noshot 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (210) hide show
  1. noshot/__init__.py +1 -0
  2. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +112 -0
  3. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +111 -0
  4. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +134 -0
  5. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +115 -0
  6. noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +123 -0
  7. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/2_ANOVA.csv +769 -0
  8. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +126 -0
  9. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA.ipynb +134 -0
  10. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +119 -0
  11. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Two Way ANOVA.ipynb +138 -0
  12. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/reaction_time.csv +5 -0
  13. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sample_data.csv +16 -0
  14. noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sleep_deprivation.csv +4 -0
  15. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/3_Linear.csv +4802 -0
  16. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +113 -0
  17. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +118 -0
  18. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression.ipynb +148 -0
  19. noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/house_rate.csv +22 -0
  20. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +128 -0
  21. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression.ipynb +145 -0
  22. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/default.csv +1001 -0
  23. noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/hours_scores_records.csv +101 -0
  24. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +256 -0
  25. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +157 -0
  26. noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +178 -0
  27. noshot/data/AIDS CN NLP/AIDS/3. Genetic Algorithm/Genetic.ipynb +95 -0
  28. noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +74 -0
  29. noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +103 -0
  30. noshot/data/AIDS CN NLP/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +182 -0
  31. noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +120 -0
  32. noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +125 -0
  33. noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/Random Sampling.ipynb +73 -0
  34. noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/height_weight_bmi.csv +8389 -0
  35. noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test Hash Function.ipynb +141 -0
  36. noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test.ipynb +151 -0
  37. noshot/data/AIDS CN NLP/AIDS/8. Z Test/height_weight_bmi.csv +8389 -0
  38. noshot/data/AIDS CN NLP/AIDS/9. T Test/1_heart.csv +304 -0
  39. noshot/data/AIDS CN NLP/AIDS/9. T Test/Independent T Test.ipynb +119 -0
  40. noshot/data/AIDS CN NLP/AIDS/9. T Test/Paired T Test.ipynb +118 -0
  41. noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test Hash Function.ipynb +142 -0
  42. noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test.ipynb +158 -0
  43. noshot/data/AIDS CN NLP/AIDS/9. T Test/height_weight_bmi.csv +8389 -0
  44. noshot/data/AIDS CN NLP/AIDS/9. T Test/iq_test.csv +0 -0
  45. noshot/data/AIDS CN NLP/AIDS/Others (AllinOne)/All In One.ipynb +4581 -0
  46. noshot/data/AIDS CN NLP/CN/1. Chat Application/chat.java +81 -0
  47. noshot/data/AIDS CN NLP/CN/1. Chat Application/output.png +0 -0
  48. noshot/data/AIDS CN NLP/CN/1. Chat Application/procedure.png +0 -0
  49. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +65 -0
  50. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +44 -0
  51. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  52. noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  53. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +229 -0
  54. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  55. noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  56. noshot/data/AIDS CN NLP/CN/2. File Transfer/file_to_send.txt +2 -0
  57. noshot/data/AIDS CN NLP/CN/2. File Transfer/filetransfer.java +119 -0
  58. noshot/data/AIDS CN NLP/CN/2. File Transfer/output.png +0 -0
  59. noshot/data/AIDS CN NLP/CN/2. File Transfer/procedure.png +0 -0
  60. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  61. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  62. noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/rmi.java +56 -0
  63. noshot/data/AIDS CN NLP/CN/4. Wired Network/output.png +0 -0
  64. noshot/data/AIDS CN NLP/CN/4. Wired Network/procedure.png +0 -0
  65. noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.awk +25 -0
  66. noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.tcl +81 -0
  67. noshot/data/AIDS CN NLP/CN/5. Wireless Network/output.png +0 -0
  68. noshot/data/AIDS CN NLP/CN/5. Wireless Network/procedure.png +0 -0
  69. noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.awk +27 -0
  70. noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.tcl +153 -0
  71. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +27 -0
  72. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  73. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +86 -0
  74. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +86 -0
  75. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +28 -0
  76. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  77. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +78 -0
  78. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +79 -0
  79. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +27 -0
  80. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +163 -0
  81. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  82. noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  83. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/DV.tcl +111 -0
  84. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/LS.tcl +106 -0
  85. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/analysis.awk +36 -0
  86. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  87. noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  88. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/analysis.awk +20 -0
  89. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/broadcast.tcl +76 -0
  90. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/multicast.tcl +103 -0
  91. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  92. noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  93. noshot/data/AIDS CN NLP/CN/9. DHCP/DHCP.java +125 -0
  94. noshot/data/AIDS CN NLP/CN/9. DHCP/output.png +0 -0
  95. noshot/data/AIDS CN NLP/CN/9. DHCP/procedure.png +0 -0
  96. noshot/data/AIDS CN NLP/NLP/NLP 1/1-Prereqs.py +18 -0
  97. noshot/data/AIDS CN NLP/NLP/NLP 1/2-Chi2test.py +83 -0
  98. noshot/data/AIDS CN NLP/NLP/NLP 1/2-T-test.py +79 -0
  99. noshot/data/AIDS CN NLP/NLP/NLP 1/3-WSD-nb.py +53 -0
  100. noshot/data/AIDS CN NLP/NLP/NLP 1/4-Hindle-Rooth.py +53 -0
  101. noshot/data/AIDS CN NLP/NLP/NLP 1/5-HMM-Trellis.py +82 -0
  102. noshot/data/AIDS CN NLP/NLP/NLP 1/6-HMM-Viterbi.py +16 -0
  103. noshot/data/AIDS CN NLP/NLP/NLP 1/7-PCFG-parsetree.py +15 -0
  104. noshot/data/AIDS CN NLP/NLP/NLP 1/Chi2test.ipynb +285 -0
  105. noshot/data/AIDS CN NLP/NLP/NLP 1/Hindle-Rooth.ipynb +179 -0
  106. noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +1461 -0
  107. noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 11 NMT.ipynb +2307 -0
  108. noshot/data/AIDS CN NLP/NLP/NLP 1/PCFG.ipynb +134 -0
  109. noshot/data/AIDS CN NLP/NLP/NLP 1/Prereqs.ipynb +131 -0
  110. noshot/data/AIDS CN NLP/NLP/NLP 1/T test.ipynb +252 -0
  111. noshot/data/AIDS CN NLP/NLP/NLP 1/TFIDF BOW.ipynb +171 -0
  112. noshot/data/AIDS CN NLP/NLP/NLP 1/Trellis.ipynb +244 -0
  113. noshot/data/AIDS CN NLP/NLP/NLP 1/WSD.ipynb +645 -0
  114. noshot/data/AIDS CN NLP/NLP/NLP 1/Word2Vec.ipynb +93 -0
  115. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +370 -0
  116. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +6 -0
  117. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +274 -0
  118. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +905 -0
  119. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/test.txt +1 -0
  120. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +272 -0
  121. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +332 -0
  122. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +549 -0
  123. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +1 -0
  124. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +817 -0
  125. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +332 -0
  126. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +231 -0
  127. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +507 -0
  128. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +134 -0
  129. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +255 -0
  130. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +159 -0
  131. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +282 -0
  132. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +670 -0
  133. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +613 -0
  134. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +74 -0
  135. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +480 -0
  136. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +445 -0
  137. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +105 -0
  138. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +87 -0
  139. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +11 -0
  140. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +83 -0
  141. noshot/data/AIDS CN NLP/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +201 -0
  142. noshot/data/AIDS CN NLP/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +185 -0
  143. noshot/data/AIDS CN NLP/NLP/NLP 3/Backward-Procedure.ipynb +597 -0
  144. noshot/data/AIDS CN NLP/NLP/NLP 3/Bag_of.ipynb +1422 -0
  145. noshot/data/AIDS CN NLP/NLP/NLP 3/CYK-algorithm.ipynb +1067 -0
  146. noshot/data/AIDS CN NLP/NLP/NLP 3/Forward-Procedure.ipynb +477 -0
  147. noshot/data/AIDS CN NLP/NLP/NLP 3/LSTM.ipynb +1290 -0
  148. noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +1461 -0
  149. noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 11 NMT.ipynb +2307 -0
  150. noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-4.ipynb +216 -0
  151. noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-5.ipynb +216 -0
  152. noshot/data/AIDS CN NLP/NLP/NLP 3/abc.txt +6 -0
  153. noshot/data/AIDS CN NLP/NLP/NLP 3/ex-1-nltk.ipynb +711 -0
  154. noshot/data/AIDS CN NLP/NLP/NLP 3/ex-2-nlp.ipynb +267 -0
  155. noshot/data/AIDS CN NLP/NLP/NLP 3/exp8&9.ipynb +305 -0
  156. noshot/data/AIDS CN NLP/NLP/NLP 3/hind.ipynb +287 -0
  157. noshot/data/AIDS CN NLP/NLP/NLP 3/lab66.ipynb +752 -0
  158. noshot/data/AIDS CN NLP/NLP/NLP 3/leb_3.ipynb +612 -0
  159. noshot/data/AIDS CN NLP/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  160. noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_1.ipynb +3008 -0
  161. noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_2.ipynb +3095 -0
  162. noshot/data/AIDS CN NLP/NLP/NLP 3/nlplab-9.ipynb +295 -0
  163. noshot/data/AIDS CN NLP/NLP/NLP 3/nltk-ex-4.ipynb +506 -0
  164. noshot/data/AIDS CN NLP/NLP/NLP 3/text1.txt +48 -0
  165. noshot/data/AIDS CN NLP/NLP/NLP 3/text2.txt +8 -0
  166. noshot/data/AIDS CN NLP/NLP/NLP 3/text3.txt +48 -0
  167. noshot/data/AIDS CN NLP/NLP/NLP 3/translation-rnn.ipynb +812 -0
  168. noshot/data/AIDS CN NLP/NLP/NLP 3/word2vector.ipynb +173 -0
  169. noshot/data/AIDS CN NLP/NLP/NLP 4/Backward Procedure Algorithm.ipynb +179 -0
  170. noshot/data/AIDS CN NLP/NLP/NLP 4/Chi Square Collocation.ipynb +208 -0
  171. noshot/data/AIDS CN NLP/NLP/NLP 4/Collocation (T test).ipynb +188 -0
  172. noshot/data/AIDS CN NLP/NLP/NLP 4/Experiment 1.ipynb +437 -0
  173. noshot/data/AIDS CN NLP/NLP/NLP 4/Forward Procedure Algorithm.ipynb +132 -0
  174. noshot/data/AIDS CN NLP/NLP/NLP 4/Hindle Rooth.ipynb +414 -0
  175. noshot/data/AIDS CN NLP/NLP/NLP 4/MachineTranslation.ipynb +368 -0
  176. noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +86 -0
  177. noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +112 -0
  178. noshot/data/AIDS CN NLP/NLP/NLP 4/PCFG Inside Probability.ipynb +451 -0
  179. noshot/data/AIDS CN NLP/NLP/NLP 4/Text Generation using LSTM.ipynb +297 -0
  180. noshot/data/AIDS CN NLP/NLP/NLP 4/Viterbi.ipynb +310 -0
  181. noshot/data/AIDS CN NLP/NLP/NLP 4/Word Sense Disambiguation.ipynb +335 -0
  182. noshot/data/AIDS CN NLP/NLP/NLP 5/10.Text Generation using LSTM.ipynb +316 -0
  183. noshot/data/AIDS CN NLP/NLP/NLP 5/11.Machine Translation.ipynb +868 -0
  184. noshot/data/AIDS CN NLP/NLP/NLP 5/2.T and Chi2 Test.ipynb +204 -0
  185. noshot/data/AIDS CN NLP/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +234 -0
  186. noshot/data/AIDS CN NLP/NLP/NLP 5/4.Hinddle and Rooth.ipynb +128 -0
  187. noshot/data/AIDS CN NLP/NLP/NLP 5/5.Forward and Backward.ipynb +149 -0
  188. noshot/data/AIDS CN NLP/NLP/NLP 5/6.Viterbi.ipynb +111 -0
  189. noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG Parse Tree.ipynb +134 -0
  190. noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG using cyk.ipynb +101 -0
  191. noshot/data/AIDS CN NLP/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +310 -0
  192. noshot/data/AIDS CN NLP/NLP/NLP 5/9.Word2Vector.ipynb +78 -0
  193. noshot/data/AIDS CN NLP/NLP/NLP 5/NLP ALL In One.ipynb +2619 -0
  194. noshot/data/AIDS CN NLP/NLP/NLP 5/sample1.txt +15 -0
  195. noshot/data/AIDS CN NLP/NLP/NLP 5/sample2.txt +4 -0
  196. noshot/data/AIDS CN NLP/NLP/NLP 5/word2vec_model.bin +0 -0
  197. noshot/data/AIDS CN NLP/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +312 -0
  198. noshot/data/AIDS CN NLP/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +185 -0
  199. noshot/data/AIDS CN NLP/NLP/NLP 6/3. Naive Bayes WSD.ipynb +199 -0
  200. noshot/data/AIDS CN NLP/NLP/NLP 6/4. Hinddle and Rooth.ipynb +151 -0
  201. noshot/data/AIDS CN NLP/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +164 -0
  202. noshot/data/AIDS CN NLP/NLP/NLP 6/7. PCFG using CYK.ipynb +383 -0
  203. noshot/data/AIDS CN NLP/NLP/NLP 6/8. BOW and TF-IDF.ipynb +252 -0
  204. noshot/data/AIDS CN NLP/Ubuntu CN Lab.iso +0 -0
  205. noshot/main.py +47 -0
  206. noshot-0.1.0.dist-info/LICENSE.txt +21 -0
  207. noshot-0.1.0.dist-info/METADATA +65 -0
  208. noshot-0.1.0.dist-info/RECORD +210 -0
  209. noshot-0.1.0.dist-info/WHEEL +5 -0
  210. noshot-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,126 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0c5491e5-16d7-48af-9c5c-4656cc870c22",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "import numpy as np\n",
14
+ "from scipy import stats"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "markdown",
19
+ "id": "240a2de4-c0b4-4edc-a26c-c1eb5b688af3",
20
+ "metadata": {},
21
+ "source": [
22
+ "<b>Does sleep deprivation cause us to be either more or less aggressie? To test\n",
23
+ " this assumption, a psychologist randomly assigns volunteer subjects to sleep-deprivation\n",
24
+ " periods of either 0, 24, or 48 hours (independent variable). Subsequently, subjects are tested\n",
25
+ " for agressive behaviour. Aggressioin scores (dependent variable) indicate the total number of \n",
26
+ " different agressive behaviour.\n",
27
+ "</b>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "id": "68731695-7b9e-4b8a-a7f1-5ccee8454842",
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "def ANOVA_REP(groups, alpha):\n",
38
+ " group_mean = [np.mean(group) for group in groups]\n",
39
+ " subject_mean = [np.mean(subject) for subject in zip(*groups)]\n",
40
+ " grand_mean = np.mean(group_mean)\n",
41
+ " k = len(groups)\n",
42
+ " N = sum([len(group) for group in groups])\n",
43
+ " SSB = sum( len(group) * (group_mean[i] - grand_mean)**2 \\\n",
44
+ " for i, group in enumerate(groups) )\n",
45
+ " SSW = sum( (x - group_mean[i])**2 \\\n",
46
+ " for i, group in enumerate(groups) for x in group )\n",
47
+ " SSS = sum( k * (subject_mean[i] - grand_mean)**2 \\\n",
48
+ " for i, group in enumerate(groups) )\n",
49
+ " SSE = SSW - SSS\n",
50
+ " dfb = k - 1\n",
51
+ " dfw = N - k\n",
52
+ " dfs = len(groups[0]) - 1\n",
53
+ " dfe = dfw - dfs\n",
54
+ " MSB = SSB/dfb\n",
55
+ " MSE = SSE/dfe\n",
56
+ " F = MSB/MSE\n",
57
+ " critical = stats.f.ppf(1-alpha, dfb, dfe)\n",
58
+ "\n",
59
+ " print(\"Critical Value =\", critical)\n",
60
+ " print(\"F Statistic =\", F)\n",
61
+ " if F > critical: \n",
62
+ " print(\"Reject Null Hypothesis\")\n",
63
+ " else:\n",
64
+ " print(\"Accept Null Hypothesis\")\n",
65
+ "\n",
66
+ " x = np.linspace(0, 50, 1000) #adjust as required\n",
67
+ " y = stats.f.pdf(x, dfb, dfe)\n",
68
+ " plt.figure(figsize = (10, 8)) #adjust if you need to\n",
69
+ " plt.plot(x, y, color = 'blue', label = 'F Distribution')\n",
70
+ " plt.axvline(x = F, color = 'green', linestyle = '--', label = 'F Statistic')\n",
71
+ " plt.fill_between(x, y, color = 'red', where = (x > critical), alpha = 0.5, label = 'Critical Region')\n",
72
+ "\n",
73
+ " plt.xlabel('F Score')\n",
74
+ " plt.ylabel('Probability Density')\n",
75
+ " plt.title('One Way ANOVA (Repeated Measure) Test')\n",
76
+ " plt.legend()\n",
77
+ " plt.show()"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": null,
83
+ "id": "57dcb781-e81a-4f37-a900-6a8389480ddd",
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "df = pd.read_csv('sleep_deprivation.csv')\n",
88
+ "df"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "id": "874682bf-61dc-460a-92e1-ef075a410398",
95
+ "metadata": {},
96
+ "outputs": [],
97
+ "source": [
98
+ "groups = [df['Zero'], df['Twenty_Four'], df['Forty_Eight']]\n",
99
+ "groups = [list(x) for x in groups]\n",
100
+ "alpha = 0.05\n",
101
+ "ANOVA_REP(groups, alpha)"
102
+ ]
103
+ }
104
+ ],
105
+ "metadata": {
106
+ "kernelspec": {
107
+ "display_name": "Python 3 (ipykernel)",
108
+ "language": "python",
109
+ "name": "python3"
110
+ },
111
+ "language_info": {
112
+ "codemirror_mode": {
113
+ "name": "ipython",
114
+ "version": 3
115
+ },
116
+ "file_extension": ".py",
117
+ "mimetype": "text/x-python",
118
+ "name": "python",
119
+ "nbconvert_exporter": "python",
120
+ "pygments_lexer": "ipython3",
121
+ "version": "3.12.4"
122
+ }
123
+ },
124
+ "nbformat": 4,
125
+ "nbformat_minor": 5
126
+ }
@@ -0,0 +1,134 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0fcaaf6e-3185-4a2f-b4e9-f2f295b1c88d",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import random\n",
13
+ "import matplotlib.pyplot as plt\n",
14
+ "from scipy import stats"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": null,
20
+ "id": "ba7494c2-fc54-4fb1-b5de-28bc61904c23",
21
+ "metadata": {},
22
+ "outputs": [],
23
+ "source": [
24
+ "def ANOVA(groups, alpha):\n",
25
+ " group_mean = [np.mean(group) for group in groups]\n",
26
+ " grand_mean = np.mean(group_mean)\n",
27
+ " k = len(groups)\n",
28
+ " N = sum([len(group) for group in groups])\n",
29
+ " SSB = sum( len(group) * (group_mean[i] - grand_mean)**2 \\\n",
30
+ " for i, group in enumerate(groups) )\n",
31
+ " SSW = sum( (x - group_mean[i])**2 \\\n",
32
+ " for i, group in enumerate(groups) for x in group )\n",
33
+ " dfb = k - 1\n",
34
+ " dfw = N - k\n",
35
+ " MSB = SSB/dfb\n",
36
+ " MSW = SSW/dfw\n",
37
+ " F = MSB/MSW\n",
38
+ " critical = stats.f.ppf(1-alpha, dfb, dfw)\n",
39
+ "\n",
40
+ " print(\"Critical Value =\", critical)\n",
41
+ " print(\"F Statistic =\", F)\n",
42
+ " if F > critical: \n",
43
+ " print(\"Reject Null Hypothesis\")\n",
44
+ " else:\n",
45
+ " print(\"Accept Null Hypothesis\")\n",
46
+ "\n",
47
+ " x = np.linspace(0, 6, 1000)\n",
48
+ " y = stats.f.pdf(x, dfb, dfw)\n",
49
+ " plt.figure(figsize = (10, 6))\n",
50
+ " plt.plot(x, y, color = 'blue', label = 'F Distribution')\n",
51
+ " plt.axvline(x = F, color = 'green', linestyle = '--', label = 'F Statistic')\n",
52
+ " plt.fill_between(x, y, color = 'red', where = (x > critical), alpha = 0.5, label = 'Critical Region')\n",
53
+ "\n",
54
+ " plt.xlabel('F Score')\n",
55
+ " plt.ylabel('Probability Density')\n",
56
+ " plt.title('One Way ANOVA Test')\n",
57
+ " plt.legend()\n",
58
+ " plt.show()"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "markdown",
63
+ "id": "b9460934-9472-4cea-b804-258f6cd5fa33",
64
+ "metadata": {},
65
+ "source": [
66
+ "<b>Implement Random Sampling, Demonstrate ANOVA. \n",
67
+ "Is there a significant difference in the DiabetesPedigreeFunction levels between young adults (20-30), middle-aged adults (31-50), and older adults (50+) diagnosed with diabetes?\n",
68
+ "</b>"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": null,
74
+ "id": "0bd5d561-99d0-4e2a-8146-a86140809a07",
75
+ "metadata": {},
76
+ "outputs": [],
77
+ "source": [
78
+ "df = pd.read_csv('2_ANOVA.csv')\n",
79
+ "print(df.shape)\n",
80
+ "df.head()"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "code",
85
+ "execution_count": null,
86
+ "id": "7dfab0a1-f7eb-4b98-80a7-8c916634006f",
87
+ "metadata": {},
88
+ "outputs": [],
89
+ "source": [
90
+ "def categorize(age):\n",
91
+ " if 20 <= age <= 30: return \"young\"\n",
92
+ " elif 30 < age <= 50: return \"middle-aged\"\n",
93
+ " elif 50 < age: return \"old\"\n",
94
+ "\n",
95
+ "df['Age_Category'] = df['Age'].apply(categorize)\n",
96
+ "df[['DiabetesPedigreeFunction', 'Age', 'Age_Category']].head(10)"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "id": "ac1d0667-cde4-4d91-af95-8e50e1b155c8",
103
+ "metadata": {},
104
+ "outputs": [],
105
+ "source": [
106
+ "groups = df.groupby('Age_Category')['DiabetesPedigreeFunction'].apply(list)\n",
107
+ "groups = [random.choices(group, k = 50) for group in groups]\n",
108
+ "alpha = 0.05\n",
109
+ "ANOVA(groups, alpha)"
110
+ ]
111
+ }
112
+ ],
113
+ "metadata": {
114
+ "kernelspec": {
115
+ "display_name": "Python 3 (ipykernel)",
116
+ "language": "python",
117
+ "name": "python3"
118
+ },
119
+ "language_info": {
120
+ "codemirror_mode": {
121
+ "name": "ipython",
122
+ "version": 3
123
+ },
124
+ "file_extension": ".py",
125
+ "mimetype": "text/x-python",
126
+ "name": "python",
127
+ "nbconvert_exporter": "python",
128
+ "pygments_lexer": "ipython3",
129
+ "version": "3.12.4"
130
+ }
131
+ },
132
+ "nbformat": 4,
133
+ "nbformat_minor": 5
134
+ }
@@ -0,0 +1,119 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "c96adcb7-b9d3-444a-ab9e-b8a191af58a1",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import numpy as np\n",
11
+ "import matplotlib.pyplot as plt\n",
12
+ "from scipy import stats\n",
13
+ "import pandas as pd"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "id": "960be4dd-22a3-45e7-8f75-680209a6513d",
20
+ "metadata": {},
21
+ "outputs": [],
22
+ "source": [
23
+ "def show_curve(F_statistic, critical_value, df_between, df_within):\n",
24
+ " x = np.linspace(0, 12, 1000) # Range for F-distribution\n",
25
+ " y = stats.f.pdf(x, df_between, df_within) # PDF of F-distribution\n",
26
+ " plt.figure(figsize=(10, 6))\n",
27
+ " plt.plot(x, y, label='F-distribution', color='blue')\n",
28
+ "\n",
29
+ " # Shade the critical region\n",
30
+ " plt.fill_between(x, y, where=(x > critical_value), color='red', alpha=0.5, label='Critical Region')\n",
31
+ " \n",
32
+ " # Draw the F-statistic line\n",
33
+ " plt.axvline(F_statistic, color='orange', linestyle='--', label='F-statistic')\n",
34
+ " \n",
35
+ " plt.title('ANOVA: F-Distribution and Critical Region')\n",
36
+ " plt.xlabel('F Value')\n",
37
+ " plt.ylabel('Probability Density')\n",
38
+ " plt.legend()\n",
39
+ " plt.grid()\n",
40
+ " plt.xlim(0, 12) # Adjust x-axis limits\n",
41
+ " plt.ylim(0, max(y) * 1.1) # Adjust y-axis limits for better visibility\n",
42
+ " plt.show()"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "id": "409dfa77-3937-4b66-a8be-5dcb1960e6a4",
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "# Step 1: Load the dataset\n",
53
+ "file_path = 'sample_data.csv' # Replace with the path to your CSV file\n",
54
+ "df = pd.read_csv(file_path)\n",
55
+ "df = df.dropna()\n",
56
+ "# Assume 'School' is the categorical column and 'Values' is the numerical column.\n",
57
+ "# Step 2: Group the data by 'School' and calculate means\n",
58
+ "groups = df.groupby('School')['Values']\n",
59
+ "group_means = groups.mean()\n",
60
+ "overall_mean = df['Values'].mean()\n",
61
+ "\n",
62
+ "# Step 3: Calculate SSB (Sum of Squares Between)\n",
63
+ "SSB = sum(groups.size()[group] * (group_mean - overall_mean) ** 2 \n",
64
+ " for group, group_mean in group_means.items())\n",
65
+ "\n",
66
+ "# Step 4: Calculate SSW (Sum of Squares Within)\n",
67
+ "SSW = sum(((group_data - group_means[group_name]) ** 2).sum() \n",
68
+ " for group_name, group_data in groups)\n",
69
+ "\n",
70
+ "# Step 5: Degrees of freedom\n",
71
+ "df_between = len(group_means) - 1 # k - 1\n",
72
+ "df_within = len(df) - len(group_means) # N - k\n",
73
+ "\n",
74
+ "# Step 6: Calculate MSB and MSW\n",
75
+ "MSB = SSB / df_between\n",
76
+ "MSW = SSW / df_within\n",
77
+ "\n",
78
+ "# Step 7: Calculate the F-statistic\n",
79
+ "F_statistic = MSB / MSW\n",
80
+ "\n",
81
+ "# Step 8: Determine the critical F-value from the F-distribution table\n",
82
+ "alpha = 0.05 # Significance level\n",
83
+ "critical_value = stats.f.ppf(1 - alpha, df_between, df_within)\n",
84
+ "\n",
85
+ "# Step 9: Print results\n",
86
+ "print(f\"F-statistic: {F_statistic:.2f}\")\n",
87
+ "print(f\"Critical F-value: {critical_value:.2f}\")\n",
88
+ "\n",
89
+ "show_curve(F_statistic, critical_value, df_between, df_within)\n",
90
+ "# Step 10: Decision - Reject or Fail to Reject Null Hypothesis\n",
91
+ "if F_statistic > critical_value:\n",
92
+ " print(\"Reject the null hypothesis (There is a significant difference between group means).\")\n",
93
+ "else:\n",
94
+ " print(\"Fail to reject the null hypothesis (No significant difference between group means).\")"
95
+ ]
96
+ }
97
+ ],
98
+ "metadata": {
99
+ "kernelspec": {
100
+ "display_name": "Python 3 (ipykernel)",
101
+ "language": "python",
102
+ "name": "python3"
103
+ },
104
+ "language_info": {
105
+ "codemirror_mode": {
106
+ "name": "ipython",
107
+ "version": 3
108
+ },
109
+ "file_extension": ".py",
110
+ "mimetype": "text/x-python",
111
+ "name": "python",
112
+ "nbconvert_exporter": "python",
113
+ "pygments_lexer": "ipython3",
114
+ "version": "3.12.4"
115
+ }
116
+ },
117
+ "nbformat": 4,
118
+ "nbformat_minor": 5
119
+ }
@@ -0,0 +1,138 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "2e356560-a7fa-44fd-bc9f-08becb1209c6",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "from scipy import stats"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "id": "a6db50e0-3436-418d-99eb-e0e1ee7b6485",
20
+ "metadata": {},
21
+ "outputs": [],
22
+ "source": [
23
+ "def show_curve(x, y, F, critical, title):\n",
24
+ " plt.figure(figsize = (10, 8)) #adjust if you need to\n",
25
+ " plt.plot(x, y, color = 'blue', label = 'F Distribution')\n",
26
+ " plt.axvline(x = F, color = 'green', linestyle = '--', label = 'F Statistic')\n",
27
+ " plt.fill_between(x, y, color = 'red', where = (x > critical), alpha = 0.5, label = 'Critical Region')\n",
28
+ " plt.xlabel('F Score')\n",
29
+ " plt.ylabel('Probability Density')\n",
30
+ " plt.title(title)\n",
31
+ " plt.legend()\n",
32
+ " plt.show()\n",
33
+ "def Two_Way_ANOVA(groups, row_groups, col_groups, alpha):\n",
34
+ " cell_mean = [np.mean(group) for group in groups]\n",
35
+ " col_mean = [np.mean(col) for col in col_groups]\n",
36
+ " row_mean = [np.mean(row) for row in row_groups]\n",
37
+ " grand_mean = np.mean(cell_mean)\n",
38
+ " \n",
39
+ " k = len(groups)\n",
40
+ " N = sum([len(group) for group in groups])\n",
41
+ " c = len(col_groups)\n",
42
+ " r = len(row_groups)\n",
43
+ " SSB = sum( len(group) * (cell_mean[i] - grand_mean)**2 \\\n",
44
+ " for i, group in enumerate(groups) )\n",
45
+ " SSW = sum( (x - cell_mean[i])**2 \\\n",
46
+ " for i, group in enumerate(groups) for x in group )\n",
47
+ " SSC = sum( len(col) * (col_mean[i] - grand_mean)**2 \\\n",
48
+ " for i, col in enumerate(col_groups) )\n",
49
+ " SSR = sum( len(row) * (row_mean[i] - grand_mean)**2 \\\n",
50
+ " for i, row in enumerate(row_groups) )\n",
51
+ " SSI = SSB - (SSC + SSR)\n",
52
+ " dfb = k - 1\n",
53
+ " dfc = c - 1\n",
54
+ " dfr = r - 1\n",
55
+ " dfi = dfc*dfr\n",
56
+ " dfw = N - c*r\n",
57
+ " MSC = SSC/dfc\n",
58
+ " MSR = SSR/dfr\n",
59
+ " MSI = SSI/dfi\n",
60
+ " MSW = SSW/dfw\n",
61
+ "\n",
62
+ " F_col = MSC/MSW\n",
63
+ " F_row = MSR/MSW\n",
64
+ " F_intr = MSI/MSW \n",
65
+ " critical_col = stats.f.ppf(1-alpha, dfc, dfw)\n",
66
+ " critical_row = stats.f.ppf(1-alpha, dfr, dfw)\n",
67
+ " critical_intr = stats.f.ppf(1-alpha, dfi, dfw)\n",
68
+ "\n",
69
+ " print(\"Critical Vaue =\", critical_col, \"\\tF Column =\", F_col)\n",
70
+ " print(\"Critical Vaue =\", critical_row, \"\\tF Row =\", F_row)\n",
71
+ " print(\"Critical Vaue =\", critical_intr, \"\\tF Interaction =\", F_intr)\n",
72
+ " if F_col > critical_col or F_row > critical_row | F_intr > critical_intr: \n",
73
+ " print(\"Reject Null Hypothesis\")\n",
74
+ " else:\n",
75
+ " print(\"Accept Null Hypothesis\")\n",
76
+ "\n",
77
+ " x = np.linspace(0, 6, 1000)\n",
78
+ " y_col = stats.f.pdf(x, dfc, dfw)\n",
79
+ " y_row = stats.f.pdf(x, dfr, dfw)\n",
80
+ " y_intr = stats.f.pdf(x, dfi, dfw)\n",
81
+ " show_curve(x, y_col, F_col, critical_col, \"F Column\")\n",
82
+ " show_curve(x, y_row, F_row, critical_row, \"F Row\")\n",
83
+ " show_curve(x, y_intr, F_intr, critical_intr, \"F Interaction\")"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "id": "a8d52120-5d61-4f59-9781-f368ee14f6b8",
90
+ "metadata": {},
91
+ "outputs": [],
92
+ "source": [
93
+ "df = pd.read_csv('reaction_time.csv')\n",
94
+ "df"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "id": "e3b28a0b-45eb-4178-9201-358c6897fc04",
101
+ "metadata": {},
102
+ "outputs": [],
103
+ "source": [
104
+ "df1 = df[df['Degree of Danger'] == 'Dangerous']\n",
105
+ "df2 = df[df['Degree of Danger'] == 'Nondangerous']\n",
106
+ "\n",
107
+ "groups = [df1['Zero'], df1['Two'], df1['Four'], df2['Zero'], df2['Two'], df2['Four']]\n",
108
+ "row_groups = []\n",
109
+ "for _, cell in df.groupby(['Degree of Danger']):\n",
110
+ " row_groups.append([*cell['Zero'].values , *cell['Two'].values, *cell['Four'].values])\n",
111
+ "col_groups = [df['Zero'], df['Two'], df['Four']]\n",
112
+ "alpha = 0.05\n",
113
+ "Two_Way_ANOVA(groups,row_groups, col_groups, alpha)"
114
+ ]
115
+ }
116
+ ],
117
+ "metadata": {
118
+ "kernelspec": {
119
+ "display_name": "Python 3 (ipykernel)",
120
+ "language": "python",
121
+ "name": "python3"
122
+ },
123
+ "language_info": {
124
+ "codemirror_mode": {
125
+ "name": "ipython",
126
+ "version": 3
127
+ },
128
+ "file_extension": ".py",
129
+ "mimetype": "text/x-python",
130
+ "name": "python",
131
+ "nbconvert_exporter": "python",
132
+ "pygments_lexer": "ipython3",
133
+ "version": "3.12.4"
134
+ }
135
+ },
136
+ "nbformat": 4,
137
+ "nbformat_minor": 5
138
+ }
@@ -0,0 +1,5 @@
1
+ Degree of Danger,Zero,Two,Four
2
+ Dangerous,8,8,10
3
+ Dangerous,8,6,8
4
+ Nondangerous,9,15,24
5
+ Nondangerous,11,19,18
@@ -0,0 +1,16 @@
1
+ School,Values
2
+ A,85
3
+ A,90
4
+ A,88
5
+ A,82
6
+ A,87
7
+ B,78
8
+ B,80
9
+ B,82
10
+ B,79
11
+ B,85
12
+ C,92
13
+ C,88
14
+ C,85
15
+ C,90
16
+ C,89
@@ -0,0 +1,4 @@
1
+ Subject,Zero,Twenty_Four,Forty_Eight
2
+ A,0,3,6
3
+ B,4,6,8
4
+ C,2,6,10