mindstudio-probe 1.0.3__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (262) hide show
  1. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/METADATA +36 -34
  3. mindstudio_probe-1.0.4.dist-info/RECORD +276 -0
  4. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +101 -237
  7. msprobe/{config/config.json → config.json} +49 -49
  8. msprobe/core/advisor/advisor.py +124 -124
  9. msprobe/core/advisor/advisor_const.py +59 -59
  10. msprobe/core/advisor/advisor_result.py +58 -58
  11. msprobe/core/common/const.py +341 -318
  12. msprobe/core/common/exceptions.py +99 -99
  13. msprobe/core/common/{file_check.py → file_utils.py} +478 -283
  14. msprobe/core/common/log.py +76 -69
  15. msprobe/core/common/utils.py +385 -616
  16. msprobe/core/common_config.py +85 -71
  17. msprobe/core/compare/acc_compare.py +299 -298
  18. msprobe/core/compare/check.py +95 -95
  19. msprobe/core/compare/compare_cli.py +49 -49
  20. msprobe/core/compare/highlight.py +223 -222
  21. msprobe/core/compare/multiprocessing_compute.py +149 -149
  22. msprobe/core/compare/npy_compare.py +295 -295
  23. msprobe/core/compare/utils.py +430 -429
  24. msprobe/core/data_dump/data_collector.py +154 -144
  25. msprobe/core/data_dump/data_processor/base.py +314 -293
  26. msprobe/core/data_dump/data_processor/factory.py +59 -59
  27. msprobe/core/data_dump/data_processor/mindspore_processor.py +186 -198
  28. msprobe/core/data_dump/data_processor/pytorch_processor.py +366 -389
  29. msprobe/core/data_dump/json_writer.py +96 -116
  30. msprobe/core/data_dump/scope.py +178 -178
  31. msprobe/core/grad_probe/constant.py +70 -70
  32. msprobe/core/grad_probe/grad_compare.py +171 -175
  33. msprobe/core/grad_probe/utils.py +64 -52
  34. msprobe/docs/01.installation.md +89 -0
  35. msprobe/docs/02.config_introduction.md +165 -0
  36. msprobe/docs/03.config_examples.md +247 -0
  37. msprobe/docs/04.acl_config_examples.md +76 -0
  38. msprobe/docs/05.data_dump_PyTorch.md +198 -0
  39. msprobe/docs/06.data_dump_MindSpore.md +243 -0
  40. msprobe/docs/07.accuracy_checker_PyTorch.md +274 -0
  41. msprobe/docs/08.accuracy_checker_online_PyTorch.md +198 -0
  42. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  43. msprobe/docs/10.accuracy_compare_PyTorch.md +245 -0
  44. msprobe/docs/11.accuracy_compare_MindSpore.md +202 -0
  45. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  46. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  47. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  48. msprobe/docs/15.free_benchmarking_PyTorch.md +164 -0
  49. msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +207 -207
  50. msprobe/docs/FAQ_PyTorch.md +177 -0
  51. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  52. msprobe/docs/img/free_benchmark_framework.png +0 -0
  53. msprobe/mindspore/__init__.py +1 -1
  54. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +254 -245
  55. msprobe/mindspore/api_accuracy_checker/api_info.py +69 -69
  56. msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
  57. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
  58. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  59. msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
  60. msprobe/mindspore/api_accuracy_checker/main.py +8 -15
  61. msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
  62. msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
  63. msprobe/mindspore/cell_processor.py +34 -34
  64. msprobe/mindspore/common/const.py +106 -87
  65. msprobe/mindspore/common/log.py +37 -37
  66. msprobe/mindspore/common/utils.py +81 -57
  67. msprobe/mindspore/compare/distributed_compare.py +75 -75
  68. msprobe/mindspore/compare/ms_compare.py +219 -117
  69. msprobe/mindspore/compare/ms_graph_compare.py +348 -317
  70. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
  71. msprobe/mindspore/debugger/debugger_config.py +66 -74
  72. msprobe/mindspore/debugger/precision_debugger.py +126 -107
  73. msprobe/mindspore/dump/dump_tool_factory.py +35 -35
  74. msprobe/mindspore/dump/hook_cell/api_registry.py +118 -104
  75. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
  76. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +922 -925
  77. msprobe/mindspore/dump/hook_cell/wrap_api.py +113 -0
  78. msprobe/mindspore/dump/jit_dump.py +72 -56
  79. msprobe/mindspore/dump/kernel_graph_dump.py +59 -60
  80. msprobe/mindspore/dump/kernel_kbyk_dump.py +64 -65
  81. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +116 -116
  82. msprobe/mindspore/free_benchmark/common/config.py +12 -12
  83. msprobe/mindspore/free_benchmark/common/handler_params.py +17 -17
  84. msprobe/mindspore/free_benchmark/common/utils.py +71 -71
  85. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
  86. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +43 -42
  87. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +107 -107
  88. msprobe/mindspore/free_benchmark/handler/base_handler.py +90 -90
  89. msprobe/mindspore/free_benchmark/handler/check_handler.py +41 -41
  90. msprobe/mindspore/free_benchmark/handler/fix_handler.py +36 -36
  91. msprobe/mindspore/free_benchmark/handler/handler_factory.py +21 -21
  92. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +67 -67
  93. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +21 -21
  94. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +63 -63
  95. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +51 -0
  96. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +35 -34
  97. msprobe/mindspore/free_benchmark/perturbation/no_change.py +12 -12
  98. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +29 -27
  99. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +33 -33
  100. msprobe/mindspore/grad_probe/global_context.py +90 -91
  101. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
  102. msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
  103. msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
  104. msprobe/mindspore/grad_probe/hook.py +94 -92
  105. msprobe/mindspore/grad_probe/utils.py +29 -28
  106. msprobe/mindspore/ms_config.py +128 -126
  107. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +44 -45
  108. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +34 -34
  109. msprobe/mindspore/runtime.py +4 -4
  110. msprobe/mindspore/service.py +378 -354
  111. msprobe/mindspore/task_handler_factory.py +24 -24
  112. msprobe/msprobe.py +105 -107
  113. msprobe/pytorch/__init__.py +3 -3
  114. msprobe/pytorch/api_accuracy_checker/common/config.py +53 -55
  115. msprobe/pytorch/api_accuracy_checker/common/utils.py +214 -165
  116. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +213 -213
  117. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +606 -581
  118. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  119. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  120. msprobe/pytorch/api_accuracy_checker/compare/compare.py +386 -381
  121. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +73 -73
  122. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +245 -244
  123. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
  124. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +335 -332
  125. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +200 -199
  126. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +133 -134
  127. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +592 -581
  128. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +70 -74
  129. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  130. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +197 -202
  131. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +325 -324
  132. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +204 -204
  133. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +219 -218
  134. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +10 -10
  135. msprobe/pytorch/bench_functions/__init__.py +15 -15
  136. msprobe/pytorch/bench_functions/apply_adam_w.py +28 -28
  137. msprobe/pytorch/bench_functions/confusion_transpose.py +19 -19
  138. msprobe/pytorch/bench_functions/fast_gelu.py +55 -55
  139. msprobe/pytorch/bench_functions/layer_norm_eval.py +6 -6
  140. msprobe/pytorch/bench_functions/linear.py +12 -12
  141. msprobe/pytorch/bench_functions/matmul_backward.py +48 -48
  142. msprobe/pytorch/bench_functions/npu_fusion_attention.py +509 -421
  143. msprobe/pytorch/bench_functions/rms_norm.py +15 -15
  144. msprobe/pytorch/bench_functions/rotary_mul.py +52 -52
  145. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +26 -26
  146. msprobe/pytorch/bench_functions/swiglu.py +55 -55
  147. msprobe/pytorch/common/__init__.py +2 -2
  148. msprobe/pytorch/common/compare_script.template +14 -14
  149. msprobe/pytorch/common/log.py +20 -31
  150. msprobe/pytorch/common/parse_json.py +39 -39
  151. msprobe/pytorch/common/utils.py +305 -300
  152. msprobe/pytorch/compare/distributed_compare.py +66 -66
  153. msprobe/pytorch/compare/mapping.yaml +607 -607
  154. msprobe/pytorch/compare/match.py +34 -33
  155. msprobe/pytorch/compare/pt_compare.py +50 -40
  156. msprobe/pytorch/debugger/debugger_config.py +95 -95
  157. msprobe/pytorch/debugger/precision_debugger.py +125 -125
  158. msprobe/pytorch/free_benchmark/__init__.py +8 -8
  159. msprobe/pytorch/free_benchmark/common/constant.py +70 -70
  160. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  161. msprobe/pytorch/free_benchmark/common/enums.py +37 -37
  162. msprobe/pytorch/free_benchmark/common/params.py +129 -129
  163. msprobe/pytorch/free_benchmark/common/utils.py +102 -102
  164. msprobe/pytorch/free_benchmark/compare/grad_saver.py +179 -179
  165. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +104 -104
  166. msprobe/pytorch/free_benchmark/main.py +105 -105
  167. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +13 -13
  168. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +41 -41
  169. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +90 -90
  170. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +104 -104
  171. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +63 -63
  172. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +68 -68
  173. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +28 -28
  174. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +45 -45
  175. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +19 -19
  176. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +217 -217
  177. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +39 -39
  178. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +23 -23
  179. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +30 -30
  180. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +170 -170
  181. msprobe/pytorch/function_factory.py +76 -75
  182. msprobe/pytorch/functional/dump_module.py +39 -39
  183. msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
  184. msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
  185. msprobe/pytorch/hook_module/api_registry.py +161 -161
  186. msprobe/pytorch/hook_module/hook_module.py +120 -120
  187. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
  188. msprobe/pytorch/hook_module/utils.py +30 -29
  189. msprobe/pytorch/hook_module/wrap_aten.py +110 -110
  190. msprobe/pytorch/hook_module/wrap_distributed.py +78 -78
  191. msprobe/pytorch/hook_module/wrap_functional.py +105 -105
  192. msprobe/pytorch/hook_module/wrap_npu_custom.py +93 -84
  193. msprobe/pytorch/hook_module/wrap_tensor.py +71 -71
  194. msprobe/pytorch/hook_module/wrap_torch.py +86 -86
  195. msprobe/pytorch/hook_module/wrap_vf.py +62 -62
  196. msprobe/pytorch/module_processer.py +138 -138
  197. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  198. msprobe/pytorch/online_dispatch/compare.py +236 -236
  199. msprobe/pytorch/online_dispatch/dispatch.py +271 -271
  200. msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
  201. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  202. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +49 -49
  203. msprobe/pytorch/online_dispatch/utils.py +130 -146
  204. msprobe/pytorch/parse.py +4 -4
  205. msprobe/pytorch/parse_tool/cli.py +32 -32
  206. msprobe/pytorch/parse_tool/lib/compare.py +260 -271
  207. msprobe/pytorch/parse_tool/lib/config.py +52 -52
  208. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  209. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  210. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  211. msprobe/pytorch/parse_tool/lib/parse_tool.py +158 -158
  212. msprobe/pytorch/parse_tool/lib/utils.py +316 -321
  213. msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
  214. msprobe/pytorch/pt_config.py +188 -187
  215. msprobe/pytorch/service.py +246 -252
  216. mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
  217. msprobe/config/README.md +0 -539
  218. msprobe/mindspore/doc/compare.md +0 -58
  219. msprobe/mindspore/doc/dump.md +0 -217
  220. msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
  221. msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
  222. msprobe/pytorch/doc/FAQ.md +0 -193
  223. msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
  224. msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
  225. msprobe/pytorch/doc/dump.md +0 -260
  226. msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  227. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
  228. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  229. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  230. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  231. msprobe/pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md +0 -90
  232. msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
  233. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/top_level.txt +0 -0
  234. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  235. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  236. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  237. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  238. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  239. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  240. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  241. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  242. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  243. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  244. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  245. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  246. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  247. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  248. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  249. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  250. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  251. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  252. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  253. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  254. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  255. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  256. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  257. /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
  258. /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
  259. /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
  260. /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
  261. /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
  262. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -1,391 +1,391 @@
1
- import logging
2
- from functools import wraps
3
- import torch
4
- from prettytable import PrettyTable
5
- from collections import namedtuple
6
- from msprobe.pytorch.common.log import logger
7
-
8
- def func_log_wrapper():
9
- def _out_wrapper(func):
10
- @wraps(func)
11
- def _in_wrapper(*kargs, **kwargs):
12
- logger.info(f"start to run: {func.__name__}")
13
- x = func(*kargs, **kwargs)
14
- logger.info(f"end to run: {func.__name__}")
15
- return x
16
-
17
- return _in_wrapper
18
-
19
- return _out_wrapper
20
-
21
-
22
- class SingleBenchmarkCompareStandard:
23
- def __init__(self, high_precision=True):
24
- self.high_precision = high_precision
25
- self.small_value = 1.0
26
- self.error_thd = {torch.float16: [2 ** -11, 2 ** -7],
27
- torch.bfloat16: [2 ** -8, 2 ** -6],
28
- torch.float32: [2 ** -14, 2 ** -11],
29
- torch.float64: [2 ** -14, 2 ** -11]}
30
- self.eb_thd = {torch.float16: 2 ** -10,
31
- torch.bfloat16: 2 ** -7,
32
- torch.float32: 2 ** -14,
33
- torch.float64: 2 ** -14}
34
-
35
- def get_error_thd(self, dtype):
36
- if dtype in self.error_thd.keys():
37
- if dtype == torch.float64:
38
- logging.warning("the output data of fp64 uses the same standard as fp32.")
39
- return self.error_thd.get(dtype)[0] if self.high_precision else self.error_thd.get(dtype)[1]
40
- logging.error(
41
- "Single benchmark compare only supports floating point "
42
- "in fp16, bf16, fp32. "
43
- )
44
- return None
45
-
46
- def get_eb_thd(self, dtype):
47
- if dtype in self.eb_thd.keys():
48
- return self.eb_thd.get(dtype)
49
- return None
50
-
51
-
52
- class SingleBenchmarkAccuracyResult:
53
- def __init__(
54
- self,
55
- result=True,
56
- error_balance=None,
57
- max_abs_diff=None,
58
- max_abs_idx=None,
59
- max_rel_diff=None,
60
- max_rel_idx=None
61
- ):
62
- self.result = result
63
- self.error_balance = error_balance
64
- self.max_abs_diff = max_abs_diff
65
- self.max_abs_idx = max_abs_idx
66
- self.max_rel_diff = max_rel_diff
67
- self.max_rel_idx = max_rel_idx
68
-
69
- def get_result(self, eb_thd, error_thd):
70
- if (
71
- self.error_balance > eb_thd
72
- or self.max_abs_diff > error_thd
73
- or self.max_rel_diff > error_thd
74
- ):
75
- self.result = False
76
- else:
77
- self.result = True
78
-
79
-
80
- class SingleBenchmarkAccuracyCompare:
81
- @classmethod
82
- @func_log_wrapper()
83
- def check_output_size(cls, npu_out, bench_out):
84
- acc_result = None
85
- if npu_out.numel() == 0 and bench_out.nuimel() == 0:
86
- info = (
87
- "The npu_output is [], and it is same as benchmark_output, "
88
- "the result of data_compare is Pass"
89
- )
90
- logging.debug(info)
91
- acc_result = SingleBenchmarkAccuracyResult(result=True)
92
-
93
- if npu_out.size() != bench_out.size():
94
- error_info = (
95
- f"the size of npu output[{npu_out.size()}] and"
96
- f"benchmark[{bench_out.size()}] is not equal"
97
- )
98
-
99
- logging.error(error_info)
100
- acc_result = SingleBenchmarkAccuracyResult(result=False)
101
- return acc_result
102
-
103
- @classmethod
104
- @func_log_wrapper()
105
- def check_output_invalid_value(cls, output):
106
- has_nan = torch.isnan(output).any()
107
- has_inf = torch.isinf(output).any()
108
- return has_nan or has_inf
109
-
110
- @classmethod
111
- @func_log_wrapper()
112
- def precision_compare_for_case(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
113
- error_thd = None
114
- eb_thd = None
115
- acc_result = cls.check_output_size(npu_out, bench_out)
116
- CompareResultInfo = namedtuple("CompareResultInfo",
117
- ['accuracy_result', 'error_threshold', 'eb_threshold', 'failed_information'])
118
-
119
- if acc_result:
120
- failed_info = "比对数据的shape不一致"
121
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
122
-
123
- if cls.check_output_invalid_value(bench_out):
124
- logging.info("The benchmark result contains nan/inf value. ")
125
- failed_info = "标杆结果存在nan值或inf值, 依照单标杆标准该用例通过"
126
- acc_result = SingleBenchmarkAccuracyResult(result=True)
127
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
128
-
129
- if cls.check_output_invalid_value(npu_out):
130
- logging.info("The NPU result contains nan/inf value. ")
131
- failed_info = "NPU结果存在nan值或inf值, 依照单标杆标准该用例不通过"
132
- acc_result = SingleBenchmarkAccuracyResult(result=False)
133
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
134
-
135
- data_type = npu_out.dtype
136
- if data_type not in [torch.float16, torch.float32, torch.float64, torch.bfloat16]:
137
- acc_result = cls.compute_binary_diff(npu_out, bench_out)
138
- else:
139
- error_thd = benchmark_standard.get_error_thd(data_type)
140
- eb_thd = benchmark_standard.get_eb_thd(data_type)
141
- if error_thd is None:
142
- logging.error(
143
- "single benchmark not support the comparison of %s", str(data_type)
144
- )
145
- acc_result = SingleBenchmarkAccuracyResult(result=False)
146
- else:
147
- if npu_out.dtype in [torch.float16, torch.bfloat16] and bench_out.dtype in [torch.float32]:
148
- npu_out = npu_out.to(torch.float32)
149
- error_balance = cls.compute_error_balance(npu_out, bench_out, benchmark_standard)
150
- max_abs_diff, max_abs_idx = cls.compute_abs_diff(npu_out, bench_out, error_thd, benchmark_standard)
151
- max_rel_diff, max_rel_idx = cls.compute_rel_diff(npu_out, bench_out, error_thd, benchmark_standard)
152
- acc_result = SingleBenchmarkAccuracyResult(
153
- error_balance=error_balance,
154
- max_abs_diff=max_abs_diff,
155
- max_abs_idx=max_abs_idx,
156
- max_rel_diff=max_rel_diff,
157
- max_rel_idx=max_rel_idx
158
- )
159
- acc_result.get_result(eb_thd, error_thd)
160
- return CompareResultInfo(acc_result, error_thd, eb_thd, None)
161
- return None
162
-
163
- @classmethod
164
- @func_log_wrapper()
165
- def compute_binary_diff(cls, npu_out, bench_out):
166
- result = torch.equal(npu_out, bench_out)
167
- if result:
168
- logger.info("二进制精度比对通过, 无需单标杆比对法验证")
169
- return SingleBenchmarkAccuracyResult(result=result, max_abs_diff=0, max_rel_diff=0, error_balance=0)
170
-
171
- @classmethod
172
- @func_log_wrapper()
173
- def compute_error_balance(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
174
- ones = torch.ones_like(npu_out)
175
- zeros = torch.zeros_like(npu_out)
176
- abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
177
- abs_mask_idx = abs_mask_idx.type(torch.bool)
178
- diff_value = torch.subtract(npu_out, bench_out)
179
- diff_value_rel = diff_value / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
180
- rel_and_abs = torch.where(abs_mask_idx, diff_value, diff_value_rel)
181
- eb_float = float(torch.mean(rel_and_abs))
182
- return eb_float
183
-
184
- @classmethod
185
- @func_log_wrapper()
186
- def compute_abs_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
187
- max_abs_diff = 0
188
- max_abs_idx = None
189
-
190
- ones = torch.ones_like(npu_out)
191
- zeros = torch.zeros_like(npu_out)
192
- diff_value = torch.subtract(npu_out, bench_out)
193
- diff_abs = torch.abs(diff_value)
194
- abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
195
- abs_err_idx = torch.where(diff_abs > error_thd, ones, zeros)
196
- abs_err_idx = abs_err_idx * abs_mask_idx
197
- abs_err = diff_abs[torch.where(abs_err_idx == 1)]
198
-
199
- if len(abs_err) > 0:
200
- err_for_max = torch.where(abs_err_idx == 1, diff_abs, zeros)
201
- logging.debug("err_for_max for abs %s", err_for_max)
202
- max_abs_idx = torch.argmax(err_for_max)
203
- max_abs_diff = diff_abs[max_abs_idx]
204
- elif torch.sum(abs_mask_idx) > 0:
205
- err_for_max = torch.where(abs_mask_idx == 1, diff_abs, zeros)
206
- logging.debug("error_for_max for abs %s", err_for_max)
207
- max_abs_idx = torch.argmax(err_for_max)
208
- if err_for_max.max() != 0:
209
- max_abs_diff = diff_abs[max_abs_idx]
210
- return (float(max_abs_diff), int(max_abs_idx) if torch.is_tensor(max_abs_idx) else max_abs_idx)
211
-
212
- @classmethod
213
- @func_log_wrapper()
214
- def compute_rel_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
215
- max_rel_diff = 0
216
- max_rel_idx = None
217
-
218
- ones = torch.ones_like(npu_out)
219
- zeros = torch.zeros_like(npu_out)
220
- diff_value = torch.subtract(npu_out, bench_out)
221
- diff_abs = torch.abs(diff_value)
222
-
223
- rel_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
224
- rel_err = diff_abs / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
225
- diff_rel = rel_err
226
- rel_err_idx = torch.where(rel_err > error_thd, ones, zeros)
227
- rel_err_idx = rel_err_idx * rel_mask_idx
228
- rel_err = rel_err[torch.where(rel_err_idx == 1)]
229
- if len(rel_err) > 0:
230
- err_for_max = torch.where(rel_err_idx == 1, diff_rel, zeros)
231
- logging.debug("error_for_max for rel %s", err_for_max)
232
- max_rel_idx = torch.argmax(err_for_max)
233
- max_rel_diff = diff_rel[max_rel_idx]
234
- elif torch.sum(rel_mask_idx > 0):
235
- err_for_max = torch.where(rel_mask_idx == 1, diff_rel, zeros)
236
- logging.debug("err_for_max for rel %s", err_for_max)
237
- max_rel_idx = torch.argmax(err_for_max)
238
- if torch.sum(err_for_max) != 0:
239
- max_rel_diff = diff_rel[max_rel_idx]
240
- return (float(max_rel_diff), int(max_rel_idx) if torch.is_tensor(max_rel_idx) else max_rel_idx)
241
-
242
-
243
- class SingleBenchSummary:
244
- def __init__(self, precision_result: SingleBenchmarkAccuracyResult, npu_dtype=None,
245
- bench_dtype=None, shape=None, error_thd=None, eb_thd=None, failed_info=None):
246
- self.npu_dtype = npu_dtype
247
- self.bench_dtype = bench_dtype
248
- self.shape = shape
249
- self.result = precision_result.result
250
- self.error_balance = precision_result.error_balance
251
- self.max_abs_diff = precision_result.max_abs_diff
252
- self.max_abs_idx = precision_result.max_abs_idx
253
- self.max_rel_diff = precision_result.max_rel_diff
254
- self.max_rel_idx = precision_result.max_rel_idx
255
- self.eb_thd = eb_thd
256
- self.error_thd = error_thd
257
- self.failed_info = failed_info
258
-
259
- def get_check_result(self):
260
- if self.result:
261
- return "PASS"
262
- else:
263
- return "FAILED"
264
-
265
- def get_result_msg(self):
266
- result_str = ""
267
- if self.failed_info:
268
- return self.failed_info
269
-
270
- if self.result:
271
- result_str += "误差均衡性EB: %s <= 阈值%s\n" % (self.error_balance, self.eb_thd)
272
- result_str += "最大绝对误差: %s <= 阈值%s\n" % (self.max_abs_diff, self.error_thd)
273
- result_str += "最大相对误差: %s <= 阈值%s\n" % (self.max_rel_diff, self.error_thd)
274
- else:
275
- if self.error_balance > self.eb_thd:
276
- result_str += "误差均衡性EB超过阈值%s: EB = %s\n" % (
277
- self.eb_thd,
278
- self.error_balance,
279
- )
280
- if self.max_abs_diff > self.error_thd:
281
- result_str += "小值域最大绝对误差超过阈值%s: idx = %s, 绝对误差 = %s\n" % (
282
- self.error_thd,
283
- self.max_abs_idx,
284
- self.max_abs_diff
285
- )
286
- if self.max_rel_diff > self.error_thd:
287
- result_str += "大值域最大相对误差超过阈值%s: idx = %s, 相对误差 = %s\n" % (
288
- self.error_thd,
289
- self.max_rel_idx,
290
- self.max_rel_diff,
291
- )
292
- return result_str
293
-
294
- def print_detail_table(self):
295
- table = PrettyTable()
296
- table.title = "Single Benchmark Metrics Info"
297
- table.field_names = ["Index", "Result", "Threshold"]
298
- table.add_row(["error_balance", self.error_balance, self.eb_thd])
299
- table.add_row(["max_abs_diff", self.max_abs_diff, self.error_thd])
300
- table.add_row(["max_abs_idx", self.max_abs_idx, "-"])
301
- table.add_row(["max_rel_diff", self.max_rel_diff, self.error_thd])
302
- table.add_row(["max_rel_idx", self.max_rel_idx, "-"])
303
-
304
- logger.info(table)
305
-
306
- def to_column_value(self):
307
- return [self.bench_dtype, self.npu_dtype, self.shape, self.error_balance,
308
- self.max_abs_diff, self.max_abs_idx, self.max_rel_diff, self.max_rel_idx,
309
- self.eb_thd, self.error_thd, self.result, self.failed_info]
310
-
311
-
312
- def single_benchmark_compare(npu_out: torch.Tensor, bench_out: torch.Tensor, high_precision: bool = True):
313
- benchmark_standard = SingleBenchmarkCompareStandard(high_precision)
314
- npu_out = npu_out.flatten()
315
- bench_out = bench_out.flatten()
316
-
317
- compare_results = SingleBenchmarkAccuracyCompare.precision_compare_for_case(npu_out, bench_out, benchmark_standard)
318
- (
319
- precision_result,
320
- error_thd,
321
- eb_thd,
322
- failed_info
323
- ) = (compare_results.accuracy_result, compare_results.error_threshold,
324
- compare_results.eb_threshold, compare_results.failed_information)
325
-
326
- summary = SingleBenchSummary(precision_result, str(npu_out.dtype), str(bench_out.dtype), tuple(npu_out.shape), error_thd, eb_thd, failed_info)
327
- result = summary.result
328
- details = summary.to_column_value()
329
- return result, details
330
-
331
-
332
- def calc_status_details_list_tuple(npu_out, bench_out, high_precision, summary):
333
- status, details = [], []
334
- if len(bench_out) != len(npu_out):
335
- summary.result = False
336
- summary.failed_info = "bench and npu output structure is different."
337
- return False, summary.to_column_value()
338
- for b_out_i, n_out_i in zip(bench_out, npu_out):
339
- status_i, details_i = single_benchmark_compare_wrap(n_out_i, b_out_i, high_precision)
340
- status.append(status_i)
341
- details.append(details_i)
342
- return status, details
343
-
344
-
345
- def calc_status_details_dict(npu_out, bench_out, high_precision, summary):
346
- b_keys, n_keys = set(bench_out.keys()), set(npu_out.keys())
347
- if b_keys != n_keys:
348
- summary.result = False
349
- summary.failed_info = "bench and npu_output dict keys are different."
350
- return False, summary.to_column_value()
351
- else:
352
- status, details = single_benchmark_compare_wrap(list(bench_out.values(), list(npu_out.values())))
353
- return status, details
354
-
355
-
356
- def calc_status_details_tensor(npu_out, bench_out, high_precision, summary):
357
- return single_benchmark_compare(bench_out, npu_out)
358
-
359
-
360
- def calc_status_details_builtin(npu_out, bench_out, summary):
361
- summary.bench_dtype = str(type(bench_out))
362
- summary.npu_dtype = str(type(npu_out))
363
- status = bench_out == npu_out
364
- summary.result = status
365
- return status, summary.to_column_value()
366
-
367
-
368
- def calc_status_details_none(npu_out, bench_out, high_precision, summary):
369
- summary.result = True
370
- summary.failed_info = "Output is None."
371
- return True, summary.to_column_value()
372
-
373
-
374
- def single_benchmark_compare_wrap(npu_output: torch.Tensor, bench_output: torch.Tensor, high_precision=True):
375
- type_method_dict = {
376
- (list, tuple): calc_status_details_list_tuple,
377
- dict: calc_status_details_dict,
378
- torch.Tensor: calc_status_details_tensor,
379
- (bool, int, float, str): calc_status_details_builtin,
380
- None: calc_status_details_none,
381
- }
382
-
383
- result = SingleBenchmarkAccuracyResult(result=True)
384
- bench_summary = SingleBenchSummary(result)
385
- for type1, func in type_method_dict.items():
386
- if isinstance(bench_output, type1):
387
- return func(npu_output, bench_output, high_precision, bench_summary)
388
-
389
- bench_summary.result = True
390
- bench_summary.failed_info = "Unexpected output type: {}".format(type(bench_output))
391
- return True, bench_summary.to_column_value()
1
+ import logging
2
+ from functools import wraps
3
+ import torch
4
+ from prettytable import PrettyTable
5
+ from collections import namedtuple
6
+ from msprobe.pytorch.common.log import logger
7
+
8
+ def func_log_wrapper():
9
+ def _out_wrapper(func):
10
+ @wraps(func)
11
+ def _in_wrapper(*kargs, **kwargs):
12
+ logger.info(f"start to run: {func.__name__}")
13
+ x = func(*kargs, **kwargs)
14
+ logger.info(f"end to run: {func.__name__}")
15
+ return x
16
+
17
+ return _in_wrapper
18
+
19
+ return _out_wrapper
20
+
21
+
22
+ class SingleBenchmarkCompareStandard:
23
+ def __init__(self, high_precision=True):
24
+ self.high_precision = high_precision
25
+ self.small_value = 1.0
26
+ self.error_thd = {torch.float16: [2 ** -11, 2 ** -7],
27
+ torch.bfloat16: [2 ** -8, 2 ** -6],
28
+ torch.float32: [2 ** -14, 2 ** -11],
29
+ torch.float64: [2 ** -14, 2 ** -11]}
30
+ self.eb_thd = {torch.float16: 2 ** -10,
31
+ torch.bfloat16: 2 ** -7,
32
+ torch.float32: 2 ** -14,
33
+ torch.float64: 2 ** -14}
34
+
35
+ def get_error_thd(self, dtype):
36
+ if dtype in self.error_thd.keys():
37
+ if dtype == torch.float64:
38
+ logging.warning("the output data of fp64 uses the same standard as fp32.")
39
+ return self.error_thd.get(dtype)[0] if self.high_precision else self.error_thd.get(dtype)[1]
40
+ logging.error(
41
+ "Single benchmark compare only supports floating point "
42
+ "in fp16, bf16, fp32. "
43
+ )
44
+ return None
45
+
46
+ def get_eb_thd(self, dtype):
47
+ if dtype in self.eb_thd.keys():
48
+ return self.eb_thd.get(dtype)
49
+ return None
50
+
51
+
52
+ class SingleBenchmarkAccuracyResult:
53
+ def __init__(
54
+ self,
55
+ result=True,
56
+ error_balance=None,
57
+ max_abs_diff=None,
58
+ max_abs_idx=None,
59
+ max_rel_diff=None,
60
+ max_rel_idx=None
61
+ ):
62
+ self.result = result
63
+ self.error_balance = error_balance
64
+ self.max_abs_diff = max_abs_diff
65
+ self.max_abs_idx = max_abs_idx
66
+ self.max_rel_diff = max_rel_diff
67
+ self.max_rel_idx = max_rel_idx
68
+
69
+ def get_result(self, eb_thd, error_thd):
70
+ if (
71
+ self.error_balance > eb_thd
72
+ or self.max_abs_diff > error_thd
73
+ or self.max_rel_diff > error_thd
74
+ ):
75
+ self.result = False
76
+ else:
77
+ self.result = True
78
+
79
+
80
+ class SingleBenchmarkAccuracyCompare:
81
+ @classmethod
82
+ @func_log_wrapper()
83
+ def check_output_size(cls, npu_out, bench_out):
84
+ acc_result = None
85
+ if npu_out.numel() == 0 and bench_out.nuimel() == 0:
86
+ info = (
87
+ "The npu_output is [], and it is same as benchmark_output, "
88
+ "the result of data_compare is Pass"
89
+ )
90
+ logging.debug(info)
91
+ acc_result = SingleBenchmarkAccuracyResult(result=True)
92
+
93
+ if npu_out.size() != bench_out.size():
94
+ error_info = (
95
+ f"the size of npu output[{npu_out.size()}] and"
96
+ f"benchmark[{bench_out.size()}] is not equal"
97
+ )
98
+
99
+ logging.error(error_info)
100
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
101
+ return acc_result
102
+
103
+ @classmethod
104
+ @func_log_wrapper()
105
+ def check_output_invalid_value(cls, output):
106
+ has_nan = torch.isnan(output).any()
107
+ has_inf = torch.isinf(output).any()
108
+ return has_nan or has_inf
109
+
110
+ @classmethod
111
+ @func_log_wrapper()
112
+ def precision_compare_for_case(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
113
+ error_thd = None
114
+ eb_thd = None
115
+ acc_result = cls.check_output_size(npu_out, bench_out)
116
+ CompareResultInfo = namedtuple("CompareResultInfo",
117
+ ['accuracy_result', 'error_threshold', 'eb_threshold', 'failed_information'])
118
+
119
+ if acc_result:
120
+ failed_info = "比对数据的shape不一致"
121
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
122
+
123
+ if cls.check_output_invalid_value(bench_out):
124
+ logging.info("The benchmark result contains nan/inf value. ")
125
+ failed_info = "标杆结果存在nan值或inf值, 依照单标杆标准该用例通过"
126
+ acc_result = SingleBenchmarkAccuracyResult(result=True)
127
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
128
+
129
+ if cls.check_output_invalid_value(npu_out):
130
+ logging.info("The NPU result contains nan/inf value. ")
131
+ failed_info = "NPU结果存在nan值或inf值, 依照单标杆标准该用例不通过"
132
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
133
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
134
+
135
+ data_type = npu_out.dtype
136
+ if data_type not in [torch.float16, torch.float32, torch.float64, torch.bfloat16]:
137
+ acc_result = cls.compute_binary_diff(npu_out, bench_out)
138
+ else:
139
+ error_thd = benchmark_standard.get_error_thd(data_type)
140
+ eb_thd = benchmark_standard.get_eb_thd(data_type)
141
+ if error_thd is None:
142
+ logging.error(
143
+ "single benchmark not support the comparison of %s", str(data_type)
144
+ )
145
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
146
+ else:
147
+ if npu_out.dtype in [torch.float16, torch.bfloat16] and bench_out.dtype in [torch.float32]:
148
+ npu_out = npu_out.to(torch.float32)
149
+ error_balance = cls.compute_error_balance(npu_out, bench_out, benchmark_standard)
150
+ max_abs_diff, max_abs_idx = cls.compute_abs_diff(npu_out, bench_out, error_thd, benchmark_standard)
151
+ max_rel_diff, max_rel_idx = cls.compute_rel_diff(npu_out, bench_out, error_thd, benchmark_standard)
152
+ acc_result = SingleBenchmarkAccuracyResult(
153
+ error_balance=error_balance,
154
+ max_abs_diff=max_abs_diff,
155
+ max_abs_idx=max_abs_idx,
156
+ max_rel_diff=max_rel_diff,
157
+ max_rel_idx=max_rel_idx
158
+ )
159
+ acc_result.get_result(eb_thd, error_thd)
160
+ return CompareResultInfo(acc_result, error_thd, eb_thd, None)
161
+
162
+
163
+ @classmethod
164
+ @func_log_wrapper()
165
+ def compute_binary_diff(cls, npu_out, bench_out):
166
+ result = torch.equal(npu_out, bench_out)
167
+ if result:
168
+ logger.info("二进制精度比对通过, 无需单标杆比对法验证")
169
+ return SingleBenchmarkAccuracyResult(result=result, max_abs_diff=0, max_rel_diff=0, error_balance=0)
170
+
171
+ @classmethod
172
+ @func_log_wrapper()
173
+ def compute_error_balance(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
174
+ ones = torch.ones_like(npu_out)
175
+ zeros = torch.zeros_like(npu_out)
176
+ abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
177
+ abs_mask_idx = abs_mask_idx.type(torch.bool)
178
+ diff_value = torch.subtract(npu_out, bench_out)
179
+ diff_value_rel = diff_value / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
180
+ rel_and_abs = torch.where(abs_mask_idx, diff_value, diff_value_rel)
181
+ eb_float = float(torch.mean(rel_and_abs))
182
+ return eb_float
183
+
184
+ @classmethod
185
+ @func_log_wrapper()
186
+ def compute_abs_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
187
+ max_abs_diff = 0
188
+ max_abs_idx = None
189
+
190
+ ones = torch.ones_like(npu_out)
191
+ zeros = torch.zeros_like(npu_out)
192
+ diff_value = torch.subtract(npu_out, bench_out)
193
+ diff_abs = torch.abs(diff_value)
194
+ abs_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
195
+ abs_err_idx = torch.where(diff_abs > error_thd, ones, zeros)
196
+ abs_err_idx = abs_err_idx * abs_mask_idx
197
+ abs_err = diff_abs[torch.where(abs_err_idx == 1)]
198
+
199
+ if len(abs_err) > 0:
200
+ err_for_max = torch.where(abs_err_idx == 1, diff_abs, zeros)
201
+ logging.debug("err_for_max for abs %s", err_for_max)
202
+ max_abs_idx = torch.argmax(err_for_max)
203
+ max_abs_diff = diff_abs[max_abs_idx]
204
+ elif torch.sum(abs_mask_idx) > 0:
205
+ err_for_max = torch.where(abs_mask_idx == 1, diff_abs, zeros)
206
+ logging.debug("error_for_max for abs %s", err_for_max)
207
+ max_abs_idx = torch.argmax(err_for_max)
208
+ if err_for_max.max() != 0:
209
+ max_abs_diff = diff_abs[max_abs_idx]
210
+ return (float(max_abs_diff), int(max_abs_idx) if torch.is_tensor(max_abs_idx) else max_abs_idx)
211
+
212
+ @classmethod
213
+ @func_log_wrapper()
214
+ def compute_rel_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
215
+ max_rel_diff = 0
216
+ max_rel_idx = None
217
+
218
+ ones = torch.ones_like(npu_out)
219
+ zeros = torch.zeros_like(npu_out)
220
+ diff_value = torch.subtract(npu_out, bench_out)
221
+ diff_abs = torch.abs(diff_value)
222
+
223
+ rel_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
224
+ rel_err = diff_abs / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
225
+ diff_rel = rel_err
226
+ rel_err_idx = torch.where(rel_err > error_thd, ones, zeros)
227
+ rel_err_idx = rel_err_idx * rel_mask_idx
228
+ rel_err = rel_err[torch.where(rel_err_idx == 1)]
229
+ if len(rel_err) > 0:
230
+ err_for_max = torch.where(rel_err_idx == 1, diff_rel, zeros)
231
+ logging.debug("error_for_max for rel %s", err_for_max)
232
+ max_rel_idx = torch.argmax(err_for_max)
233
+ max_rel_diff = diff_rel[max_rel_idx]
234
+ elif torch.sum(rel_mask_idx > 0):
235
+ err_for_max = torch.where(rel_mask_idx == 1, diff_rel, zeros)
236
+ logging.debug("err_for_max for rel %s", err_for_max)
237
+ max_rel_idx = torch.argmax(err_for_max)
238
+ if torch.sum(err_for_max) != 0:
239
+ max_rel_diff = diff_rel[max_rel_idx]
240
+ return (float(max_rel_diff), int(max_rel_idx) if torch.is_tensor(max_rel_idx) else max_rel_idx)
241
+
242
+
243
+ class SingleBenchSummary:
244
+ def __init__(self, precision_result: SingleBenchmarkAccuracyResult, npu_dtype=None,
245
+ bench_dtype=None, shape=None, error_thd=None, eb_thd=None, failed_info=None):
246
+ self.npu_dtype = npu_dtype
247
+ self.bench_dtype = bench_dtype
248
+ self.shape = shape
249
+ self.result = precision_result.result
250
+ self.error_balance = precision_result.error_balance
251
+ self.max_abs_diff = precision_result.max_abs_diff
252
+ self.max_abs_idx = precision_result.max_abs_idx
253
+ self.max_rel_diff = precision_result.max_rel_diff
254
+ self.max_rel_idx = precision_result.max_rel_idx
255
+ self.eb_thd = eb_thd
256
+ self.error_thd = error_thd
257
+ self.failed_info = failed_info
258
+
259
+ def get_check_result(self):
260
+ if self.result:
261
+ return "PASS"
262
+ else:
263
+ return "FAILED"
264
+
265
+ def get_result_msg(self):
266
+ result_str = ""
267
+ if self.failed_info:
268
+ return self.failed_info
269
+
270
+ if self.result:
271
+ result_str += "误差均衡性EB: %s <= 阈值%s\n" % (self.error_balance, self.eb_thd)
272
+ result_str += "最大绝对误差: %s <= 阈值%s\n" % (self.max_abs_diff, self.error_thd)
273
+ result_str += "最大相对误差: %s <= 阈值%s\n" % (self.max_rel_diff, self.error_thd)
274
+ else:
275
+ if self.error_balance > self.eb_thd:
276
+ result_str += "误差均衡性EB超过阈值%s: EB = %s\n" % (
277
+ self.eb_thd,
278
+ self.error_balance,
279
+ )
280
+ if self.max_abs_diff > self.error_thd:
281
+ result_str += "小值域最大绝对误差超过阈值%s: idx = %s, 绝对误差 = %s\n" % (
282
+ self.error_thd,
283
+ self.max_abs_idx,
284
+ self.max_abs_diff
285
+ )
286
+ if self.max_rel_diff > self.error_thd:
287
+ result_str += "大值域最大相对误差超过阈值%s: idx = %s, 相对误差 = %s\n" % (
288
+ self.error_thd,
289
+ self.max_rel_idx,
290
+ self.max_rel_diff,
291
+ )
292
+ return result_str
293
+
294
+ def print_detail_table(self):
295
+ table = PrettyTable()
296
+ table.title = "Single Benchmark Metrics Info"
297
+ table.field_names = ["Index", "Result", "Threshold"]
298
+ table.add_row(["error_balance", self.error_balance, self.eb_thd])
299
+ table.add_row(["max_abs_diff", self.max_abs_diff, self.error_thd])
300
+ table.add_row(["max_abs_idx", self.max_abs_idx, "-"])
301
+ table.add_row(["max_rel_diff", self.max_rel_diff, self.error_thd])
302
+ table.add_row(["max_rel_idx", self.max_rel_idx, "-"])
303
+
304
+ logger.info(table)
305
+
306
+ def to_column_value(self):
307
+ return [self.bench_dtype, self.npu_dtype, self.shape, self.error_balance,
308
+ self.max_abs_diff, self.max_abs_idx, self.max_rel_diff, self.max_rel_idx,
309
+ self.eb_thd, self.error_thd, self.result, self.failed_info]
310
+
311
+
312
+ def single_benchmark_compare(npu_out: torch.Tensor, bench_out: torch.Tensor, high_precision: bool = True):
313
+ benchmark_standard = SingleBenchmarkCompareStandard(high_precision)
314
+ npu_out = npu_out.flatten()
315
+ bench_out = bench_out.flatten()
316
+
317
+ compare_results = SingleBenchmarkAccuracyCompare.precision_compare_for_case(npu_out, bench_out, benchmark_standard)
318
+ (
319
+ precision_result,
320
+ error_thd,
321
+ eb_thd,
322
+ failed_info
323
+ ) = (compare_results.accuracy_result, compare_results.error_threshold,
324
+ compare_results.eb_threshold, compare_results.failed_information)
325
+
326
+ summary = SingleBenchSummary(precision_result, str(npu_out.dtype), str(bench_out.dtype), tuple(npu_out.shape), error_thd, eb_thd, failed_info)
327
+ result = summary.result
328
+ details = summary.to_column_value()
329
+ return result, details
330
+
331
+
332
+ def calc_status_details_list_tuple(npu_out, bench_out, high_precision, summary):
333
+ status, details = [], []
334
+ if len(bench_out) != len(npu_out):
335
+ summary.result = False
336
+ summary.failed_info = "bench and npu output structure is different."
337
+ return False, summary.to_column_value()
338
+ for b_out_i, n_out_i in zip(bench_out, npu_out):
339
+ status_i, details_i = single_benchmark_compare_wrap(n_out_i, b_out_i, high_precision)
340
+ status.append(status_i)
341
+ details.append(details_i)
342
+ return status, details
343
+
344
+
345
+ def calc_status_details_dict(npu_out, bench_out, high_precision, summary):
346
+ b_keys, n_keys = set(bench_out.keys()), set(npu_out.keys())
347
+ if b_keys != n_keys:
348
+ summary.result = False
349
+ summary.failed_info = "bench and npu_output dict keys are different."
350
+ return False, summary.to_column_value()
351
+ else:
352
+ status, details = single_benchmark_compare_wrap(list(bench_out.values(), list(npu_out.values())))
353
+ return status, details
354
+
355
+
356
+ def calc_status_details_tensor(npu_out, bench_out, high_precision, summary):
357
+ return single_benchmark_compare(npu_out, bench_out)
358
+
359
+
360
+ def calc_status_details_builtin(npu_out, bench_out, summary):
361
+ summary.bench_dtype = str(type(bench_out))
362
+ summary.npu_dtype = str(type(npu_out))
363
+ status = bench_out == npu_out
364
+ summary.result = status
365
+ return status, summary.to_column_value()
366
+
367
+
368
+ def calc_status_details_none(npu_out, bench_out, high_precision, summary):
369
+ summary.result = True
370
+ summary.failed_info = "Output is None."
371
+ return True, summary.to_column_value()
372
+
373
+
374
+ def single_benchmark_compare_wrap(npu_output: torch.Tensor, bench_output: torch.Tensor, high_precision=True):
375
+ type_method_dict = {
376
+ (list, tuple): calc_status_details_list_tuple,
377
+ dict: calc_status_details_dict,
378
+ torch.Tensor: calc_status_details_tensor,
379
+ (bool, int, float, str): calc_status_details_builtin,
380
+ None: calc_status_details_none,
381
+ }
382
+
383
+ result = SingleBenchmarkAccuracyResult(result=True)
384
+ bench_summary = SingleBenchSummary(result)
385
+ for type1, func in type_method_dict.items():
386
+ if isinstance(bench_output, type1):
387
+ return func(npu_output, bench_output, high_precision, bench_summary)
388
+
389
+ bench_summary.result = True
390
+ bench_summary.failed_info = "Unexpected output type: {}".format(type(bench_output))
391
+ return True, bench_summary.to_column_value()