noshot 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (210) hide show
  1. noshot/__init__.py +1 -0
  2. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +112 -0
  3. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +111 -0
  4. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +134 -0
  5. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +115 -0
  6. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +123 -0
  7. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/2_ANOVA.csv +769 -0
  8. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +126 -0
  9. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA.ipynb +134 -0
  10. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +119 -0
  11. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Two Way ANOVA.ipynb +138 -0
  12. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/reaction_time.csv +5 -0
  13. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sample_data.csv +16 -0
  14. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sleep_deprivation.csv +4 -0
  15. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/3_Linear.csv +4802 -0
  16. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +113 -0
  17. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +118 -0
  18. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression.ipynb +148 -0
  19. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/house_rate.csv +22 -0
  20. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +128 -0
  21. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression.ipynb +145 -0
  22. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/default.csv +1001 -0
  23. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/hours_scores_records.csv +101 -0
  24. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +256 -0
  25. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +157 -0
  26. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +178 -0
  27. noshot/data/AIDS CN NLP/AIDS/3. Genetic Algorithm/Genetic.ipynb +95 -0
  28. noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +74 -0
  29. noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +103 -0
  30. noshot/data/AIDS CN NLP/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +182 -0
  31. noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +120 -0
  32. noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +125 -0
  33. noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/Random Sampling.ipynb +73 -0
  34. noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/height_weight_bmi.csv +8389 -0
  35. noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test Hash Function.ipynb +141 -0
  36. noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test.ipynb +151 -0
  37. noshot/data/AIDS CN NLP/AIDS/8. Z Test/height_weight_bmi.csv +8389 -0
  38. noshot/data/AIDS CN NLP/AIDS/9. T Test/1_heart.csv +304 -0
  39. noshot/data/AIDS CN NLP/AIDS/9. T Test/Independent T Test.ipynb +119 -0
  40. noshot/data/AIDS CN NLP/AIDS/9. T Test/Paired T Test.ipynb +118 -0
  41. noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test Hash Function.ipynb +142 -0
  42. noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test.ipynb +158 -0
  43. noshot/data/AIDS CN NLP/AIDS/9. T Test/height_weight_bmi.csv +8389 -0
  44. noshot/data/AIDS CN NLP/AIDS/9. T Test/iq_test.csv +0 -0
  45. noshot/data/AIDS CN NLP/AIDS/Others (AllinOne)/All In One.ipynb +4581 -0
  46. noshot/data/AIDS CN NLP/CN/1. Chat Application/chat.java +81 -0
  47. noshot/data/AIDS CN NLP/CN/1. Chat Application/output.png +0 -0
  48. noshot/data/AIDS CN NLP/CN/1. Chat Application/procedure.png +0 -0
  49. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +65 -0
  50. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +44 -0
  51. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  52. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  53. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +229 -0
  54. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  55. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  56. noshot/data/AIDS CN NLP/CN/2. File Transfer/file_to_send.txt +2 -0
  57. noshot/data/AIDS CN NLP/CN/2. File Transfer/filetransfer.java +119 -0
  58. noshot/data/AIDS CN NLP/CN/2. File Transfer/output.png +0 -0
  59. noshot/data/AIDS CN NLP/CN/2. File Transfer/procedure.png +0 -0
  60. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  61. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  62. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/rmi.java +56 -0
  63. noshot/data/AIDS CN NLP/CN/4. Wired Network/output.png +0 -0
  64. noshot/data/AIDS CN NLP/CN/4. Wired Network/procedure.png +0 -0
  65. noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.awk +25 -0
  66. noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.tcl +81 -0
  67. noshot/data/AIDS CN NLP/CN/5. Wireless Network/output.png +0 -0
  68. noshot/data/AIDS CN NLP/CN/5. Wireless Network/procedure.png +0 -0
  69. noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.awk +27 -0
  70. noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.tcl +153 -0
  71. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +27 -0
  72. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  73. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +86 -0
  74. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +86 -0
  75. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +28 -0
  76. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  77. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +78 -0
  78. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +79 -0
  79. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +27 -0
  80. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +163 -0
  81. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  82. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  83. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/DV.tcl +111 -0
  84. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/LS.tcl +106 -0
  85. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/analysis.awk +36 -0
  86. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  87. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  88. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/analysis.awk +20 -0
  89. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/broadcast.tcl +76 -0
  90. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/multicast.tcl +103 -0
  91. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  92. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  93. noshot/data/AIDS CN NLP/CN/9. DHCP/DHCP.java +125 -0
  94. noshot/data/AIDS CN NLP/CN/9. DHCP/output.png +0 -0
  95. noshot/data/AIDS CN NLP/CN/9. DHCP/procedure.png +0 -0
  96. noshot/data/AIDS CN NLP/NLP/NLP 1/1-Prereqs.py +18 -0
  97. noshot/data/AIDS CN NLP/NLP/NLP 1/2-Chi2test.py +83 -0
  98. noshot/data/AIDS CN NLP/NLP/NLP 1/2-T-test.py +79 -0
  99. noshot/data/AIDS CN NLP/NLP/NLP 1/3-WSD-nb.py +53 -0
  100. noshot/data/AIDS CN NLP/NLP/NLP 1/4-Hindle-Rooth.py +53 -0
  101. noshot/data/AIDS CN NLP/NLP/NLP 1/5-HMM-Trellis.py +82 -0
  102. noshot/data/AIDS CN NLP/NLP/NLP 1/6-HMM-Viterbi.py +16 -0
  103. noshot/data/AIDS CN NLP/NLP/NLP 1/7-PCFG-parsetree.py +15 -0
  104. noshot/data/AIDS CN NLP/NLP/NLP 1/Chi2test.ipynb +285 -0
  105. noshot/data/AIDS CN NLP/NLP/NLP 1/Hindle-Rooth.ipynb +179 -0
  106. noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +1461 -0
  107. noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 11 NMT.ipynb +2307 -0
  108. noshot/data/AIDS CN NLP/NLP/NLP 1/PCFG.ipynb +134 -0
  109. noshot/data/AIDS CN NLP/NLP/NLP 1/Prereqs.ipynb +131 -0
  110. noshot/data/AIDS CN NLP/NLP/NLP 1/T test.ipynb +252 -0
  111. noshot/data/AIDS CN NLP/NLP/NLP 1/TFIDF BOW.ipynb +171 -0
  112. noshot/data/AIDS CN NLP/NLP/NLP 1/Trellis.ipynb +244 -0
  113. noshot/data/AIDS CN NLP/NLP/NLP 1/WSD.ipynb +645 -0
  114. noshot/data/AIDS CN NLP/NLP/NLP 1/Word2Vec.ipynb +93 -0
  115. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +370 -0
  116. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +6 -0
  117. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +274 -0
  118. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +905 -0
  119. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/test.txt +1 -0
  120. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +272 -0
  121. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +332 -0
  122. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +549 -0
  123. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +1 -0
  124. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +817 -0
  125. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +332 -0
  126. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +231 -0
  127. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +507 -0
  128. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +134 -0
  129. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +255 -0
  130. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +159 -0
  131. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +282 -0
  132. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +670 -0
  133. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +613 -0
  134. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +74 -0
  135. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +480 -0
  136. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +445 -0
  137. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +105 -0
  138. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +87 -0
  139. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +11 -0
  140. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +83 -0
  141. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +201 -0
  142. noshot/data/AIDS CN NLP/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +185 -0
  143. noshot/data/AIDS CN NLP/NLP/NLP 3/Backward-Procedure.ipynb +597 -0
  144. noshot/data/AIDS CN NLP/NLP/NLP 3/Bag_of.ipynb +1422 -0
  145. noshot/data/AIDS CN NLP/NLP/NLP 3/CYK-algorithm.ipynb +1067 -0
  146. noshot/data/AIDS CN NLP/NLP/NLP 3/Forward-Procedure.ipynb +477 -0
  147. noshot/data/AIDS CN NLP/NLP/NLP 3/LSTM.ipynb +1290 -0
  148. noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +1461 -0
  149. noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 11 NMT.ipynb +2307 -0
  150. noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-4.ipynb +216 -0
  151. noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-5.ipynb +216 -0
  152. noshot/data/AIDS CN NLP/NLP/NLP 3/abc.txt +6 -0
  153. noshot/data/AIDS CN NLP/NLP/NLP 3/ex-1-nltk.ipynb +711 -0
  154. noshot/data/AIDS CN NLP/NLP/NLP 3/ex-2-nlp.ipynb +267 -0
  155. noshot/data/AIDS CN NLP/NLP/NLP 3/exp8&9.ipynb +305 -0
  156. noshot/data/AIDS CN NLP/NLP/NLP 3/hind.ipynb +287 -0
  157. noshot/data/AIDS CN NLP/NLP/NLP 3/lab66.ipynb +752 -0
  158. noshot/data/AIDS CN NLP/NLP/NLP 3/leb_3.ipynb +612 -0
  159. noshot/data/AIDS CN NLP/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  160. noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_1.ipynb +3008 -0
  161. noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_2.ipynb +3095 -0
  162. noshot/data/AIDS CN NLP/NLP/NLP 3/nlplab-9.ipynb +295 -0
  163. noshot/data/AIDS CN NLP/NLP/NLP 3/nltk-ex-4.ipynb +506 -0
  164. noshot/data/AIDS CN NLP/NLP/NLP 3/text1.txt +48 -0
  165. noshot/data/AIDS CN NLP/NLP/NLP 3/text2.txt +8 -0
  166. noshot/data/AIDS CN NLP/NLP/NLP 3/text3.txt +48 -0
  167. noshot/data/AIDS CN NLP/NLP/NLP 3/translation-rnn.ipynb +812 -0
  168. noshot/data/AIDS CN NLP/NLP/NLP 3/word2vector.ipynb +173 -0
  169. noshot/data/AIDS CN NLP/NLP/NLP 4/Backward Procedure Algorithm.ipynb +179 -0
  170. noshot/data/AIDS CN NLP/NLP/NLP 4/Chi Square Collocation.ipynb +208 -0
  171. noshot/data/AIDS CN NLP/NLP/NLP 4/Collocation (T test).ipynb +188 -0
  172. noshot/data/AIDS CN NLP/NLP/NLP 4/Experiment 1.ipynb +437 -0
  173. noshot/data/AIDS CN NLP/NLP/NLP 4/Forward Procedure Algorithm.ipynb +132 -0
  174. noshot/data/AIDS CN NLP/NLP/NLP 4/Hindle Rooth.ipynb +414 -0
  175. noshot/data/AIDS CN NLP/NLP/NLP 4/MachineTranslation.ipynb +368 -0
  176. noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +86 -0
  177. noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +112 -0
  178. noshot/data/AIDS CN NLP/NLP/NLP 4/PCFG Inside Probability.ipynb +451 -0
  179. noshot/data/AIDS CN NLP/NLP/NLP 4/Text Generation using LSTM.ipynb +297 -0
  180. noshot/data/AIDS CN NLP/NLP/NLP 4/Viterbi.ipynb +310 -0
  181. noshot/data/AIDS CN NLP/NLP/NLP 4/Word Sense Disambiguation.ipynb +335 -0
  182. noshot/data/AIDS CN NLP/NLP/NLP 5/10.Text Generation using LSTM.ipynb +316 -0
  183. noshot/data/AIDS CN NLP/NLP/NLP 5/11.Machine Translation.ipynb +868 -0
  184. noshot/data/AIDS CN NLP/NLP/NLP 5/2.T and Chi2 Test.ipynb +204 -0
  185. noshot/data/AIDS CN NLP/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +234 -0
  186. noshot/data/AIDS CN NLP/NLP/NLP 5/4.Hinddle and Rooth.ipynb +128 -0
  187. noshot/data/AIDS CN NLP/NLP/NLP 5/5.Forward and Backward.ipynb +149 -0
  188. noshot/data/AIDS CN NLP/NLP/NLP 5/6.Viterbi.ipynb +111 -0
  189. noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG Parse Tree.ipynb +134 -0
  190. noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG using cyk.ipynb +101 -0
  191. noshot/data/AIDS CN NLP/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +310 -0
  192. noshot/data/AIDS CN NLP/NLP/NLP 5/9.Word2Vector.ipynb +78 -0
  193. noshot/data/AIDS CN NLP/NLP/NLP 5/NLP ALL In One.ipynb +2619 -0
  194. noshot/data/AIDS CN NLP/NLP/NLP 5/sample1.txt +15 -0
  195. noshot/data/AIDS CN NLP/NLP/NLP 5/sample2.txt +4 -0
  196. noshot/data/AIDS CN NLP/NLP/NLP 5/word2vec_model.bin +0 -0
  197. noshot/data/AIDS CN NLP/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +312 -0
  198. noshot/data/AIDS CN NLP/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +185 -0
  199. noshot/data/AIDS CN NLP/NLP/NLP 6/3. Naive Bayes WSD.ipynb +199 -0
  200. noshot/data/AIDS CN NLP/NLP/NLP 6/4. Hinddle and Rooth.ipynb +151 -0
  201. noshot/data/AIDS CN NLP/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +164 -0
  202. noshot/data/AIDS CN NLP/NLP/NLP 6/7. PCFG using CYK.ipynb +383 -0
  203. noshot/data/AIDS CN NLP/NLP/NLP 6/8. BOW and TF-IDF.ipynb +252 -0
  204. noshot/data/AIDS CN NLP/Ubuntu CN Lab.iso +0 -0
  205. noshot/main.py +47 -0
  206. noshot-0.1.0.dist-info/LICENSE.txt +21 -0
  207. noshot-0.1.0.dist-info/METADATA +65 -0
  208. noshot-0.1.0.dist-info/RECORD +210 -0
  209. noshot-0.1.0.dist-info/WHEEL +5 -0
  210. noshot-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,113 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "69fb26c3-ddd3-4f19-af31-e71b71c6dba1",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import matplotlib.pyplot as plt\n",
11
+ "from sklearn.linear_model import LinearRegression\n",
12
+ "import pandas as pd\n",
13
+ "import numpy as np\n",
14
+ "import seaborn as sns\n",
15
+ "\n",
16
+ "df = pd.read_csv('3_Linear.csv')\n",
17
+ "print(df.shape)\n",
18
+ "df.head()"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": null,
24
+ "id": "b414018b-1bb9-49f6-86bd-3f1865ff0943",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "df.info()"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "id": "c969f072-ab85-471f-a15c-6575b336951a",
35
+ "metadata": {},
36
+ "outputs": [],
37
+ "source": [
38
+ "sns.pairplot(df, y_vars = ['PRICE'])"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": null,
44
+ "id": "22e5738a-f319-428a-94d5-224c8f87e493",
45
+ "metadata": {},
46
+ "outputs": [],
47
+ "source": [
48
+ "#df = df[df['PRICE'] <= df['PRICE'].quantile(0.9)]\n",
49
+ "x = df['PROPERTYSQFT'].to_list()\n",
50
+ "x = np.reshape(x, newshape = (-1,1))\n",
51
+ "y = df['PRICE'].to_list()\n",
52
+ "plt.scatter(x, y)"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "id": "7c0812fa-ecbf-466d-8d4b-cb3f0aeb8d69",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "model = LinearRegression()\n",
63
+ "model.fit(x, y)\n",
64
+ "print(f\"Equation: y = {model.coef_}X + {model.intercept_}\")\n",
65
+ "print(\"Precision =\",model.score(x,y))"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": null,
71
+ "id": "b06c5ce2-b4c5-4cb6-bd84-9d798d321ca2",
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "x_new = [[2000]]\n",
76
+ "y_pred = model.predict(x_new)\n",
77
+ "print(x_new, y_pred)"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": null,
83
+ "id": "8bf92c6c-9fa5-45f4-914b-63a66fef4319",
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "plt.scatter(x,y, marker = '.')\n",
88
+ "plt.plot(x, model.predict(x), color = 'green')"
89
+ ]
90
+ }
91
+ ],
92
+ "metadata": {
93
+ "kernelspec": {
94
+ "display_name": "Python 3 (ipykernel)",
95
+ "language": "python",
96
+ "name": "python3"
97
+ },
98
+ "language_info": {
99
+ "codemirror_mode": {
100
+ "name": "ipython",
101
+ "version": 3
102
+ },
103
+ "file_extension": ".py",
104
+ "mimetype": "text/x-python",
105
+ "name": "python",
106
+ "nbconvert_exporter": "python",
107
+ "pygments_lexer": "ipython3",
108
+ "version": "3.12.4"
109
+ }
110
+ },
111
+ "nbformat": 4,
112
+ "nbformat_minor": 5
113
+ }
@@ -0,0 +1,118 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "88872eef-23f7-49f7-97ba-a29c775e2174",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "from sklearn.linear_model import LinearRegression\n",
11
+ "import matplotlib.pyplot as plt\n",
12
+ "import pandas as pd\n",
13
+ "import numpy as np"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "id": "da5c81a7-ad6b-4c80-a584-90522fd94cb8",
20
+ "metadata": {},
21
+ "outputs": [],
22
+ "source": [
23
+ "data = pd.read_csv('house_rate.csv')\n",
24
+ "data = data.dropna()\n",
25
+ "data.head()"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "id": "fa002c5a-6fb3-4360-8d7e-610c8c921984",
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": [
35
+ "X = data['House Size(sqft)'].to_list()\n",
36
+ "X = np.reshape(X, newshape = (-1,1))\n",
37
+ "Y = data['Price($)'].to_list()"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": null,
43
+ "id": "d886cc55-92b9-413a-9889-61b564018c10",
44
+ "metadata": {},
45
+ "outputs": [],
46
+ "source": [
47
+ "plt.scatter(X, Y, color = 'red')\n",
48
+ "plt.xlabel('Size (sq ft)')\n",
49
+ "plt.ylabel('Price ($)')\n",
50
+ "plt.title('Size vs Price of Houses')\n",
51
+ "plt.show()"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": null,
57
+ "id": "4283f26b-e48f-461e-9f0d-e8cc8610172a",
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "model = LinearRegression()\n",
62
+ "model.fit(X, Y)\n",
63
+ "print(\"Slopes(m) =\",model.coef_)\n",
64
+ "print(\"Constant(c) =\",model.intercept_)\n",
65
+ "print(\"Linear Equation: y = mx + c\")\n",
66
+ "print(f\"y = {model.coef_}x + {model.intercept_}\")"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "id": "8b6b4208-94cb-48b3-8ce8-19971c9bb4af",
73
+ "metadata": {},
74
+ "outputs": [],
75
+ "source": [
76
+ "x_new = [[600]]\n",
77
+ "y_pred = model.predict(x_new)\n",
78
+ "print(\"Independent Variables:\",x_new)\n",
79
+ "print(\"Dependent Variable:\",y_pred)"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "code",
84
+ "execution_count": null,
85
+ "id": "728c8310-f244-421a-a453-60142b83307f",
86
+ "metadata": {},
87
+ "outputs": [],
88
+ "source": [
89
+ "plt.scatter(X, Y, color = 'red', label = 'Actual')\n",
90
+ "plt.plot(X, model.predict(X), color = 'green', label = 'Predicted')\n",
91
+ "plt.legend()\n",
92
+ "plt.title(\"Linear Regression\")\n",
93
+ "plt.show()"
94
+ ]
95
+ }
96
+ ],
97
+ "metadata": {
98
+ "kernelspec": {
99
+ "display_name": "Python 3 (ipykernel)",
100
+ "language": "python",
101
+ "name": "python3"
102
+ },
103
+ "language_info": {
104
+ "codemirror_mode": {
105
+ "name": "ipython",
106
+ "version": 3
107
+ },
108
+ "file_extension": ".py",
109
+ "mimetype": "text/x-python",
110
+ "name": "python",
111
+ "nbconvert_exporter": "python",
112
+ "pygments_lexer": "ipython3",
113
+ "version": "3.12.4"
114
+ }
115
+ },
116
+ "nbformat": 4,
117
+ "nbformat_minor": 5
118
+ }
@@ -0,0 +1,148 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "318b8eae-4e2f-48a6-aa70-270176eee584",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import numpy as np"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": null,
16
+ "id": "b93ed99b-696f-452b-9eda-123eedbc57d2",
17
+ "metadata": {},
18
+ "outputs": [],
19
+ "source": [
20
+ "x = [1, 2, 3, 4, 5]\n",
21
+ "y = [2, 4, 5, 4, 5]\n",
22
+ "mean_x = np.mean(x)\n",
23
+ "mean_y = np.mean(y)\n",
24
+ "print(x)\n",
25
+ "print(y)"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "id": "c4b85b82-9962-4204-a134-1293c8b8ce64",
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": [
35
+ "SS_x = [(x1 - mean_x)**2 for x1 in x]\n",
36
+ "SS_y = [(y1 - mean_y)**2 for y1 in y]\n",
37
+ "SS_x, SS_y"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": null,
43
+ "id": "381241c0-715d-4197-b449-5ed3598cbe8d",
44
+ "metadata": {},
45
+ "outputs": [],
46
+ "source": [
47
+ "product = [(x1 - mean_x)*(y1 - mean_y) for x1, y1 in zip(x, y)]\n",
48
+ "print(product)"
49
+ ]
50
+ },
51
+ {
52
+ "cell_type": "code",
53
+ "execution_count": null,
54
+ "id": "68cdd29b-8e27-49db-8096-1296e3662efd",
55
+ "metadata": {},
56
+ "outputs": [],
57
+ "source": [
58
+ "b1 = sum(product)/sum(SS_x)\n",
59
+ "b0 = mean_y - (b1*mean_x)\n",
60
+ "def lnr_reg(x):\n",
61
+ " return b1*x + b0 #y = mx + c\n",
62
+ "print(f\"B0: {b0} and B1: {b1}\")"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "id": "4cf0b80c-94c3-492d-b1bc-80ac6cb8d728",
69
+ "metadata": {},
70
+ "outputs": [],
71
+ "source": [
72
+ "y_cap = [(b0 + b1*x1) for x1 in x]#y = mx + c (m->b1, c->b0)\n",
73
+ "print(y_cap)"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "id": "fbbeca29-6041-43b5-933c-8c921149eca4",
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "num = sum([(y1 - y2)**2 for y1, y2 in zip(y_cap, y)])\n",
84
+ "num"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": null,
90
+ "id": "5206d776-9c8b-4b81-aa67-734e760a4ded",
91
+ "metadata": {},
92
+ "outputs": [],
93
+ "source": [
94
+ "SE = (num/(len(x) - 2))**0.5\n",
95
+ "SE"
96
+ ]
97
+ },
98
+ {
99
+ "cell_type": "code",
100
+ "execution_count": null,
101
+ "id": "db1fd839-e12a-407a-9cd3-5deb707e7f1e",
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "if SE < 1:\n",
106
+ " print(\"Standard Error =\", SE, \"So Accept The Model\")\n",
107
+ "else:\n",
108
+ " print(\"Standard Error =\", SE, \"So Reject The Model\")"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": null,
114
+ "id": "d0d21e07-e52f-4144-b3f9-4dfec2978caf",
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "#Finding y value for new value of x\n",
119
+ "x_val = 6\n",
120
+ "print(\"For x =\",x_val)\n",
121
+ "print(f\"Linear Regression Equation: y = {b1:.2f}x + {b0:.2f}\")\n",
122
+ "y_val = lnr_reg(x_val)\n",
123
+ "print(\"y =\",y_val)"
124
+ ]
125
+ }
126
+ ],
127
+ "metadata": {
128
+ "kernelspec": {
129
+ "display_name": "Python 3 (ipykernel)",
130
+ "language": "python",
131
+ "name": "python3"
132
+ },
133
+ "language_info": {
134
+ "codemirror_mode": {
135
+ "name": "ipython",
136
+ "version": 3
137
+ },
138
+ "file_extension": ".py",
139
+ "mimetype": "text/x-python",
140
+ "name": "python",
141
+ "nbconvert_exporter": "python",
142
+ "pygments_lexer": "ipython3",
143
+ "version": "3.12.4"
144
+ }
145
+ },
146
+ "nbformat": 4,
147
+ "nbformat_minor": 5
148
+ }
@@ -0,0 +1,22 @@
1
+ House Size(sqft),Price($)
2
+ 1200,500000
3
+ 1500,600000
4
+ 1700,700000
5
+ 1600,550000
6
+ 1300,580000
7
+ 1400,600000
8
+ 1000,550000
9
+ 900,480000
10
+ 800,450000
11
+ 1100,510000
12
+ 1200,550000
13
+ 1300,600000
14
+ 1600,650000
15
+ 1900,710000
16
+ 1800,690000
17
+ 2000,750000
18
+ 2100,800000
19
+ 2200,850000
20
+ 2300,900000
21
+ 2400,950000
22
+ 2500,1000000
@@ -0,0 +1,128 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "202c2b89-4640-4c92-9b71-468bb5344c52",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "from sklearn.linear_model import LogisticRegression\n",
11
+ "from sklearn import preprocessing\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "import seaborn as sns\n",
14
+ "import numpy as np"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": null,
20
+ "id": "89500d07-8550-44f8-b65f-250d75f4484a",
21
+ "metadata": {},
22
+ "outputs": [],
23
+ "source": [
24
+ "import pandas as pd\n",
25
+ "data = pd.read_csv('default.csv')\n",
26
+ "data = data.dropna()\n",
27
+ "data.head()"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "id": "b686cff0-e3bc-4de3-9ea5-1ca38aef2568",
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "X = data['balance']\n",
38
+ "Y = data['student']\n",
39
+ "data.head()"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": null,
45
+ "id": "0432a397-bda3-4d60-98ae-8d727d3e0c4e",
46
+ "metadata": {},
47
+ "outputs": [],
48
+ "source": [
49
+ "catColumns = data.select_dtypes(['object']).columns\n",
50
+ "le = preprocessing.LabelEncoder()\n",
51
+ "\n",
52
+ "for col in catColumns:\n",
53
+ " n = len(data[col].unique())\n",
54
+ " if (n > 2):\n",
55
+ " X = pd.get_dummies(data[col])\n",
56
+ " X = X.drop(X.columns[0], axis=1)\n",
57
+ " data[X.columns] = X\n",
58
+ " data.drop(col, axis=1, inplace=True) # drop the original categorical variable (optional)\n",
59
+ " else:\n",
60
+ " le.fit(data[col])\n",
61
+ " data[col] = le.transform(data[col])"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": null,
67
+ "id": "1f17750f-229a-4d20-857b-2350a2937d94",
68
+ "metadata": {
69
+ "scrolled": true
70
+ },
71
+ "outputs": [],
72
+ "source": [
73
+ "model = LogisticRegression()\n",
74
+ "model.fit(np.reshape(X, newshape = (-1,1)), Y)\n",
75
+ "print(\"Coefficent =\",model.coef_)\n",
76
+ "print(\"Constant(c) =\",model.intercept_)"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": null,
82
+ "id": "5e46fa9a-bed2-480f-b5b0-9ecfedcb6f0c",
83
+ "metadata": {},
84
+ "outputs": [],
85
+ "source": [
86
+ "x_new = [[10000]]\n",
87
+ "y_pred = model.predict(x_new)\n",
88
+ "print(\"Balance:\",x_new[0])\n",
89
+ "Class = {1:'Yes', 0 : 'No'}\n",
90
+ "print(\"Is He Student?:\", Class[y_pred[0]])"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": null,
96
+ "id": "d155d2d7-a269-4766-ade2-e3fa74c33c95",
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "sns.regplot(x = X, y = Y, data = data, logistic = True, ci = None,\n",
101
+ " marker = 'x', scatter_kws = {'color': 'orange'})\n",
102
+ "plt.title(\"Logisitc Regression\")\n",
103
+ "plt.show()"
104
+ ]
105
+ }
106
+ ],
107
+ "metadata": {
108
+ "kernelspec": {
109
+ "display_name": "Python 3 (ipykernel)",
110
+ "language": "python",
111
+ "name": "python3"
112
+ },
113
+ "language_info": {
114
+ "codemirror_mode": {
115
+ "name": "ipython",
116
+ "version": 3
117
+ },
118
+ "file_extension": ".py",
119
+ "mimetype": "text/x-python",
120
+ "name": "python",
121
+ "nbconvert_exporter": "python",
122
+ "pygments_lexer": "ipython3",
123
+ "version": "3.12.4"
124
+ }
125
+ },
126
+ "nbformat": 4,
127
+ "nbformat_minor": 5
128
+ }
@@ -0,0 +1,145 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "48961c1d-3e9b-430d-b529-956467a3194c",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "data = pd.read_csv(\"hours_scores_records.csv\")\n",
12
+ "print(data.shape)\n",
13
+ "data.head()"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "id": "f3117a88-f1f0-45b6-8890-0893d84264a5",
20
+ "metadata": {},
21
+ "outputs": [],
22
+ "source": [
23
+ "mean_hours = data['Hours'].mean()\n",
24
+ "print(\"Hours Mean:\", mean_hours)\n",
25
+ "mean_scores = data['Scores'].mean()\n",
26
+ "print(\"Scores Mean:\", mean_scores)"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": null,
32
+ "id": "3e023a56-1fbc-4a7d-9565-49efb6a66074",
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "data['Hours - Mean_Hours'] = round(data['Hours'] - mean_hours, 3)\n",
37
+ "mean1 = data['Hours - Mean_Hours'].mean()\n",
38
+ "mean1"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": null,
44
+ "id": "f4574bdb-b5e4-4541-978c-ceea8d30f453",
45
+ "metadata": {},
46
+ "outputs": [],
47
+ "source": [
48
+ "data['Scores - Mean_Scores'] = round(data['Scores'] - mean_scores, 3)\n",
49
+ "mean2 = data['Scores - Mean_Scores'].mean()\n",
50
+ "mean2"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": null,
56
+ "id": "da2a298f-e92b-4161-8c5d-c38accb83eda",
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "data['product'] = data['Hours - Mean_Hours']*data['Scores - Mean_Scores']\n",
61
+ "mean3 = data['product'].mean()\n",
62
+ "mean3"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "id": "e322b3a6-89ea-4cce-bce4-45f53fefa439",
69
+ "metadata": {},
70
+ "outputs": [],
71
+ "source": [
72
+ "data['mean_x_squared'] = data['Scores - Mean_Scores']**2\n",
73
+ "data['mean_x2_squared'] = data['Hours - Mean_Hours']**2"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "id": "86d7a11a-7c35-4c8e-881d-37861322cafe",
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "mean_x2 = data['mean_x2_squared'].mean()\n",
84
+ "mean_x2"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": null,
90
+ "id": "107dba29-8e26-4b9d-8ec7-179999a025a1",
91
+ "metadata": {},
92
+ "outputs": [],
93
+ "source": [
94
+ "slope = mean3/mean_x2\n",
95
+ "slope"
96
+ ]
97
+ },
98
+ {
99
+ "cell_type": "code",
100
+ "execution_count": null,
101
+ "id": "77514aa2-58be-4c7d-aebc-2cfd1f9e2474",
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "c = mean2 - (slope*mean1)\n",
106
+ "c"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": null,
112
+ "id": "f991039c-5805-430d-952e-9012b8f4c783",
113
+ "metadata": {},
114
+ "outputs": [],
115
+ "source": [
116
+ "import numpy as np\n",
117
+ "z = (slope*(data['Hours'].astype(float))) + c\n",
118
+ "data[\"y\"] = 1/(1+np.exp(-z))\n",
119
+ "data.to_csv('score_updated.csv', index = False)\n",
120
+ "data.head()"
121
+ ]
122
+ }
123
+ ],
124
+ "metadata": {
125
+ "kernelspec": {
126
+ "display_name": "Python 3 (ipykernel)",
127
+ "language": "python",
128
+ "name": "python3"
129
+ },
130
+ "language_info": {
131
+ "codemirror_mode": {
132
+ "name": "ipython",
133
+ "version": 3
134
+ },
135
+ "file_extension": ".py",
136
+ "mimetype": "text/x-python",
137
+ "name": "python",
138
+ "nbconvert_exporter": "python",
139
+ "pygments_lexer": "ipython3",
140
+ "version": "3.12.4"
141
+ }
142
+ },
143
+ "nbformat": 4,
144
+ "nbformat_minor": 5
145
+ }