noshot 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/__init__.py +1 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +112 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +111 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +134 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +115 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +123 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/2_ANOVA.csv +769 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +126 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA.ipynb +134 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +119 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Two Way ANOVA.ipynb +138 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/reaction_time.csv +5 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sample_data.csv +16 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sleep_deprivation.csv +4 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/3_Linear.csv +4802 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +113 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +118 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression.ipynb +148 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/house_rate.csv +22 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +128 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression.ipynb +145 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/default.csv +1001 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/hours_scores_records.csv +101 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +256 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +157 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +178 -0
- noshot/data/AIDS CN NLP/AIDS/3. Genetic Algorithm/Genetic.ipynb +95 -0
- noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +74 -0
- noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +103 -0
- noshot/data/AIDS CN NLP/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +182 -0
- noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +120 -0
- noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +125 -0
- noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/Random Sampling.ipynb +73 -0
- noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test Hash Function.ipynb +141 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test.ipynb +151 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/1_heart.csv +304 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/Independent T Test.ipynb +119 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/Paired T Test.ipynb +118 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test Hash Function.ipynb +142 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test.ipynb +158 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/AIDS CN NLP/AIDS/Others (AllinOne)/All In One.ipynb +4581 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/chat.java +81 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +65 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +44 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +229 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/file_to_send.txt +2 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/filetransfer.java +119 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/rmi.java +56 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.awk +25 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.tcl +81 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.awk +27 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.tcl +153 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +27 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +86 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +86 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +28 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +78 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +79 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +27 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +163 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/DV.tcl +111 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/LS.tcl +106 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/analysis.awk +36 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/analysis.awk +20 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/broadcast.tcl +76 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/multicast.tcl +103 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/DHCP.java +125 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/procedure.png +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/1-Prereqs.py +18 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/2-Chi2test.py +83 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/2-T-test.py +79 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/3-WSD-nb.py +53 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/4-Hindle-Rooth.py +53 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/5-HMM-Trellis.py +82 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/6-HMM-Viterbi.py +16 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/7-PCFG-parsetree.py +15 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Chi2test.ipynb +285 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Hindle-Rooth.ipynb +179 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +1461 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 11 NMT.ipynb +2307 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/PCFG.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Prereqs.ipynb +131 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/T test.ipynb +252 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/TFIDF BOW.ipynb +171 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Trellis.ipynb +244 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/WSD.ipynb +645 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Word2Vec.ipynb +93 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +370 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +6 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +274 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +905 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/test.txt +1 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +272 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +332 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +549 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +1 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +817 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +332 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +231 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +507 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +255 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +159 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +282 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +670 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +613 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +74 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +480 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +445 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +105 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +87 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +11 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +83 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +201 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +185 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Backward-Procedure.ipynb +597 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Bag_of.ipynb +1422 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/CYK-algorithm.ipynb +1067 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Forward-Procedure.ipynb +477 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/LSTM.ipynb +1290 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +1461 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 11 NMT.ipynb +2307 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-4.ipynb +216 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-5.ipynb +216 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/abc.txt +6 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/ex-1-nltk.ipynb +711 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/ex-2-nlp.ipynb +267 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/exp8&9.ipynb +305 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/hind.ipynb +287 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/lab66.ipynb +752 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/leb_3.ipynb +612 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_1.ipynb +3008 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_2.ipynb +3095 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlplab-9.ipynb +295 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nltk-ex-4.ipynb +506 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text1.txt +48 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text2.txt +8 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text3.txt +48 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/translation-rnn.ipynb +812 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/word2vector.ipynb +173 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Backward Procedure Algorithm.ipynb +179 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Chi Square Collocation.ipynb +208 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Collocation (T test).ipynb +188 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Experiment 1.ipynb +437 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Forward Procedure Algorithm.ipynb +132 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Hindle Rooth.ipynb +414 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/MachineTranslation.ipynb +368 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +86 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +112 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/PCFG Inside Probability.ipynb +451 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Text Generation using LSTM.ipynb +297 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Viterbi.ipynb +310 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Word Sense Disambiguation.ipynb +335 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/10.Text Generation using LSTM.ipynb +316 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/11.Machine Translation.ipynb +868 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/2.T and Chi2 Test.ipynb +204 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +234 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/4.Hinddle and Rooth.ipynb +128 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/5.Forward and Backward.ipynb +149 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/6.Viterbi.ipynb +111 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG Parse Tree.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG using cyk.ipynb +101 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +310 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/9.Word2Vector.ipynb +78 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/NLP ALL In One.ipynb +2619 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/sample1.txt +15 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/sample2.txt +4 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +312 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +185 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/3. Naive Bayes WSD.ipynb +199 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/4. Hinddle and Rooth.ipynb +151 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +164 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/7. PCFG using CYK.ipynb +383 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/8. BOW and TF-IDF.ipynb +252 -0
- noshot/data/AIDS CN NLP/Ubuntu CN Lab.iso +0 -0
- noshot/main.py +47 -0
- noshot-0.1.0.dist-info/LICENSE.txt +21 -0
- noshot-0.1.0.dist-info/METADATA +65 -0
- noshot-0.1.0.dist-info/RECORD +210 -0
- noshot-0.1.0.dist-info/WHEEL +5 -0
- noshot-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,480 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": 2,
|
6
|
+
"id": "ab178016",
|
7
|
+
"metadata": {
|
8
|
+
"id": "ab178016"
|
9
|
+
},
|
10
|
+
"outputs": [
|
11
|
+
{
|
12
|
+
"name": "stderr",
|
13
|
+
"output_type": "stream",
|
14
|
+
"text": [
|
15
|
+
"2023-11-01 13:49:31.029384: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
|
16
|
+
"2023-11-01 13:49:33.145555: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
17
|
+
"2023-11-01 13:49:33.145680: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
18
|
+
"2023-11-01 13:49:33.151894: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
19
|
+
"2023-11-01 13:49:34.451107: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
|
20
|
+
"2023-11-01 13:49:34.453035: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
21
|
+
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
22
|
+
"2023-11-01 13:49:39.145697: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
|
23
|
+
]
|
24
|
+
}
|
25
|
+
],
|
26
|
+
"source": [
|
27
|
+
"# keras module for building LSTM\n",
|
28
|
+
"from keras_preprocessing.sequence import pad_sequences\n",
|
29
|
+
"from keras.layers import Embedding, LSTM, Dense, Dropout\n",
|
30
|
+
"from keras.preprocessing.text import Tokenizer\n",
|
31
|
+
"from keras.callbacks import EarlyStopping\n",
|
32
|
+
"from keras.models import Sequential\n",
|
33
|
+
"import keras.utils as ku\n",
|
34
|
+
"\n",
|
35
|
+
"# set seeds for reproducability\n",
|
36
|
+
"import tensorflow\n",
|
37
|
+
"tensorflow.random.set_seed(2)\n",
|
38
|
+
"\n",
|
39
|
+
"import pandas as pd\n",
|
40
|
+
"import numpy as np\n",
|
41
|
+
"import string, os\n",
|
42
|
+
"\n",
|
43
|
+
"import warnings\n",
|
44
|
+
"warnings.filterwarnings(\"ignore\")\n",
|
45
|
+
"warnings.simplefilter(action='ignore', category=FutureWarning)"
|
46
|
+
]
|
47
|
+
},
|
48
|
+
{
|
49
|
+
"cell_type": "code",
|
50
|
+
"execution_count": 3,
|
51
|
+
"id": "c1475d1b",
|
52
|
+
"metadata": {
|
53
|
+
"id": "c1475d1b",
|
54
|
+
"outputId": "6b1e36ce-a1e5-45a9-e117-31e18b86c6d7"
|
55
|
+
},
|
56
|
+
"outputs": [
|
57
|
+
{
|
58
|
+
"data": {
|
59
|
+
"text/plain": [
|
60
|
+
"831"
|
61
|
+
]
|
62
|
+
},
|
63
|
+
"execution_count": 3,
|
64
|
+
"metadata": {},
|
65
|
+
"output_type": "execute_result"
|
66
|
+
}
|
67
|
+
],
|
68
|
+
"source": [
|
69
|
+
"\n",
|
70
|
+
"all_headlines = []\n",
|
71
|
+
"article_df = pd.read_csv('ArticlesApril2017.csv')\n",
|
72
|
+
"all_headlines.extend(list(article_df.headline.values))\n",
|
73
|
+
"all_headlines = [h for h in all_headlines if h != \"Unknown\"]\n",
|
74
|
+
"len(all_headlines)\n"
|
75
|
+
]
|
76
|
+
},
|
77
|
+
{
|
78
|
+
"cell_type": "code",
|
79
|
+
"execution_count": 4,
|
80
|
+
"id": "d272dc69",
|
81
|
+
"metadata": {
|
82
|
+
"id": "d272dc69",
|
83
|
+
"outputId": "288dee58-7dcc-4ea4-b0aa-c71438b485be"
|
84
|
+
},
|
85
|
+
"outputs": [
|
86
|
+
{
|
87
|
+
"data": {
|
88
|
+
"text/plain": [
|
89
|
+
"['finding an expansive view of a forgotten people in niger',\n",
|
90
|
+
" 'and now the dreaded trump curse',\n",
|
91
|
+
" 'venezuelas descent into dictatorship',\n",
|
92
|
+
" 'stain permeates basketball blue blood',\n",
|
93
|
+
" 'taking things for granted',\n",
|
94
|
+
" 'the caged beast awakens',\n",
|
95
|
+
" 'an everunfolding story',\n",
|
96
|
+
" 'oreilly thrives as settlements add up',\n",
|
97
|
+
" 'mouse infestation',\n",
|
98
|
+
" 'divide in gop now threatens trump tax plan']"
|
99
|
+
]
|
100
|
+
},
|
101
|
+
"execution_count": 4,
|
102
|
+
"metadata": {},
|
103
|
+
"output_type": "execute_result"
|
104
|
+
}
|
105
|
+
],
|
106
|
+
"source": [
|
107
|
+
"def clean_text(txt):\n",
|
108
|
+
" txt = \"\".join(v for v in txt if v not in string.punctuation).lower()\n",
|
109
|
+
" txt = txt.encode(\"utf8\").decode(\"ascii\",'ignore')\n",
|
110
|
+
" return txt\n",
|
111
|
+
"\n",
|
112
|
+
"corpus = [clean_text(x) for x in all_headlines]\n",
|
113
|
+
"corpus[:10]\n"
|
114
|
+
]
|
115
|
+
},
|
116
|
+
{
|
117
|
+
"cell_type": "code",
|
118
|
+
"execution_count": 5,
|
119
|
+
"id": "d5f40739",
|
120
|
+
"metadata": {
|
121
|
+
"id": "d5f40739",
|
122
|
+
"outputId": "336a5531-034e-47c9-885e-70bf9998a915"
|
123
|
+
},
|
124
|
+
"outputs": [
|
125
|
+
{
|
126
|
+
"data": {
|
127
|
+
"text/plain": [
|
128
|
+
"[[169, 17],\n",
|
129
|
+
" [169, 17, 665],\n",
|
130
|
+
" [169, 17, 665, 367],\n",
|
131
|
+
" [169, 17, 665, 367, 4],\n",
|
132
|
+
" [169, 17, 665, 367, 4, 2],\n",
|
133
|
+
" [169, 17, 665, 367, 4, 2, 666],\n",
|
134
|
+
" [169, 17, 665, 367, 4, 2, 666, 170],\n",
|
135
|
+
" [169, 17, 665, 367, 4, 2, 666, 170, 5],\n",
|
136
|
+
" [169, 17, 665, 367, 4, 2, 666, 170, 5, 667],\n",
|
137
|
+
" [6, 80]]"
|
138
|
+
]
|
139
|
+
},
|
140
|
+
"execution_count": 5,
|
141
|
+
"metadata": {},
|
142
|
+
"output_type": "execute_result"
|
143
|
+
}
|
144
|
+
],
|
145
|
+
"source": [
|
146
|
+
"tokenizer = Tokenizer()\n",
|
147
|
+
"\n",
|
148
|
+
"def get_sequence_of_tokens(corpus):\n",
|
149
|
+
" ## tokenization\n",
|
150
|
+
" tokenizer.fit_on_texts(corpus)\n",
|
151
|
+
" total_words = len(tokenizer.word_index) + 1\n",
|
152
|
+
"\n",
|
153
|
+
" ## convert data to sequence of tokens\n",
|
154
|
+
" input_sequences = []\n",
|
155
|
+
" for line in corpus:\n",
|
156
|
+
" token_list = tokenizer.texts_to_sequences([line])[0]\n",
|
157
|
+
" for i in range(1, len(token_list)):\n",
|
158
|
+
" n_gram_sequence = token_list[:i+1]\n",
|
159
|
+
" input_sequences.append(n_gram_sequence)\n",
|
160
|
+
" return input_sequences, total_words\n",
|
161
|
+
"\n",
|
162
|
+
"inp_sequences, total_words = get_sequence_of_tokens(corpus)\n",
|
163
|
+
"inp_sequences[:10]\n"
|
164
|
+
]
|
165
|
+
},
|
166
|
+
{
|
167
|
+
"cell_type": "code",
|
168
|
+
"execution_count": 6,
|
169
|
+
"id": "c4c05b1d",
|
170
|
+
"metadata": {
|
171
|
+
"id": "c4c05b1d"
|
172
|
+
},
|
173
|
+
"outputs": [],
|
174
|
+
"source": [
|
175
|
+
"def generate_padded_sequences(input_sequences):\n",
|
176
|
+
" max_sequence_len = max([len(x) for x in input_sequences])\n",
|
177
|
+
" input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))\n",
|
178
|
+
"\n",
|
179
|
+
" predictors, label = input_sequences[:,:-1],input_sequences[:,-1]\n",
|
180
|
+
" label = ku.to_categorical(label, num_classes=total_words)\n",
|
181
|
+
" return predictors, label, max_sequence_len\n",
|
182
|
+
"\n",
|
183
|
+
"predictors, label, max_sequence_len = generate_padded_sequences(inp_sequences)\n"
|
184
|
+
]
|
185
|
+
},
|
186
|
+
{
|
187
|
+
"cell_type": "code",
|
188
|
+
"execution_count": 7,
|
189
|
+
"id": "f8ad0539",
|
190
|
+
"metadata": {
|
191
|
+
"id": "f8ad0539",
|
192
|
+
"outputId": "42efafee-02b8-46e6-ef00-91a7629ceebe"
|
193
|
+
},
|
194
|
+
"outputs": [
|
195
|
+
{
|
196
|
+
"name": "stdout",
|
197
|
+
"output_type": "stream",
|
198
|
+
"text": [
|
199
|
+
"Model: \"sequential\"\n",
|
200
|
+
"_________________________________________________________________\n",
|
201
|
+
" Layer (type) Output Shape Param # \n",
|
202
|
+
"=================================================================\n",
|
203
|
+
" embedding (Embedding) (None, 18, 10) 24220 \n",
|
204
|
+
" \n",
|
205
|
+
" lstm (LSTM) (None, 100) 44400 \n",
|
206
|
+
" \n",
|
207
|
+
" dropout (Dropout) (None, 100) 0 \n",
|
208
|
+
" \n",
|
209
|
+
" dense (Dense) (None, 2422) 244622 \n",
|
210
|
+
" \n",
|
211
|
+
"=================================================================\n",
|
212
|
+
"Total params: 313242 (1.19 MB)\n",
|
213
|
+
"Trainable params: 313242 (1.19 MB)\n",
|
214
|
+
"Non-trainable params: 0 (0.00 Byte)\n",
|
215
|
+
"_________________________________________________________________\n"
|
216
|
+
]
|
217
|
+
}
|
218
|
+
],
|
219
|
+
"source": [
|
220
|
+
"def create_model(max_sequence_len, total_words):\n",
|
221
|
+
" input_len = max_sequence_len - 1\n",
|
222
|
+
" model = Sequential()\n",
|
223
|
+
"\n",
|
224
|
+
" # Add Input Embedding Layer\n",
|
225
|
+
" model.add(Embedding(total_words, 10, input_length=input_len))\n",
|
226
|
+
"\n",
|
227
|
+
" # Add Hidden Layer 1 - LSTM Layer\n",
|
228
|
+
" model.add(LSTM(100))\n",
|
229
|
+
" model.add(Dropout(0.1))\n",
|
230
|
+
"\n",
|
231
|
+
" # Add Output Layer\n",
|
232
|
+
" model.add(Dense(total_words, activation='softmax'))\n",
|
233
|
+
"\n",
|
234
|
+
" model.compile(loss='categorical_crossentropy', optimizer='adam')\n",
|
235
|
+
"\n",
|
236
|
+
" return model\n",
|
237
|
+
"\n",
|
238
|
+
"model = create_model(max_sequence_len, total_words)\n",
|
239
|
+
"model.summary()\n"
|
240
|
+
]
|
241
|
+
},
|
242
|
+
{
|
243
|
+
"cell_type": "code",
|
244
|
+
"execution_count": 8,
|
245
|
+
"id": "a1fe10c4",
|
246
|
+
"metadata": {
|
247
|
+
"id": "a1fe10c4",
|
248
|
+
"outputId": "01dab848-fc9a-43f6-ba9f-019187b12b96"
|
249
|
+
},
|
250
|
+
"outputs": [
|
251
|
+
{
|
252
|
+
"name": "stdout",
|
253
|
+
"output_type": "stream",
|
254
|
+
"text": [
|
255
|
+
"Epoch 1/100\n",
|
256
|
+
"Epoch 2/100\n",
|
257
|
+
"Epoch 3/100\n",
|
258
|
+
"Epoch 4/100\n",
|
259
|
+
"Epoch 5/100\n",
|
260
|
+
"Epoch 6/100\n",
|
261
|
+
"Epoch 7/100\n",
|
262
|
+
"Epoch 8/100\n",
|
263
|
+
"Epoch 9/100\n",
|
264
|
+
"Epoch 10/100\n",
|
265
|
+
"Epoch 11/100\n",
|
266
|
+
"Epoch 12/100\n",
|
267
|
+
"Epoch 13/100\n",
|
268
|
+
"Epoch 14/100\n",
|
269
|
+
"Epoch 15/100\n",
|
270
|
+
"Epoch 16/100\n",
|
271
|
+
"Epoch 17/100\n",
|
272
|
+
"Epoch 18/100\n",
|
273
|
+
"Epoch 19/100\n",
|
274
|
+
"Epoch 20/100\n",
|
275
|
+
"Epoch 21/100\n",
|
276
|
+
"Epoch 22/100\n",
|
277
|
+
"Epoch 23/100\n",
|
278
|
+
"Epoch 24/100\n",
|
279
|
+
"Epoch 25/100\n",
|
280
|
+
"Epoch 26/100\n",
|
281
|
+
"Epoch 27/100\n",
|
282
|
+
"Epoch 28/100\n",
|
283
|
+
"Epoch 29/100\n",
|
284
|
+
"Epoch 30/100\n",
|
285
|
+
"Epoch 31/100\n",
|
286
|
+
"Epoch 32/100\n",
|
287
|
+
"Epoch 33/100\n",
|
288
|
+
"Epoch 34/100\n",
|
289
|
+
"Epoch 35/100\n",
|
290
|
+
"Epoch 36/100\n",
|
291
|
+
"Epoch 37/100\n",
|
292
|
+
"Epoch 38/100\n",
|
293
|
+
"Epoch 39/100\n",
|
294
|
+
"Epoch 40/100\n",
|
295
|
+
"Epoch 41/100\n",
|
296
|
+
"Epoch 42/100\n",
|
297
|
+
"Epoch 43/100\n",
|
298
|
+
"Epoch 44/100\n",
|
299
|
+
"Epoch 45/100\n",
|
300
|
+
"Epoch 46/100\n",
|
301
|
+
"Epoch 47/100\n",
|
302
|
+
"Epoch 48/100\n",
|
303
|
+
"Epoch 49/100\n",
|
304
|
+
"Epoch 50/100\n",
|
305
|
+
"Epoch 51/100\n",
|
306
|
+
"Epoch 52/100\n",
|
307
|
+
"Epoch 53/100\n",
|
308
|
+
"Epoch 54/100\n",
|
309
|
+
"Epoch 55/100\n",
|
310
|
+
"Epoch 56/100\n",
|
311
|
+
"Epoch 57/100\n",
|
312
|
+
"Epoch 58/100\n",
|
313
|
+
"Epoch 59/100\n",
|
314
|
+
"Epoch 60/100\n",
|
315
|
+
"Epoch 61/100\n",
|
316
|
+
"Epoch 62/100\n",
|
317
|
+
"Epoch 63/100\n",
|
318
|
+
"Epoch 64/100\n",
|
319
|
+
"Epoch 65/100\n",
|
320
|
+
"Epoch 66/100\n",
|
321
|
+
"Epoch 67/100\n",
|
322
|
+
"Epoch 68/100\n",
|
323
|
+
"Epoch 69/100\n",
|
324
|
+
"Epoch 70/100\n",
|
325
|
+
"Epoch 71/100\n",
|
326
|
+
"Epoch 72/100\n",
|
327
|
+
"Epoch 73/100\n",
|
328
|
+
"Epoch 74/100\n",
|
329
|
+
"Epoch 75/100\n",
|
330
|
+
"Epoch 76/100\n",
|
331
|
+
"Epoch 77/100\n",
|
332
|
+
"Epoch 78/100\n",
|
333
|
+
"Epoch 79/100\n",
|
334
|
+
"Epoch 80/100\n",
|
335
|
+
"Epoch 81/100\n",
|
336
|
+
"Epoch 82/100\n",
|
337
|
+
"Epoch 83/100\n",
|
338
|
+
"Epoch 84/100\n",
|
339
|
+
"Epoch 85/100\n",
|
340
|
+
"Epoch 86/100\n",
|
341
|
+
"Epoch 87/100\n",
|
342
|
+
"Epoch 88/100\n",
|
343
|
+
"Epoch 89/100\n",
|
344
|
+
"Epoch 90/100\n",
|
345
|
+
"Epoch 91/100\n",
|
346
|
+
"Epoch 92/100\n",
|
347
|
+
"Epoch 93/100\n",
|
348
|
+
"Epoch 94/100\n",
|
349
|
+
"Epoch 95/100\n",
|
350
|
+
"Epoch 96/100\n",
|
351
|
+
"Epoch 97/100\n",
|
352
|
+
"Epoch 98/100\n",
|
353
|
+
"Epoch 99/100\n",
|
354
|
+
"Epoch 100/100\n"
|
355
|
+
]
|
356
|
+
},
|
357
|
+
{
|
358
|
+
"data": {
|
359
|
+
"text/plain": [
|
360
|
+
"<keras.src.callbacks.History at 0x7f26142dd480>"
|
361
|
+
]
|
362
|
+
},
|
363
|
+
"execution_count": 8,
|
364
|
+
"metadata": {},
|
365
|
+
"output_type": "execute_result"
|
366
|
+
}
|
367
|
+
],
|
368
|
+
"source": [
|
369
|
+
"model.fit(predictors, label, epochs=100, verbose=5)"
|
370
|
+
]
|
371
|
+
},
|
372
|
+
{
|
373
|
+
"cell_type": "code",
|
374
|
+
"execution_count": 9,
|
375
|
+
"id": "a76a078d",
|
376
|
+
"metadata": {
|
377
|
+
"id": "a76a078d"
|
378
|
+
},
|
379
|
+
"outputs": [],
|
380
|
+
"source": [
|
381
|
+
"def generate_text(seed_text, next_words, model, max_sequence_len):\n",
|
382
|
+
" for _ in range(next_words):\n",
|
383
|
+
" token_list = tokenizer.texts_to_sequences([seed_text])[0]\n",
|
384
|
+
" token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')\n",
|
385
|
+
"# predicted = model.predict_classes(token_list, verbose=0)\n",
|
386
|
+
" predict_x=model.predict(token_list)\n",
|
387
|
+
" classes_x=np.argmax(predict_x,axis=1)\n",
|
388
|
+
"\n",
|
389
|
+
" output_word = \"\"\n",
|
390
|
+
" for word,index in tokenizer.word_index.items():\n",
|
391
|
+
" if index == classes_x:\n",
|
392
|
+
" output_word = word\n",
|
393
|
+
" break\n",
|
394
|
+
" seed_text += \" \"+output_word\n",
|
395
|
+
" return seed_text.title()\n"
|
396
|
+
]
|
397
|
+
},
|
398
|
+
{
|
399
|
+
"cell_type": "code",
|
400
|
+
"execution_count": 10,
|
401
|
+
"id": "d1c3679e",
|
402
|
+
"metadata": {
|
403
|
+
"id": "d1c3679e",
|
404
|
+
"outputId": "4814b0be-d18c-40bc-e827-6f3d119b2ea8"
|
405
|
+
},
|
406
|
+
"outputs": [
|
407
|
+
{
|
408
|
+
"name": "stdout",
|
409
|
+
"output_type": "stream",
|
410
|
+
"text": [
|
411
|
+
"1/1 [==============================] - 0s 380ms/step\n",
|
412
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
413
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
414
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
415
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
416
|
+
"United States Erode Shorelines Tasmania Shows What\n",
|
417
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
418
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
419
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
420
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
421
|
+
"Preident Trump Is Wimping Out On\n",
|
422
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
423
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
424
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
425
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
426
|
+
"Donald Trump Is May So Contagious\n",
|
427
|
+
"1/1 [==============================] - 0s 16ms/step\n",
|
428
|
+
"1/1 [==============================] - 0s 16ms/step\n",
|
429
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
430
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
431
|
+
"India And China Station Rail Mishap Spurs\n",
|
432
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
433
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
434
|
+
"1/1 [==============================] - 0s 16ms/step\n",
|
435
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
436
|
+
"New York Today A Holocaust Survivors\n",
|
437
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
438
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
439
|
+
"1/1 [==============================] - 0s 14ms/step\n",
|
440
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
441
|
+
"1/1 [==============================] - 0s 15ms/step\n",
|
442
|
+
"Science And Technology Knocking In The Original News\n"
|
443
|
+
]
|
444
|
+
}
|
445
|
+
],
|
446
|
+
"source": [
|
447
|
+
"print (generate_text(\"united states\", 5, model, max_sequence_len))\n",
|
448
|
+
"print (generate_text(\"preident trump\", 4, model, max_sequence_len))\n",
|
449
|
+
"print (generate_text(\"donald trump\", 4, model, max_sequence_len))\n",
|
450
|
+
"print (generate_text(\"india and china\", 4, model, max_sequence_len))\n",
|
451
|
+
"print (generate_text(\"new york\", 4, model, max_sequence_len))\n",
|
452
|
+
"print (generate_text(\"science and technology\", 5, model, max_sequence_len))"
|
453
|
+
]
|
454
|
+
}
|
455
|
+
],
|
456
|
+
"metadata": {
|
457
|
+
"colab": {
|
458
|
+
"provenance": []
|
459
|
+
},
|
460
|
+
"kernelspec": {
|
461
|
+
"display_name": "Python 3 (ipykernel)",
|
462
|
+
"language": "python",
|
463
|
+
"name": "python3"
|
464
|
+
},
|
465
|
+
"language_info": {
|
466
|
+
"codemirror_mode": {
|
467
|
+
"name": "ipython",
|
468
|
+
"version": 3
|
469
|
+
},
|
470
|
+
"file_extension": ".py",
|
471
|
+
"mimetype": "text/x-python",
|
472
|
+
"name": "python",
|
473
|
+
"nbconvert_exporter": "python",
|
474
|
+
"pygments_lexer": "ipython3",
|
475
|
+
"version": "3.10.12"
|
476
|
+
}
|
477
|
+
},
|
478
|
+
"nbformat": 4,
|
479
|
+
"nbformat_minor": 5
|
480
|
+
}
|