",
59
+ " [0.5,0.5]]\n",
60
+ "\n",
61
+ "#Observations\n",
62
+ "op = ['lem','ice','cola']\n",
63
+ "lop = len(op)\n",
64
+ "\n",
65
+ "#Obs probablity\n",
66
+ "opp = [[0.3,0.1,0.6],\n",
67
+ " [0.2,0.7,0.1]]'''\n",
68
+ "\n",
69
+ "states = []\n",
70
+ "ip = []\n",
71
+ "stp = []\n",
72
+ "op = []\n",
73
+ "opp = []\n",
74
+ "\n",
75
+ "ls = int(input(\"Enter no of states : \"))\n",
76
+ "\n",
77
+ "for i in range(ls):\n",
78
+ " states.append(input(f\"Enter state {i+1} : \"))\n",
79
+ " ip.append(float(input(f\"Enter initial probability of the state {i+1} : \")))\n",
80
+ "\n",
81
+ "for i in range(ls):\n",
82
+ " sp_row = []\n",
83
+ " for j in range(ls):\n",
84
+ " sp = float(input(f\"Enter stp from {states[i]} to {states[j]} : \"))\n",
85
+ " sp_row.append(sp)\n",
86
+ " stp.append(sp_row)\n",
87
+ " \n",
88
+ "lop = int(input(\"Enter no of observations : \"))\n",
89
+ "\n",
90
+ "for i in range(lop):\n",
91
+ " op.append(input(f\"Enter observation {i+1} : \"))\n",
92
+ "\n",
93
+ "for i in range(ls):\n",
94
+ " opp_row = []\n",
95
+ " for j in range(lop):\n",
96
+ " opp_row.append(float(input(f\"Enter probability of getting {op[j]} from {states[i]} : \")))\n",
97
+ " \n",
98
+ " opp.append(opp_row)\n",
99
+ " \n",
100
+ "print(states)\n",
101
+ "print(ip)\n",
102
+ "print(stp)\n",
103
+ "print(op)\n",
104
+ "print(opp)"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "markdown",
109
+ "id": "ac0d52fe",
110
+ "metadata": {},
111
+ "source": [
112
+ "Forward Algorithm"
113
+ ]
114
+ },
115
+ {
116
+ "cell_type": "code",
117
+ "execution_count": 2,
118
+ "id": "aad5d765",
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "def forward_alg():\n",
123
+ " alpha = []\n",
124
+ " for _ in range(len(op)+1):\n",
125
+ " alpha.append([0,0])\n",
126
+ "\n",
127
+ " '''alpha[0][0] = 1.0\n",
128
+ " alpha[0][1] = 0.0\n",
129
+ " #print(alpha)'''\n",
130
+ " \n",
131
+ " for i in range(len(alpha)):\n",
132
+ " if i == 0:\n",
133
+ " alpha[i][0] = ip[0]\n",
134
+ " alpha[i][1] = ip[1]\n",
135
+ " continue\n",
136
+ " \n",
137
+ " alpha[i][0] = float(float(stp[0][0]*opp[0][i-1]*alpha[i-1][0]) + float(stp[1][0]*opp[1][i-1]*alpha[i-1][1]))\n",
138
+ "\n",
139
+ " alpha[i][1] = float(float(stp[1][1]*opp[1][i-1]*alpha[i-1][1]) + float(stp[0][1]*opp[0][i-1]*alpha[i-1][0]))\n",
140
+ "\n",
141
+ " return alpha"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": 3,
147
+ "id": "7612f052",
148
+ "metadata": {},
149
+ "outputs": [
150
+ {
151
+ "name": "stdout",
152
+ "output_type": "stream",
153
+ "text": [
154
+ "[1.0, 0.0]\n",
155
+ "[0.21, 0.09]\n",
156
+ "[0.0462, 0.0378]\n",
157
+ "[0.021293999999999997, 0.010206]\n",
158
+ "\n",
159
+ "Probability of whole sequence : 0.0315\n"
160
+ ]
161
+ }
162
+ ],
163
+ "source": [
164
+ "alpha = forward_alg()\n",
165
+ "pos_alpha = 0.0\n",
166
+ "for i in alpha:\n",
167
+ " pos_alpha = sum(i)\n",
168
+ " print(i)\n",
169
+ " \n",
170
+ "print(\"\\nProbability of whole sequence : \",pos_alpha)"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "markdown",
175
+ "id": "70482230",
176
+ "metadata": {},
177
+ "source": [
178
+ "Backward Algorithm"
179
+ ]
180
+ },
181
+ {
182
+ "cell_type": "code",
183
+ "execution_count": 4,
184
+ "id": "445612f0",
185
+ "metadata": {},
186
+ "outputs": [],
187
+ "source": [
188
+ "def backward_alg():\n",
189
+ " beta = []\n",
190
+ " for _ in range(len(op)+1):\n",
191
+ " beta.append([0.0,0.0])\n",
192
+ "\n",
193
+ " beta[len(op)][0] = 1.0\n",
194
+ " beta[len(op)][1] = 1.0\n",
195
+ " #print(beta)\n",
196
+ "\n",
197
+ " for i in range(len(op)-1,-1,-1):\n",
198
+ " \n",
199
+ " beta[i][0] = float(float(stp[0][0]*opp[0][i]*beta[i+1][0]) + float(stp[0][1]*opp[0][i]*beta[i+1][1]))\n",
200
+ "\n",
201
+ " beta[i][1] = float(float(stp[1][1]*opp[1][i]*beta[i+1][1]) + float(stp[1][0]*opp[1][i]*beta[i+1][0]))\n",
202
+ "\n",
203
+ " return beta"
204
+ ]
205
+ },
206
+ {
207
+ "cell_type": "code",
208
+ "execution_count": 5,
209
+ "id": "6986b179",
210
+ "metadata": {},
211
+ "outputs": [
212
+ {
213
+ "name": "stdout",
214
+ "output_type": "stream",
215
+ "text": [
216
+ "[0.0315, 0.029]\n",
217
+ "[0.045, 0.245]\n",
218
+ "[0.6, 0.1]\n",
219
+ "[1.0, 1.0]\n",
220
+ "\n",
221
+ "Probability of whole sequence : 0.0315\n"
222
+ ]
223
+ }
224
+ ],
225
+ "source": [
226
+ "beta = backward_alg()\n",
227
+ "for i in beta:\n",
228
+ " print(i)\n",
229
+ " \n",
230
+ "print(\"\\nProbability of whole sequence : \",beta[0][0]*ip[0] + beta[0][1]*ip[1])"
231
+ ]
232
+ }
233
+ ],
234
+ "metadata": {
235
+ "kernelspec": {
236
+ "display_name": "Python 3 (ipykernel)",
237
+ "language": "python",
238
+ "name": "python3"
239
+ },
240
+ "language_info": {
241
+ "codemirror_mode": {
242
+ "name": "ipython",
243
+ "version": 3
244
+ },
245
+ "file_extension": ".py",
246
+ "mimetype": "text/x-python",
247
+ "name": "python",
248
+ "nbconvert_exporter": "python",
249
+ "pygments_lexer": "ipython3",
250
+ "version": "3.11.5"
251
+ }
252
+ },
253
+ "nbformat": 4,
254
+ "nbformat_minor": 5
255
+ }
@@ -0,0 +1,159 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "3be05c09",
6
+ "metadata": {
7
+ "id": "3be05c09"
8
+ },
9
+ "source": [
10
+ "# Viterbi Algorithm\n",
11
+ "\n",
12
+ "Implement the Viterbi algorithm to find the probability of a word sequence, and infer the best tag sequence using Hidden Markov Model."
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "source": [
18
+ "def viterbi_algorithm(op):\n",
19
+ " delta = []\n",
20
+ " psi = []\n",
21
+ "\n",
22
+ " # Initialize the delta and psi matrices\n",
23
+ " for _ in range(len(op)):\n",
24
+ " delta.append([0.0, 0.0])\n",
25
+ " psi.append([0, 0])\n",
26
+ "\n",
27
+ " # Initialization step\n",
28
+ " for i in range(len(states)):\n",
29
+ " delta[0][i] = ip[i] * opp[i][0]\n",
30
+ "\n",
31
+ " # Recursion step\n",
32
+ " for t in range(1, len(op)):\n",
33
+ " for j in range(len(states)):\n",
34
+ " max_prob = 0.0\n",
35
+ " max_state = 0\n",
36
+ "\n",
37
+ " for i in range(len(states)):\n",
38
+ " prob = delta[t - 1][i] * stp[i][j] * opp[j][t]\n",
39
+ " if prob > max_prob:\n",
40
+ " max_prob = prob\n",
41
+ " max_state = i\n",
42
+ "\n",
43
+ " delta[t][j] = max_prob\n",
44
+ " psi[t][j] = max_state\n",
45
+ "\n",
46
+ " # Termination step\n",
47
+ " best_path_prob = max(delta[-1])\n",
48
+ " best_last_state = delta[-1].index(best_path_prob)\n",
49
+ "\n",
50
+ " # Backtrack to find the best tag sequence\n",
51
+ " best_path = [best_last_state]\n",
52
+ " for t in range(len(op) - 1, 0, -1):\n",
53
+ " best_last_state = psi[t][best_last_state]\n",
54
+ " best_path.insert(0, best_last_state)\n",
55
+ "\n",
56
+ " return best_path, best_path_prob\n",
57
+ "\n",
58
+ "states = []\n",
59
+ "ip = []\n",
60
+ "stp = []\n",
61
+ "op = []\n",
62
+ "opp = []\n",
63
+ "\n",
64
+ "ls = int(input(\"Enter no of states : \"))\n",
65
+ "\n",
66
+ "for i in range(ls):\n",
67
+ " states.append(input(f\"Enter state {i+1} : \"))\n",
68
+ " ip.append(float(input(f\"Enter initial probability of state {states[i]} : \")))\n",
69
+ "\n",
70
+ "for i in range(ls):\n",
71
+ " sp_row = []\n",
72
+ " for j in range(ls):\n",
73
+ " sp = float(input(f\"Enter transition probability from {states[i]} to {states[j]} : \"))\n",
74
+ " sp_row.append(sp)\n",
75
+ " stp.append(sp_row)\n",
76
+ "\n",
77
+ "lop = int(input(\"Enter no of observations : \"))\n",
78
+ "\n",
79
+ "for i in range(lop):\n",
80
+ " op.append(input(f\"Enter observation {i+1} : \"))\n",
81
+ "\n",
82
+ "for i in range(ls):\n",
83
+ " opp_row = []\n",
84
+ " for j in range(lop):\n",
85
+ " opp_row.append(float(input(f\"Enter emission probability of {op[j]} from {states[i]} : \")))\n",
86
+ " opp.append(opp_row)\n",
87
+ "\n",
88
+ "# Call the Viterbi algorithm\n",
89
+ "best_tag_sequence, probability = viterbi_algorithm(op)\n",
90
+ "\n",
91
+ "# Print the best tag sequence and its probability\n",
92
+ "print(\"Best Tag Sequence:\", [states[i] for i in best_tag_sequence])\n",
93
+ "print(\"Probability of the Best Tag Sequence:\", probability)\n"
94
+ ],
95
+ "metadata": {
96
+ "id": "V6IoC75H-5GT",
97
+ "outputId": "b00142d5-6731-4420-a6e7-8f1b0d2b3f71",
98
+ "colab": {
99
+ "base_uri": "https://localhost:8080/"
100
+ }
101
+ },
102
+ "id": "V6IoC75H-5GT",
103
+ "execution_count": 2,
104
+ "outputs": [
105
+ {
106
+ "output_type": "stream",
107
+ "name": "stdout",
108
+ "text": [
109
+ "Enter no of states : 2\n",
110
+ "Enter state 1 : cp\n",
111
+ "Enter initial probability of state cp : 1.0\n",
112
+ "Enter state 2 : ip\n",
113
+ "Enter initial probability of state ip : 0.0\n",
114
+ "Enter transition probability from cp to cp : 0.7\n",
115
+ "Enter transition probability from cp to ip : 0.3\n",
116
+ "Enter transition probability from ip to cp : 0.5\n",
117
+ "Enter transition probability from ip to ip : 0.5\n",
118
+ "Enter no of observations : 3\n",
119
+ "Enter observation 1 : lem\n",
120
+ "Enter observation 2 : ice\n",
121
+ "Enter observation 3 : cola\n",
122
+ "Enter emission probability of lem from cp : 0.3\n",
123
+ "Enter emission probability of ice from cp : 0.1\n",
124
+ "Enter emission probability of cola from cp : 0.6\n",
125
+ "Enter emission probability of lem from ip : 0.2\n",
126
+ "Enter emission probability of ice from ip : 0.7\n",
127
+ "Enter emission probability of cola from ip : 0.1\n",
128
+ "Best Tag Sequence: ['cp', 'ip', 'cp']\n",
129
+ "Probability of the Best Tag Sequence: 0.0189\n"
130
+ ]
131
+ }
132
+ ]
133
+ }
134
+ ],
135
+ "metadata": {
136
+ "kernelspec": {
137
+ "display_name": "Python 3 (ipykernel)",
138
+ "language": "python",
139
+ "name": "python3"
140
+ },
141
+ "language_info": {
142
+ "codemirror_mode": {
143
+ "name": "ipython",
144
+ "version": 3
145
+ },
146
+ "file_extension": ".py",
147
+ "mimetype": "text/x-python",
148
+ "name": "python",
149
+ "nbconvert_exporter": "python",
150
+ "pygments_lexer": "ipython3",
151
+ "version": "3.11.5"
152
+ },
153
+ "colab": {
154
+ "provenance": []
155
+ }
156
+ },
157
+ "nbformat": 4,
158
+ "nbformat_minor": 5
159
+ }
@@ -0,0 +1,282 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "hwHembMnuehB"
7
+ },
8
+ "source": [
9
+ "## PCFG\n",
10
+ "\n",
11
+ "Implement the Probabilistic Context Free Grammar (PCFG) and find the inside probability of a word sequence using the CYK algorithm."
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": null,
17
+ "metadata": {
18
+ "colab": {
19
+ "base_uri": "https://localhost:8080/"
20
+ },
21
+ "id": "fkukKpNbr9Fw",
22
+ "outputId": "852fd759-7ec2-4dd4-c1fa-9db808e40805"
23
+ },
24
+ "outputs": [
25
+ {
26
+ "name": "stdout",
27
+ "output_type": "stream",
28
+ "text": [
29
+ "Inside probability of S: 21.400000000000002\n",
30
+ "Inside probability of NP: 18.479999999999997\n",
31
+ "Inside probability of VP: 17.120000000000005\n",
32
+ "Inside probability of Det: 0.0\n",
33
+ "Inside probability of N: 0.0\n",
34
+ "Inside probability of V: 0.0\n",
35
+ "Total inside probability: 21.400000000000002\n"
36
+ ]
37
+ }
38
+ ],
39
+ "source": [
40
+ "from collections import defaultdict\n",
41
+ "from itertools import product\n",
42
+ "\n",
43
+ "def cyk_algorithm(words, pcfg_rules):\n",
44
+ " n = len(words)\n",
45
+ " table = [[defaultdict(float) for _ in range(n)] for _ in range(n)]\n",
46
+ "\n",
47
+ " # Initialization\n",
48
+ " for i, word in enumerate(words):\n",
49
+ " for nt, (prob, terminals) in pcfg_rules.items():\n",
50
+ " if word in terminals:\n",
51
+ " table[i][i][nt] = prob\n",
52
+ "\n",
53
+ " # CYK Algorithm\n",
54
+ " for length in range(2, n + 1):\n",
55
+ " for i in range(n - length + 1):\n",
56
+ " j = i + length - 1\n",
57
+ " for k in range(i, j):\n",
58
+ " for A, (prob_A, _) in pcfg_rules.items():\n",
59
+ " for B, (prob_B, _) in pcfg_rules.items():\n",
60
+ " for C in table[i][k]:\n",
61
+ " for D in table[k + 1][j]:\n",
62
+ " prob = prob_A * prob_B * pcfg_rules[A][1].count(C) * pcfg_rules[B][1].count(D)\n",
63
+ " table[i][j][A] += prob\n",
64
+ "\n",
65
+ " return table\n",
66
+ "\n",
67
+ "# Example PCFG rules (non-terminal -> (probability, [productions]))\n",
68
+ "pcfg_rules = {\n",
69
+ " 'S': (1.0, ['NP', 'VP']),\n",
70
+ " 'NP': (0.7, ['Det', 'N']),\n",
71
+ " 'VP': (0.8, ['V', 'NP']),\n",
72
+ " 'Det': (1.0, ['the']),\n",
73
+ " 'N': (0.6, ['cat', 'dog']),\n",
74
+ " 'V': (0.9, ['chased'])\n",
75
+ "}\n",
76
+ "\n",
77
+ "# Example input sentence\n",
78
+ "words = ['the', 'cat', 'chased', 'the', 'dog']\n",
79
+ "\n",
80
+ "# Call CYK algorithm to get inside probabilities\n",
81
+ "table = cyk_algorithm(words, pcfg_rules)\n",
82
+ "\n",
83
+ "# Inside probabilities for non-terminals in the top cell of the table\n",
84
+ "inside_probabilities = table[0][-1]\n",
85
+ "\n",
86
+ "# Print inside probabilities\n",
87
+ "for nt, prob in inside_probabilities.items():\n",
88
+ " print(f'Inside probability of {nt}: {prob}')\n",
89
+ "\n",
90
+ "# Total inside probability (probability of the whole sentence)\n",
91
+ "total_probability = inside_probabilities['S']\n",
92
+ "print(f'Total inside probability: {total_probability}')\n"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": 2,
98
+ "metadata": {
99
+ "colab": {
100
+ "base_uri": "https://localhost:8080/"
101
+ },
102
+ "id": "BXiMT63eyUU1",
103
+ "outputId": "9eca3bc3-303f-44ed-e836-e03789e9e1c0"
104
+ },
105
+ "outputs": [
106
+ {
107
+ "name": "stdout",
108
+ "output_type": "stream",
109
+ "text": [
110
+ "Inside probability of S: 21.400000000000002\n",
111
+ "Inside probability of NP: 18.479999999999997\n",
112
+ "Inside probability of VP: 17.120000000000005\n",
113
+ "Inside probability of Det: 0.0\n",
114
+ "Inside probability of N: 0.0\n",
115
+ "Inside probability of V: 0.0\n",
116
+ "Total inside probability: 21.400000000000002\n"
117
+ ]
118
+ }
119
+ ],
120
+ "source": [
121
+ "from collections import defaultdict\n",
122
+ "from itertools import product\n",
123
+ "\n",
124
+ "def cyk_algorithm(words, pcfg_rules):\n",
125
+ " n = len(words)\n",
126
+ " table = [[defaultdict(float) for _ in range(n)] for _ in range(n)]\n",
127
+ "\n",
128
+ " # Initialization\n",
129
+ " for i, word in enumerate(words):\n",
130
+ " for nt, (prob, terminals) in pcfg_rules.items():\n",
131
+ " if word in terminals:\n",
132
+ " table[i][i][nt] = prob\n",
133
+ "\n",
134
+ " # CYK Algorithm\n",
135
+ " for length in range(2, n + 1):\n",
136
+ " for i in range(n - length + 1):\n",
137
+ " j = i + length - 1\n",
138
+ " for k in range(i, j):\n",
139
+ " for A, (prob_A, _) in pcfg_rules.items():\n",
140
+ " for B, (prob_B, _) in pcfg_rules.items():\n",
141
+ " for C in table[i][k]:\n",
142
+ " for D in table[k + 1][j]:\n",
143
+ " prob = prob_A * prob_B * pcfg_rules[A][1].count(C) * pcfg_rules[B][1].count(D)\n",
144
+ " table[i][j][A] += prob\n",
145
+ "\n",
146
+ " return table\n",
147
+ "\n",
148
+ "# Example PCFG rules (non-terminal -> (probability, [productions]))\n",
149
+ "pcfg_rules = {\n",
150
+ " 'S': (1.0, ['NP', 'VP']),\n",
151
+ " 'NP': (0.7, ['Det', 'N']),\n",
152
+ " 'VP': (0.8, ['V', 'NP']),\n",
153
+ " 'Det': (1.0, ['the']),\n",
154
+ " 'N': (0.6, ['cat', 'dog']),\n",
155
+ " 'V': (0.9, ['chased'])\n",
156
+ "}\n",
157
+ "\n",
158
+ "# New input sentence\n",
159
+ "words = ['the', 'dog', 'chased', 'the', 'cat']\n",
160
+ "\n",
161
+ "# Call CYK algorithm to get inside probabilities\n",
162
+ "table = cyk_algorithm(words, pcfg_rules)\n",
163
+ "\n",
164
+ "# Inside probabilities for non-terminals in the top cell of the table\n",
165
+ "inside_probabilities = table[0][-1]\n",
166
+ "\n",
167
+ "# Print inside probabilities\n",
168
+ "for nt, prob in inside_probabilities.items():\n",
169
+ " print(f'Inside probability of {nt}: {prob}')\n",
170
+ "\n",
171
+ "# Total inside probability (probability of the whole sentence)\n",
172
+ "total_probability = inside_probabilities['S']\n",
173
+ "print(f'Total inside probability: {total_probability}')\n"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": 3,
179
+ "metadata": {
180
+ "colab": {
181
+ "base_uri": "https://localhost:8080/"
182
+ },
183
+ "id": "ORafeKQsyX08",
184
+ "outputId": "a1f34a3a-ad0d-480e-c0b6-49e2fb46ae80"
185
+ },
186
+ "outputs": [
187
+ {
188
+ "name": "stdout",
189
+ "output_type": "stream",
190
+ "text": [
191
+ "Inside probability of S: 19.599999999999998\n",
192
+ "Inside probability of NP: 14.519999999999996\n",
193
+ "Inside probability of VP: 13.72\n",
194
+ "Inside probability of Det: 0.0\n",
195
+ "Inside probability of N: 0.0\n",
196
+ "Inside probability of V: 0.0\n",
197
+ "Total inside probability: 19.599999999999998\n"
198
+ ]
199
+ }
200
+ ],
201
+ "source": [
202
+ "from collections import defaultdict\n",
203
+ "from itertools import product\n",
204
+ "\n",
205
+ "def cyk_algorithm(words, pcfg_rules):\n",
206
+ " n = len(words)\n",
207
+ " table = [[defaultdict(float) for _ in range(n)] for _ in range(n)]\n",
208
+ "\n",
209
+ " # Initialization\n",
210
+ " for i, word in enumerate(words):\n",
211
+ " for nt, (prob, terminals) in pcfg_rules.items():\n",
212
+ " if word in terminals:\n",
213
+ " table[i][i][nt] = prob\n",
214
+ "\n",
215
+ " # CYK Algorithm\n",
216
+ " for length in range(2, n + 1):\n",
217
+ " for i in range(n - length + 1):\n",
218
+ " j = i + length - 1\n",
219
+ " for k in range(i, j):\n",
220
+ " for A, (prob_A, _) in pcfg_rules.items():\n",
221
+ " for B, (prob_B, _) in pcfg_rules.items():\n",
222
+ " for C in table[i][k]:\n",
223
+ " for D in table[k + 1][j]:\n",
224
+ " prob = prob_A * prob_B * pcfg_rules[A][1].count(C) * pcfg_rules[B][1].count(D)\n",
225
+ " table[i][j][A] += prob\n",
226
+ "\n",
227
+ " return table\n",
228
+ "\n",
229
+ "# Different PCFG rules\n",
230
+ "pcfg_rules = {\n",
231
+ " 'S': (1.0, ['NP', 'VP']),\n",
232
+ " 'NP': (0.6, ['Det', 'N']),\n",
233
+ " 'VP': (0.7, ['V', 'NP']),\n",
234
+ " 'Det': (1.0, ['the', 'a']),\n",
235
+ " 'N': (0.5, ['cat', 'dog', 'bat']),\n",
236
+ " 'V': (0.8, ['chased', 'caught'])\n",
237
+ "}\n",
238
+ "\n",
239
+ "# Different input sentence\n",
240
+ "words = ['the', 'cat', 'chased', 'a', 'bat']\n",
241
+ "\n",
242
+ "# Call CYK algorithm to get inside probabilities\n",
243
+ "table = cyk_algorithm(words, pcfg_rules)\n",
244
+ "\n",
245
+ "# Inside probabilities for non-terminals in the top cell of the table\n",
246
+ "inside_probabilities = table[0][-1]\n",
247
+ "\n",
248
+ "# Print inside probabilities\n",
249
+ "for nt, prob in inside_probabilities.items():\n",
250
+ " print(f'Inside probability of {nt}: {prob}')\n",
251
+ "\n",
252
+ "# Total inside probability (probability of the whole sentence)\n",
253
+ "total_probability = inside_probabilities['S']\n",
254
+ "print(f'Total inside probability: {total_probability}')\n"
255
+ ]
256
+ }
257
+ ],
258
+ "metadata": {
259
+ "colab": {
260
+ "provenance": []
261
+ },
262
+ "kernelspec": {
263
+ "display_name": "Python 3 (ipykernel)",
264
+ "language": "python",
265
+ "name": "python3"
266
+ },
267
+ "language_info": {
268
+ "codemirror_mode": {
269
+ "name": "ipython",
270
+ "version": 3
271
+ },
272
+ "file_extension": ".py",
273
+ "mimetype": "text/x-python",
274
+ "name": "python",
275
+ "nbconvert_exporter": "python",
276
+ "pygments_lexer": "ipython3",
277
+ "version": "3.10.12"
278
+ }
279
+ },
280
+ "nbformat": 4,
281
+ "nbformat_minor": 4
282
+ }