noshot 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/__init__.py +1 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +112 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +111 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +134 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +115 -0
- noshot/data/AIDS CN NLP/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +123 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/2_ANOVA.csv +769 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +126 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/One Way ANOVA.ipynb +134 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +119 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/Two Way ANOVA.ipynb +138 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/reaction_time.csv +5 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sample_data.csv +16 -0
- noshot/data/AIDS CN NLP/AIDS/10. ANOVA/sleep_deprivation.csv +4 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/3_Linear.csv +4802 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +113 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +118 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/Linear Regression.ipynb +148 -0
- noshot/data/AIDS CN NLP/AIDS/11. Linear Regression/house_rate.csv +22 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +128 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/Logistic Regression.ipynb +145 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/default.csv +1001 -0
- noshot/data/AIDS CN NLP/AIDS/12. Logistic Regression/hours_scores_records.csv +101 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +256 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +157 -0
- noshot/data/AIDS CN NLP/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +178 -0
- noshot/data/AIDS CN NLP/AIDS/3. Genetic Algorithm/Genetic.ipynb +95 -0
- noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +74 -0
- noshot/data/AIDS CN NLP/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +103 -0
- noshot/data/AIDS CN NLP/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +182 -0
- noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +120 -0
- noshot/data/AIDS CN NLP/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +125 -0
- noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/Random Sampling.ipynb +73 -0
- noshot/data/AIDS CN NLP/AIDS/7. Random Sampling/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test Hash Function.ipynb +141 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/Z Test.ipynb +151 -0
- noshot/data/AIDS CN NLP/AIDS/8. Z Test/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/1_heart.csv +304 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/Independent T Test.ipynb +119 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/Paired T Test.ipynb +118 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test Hash Function.ipynb +142 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/T Test.ipynb +158 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/height_weight_bmi.csv +8389 -0
- noshot/data/AIDS CN NLP/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/AIDS CN NLP/AIDS/Others (AllinOne)/All In One.ipynb +4581 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/chat.java +81 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +65 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +44 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +229 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/file_to_send.txt +2 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/filetransfer.java +119 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/3. RMI (Remote Method Invocation)/rmi.java +56 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.awk +25 -0
- noshot/data/AIDS CN NLP/CN/4. Wired Network/wired.tcl +81 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.awk +27 -0
- noshot/data/AIDS CN NLP/CN/5. Wireless Network/wireless.tcl +153 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +27 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +86 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +86 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +28 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +78 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +79 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +27 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +163 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/DV.tcl +111 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/LS.tcl +106 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/analysis.awk +36 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/analysis.awk +20 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/broadcast.tcl +76 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/multicast.tcl +103 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/DHCP.java +125 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/output.png +0 -0
- noshot/data/AIDS CN NLP/CN/9. DHCP/procedure.png +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/1-Prereqs.py +18 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/2-Chi2test.py +83 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/2-T-test.py +79 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/3-WSD-nb.py +53 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/4-Hindle-Rooth.py +53 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/5-HMM-Trellis.py +82 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/6-HMM-Viterbi.py +16 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/7-PCFG-parsetree.py +15 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Chi2test.ipynb +285 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Hindle-Rooth.ipynb +179 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +1461 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Lab 11 NMT.ipynb +2307 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/PCFG.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Prereqs.ipynb +131 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/T test.ipynb +252 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/TFIDF BOW.ipynb +171 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Trellis.ipynb +244 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/WSD.ipynb +645 -0
- noshot/data/AIDS CN NLP/NLP/NLP 1/Word2Vec.ipynb +93 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +370 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +6 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +274 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +905 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/test.txt +1 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +272 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +332 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +549 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +1 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +817 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +332 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +231 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +507 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +255 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +159 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +282 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +670 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +613 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +74 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +480 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +445 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +105 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +87 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +11 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +83 -0
- noshot/data/AIDS CN NLP/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +201 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +185 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Backward-Procedure.ipynb +597 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Bag_of.ipynb +1422 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/CYK-algorithm.ipynb +1067 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Forward-Procedure.ipynb +477 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/LSTM.ipynb +1290 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +1461 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/Lab 11 NMT.ipynb +2307 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-4.ipynb +216 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/NLP-LAB-5.ipynb +216 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/abc.txt +6 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/ex-1-nltk.ipynb +711 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/ex-2-nlp.ipynb +267 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/exp8&9.ipynb +305 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/hind.ipynb +287 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/lab66.ipynb +752 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/leb_3.ipynb +612 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_1.ipynb +3008 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlp_leb_2.ipynb +3095 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nlplab-9.ipynb +295 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/nltk-ex-4.ipynb +506 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text1.txt +48 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text2.txt +8 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/text3.txt +48 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/translation-rnn.ipynb +812 -0
- noshot/data/AIDS CN NLP/NLP/NLP 3/word2vector.ipynb +173 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Backward Procedure Algorithm.ipynb +179 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Chi Square Collocation.ipynb +208 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Collocation (T test).ipynb +188 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Experiment 1.ipynb +437 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Forward Procedure Algorithm.ipynb +132 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Hindle Rooth.ipynb +414 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/MachineTranslation.ipynb +368 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +86 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +112 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/PCFG Inside Probability.ipynb +451 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Text Generation using LSTM.ipynb +297 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Viterbi.ipynb +310 -0
- noshot/data/AIDS CN NLP/NLP/NLP 4/Word Sense Disambiguation.ipynb +335 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/10.Text Generation using LSTM.ipynb +316 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/11.Machine Translation.ipynb +868 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/2.T and Chi2 Test.ipynb +204 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +234 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/4.Hinddle and Rooth.ipynb +128 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/5.Forward and Backward.ipynb +149 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/6.Viterbi.ipynb +111 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG Parse Tree.ipynb +134 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/7.PCFG using cyk.ipynb +101 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +310 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/9.Word2Vector.ipynb +78 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/NLP ALL In One.ipynb +2619 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/sample1.txt +15 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/sample2.txt +4 -0
- noshot/data/AIDS CN NLP/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +312 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +185 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/3. Naive Bayes WSD.ipynb +199 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/4. Hinddle and Rooth.ipynb +151 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +164 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/7. PCFG using CYK.ipynb +383 -0
- noshot/data/AIDS CN NLP/NLP/NLP 6/8. BOW and TF-IDF.ipynb +252 -0
- noshot/data/AIDS CN NLP/Ubuntu CN Lab.iso +0 -0
- noshot/main.py +47 -0
- noshot-0.1.0.dist-info/LICENSE.txt +21 -0
- noshot-0.1.0.dist-info/METADATA +65 -0
- noshot-0.1.0.dist-info/RECORD +210 -0
- noshot-0.1.0.dist-info/WHEEL +5 -0
- noshot-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,549 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "markdown",
|
5
|
+
"id": "0c125b29",
|
6
|
+
"metadata": {},
|
7
|
+
"source": [
|
8
|
+
"# Exp 3\n",
|
9
|
+
"\n",
|
10
|
+
"**To do**:\n",
|
11
|
+
" Parse tree for ambiguous sentence.\n",
|
12
|
+
"\n",
|
13
|
+
"Code credits - **Hari Kishan, Geeks for Geeks**"
|
14
|
+
]
|
15
|
+
},
|
16
|
+
{
|
17
|
+
"cell_type": "code",
|
18
|
+
"execution_count": 14,
|
19
|
+
"id": "693a6ba6",
|
20
|
+
"metadata": {},
|
21
|
+
"outputs": [
|
22
|
+
{
|
23
|
+
"name": "stdout",
|
24
|
+
"output_type": "stream",
|
25
|
+
"text": [
|
26
|
+
" s \n",
|
27
|
+
" | \n",
|
28
|
+
" vp \n",
|
29
|
+
" ________|____ \n",
|
30
|
+
" | np \n",
|
31
|
+
" | ________|_____ \n",
|
32
|
+
" | | np \n",
|
33
|
+
" | | | \n",
|
34
|
+
" | | np \n",
|
35
|
+
" | | _____|____ \n",
|
36
|
+
" | | np | \n",
|
37
|
+
" | | | | \n",
|
38
|
+
" v d n n \n",
|
39
|
+
" | | | | \n",
|
40
|
+
"Book the dinner flight\n",
|
41
|
+
"\n"
|
42
|
+
]
|
43
|
+
}
|
44
|
+
],
|
45
|
+
"source": [
|
46
|
+
"from nltk import *\n",
|
47
|
+
"n1=Tree('np',[Tree('np',[Tree('n',['dinner'])]),Tree('n',['flight'])])\n",
|
48
|
+
"np=Tree('np',[Tree('d',['the']),Tree('np',[n1])])\n",
|
49
|
+
"vp=Tree('vp',[Tree('v',['Book']),np])\n",
|
50
|
+
"tree=Tree('s',[vp])\n",
|
51
|
+
"tree.pretty_print()"
|
52
|
+
]
|
53
|
+
},
|
54
|
+
{
|
55
|
+
"cell_type": "code",
|
56
|
+
"execution_count": 7,
|
57
|
+
"id": "9ae808bd",
|
58
|
+
"metadata": {},
|
59
|
+
"outputs": [
|
60
|
+
{
|
61
|
+
"name": "stdout",
|
62
|
+
"output_type": "stream",
|
63
|
+
"text": [
|
64
|
+
" s \n",
|
65
|
+
" | \n",
|
66
|
+
" vp \n",
|
67
|
+
" ____|_______________ \n",
|
68
|
+
" | | np \n",
|
69
|
+
" | | | \n",
|
70
|
+
" | np np \n",
|
71
|
+
" | ___|____ | \n",
|
72
|
+
" v d np np \n",
|
73
|
+
" | | | | \n",
|
74
|
+
"Book the dinner flight\n",
|
75
|
+
"\n"
|
76
|
+
]
|
77
|
+
}
|
78
|
+
],
|
79
|
+
"source": [
|
80
|
+
"from nltk import *\n",
|
81
|
+
"np2=Tree('np',[Tree('np',[Tree('np',['flight'])])])\n",
|
82
|
+
"np1=Tree('np',[Tree('d',['the']), Tree('np',['dinner'])])\n",
|
83
|
+
"vp=Tree('vp',[Tree('v',['Book']),np1,np2])\n",
|
84
|
+
"tree=Tree('s',[vp])\n",
|
85
|
+
"tree.pretty_print()"
|
86
|
+
]
|
87
|
+
},
|
88
|
+
{
|
89
|
+
"cell_type": "code",
|
90
|
+
"execution_count": 12,
|
91
|
+
"id": "b926774a",
|
92
|
+
"metadata": {},
|
93
|
+
"outputs": [
|
94
|
+
{
|
95
|
+
"name": "stdout",
|
96
|
+
"output_type": "stream",
|
97
|
+
"text": [
|
98
|
+
"Total number of unique words: 92\n",
|
99
|
+
"\n",
|
100
|
+
"Word frequencies:\n",
|
101
|
+
"After 1\n",
|
102
|
+
"graduating 1\n",
|
103
|
+
"of 9\n",
|
104
|
+
"a 6\n",
|
105
|
+
"Madras 1\n",
|
106
|
+
"Institute 1\n",
|
107
|
+
"Technology 1\n",
|
108
|
+
"in 2\n",
|
109
|
+
"1960 1\n",
|
110
|
+
", 7\n",
|
111
|
+
"Kalam 2\n",
|
112
|
+
"Aeronautical 1\n",
|
113
|
+
"Development 3\n",
|
114
|
+
"Establishment 1\n",
|
115
|
+
"the 7\n",
|
116
|
+
"Defence 2\n",
|
117
|
+
"Research 2\n",
|
118
|
+
"and 2\n",
|
119
|
+
"Organisation 1\n",
|
120
|
+
"( 2\n",
|
121
|
+
"by 4\n",
|
122
|
+
"Press 1\n",
|
123
|
+
"Information 1\n",
|
124
|
+
"Bureau 1\n",
|
125
|
+
"Government 1\n",
|
126
|
+
"India 1\n",
|
127
|
+
") 2\n",
|
128
|
+
"as 2\n",
|
129
|
+
"scientist 1\n",
|
130
|
+
"after 1\n",
|
131
|
+
"becoming 1\n",
|
132
|
+
"member 1\n",
|
133
|
+
"& 1\n",
|
134
|
+
"Service 1\n",
|
135
|
+
"DRDS 1\n",
|
136
|
+
". 1\n",
|
137
|
+
"He 1\n",
|
138
|
+
"started 1\n",
|
139
|
+
"his 2\n",
|
140
|
+
"career 1\n",
|
141
|
+
"designing 1\n",
|
142
|
+
"small 1\n",
|
143
|
+
"hovercraft 1\n",
|
144
|
+
"but 1\n",
|
145
|
+
"remained 1\n",
|
146
|
+
"unconvinced 1\n",
|
147
|
+
"choice 1\n",
|
148
|
+
"job 1\n",
|
149
|
+
"at 1\n",
|
150
|
+
"DRDO.alam 1\n",
|
151
|
+
"was 1\n",
|
152
|
+
"invited 1\n",
|
153
|
+
"Raja 1\n",
|
154
|
+
"Ramanna 1\n",
|
155
|
+
"to 2\n",
|
156
|
+
"witness 1\n",
|
157
|
+
"country 1\n",
|
158
|
+
"'s 1\n",
|
159
|
+
"first 1\n",
|
160
|
+
"nuclear 1\n",
|
161
|
+
"test 1\n",
|
162
|
+
"Smiling 1\n",
|
163
|
+
"Buddha 1\n",
|
164
|
+
"representative 1\n",
|
165
|
+
"TBRL 1\n",
|
166
|
+
"even 1\n",
|
167
|
+
"though 1\n",
|
168
|
+
"he 1\n",
|
169
|
+
"had 1\n",
|
170
|
+
"not 1\n",
|
171
|
+
"participated 1\n",
|
172
|
+
"its 1\n",
|
173
|
+
"development. 1\n",
|
174
|
+
"In 1\n",
|
175
|
+
"1970s 1\n",
|
176
|
+
"also 1\n",
|
177
|
+
"directed 1\n",
|
178
|
+
"two 1\n",
|
179
|
+
"projects 1\n",
|
180
|
+
"Project 2\n",
|
181
|
+
"Devil 1\n",
|
182
|
+
"Valiant 1\n",
|
183
|
+
"which 1\n",
|
184
|
+
"sought 1\n",
|
185
|
+
"develop 1\n",
|
186
|
+
"ballistic 1\n",
|
187
|
+
"missiles 1\n",
|
188
|
+
"from 1\n",
|
189
|
+
"technology 1\n",
|
190
|
+
"successful 1\n",
|
191
|
+
"SLV 1\n",
|
192
|
+
"programme 1\n",
|
193
|
+
"\n",
|
194
|
+
"Total number of unique pairs: 125\n",
|
195
|
+
"Joint probabilities:\n",
|
196
|
+
"After graduating 1\n",
|
197
|
+
"graduating of 1\n",
|
198
|
+
"of a 3\n",
|
199
|
+
"a Madras 1\n",
|
200
|
+
"Madras Institute 1\n",
|
201
|
+
"Institute of 1\n",
|
202
|
+
"of Technology 1\n",
|
203
|
+
"Technology in 1\n",
|
204
|
+
"in 1960 1\n",
|
205
|
+
"1960 , 1\n",
|
206
|
+
", Kalam 2\n",
|
207
|
+
"Kalam of 1\n",
|
208
|
+
"a Aeronautical 1\n",
|
209
|
+
"Aeronautical Development 1\n",
|
210
|
+
"Development Establishment 1\n",
|
211
|
+
"Establishment of 1\n",
|
212
|
+
"of the 3\n",
|
213
|
+
"the Defence 2\n",
|
214
|
+
"Defence Research 2\n",
|
215
|
+
"Research and 1\n",
|
216
|
+
"and Development 1\n",
|
217
|
+
"Development Organisation 1\n",
|
218
|
+
"Organisation ( 1\n",
|
219
|
+
"( by 1\n",
|
220
|
+
"by Press 1\n",
|
221
|
+
"Press Information 1\n",
|
222
|
+
"Information Bureau 1\n",
|
223
|
+
"Bureau , 1\n",
|
224
|
+
", Government 1\n",
|
225
|
+
"Government of 1\n",
|
226
|
+
"of India 1\n",
|
227
|
+
"India ) 1\n",
|
228
|
+
") as 1\n",
|
229
|
+
"as a 1\n",
|
230
|
+
"a scientist 1\n",
|
231
|
+
"scientist after 1\n",
|
232
|
+
"after becoming 1\n",
|
233
|
+
"becoming a 1\n",
|
234
|
+
"a member 1\n",
|
235
|
+
"member of 1\n",
|
236
|
+
"Research & 1\n",
|
237
|
+
"& Development 1\n",
|
238
|
+
"Development Service 1\n",
|
239
|
+
"Service ( 1\n",
|
240
|
+
"( DRDS 1\n",
|
241
|
+
"DRDS ) 1\n",
|
242
|
+
") . 1\n",
|
243
|
+
". He 1\n",
|
244
|
+
"He started 1\n",
|
245
|
+
"started his 1\n",
|
246
|
+
"his career 1\n",
|
247
|
+
"career by 1\n",
|
248
|
+
"by designing 1\n",
|
249
|
+
"designing a 1\n",
|
250
|
+
"a small 1\n",
|
251
|
+
"small hovercraft 1\n",
|
252
|
+
"hovercraft , 1\n",
|
253
|
+
", but 1\n",
|
254
|
+
"but remained 1\n",
|
255
|
+
"remained unconvinced 1\n",
|
256
|
+
"unconvinced by 1\n",
|
257
|
+
"by his 1\n",
|
258
|
+
"his choice 1\n",
|
259
|
+
"choice of 1\n",
|
260
|
+
"a job 1\n",
|
261
|
+
"job at 1\n",
|
262
|
+
"at DRDO.alam 1\n",
|
263
|
+
"DRDO.alam was 1\n",
|
264
|
+
"was invited 1\n",
|
265
|
+
"invited by 1\n",
|
266
|
+
"by Raja 1\n",
|
267
|
+
"Raja Ramanna 1\n",
|
268
|
+
"Ramanna to 1\n",
|
269
|
+
"to witness 1\n",
|
270
|
+
"witness the 1\n",
|
271
|
+
"the country 1\n",
|
272
|
+
"country 's 1\n",
|
273
|
+
"'s first 1\n",
|
274
|
+
"first nuclear 1\n",
|
275
|
+
"nuclear test 1\n",
|
276
|
+
"test Smiling 1\n",
|
277
|
+
"Smiling Buddha 1\n",
|
278
|
+
"Buddha as 1\n",
|
279
|
+
"as the 1\n",
|
280
|
+
"the representative 1\n",
|
281
|
+
"representative of 1\n",
|
282
|
+
"of TBRL 1\n",
|
283
|
+
"TBRL , 1\n",
|
284
|
+
", even 1\n",
|
285
|
+
"even though 1\n",
|
286
|
+
"though he 1\n",
|
287
|
+
"he had 1\n",
|
288
|
+
"had not 1\n",
|
289
|
+
"not participated 1\n",
|
290
|
+
"participated in 1\n",
|
291
|
+
"in its 1\n",
|
292
|
+
"its development. 1\n",
|
293
|
+
"development. In 1\n",
|
294
|
+
"In the 1\n",
|
295
|
+
"the 1970s 1\n",
|
296
|
+
"1970s , 1\n",
|
297
|
+
"Kalam also 1\n",
|
298
|
+
"also directed 1\n",
|
299
|
+
"directed two 1\n",
|
300
|
+
"two projects 1\n",
|
301
|
+
"projects , 1\n",
|
302
|
+
", Project 1\n",
|
303
|
+
"Project Devil 1\n",
|
304
|
+
"Devil and 1\n",
|
305
|
+
"and Project 1\n",
|
306
|
+
"Project Valiant 1\n",
|
307
|
+
"Valiant , 1\n",
|
308
|
+
", which 1\n",
|
309
|
+
"which sought 1\n",
|
310
|
+
"sought to 1\n",
|
311
|
+
"to develop 1\n",
|
312
|
+
"develop ballistic 1\n",
|
313
|
+
"ballistic missiles 1\n",
|
314
|
+
"missiles from 1\n",
|
315
|
+
"from the 1\n",
|
316
|
+
"the technology 1\n",
|
317
|
+
"technology of 1\n",
|
318
|
+
"the successful 1\n",
|
319
|
+
"successful SLV 1\n",
|
320
|
+
"SLV programme 1\n",
|
321
|
+
"\n",
|
322
|
+
"The pair with the max frequency: of a\n",
|
323
|
+
"ORGANIZATION --> MadrasInstitute\n",
|
324
|
+
"GPE --> Technology\n",
|
325
|
+
"PERSON --> Kalam\n",
|
326
|
+
"ORGANIZATION --> AeronauticalDevelopment\n",
|
327
|
+
"ORGANIZATION --> DefenceResearch\n",
|
328
|
+
"ORGANIZATION --> DevelopmentOrganisation\n",
|
329
|
+
"PERSON --> PressInformationBureau\n",
|
330
|
+
"GPE --> India\n",
|
331
|
+
"ORGANIZATION --> Defence\n",
|
332
|
+
"ORGANIZATION --> DevelopmentService\n",
|
333
|
+
"ORGANIZATION --> DRDS\n",
|
334
|
+
"PERSON --> RajaRamanna\n",
|
335
|
+
"PERSON --> Buddha\n",
|
336
|
+
"ORGANIZATION --> TBRL\n",
|
337
|
+
"PERSON --> Kalam\n",
|
338
|
+
"PERSON --> ProjectDevil\n",
|
339
|
+
"PERSON --> ProjectValiant\n",
|
340
|
+
"ORGANIZATION --> SLV\n"
|
341
|
+
]
|
342
|
+
}
|
343
|
+
],
|
344
|
+
"source": [
|
345
|
+
"from collections import Counter\n",
|
346
|
+
"from nltk.tokenize import TreebankWordTokenizer\n",
|
347
|
+
"\n",
|
348
|
+
"# Read the text file\n",
|
349
|
+
"with open(\"nlp.txt\") as f:\n",
|
350
|
+
" text = f.read()\n",
|
351
|
+
"\n",
|
352
|
+
"# Tokenize the text\n",
|
353
|
+
"tokenizer = TreebankWordTokenizer()\n",
|
354
|
+
"tokens = tokenizer.tokenize(text)\n",
|
355
|
+
"\n",
|
356
|
+
"# Display total number of unique words\n",
|
357
|
+
"unique_words = set(tokens)\n",
|
358
|
+
"total_unique_words = len(unique_words)\n",
|
359
|
+
"print(\"Total number of unique words:\", total_unique_words)\n",
|
360
|
+
"\n",
|
361
|
+
"# Frequency of each word without duplicate entries\n",
|
362
|
+
"word_frequency = Counter(tokens)\n",
|
363
|
+
"print(\"\\nWord frequencies:\")\n",
|
364
|
+
"for word, freq in word_frequency.items():\n",
|
365
|
+
" print(word, freq)\n",
|
366
|
+
"\n",
|
367
|
+
"# Joint probability of each word\n",
|
368
|
+
"joint_probabilities = Counter(zip(tokens, tokens[1:]))\n",
|
369
|
+
"total_pairs = len(joint_probabilities)\n",
|
370
|
+
"print(\"\\nTotal number of unique pairs:\", total_pairs)\n",
|
371
|
+
"print(\"Joint probabilities:\")\n",
|
372
|
+
"for pair, freq in joint_probabilities.items():\n",
|
373
|
+
" print(\" \".join(pair), freq)\n",
|
374
|
+
"\n",
|
375
|
+
"# The pair with the maximum frequency\n",
|
376
|
+
"max_freq_pair = max(joint_probabilities, key=joint_probabilities.get)\n",
|
377
|
+
"print(\"\\nThe pair with the max frequency:\", \" \".join(max_freq_pair))\n",
|
378
|
+
" \n",
|
379
|
+
"# Apply part-of-speech tagging to the tokens\n",
|
380
|
+
"tagged = nltk.pos_tag(tokens)\n",
|
381
|
+
" \n",
|
382
|
+
"# Apply named entity recognition to the tagged words\n",
|
383
|
+
"entities = nltk.chunk.ne_chunk(tagged)\n",
|
384
|
+
"\n",
|
385
|
+
"# Print the entities found in the text\n",
|
386
|
+
"for entity in entities:\n",
|
387
|
+
" if hasattr(entity, 'label') and entity.label() == 'ORGANIZATION':\n",
|
388
|
+
" print(entity.label(),'-->', ''.join(c[0] for c in entity))\n",
|
389
|
+
" elif hasattr(entity, 'label') and entity.label() == 'GPE':\n",
|
390
|
+
" print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
|
391
|
+
" elif hasattr(entity, 'label') and entity.label() == 'PERSON':\n",
|
392
|
+
" print(entity.label(), '-->',''.join(c[0] for c in entity))"
|
393
|
+
]
|
394
|
+
},
|
395
|
+
{
|
396
|
+
"cell_type": "code",
|
397
|
+
"execution_count": 13,
|
398
|
+
"id": "1dae5fb5",
|
399
|
+
"metadata": {},
|
400
|
+
"outputs": [
|
401
|
+
{
|
402
|
+
"name": "stdout",
|
403
|
+
"output_type": "stream",
|
404
|
+
"text": [
|
405
|
+
"ORGANIZATION --> MadrasInstitute\n",
|
406
|
+
"GPE --> Technology\n",
|
407
|
+
"ORGANIZATION --> AeronauticalDevelopment\n",
|
408
|
+
"ORGANIZATION --> DefenceResearch\n",
|
409
|
+
"ORGANIZATION --> DevelopmentOrganisation\n",
|
410
|
+
"PERSON --> PressInformationBureau\n",
|
411
|
+
"GPE --> India\n",
|
412
|
+
"ORGANIZATION --> DefenceResearchDevelopmentService\n",
|
413
|
+
"ORGANIZATION --> DRDOalam\n",
|
414
|
+
"PERSON --> RajaRamanna\n",
|
415
|
+
"PERSON --> Buddha\n",
|
416
|
+
"ORGANIZATION --> TBRL\n",
|
417
|
+
"PERSON --> Kalam\n",
|
418
|
+
"PERSON --> ProjectDevil\n",
|
419
|
+
"PERSON --> ProjectValiant\n",
|
420
|
+
"ORGANIZATION --> SLV\n"
|
421
|
+
]
|
422
|
+
}
|
423
|
+
],
|
424
|
+
"source": [
|
425
|
+
"import re\n",
|
426
|
+
"import nltk\n",
|
427
|
+
"from nltk.tokenize import TreebankWordTokenizer\n",
|
428
|
+
"from nltk.stem import PorterStemmer\n",
|
429
|
+
"f=open(\"nlp.txt\",'r')\n",
|
430
|
+
"tk=TreebankWordTokenizer()\n",
|
431
|
+
"new_string = re.sub(r'[^\\w\\s]', '', f.read())\n",
|
432
|
+
"val=tk.tokenize(new_string)\n",
|
433
|
+
"tagged=nltk.pos_tag(val)\n",
|
434
|
+
"entities=nltk.chunk.ne_chunk(tagged)\n",
|
435
|
+
"\n",
|
436
|
+
"for entity in entities:\n",
|
437
|
+
" if hasattr(entity, 'label') and entity.label() == 'ORGANIZATION':\n",
|
438
|
+
" print(entity.label(),'-->', ''.join(c[0] for c in entity))\n",
|
439
|
+
" elif hasattr(entity, 'label') and entity.label() == 'GPE':\n",
|
440
|
+
" print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
|
441
|
+
" elif hasattr(entity, 'label') and entity.label() == 'PERSON':\n",
|
442
|
+
" print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
|
443
|
+
"f.close()"
|
444
|
+
]
|
445
|
+
},
|
446
|
+
{
|
447
|
+
"cell_type": "code",
|
448
|
+
"execution_count": 15,
|
449
|
+
"id": "6d384b4b",
|
450
|
+
"metadata": {},
|
451
|
+
"outputs": [
|
452
|
+
{
|
453
|
+
"data": {
|
454
|
+
"text/plain": [
|
455
|
+
"[('Allon', 'Bacuth'),\n",
|
456
|
+
" ('Ashteroth', 'Karnaim'),\n",
|
457
|
+
" ('Ben', 'Ammi'),\n",
|
458
|
+
" ('En', 'Mishpat'),\n",
|
459
|
+
" ('Jegar', 'Sahadutha'),\n",
|
460
|
+
" ('Salt', 'Sea'),\n",
|
461
|
+
" ('Whoever', 'sheds'),\n",
|
462
|
+
" ('appoint', 'overseers'),\n",
|
463
|
+
" ('aromatic', 'resin'),\n",
|
464
|
+
" ('cutting', 'instrument')]"
|
465
|
+
]
|
466
|
+
},
|
467
|
+
"execution_count": 15,
|
468
|
+
"metadata": {},
|
469
|
+
"output_type": "execute_result"
|
470
|
+
}
|
471
|
+
],
|
472
|
+
"source": [
|
473
|
+
"import nltk\n",
|
474
|
+
"from nltk.collocations import *\n",
|
475
|
+
"bigram_measures = nltk.collocations.BigramAssocMeasures()\n",
|
476
|
+
"trigram_measures = nltk.collocations.TrigramAssocMeasures()\n",
|
477
|
+
"fourgram_measures = nltk.collocations.QuadgramAssocMeasures()\n",
|
478
|
+
"finder = BigramCollocationFinder.from_words(\n",
|
479
|
+
"nltk.corpus.genesis.words('english-web.txt'))\n",
|
480
|
+
"finder.nbest(bigram_measures.pmi, 10)"
|
481
|
+
]
|
482
|
+
},
|
483
|
+
{
|
484
|
+
"cell_type": "code",
|
485
|
+
"execution_count": 16,
|
486
|
+
"id": "662bc8cb",
|
487
|
+
"metadata": {},
|
488
|
+
"outputs": [
|
489
|
+
{
|
490
|
+
"data": {
|
491
|
+
"text/plain": [
|
492
|
+
"[('olive', 'leaf', 'plucked'),\n",
|
493
|
+
" ('rider', 'falls', 'backward'),\n",
|
494
|
+
" ('sewed', 'fig', 'leaves'),\n",
|
495
|
+
" ('yield', 'royal', 'dainties'),\n",
|
496
|
+
" ('during', 'mating', 'season'),\n",
|
497
|
+
" ('Salt', 'Sea', ').'),\n",
|
498
|
+
" ('Sea', ').', 'Twelve'),\n",
|
499
|
+
" ('Their', 'hearts', 'failed'),\n",
|
500
|
+
" ('Valley', ').', 'Melchizedek'),\n",
|
501
|
+
" ('doing', 'forced', 'labor')]"
|
502
|
+
]
|
503
|
+
},
|
504
|
+
"execution_count": 16,
|
505
|
+
"metadata": {},
|
506
|
+
"output_type": "execute_result"
|
507
|
+
}
|
508
|
+
],
|
509
|
+
"source": [
|
510
|
+
"import nltk\n",
|
511
|
+
"from nltk.collocations import *\n",
|
512
|
+
"bigram_measures = nltk.collocations.BigramAssocMeasures()\n",
|
513
|
+
"trigram_measures = nltk.collocations.TrigramAssocMeasures()\n",
|
514
|
+
"fourgram_measures = nltk.collocations.QuadgramAssocMeasures()\n",
|
515
|
+
"finder = TrigramCollocationFinder.from_words(nltk.corpus.genesis.words('english-web.txt'))\n",
|
516
|
+
"finder.nbest(bigram_measures.pmi, 10)"
|
517
|
+
]
|
518
|
+
},
|
519
|
+
{
|
520
|
+
"cell_type": "code",
|
521
|
+
"execution_count": null,
|
522
|
+
"id": "35309f2c",
|
523
|
+
"metadata": {},
|
524
|
+
"outputs": [],
|
525
|
+
"source": []
|
526
|
+
}
|
527
|
+
],
|
528
|
+
"metadata": {
|
529
|
+
"kernelspec": {
|
530
|
+
"display_name": "Python 3",
|
531
|
+
"language": "python",
|
532
|
+
"name": "python3"
|
533
|
+
},
|
534
|
+
"language_info": {
|
535
|
+
"codemirror_mode": {
|
536
|
+
"name": "ipython",
|
537
|
+
"version": 3
|
538
|
+
},
|
539
|
+
"file_extension": ".py",
|
540
|
+
"mimetype": "text/x-python",
|
541
|
+
"name": "python",
|
542
|
+
"nbconvert_exporter": "python",
|
543
|
+
"pygments_lexer": "ipython3",
|
544
|
+
"version": "3.8.8"
|
545
|
+
}
|
546
|
+
},
|
547
|
+
"nbformat": 4,
|
548
|
+
"nbformat_minor": 5
|
549
|
+
}
|
@@ -0,0 +1 @@
|
|
1
|
+
After graduating of a Madras Institute of Technology in 1960, Kalam of a Aeronautical Development Establishment of the Defence Research and Development Organisation (by Press Information Bureau, Government of India) as a scientist after becoming a member of the Defence Research & Development Service (DRDS). He started his career by designing a small hovercraft, but remained unconvinced by his choice of a job at DRDO.alam was invited by Raja Ramanna to witness the country's first nuclear test Smiling Buddha as the representative of TBRL, even though he had not participated in its development. In the 1970s, Kalam also directed two projects, Project Devil and Project Valiant, which sought to develop ballistic missiles from the technology of the successful SLV programme
|