mindstudio-probe 1.0.3__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (262) hide show
  1. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/METADATA +36 -34
  3. mindstudio_probe-1.0.4.dist-info/RECORD +276 -0
  4. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +101 -237
  7. msprobe/{config/config.json → config.json} +49 -49
  8. msprobe/core/advisor/advisor.py +124 -124
  9. msprobe/core/advisor/advisor_const.py +59 -59
  10. msprobe/core/advisor/advisor_result.py +58 -58
  11. msprobe/core/common/const.py +341 -318
  12. msprobe/core/common/exceptions.py +99 -99
  13. msprobe/core/common/{file_check.py → file_utils.py} +478 -283
  14. msprobe/core/common/log.py +76 -69
  15. msprobe/core/common/utils.py +385 -616
  16. msprobe/core/common_config.py +85 -71
  17. msprobe/core/compare/acc_compare.py +299 -298
  18. msprobe/core/compare/check.py +95 -95
  19. msprobe/core/compare/compare_cli.py +49 -49
  20. msprobe/core/compare/highlight.py +223 -222
  21. msprobe/core/compare/multiprocessing_compute.py +149 -149
  22. msprobe/core/compare/npy_compare.py +295 -295
  23. msprobe/core/compare/utils.py +430 -429
  24. msprobe/core/data_dump/data_collector.py +154 -144
  25. msprobe/core/data_dump/data_processor/base.py +314 -293
  26. msprobe/core/data_dump/data_processor/factory.py +59 -59
  27. msprobe/core/data_dump/data_processor/mindspore_processor.py +186 -198
  28. msprobe/core/data_dump/data_processor/pytorch_processor.py +366 -389
  29. msprobe/core/data_dump/json_writer.py +96 -116
  30. msprobe/core/data_dump/scope.py +178 -178
  31. msprobe/core/grad_probe/constant.py +70 -70
  32. msprobe/core/grad_probe/grad_compare.py +171 -175
  33. msprobe/core/grad_probe/utils.py +64 -52
  34. msprobe/docs/01.installation.md +89 -0
  35. msprobe/docs/02.config_introduction.md +165 -0
  36. msprobe/docs/03.config_examples.md +247 -0
  37. msprobe/docs/04.acl_config_examples.md +76 -0
  38. msprobe/docs/05.data_dump_PyTorch.md +198 -0
  39. msprobe/docs/06.data_dump_MindSpore.md +243 -0
  40. msprobe/docs/07.accuracy_checker_PyTorch.md +274 -0
  41. msprobe/docs/08.accuracy_checker_online_PyTorch.md +198 -0
  42. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  43. msprobe/docs/10.accuracy_compare_PyTorch.md +245 -0
  44. msprobe/docs/11.accuracy_compare_MindSpore.md +202 -0
  45. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  46. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  47. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  48. msprobe/docs/15.free_benchmarking_PyTorch.md +164 -0
  49. msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +207 -207
  50. msprobe/docs/FAQ_PyTorch.md +177 -0
  51. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  52. msprobe/docs/img/free_benchmark_framework.png +0 -0
  53. msprobe/mindspore/__init__.py +1 -1
  54. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +254 -245
  55. msprobe/mindspore/api_accuracy_checker/api_info.py +69 -69
  56. msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
  57. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
  58. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  59. msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
  60. msprobe/mindspore/api_accuracy_checker/main.py +8 -15
  61. msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
  62. msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
  63. msprobe/mindspore/cell_processor.py +34 -34
  64. msprobe/mindspore/common/const.py +106 -87
  65. msprobe/mindspore/common/log.py +37 -37
  66. msprobe/mindspore/common/utils.py +81 -57
  67. msprobe/mindspore/compare/distributed_compare.py +75 -75
  68. msprobe/mindspore/compare/ms_compare.py +219 -117
  69. msprobe/mindspore/compare/ms_graph_compare.py +348 -317
  70. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
  71. msprobe/mindspore/debugger/debugger_config.py +66 -74
  72. msprobe/mindspore/debugger/precision_debugger.py +126 -107
  73. msprobe/mindspore/dump/dump_tool_factory.py +35 -35
  74. msprobe/mindspore/dump/hook_cell/api_registry.py +118 -104
  75. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
  76. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +922 -925
  77. msprobe/mindspore/dump/hook_cell/wrap_api.py +113 -0
  78. msprobe/mindspore/dump/jit_dump.py +72 -56
  79. msprobe/mindspore/dump/kernel_graph_dump.py +59 -60
  80. msprobe/mindspore/dump/kernel_kbyk_dump.py +64 -65
  81. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +116 -116
  82. msprobe/mindspore/free_benchmark/common/config.py +12 -12
  83. msprobe/mindspore/free_benchmark/common/handler_params.py +17 -17
  84. msprobe/mindspore/free_benchmark/common/utils.py +71 -71
  85. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
  86. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +43 -42
  87. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +107 -107
  88. msprobe/mindspore/free_benchmark/handler/base_handler.py +90 -90
  89. msprobe/mindspore/free_benchmark/handler/check_handler.py +41 -41
  90. msprobe/mindspore/free_benchmark/handler/fix_handler.py +36 -36
  91. msprobe/mindspore/free_benchmark/handler/handler_factory.py +21 -21
  92. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +67 -67
  93. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +21 -21
  94. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +63 -63
  95. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +51 -0
  96. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +35 -34
  97. msprobe/mindspore/free_benchmark/perturbation/no_change.py +12 -12
  98. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +29 -27
  99. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +33 -33
  100. msprobe/mindspore/grad_probe/global_context.py +90 -91
  101. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
  102. msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
  103. msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
  104. msprobe/mindspore/grad_probe/hook.py +94 -92
  105. msprobe/mindspore/grad_probe/utils.py +29 -28
  106. msprobe/mindspore/ms_config.py +128 -126
  107. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +44 -45
  108. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +34 -34
  109. msprobe/mindspore/runtime.py +4 -4
  110. msprobe/mindspore/service.py +378 -354
  111. msprobe/mindspore/task_handler_factory.py +24 -24
  112. msprobe/msprobe.py +105 -107
  113. msprobe/pytorch/__init__.py +3 -3
  114. msprobe/pytorch/api_accuracy_checker/common/config.py +53 -55
  115. msprobe/pytorch/api_accuracy_checker/common/utils.py +214 -165
  116. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +213 -213
  117. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +606 -581
  118. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  119. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  120. msprobe/pytorch/api_accuracy_checker/compare/compare.py +386 -381
  121. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +73 -73
  122. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +245 -244
  123. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
  124. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +335 -332
  125. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +200 -199
  126. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +133 -134
  127. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +592 -581
  128. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +70 -74
  129. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  130. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +197 -202
  131. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +325 -324
  132. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +204 -204
  133. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +219 -218
  134. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +10 -10
  135. msprobe/pytorch/bench_functions/__init__.py +15 -15
  136. msprobe/pytorch/bench_functions/apply_adam_w.py +28 -28
  137. msprobe/pytorch/bench_functions/confusion_transpose.py +19 -19
  138. msprobe/pytorch/bench_functions/fast_gelu.py +55 -55
  139. msprobe/pytorch/bench_functions/layer_norm_eval.py +6 -6
  140. msprobe/pytorch/bench_functions/linear.py +12 -12
  141. msprobe/pytorch/bench_functions/matmul_backward.py +48 -48
  142. msprobe/pytorch/bench_functions/npu_fusion_attention.py +509 -421
  143. msprobe/pytorch/bench_functions/rms_norm.py +15 -15
  144. msprobe/pytorch/bench_functions/rotary_mul.py +52 -52
  145. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +26 -26
  146. msprobe/pytorch/bench_functions/swiglu.py +55 -55
  147. msprobe/pytorch/common/__init__.py +2 -2
  148. msprobe/pytorch/common/compare_script.template +14 -14
  149. msprobe/pytorch/common/log.py +20 -31
  150. msprobe/pytorch/common/parse_json.py +39 -39
  151. msprobe/pytorch/common/utils.py +305 -300
  152. msprobe/pytorch/compare/distributed_compare.py +66 -66
  153. msprobe/pytorch/compare/mapping.yaml +607 -607
  154. msprobe/pytorch/compare/match.py +34 -33
  155. msprobe/pytorch/compare/pt_compare.py +50 -40
  156. msprobe/pytorch/debugger/debugger_config.py +95 -95
  157. msprobe/pytorch/debugger/precision_debugger.py +125 -125
  158. msprobe/pytorch/free_benchmark/__init__.py +8 -8
  159. msprobe/pytorch/free_benchmark/common/constant.py +70 -70
  160. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  161. msprobe/pytorch/free_benchmark/common/enums.py +37 -37
  162. msprobe/pytorch/free_benchmark/common/params.py +129 -129
  163. msprobe/pytorch/free_benchmark/common/utils.py +102 -102
  164. msprobe/pytorch/free_benchmark/compare/grad_saver.py +179 -179
  165. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +104 -104
  166. msprobe/pytorch/free_benchmark/main.py +105 -105
  167. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +13 -13
  168. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +41 -41
  169. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +90 -90
  170. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +104 -104
  171. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +63 -63
  172. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +68 -68
  173. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +28 -28
  174. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +45 -45
  175. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +19 -19
  176. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +217 -217
  177. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +39 -39
  178. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +23 -23
  179. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +30 -30
  180. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +170 -170
  181. msprobe/pytorch/function_factory.py +76 -75
  182. msprobe/pytorch/functional/dump_module.py +39 -39
  183. msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
  184. msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
  185. msprobe/pytorch/hook_module/api_registry.py +161 -161
  186. msprobe/pytorch/hook_module/hook_module.py +120 -120
  187. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
  188. msprobe/pytorch/hook_module/utils.py +30 -29
  189. msprobe/pytorch/hook_module/wrap_aten.py +110 -110
  190. msprobe/pytorch/hook_module/wrap_distributed.py +78 -78
  191. msprobe/pytorch/hook_module/wrap_functional.py +105 -105
  192. msprobe/pytorch/hook_module/wrap_npu_custom.py +93 -84
  193. msprobe/pytorch/hook_module/wrap_tensor.py +71 -71
  194. msprobe/pytorch/hook_module/wrap_torch.py +86 -86
  195. msprobe/pytorch/hook_module/wrap_vf.py +62 -62
  196. msprobe/pytorch/module_processer.py +138 -138
  197. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  198. msprobe/pytorch/online_dispatch/compare.py +236 -236
  199. msprobe/pytorch/online_dispatch/dispatch.py +271 -271
  200. msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
  201. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  202. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +49 -49
  203. msprobe/pytorch/online_dispatch/utils.py +130 -146
  204. msprobe/pytorch/parse.py +4 -4
  205. msprobe/pytorch/parse_tool/cli.py +32 -32
  206. msprobe/pytorch/parse_tool/lib/compare.py +260 -271
  207. msprobe/pytorch/parse_tool/lib/config.py +52 -52
  208. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  209. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  210. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  211. msprobe/pytorch/parse_tool/lib/parse_tool.py +158 -158
  212. msprobe/pytorch/parse_tool/lib/utils.py +316 -321
  213. msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
  214. msprobe/pytorch/pt_config.py +188 -187
  215. msprobe/pytorch/service.py +246 -252
  216. mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
  217. msprobe/config/README.md +0 -539
  218. msprobe/mindspore/doc/compare.md +0 -58
  219. msprobe/mindspore/doc/dump.md +0 -217
  220. msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
  221. msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
  222. msprobe/pytorch/doc/FAQ.md +0 -193
  223. msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
  224. msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
  225. msprobe/pytorch/doc/dump.md +0 -260
  226. msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  227. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
  228. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  229. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  230. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  231. msprobe/pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md +0 -90
  232. msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
  233. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/top_level.txt +0 -0
  234. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  235. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  236. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  237. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  238. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  239. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  240. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  241. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  242. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  243. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  244. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  245. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  246. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  247. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  248. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  249. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  250. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  251. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  252. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  253. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  254. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  255. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  256. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  257. /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
  258. /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
  259. /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
  260. /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
  261. /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
  262. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -1,213 +1,213 @@
1
- # 定义比对算法及比对标准
2
- import torch
3
- import numpy as np
4
-
5
- from msprobe.pytorch.api_accuracy_checker.compare.compare_utils import ULP_PARAMETERS
6
- from msprobe.core.common.const import CompareConst
7
-
8
-
9
- #cos
10
- def cosine_sim(bench_output, device_output):
11
- msg = ""
12
- n_value = device_output.reshape(-1)
13
- b_value = bench_output.reshape(-1)
14
- cos = CompareConst.SPACE
15
- np.seterr(divide="ignore", invalid="ignore")
16
- if n_value.shape != b_value.shape:
17
- msg = f"Shape of device and bench outputs don't match. device: {n_value.shape}, bench: {b_value.shape}."
18
- return -1, False, msg
19
- if len(n_value) == 1:
20
- msg = "All the data in device dump data is scalar. Please refer to other compare algorithms."
21
- return cos, True, msg
22
- n_value_max = np.max(np.abs(n_value))
23
- b_value_max = np.max(np.abs(b_value))
24
- if n_value_max <= np.finfo(float).eps and b_value_max <= np.finfo(float).eps:
25
- msg = "All the data in device and bench outputs are zero."
26
- return cos, True, msg
27
- elif n_value_max <= np.finfo(float).eps:
28
- msg = "All the data is zero in device dump data."
29
- return CompareConst.SPACE, False, msg
30
- elif b_value_max <= np.finfo(float).eps:
31
- msg = "All the data is zero in bench dump data."
32
- return CompareConst.SPACE, False, msg
33
- else:
34
- n_value = n_value.astype(float) / n_value_max
35
- b_value = b_value.astype(float) / b_value_max
36
- cos = np.dot(n_value, b_value) / (np.linalg.norm(n_value) * np.linalg.norm(b_value))
37
- if np.isnan(cos):
38
- msg = "Dump data has NaN when comparing with Cosine Similarity."
39
- cos = np.clip(cos, -1, 1)
40
- return cos, cos > 0.99, msg
41
-
42
-
43
- #rmse
44
- def get_rmse(abs_err, inf_nan_mask):
45
- masked_ae = np.where(inf_nan_mask, 0, abs_err)
46
- mse = np.mean(np.square(masked_ae))
47
- inf_nan_cnt = np.sum(inf_nan_mask)
48
- mse = mse * (abs_err.size / (abs_err.size - inf_nan_cnt + 0.0001) + 0.0001)
49
- rmse = np.sqrt(mse)
50
- return rmse
51
-
52
-
53
- #误差均衡性
54
- def get_error_balance(bench_data, device_data):
55
- larger_count = np.sum(np.greater(device_data - bench_data.astype(device_data.dtype), 0))
56
- smaller_count = np.sum(np.less(device_data - bench_data.astype(device_data.dtype), 0))
57
- total_count = bench_data.size
58
- error_balance = abs(larger_count - smaller_count) / total_count if total_count > 0 else 0
59
- return error_balance
60
-
61
-
62
- #小值域错误占比
63
- def get_small_value_err_ratio(small_value_mask, abs_err_greater_mask):
64
- err_mask = np.logical_and(small_value_mask, abs_err_greater_mask)
65
- small_value_err_num = np.sum(err_mask)
66
- small_value_num = np.sum(small_value_mask)
67
- return 0 if small_value_num == 0 else small_value_err_num / small_value_num
68
-
69
-
70
- def get_rel_err(abs_err, abs_bench_with_eps, small_value_mask, inf_nan_mask):
71
- rel_err_tmp = abs_err / abs_bench_with_eps
72
- rel_err_mask = np.logical_or(small_value_mask, inf_nan_mask)
73
- rel_err = np.where(rel_err_mask, -1, rel_err_tmp)
74
- return rel_err
75
-
76
-
77
- def get_abs_err(bench_data, device_data):
78
- abs_err = np.abs(device_data - bench_data)
79
- return abs_err
80
-
81
-
82
- def get_rel_err_origin(abs_err, b_value):
83
- rel_err_origin = np.abs(abs_err / b_value)
84
- return rel_err_origin
85
-
86
-
87
- def get_max_abs_err(abs_err):
88
- max_abs_err = abs_err.max()
89
- bool_result = max_abs_err < 0.001
90
- return max_abs_err, bool_result
91
-
92
-
93
- #相对误差最大值
94
- def get_max_rel_err(rel_err):
95
- return np.max(rel_err) if np.max(rel_err) >= 0 else 0
96
-
97
-
98
- #相对误差均值
99
- def get_mean_rel_err(rel_err):
100
- non_negative_rel_err = rel_err[rel_err >= 0]
101
- return np.mean(non_negative_rel_err) if non_negative_rel_err.size > 0 else 0
102
-
103
-
104
- def get_rel_err_ratio(rel_err, thresholding):
105
- if np.size(rel_err) == 0:
106
- ratio = 1
107
- else:
108
- ratio = np.divide(np.sum(rel_err < thresholding), np.size(rel_err))
109
- bool_result = ratio > (1 - thresholding)
110
- return ratio, bool_result
111
-
112
-
113
- def get_finite_and_infinite_mask(bench_output, device_output):
114
- device_finite_mask = np.isfinite(device_output)
115
- bench_finite_mask = np.isfinite(bench_output.astype(device_output.dtype))
116
- both_finite_mask = np.logical_and(device_finite_mask, bench_finite_mask)
117
- inf_nan_mask = np.logical_not(both_finite_mask)
118
- return both_finite_mask, inf_nan_mask
119
-
120
-
121
- def get_small_value_mask(abs_bench, both_finite_mask, small_value_threshold):
122
- small_value_mask = np.less_equal(abs_bench, small_value_threshold)
123
- small_value_mask = np.logical_and(small_value_mask, both_finite_mask)
124
- return small_value_mask
125
-
126
-
127
- def get_abs_bench_with_eps(bench, dtype):
128
- abs_bench = np.abs(bench)
129
- eps = np.finfo(bench.dtype).eps if dtype != torch.bfloat16 else CompareConst.BFLOAT16_EPS
130
- abs_bench_with_eps = abs_bench + eps
131
- return abs_bench, abs_bench_with_eps
132
-
133
-
134
- def check_inf_nan_value(inf_nan_mask, bench_output, device_output, dtype, rtol):
135
- '''
136
- 新精度标准的绝对阈值法中,检查npu和golden输出的inf、nan是否一致
137
- 输入:
138
- inf_nan_mask:npu输出和golden输出的inf、nan的mask
139
- bench_output:golden输出
140
- device_output:npu输出
141
- dtype:npu输出的dtype
142
- 输出:
143
- inf_nan_err_ratio:npu输出和golden输出的inf、nan不一致的比例
144
- '''
145
- abs_gpu, abs_gpu_with_eps = get_abs_bench_with_eps(bench_output, dtype)
146
- golden_same_dtype = bench_output.astype(device_output.dtype)
147
- a_min = np.finfo(device_output.dtype).min if dtype != torch.bfloat16 else CompareConst.BFLOAT16_MIN
148
- a_max = np.finfo(device_output.dtype).max if dtype != torch.bfloat16 else CompareConst.BFLOAT16_MAX
149
- golden_clip = np.clip(golden_same_dtype, a_min, a_max)
150
- npu_clip = np.clip(device_output, a_min, a_max)
151
- clipped_abs_ae = np.abs(npu_clip - golden_clip)
152
- clipped_re = clipped_abs_ae / abs_gpu_with_eps
153
- pass_mask = np.less_equal(clipped_re, rtol)
154
- both_nan_mask = np.logical_and(np.isnan(device_output), np.isnan(golden_clip))
155
- pass_mask = np.logical_or(pass_mask, both_nan_mask)
156
- not_pass_mask = np.logical_not(pass_mask)
157
- not_pass_mask = np.logical_and(not_pass_mask, inf_nan_mask)
158
-
159
- inf_nan_err_cnt = np.sum(not_pass_mask)
160
- return 0 if np.sum(inf_nan_mask) == 0 else inf_nan_err_cnt / np.sum(inf_nan_mask)
161
-
162
-
163
- def check_small_value(abs_err, small_value_mask, small_value_atol):
164
- '''
165
- 新精度标准的相对阈值法中,检查npu和golden小值域输出的相对误差是否满足阈值
166
- 输入:
167
- rel_err:npu输出和golden输出的相对误差
168
- normal_value_mask:npu输出和golden输出的正常值mask
169
- rtol:相对误差的阈值
170
- 输出:
171
- rel_err_ratio:npu输出和golden输出的相对误差不满足阈值的比例
172
- '''
173
- greater_mask = np.greater(abs_err, small_value_atol)
174
- err_mask = np.logical_and(greater_mask, small_value_mask)
175
- err_cnt = np.sum(err_mask)
176
- return 0 if np.sum(small_value_mask) == 0 else err_cnt / np.sum(small_value_mask)
177
-
178
-
179
- def check_norm_value(normal_value_mask, rel_err, rtol):
180
- '''
181
- 新精度标准的绝对阈值法中,检查npu和golden正常值输出的绝对误差是否满足阈值
182
- 输入:
183
- abs_err:npu输出和golden输出的绝对误差
184
- normal_value_mask:npu输出和golden输出的正常值mask
185
- atol:绝对误差的阈值
186
- 输出:
187
- abs_err_ratio:npu输出和golden输出的绝对误差不满足阈值的比例
188
- '''
189
- err_mask = np.greater(rel_err, rtol)
190
- err_mask = np.logical_and(err_mask, normal_value_mask)
191
- err_cnt = np.sum(err_mask)
192
- return 0 if np.sum(normal_value_mask) == 0 else err_cnt / np.sum(normal_value_mask)
193
-
194
-
195
- def get_ulp_err(bench_output, device_output, dtype):
196
- parameters = ULP_PARAMETERS.get(dtype)
197
- min_eb = parameters.get('min_eb')[0]
198
- exponent_num = parameters.get('exponent_num')[0]
199
- abs_bench = np.abs(bench_output)
200
- eb = np.where(abs_bench == 0, 0, np.floor(np.log2(abs_bench)))
201
- eb = np.maximum(eb, min_eb)
202
-
203
- if dtype == torch.float32:
204
- ulp_err = calc_ulp_err(bench_output, device_output, eb, exponent_num, np.float64)
205
- else:
206
- ulp_err = calc_ulp_err(bench_output, device_output, eb, exponent_num, np.float32)
207
- ulp_err = np.abs(ulp_err)
208
- return ulp_err
209
-
210
-
211
- def calc_ulp_err(bench_output, device_output, eb, exponent_num, data_type):
212
- return (device_output.astype(data_type) - bench_output).astype(data_type) * \
213
- np.exp2(-eb + exponent_num).astype(data_type)
1
+ # 定义比对算法及比对标准
2
+ import torch
3
+ import numpy as np
4
+
5
+ from msprobe.pytorch.api_accuracy_checker.compare.compare_utils import ULP_PARAMETERS
6
+ from msprobe.core.common.const import CompareConst
7
+
8
+
9
+ #cos
10
+ def cosine_sim(bench_output, device_output):
11
+ msg = ""
12
+ n_value = device_output.reshape(-1)
13
+ b_value = bench_output.reshape(-1)
14
+ cos = CompareConst.SPACE
15
+ np.seterr(divide="ignore", invalid="ignore")
16
+ if n_value.shape != b_value.shape:
17
+ msg = f"Shape of device and bench outputs don't match. device: {n_value.shape}, bench: {b_value.shape}."
18
+ return -1, False, msg
19
+ if len(n_value) == 1:
20
+ msg = "All the data in device dump data is scalar. Please refer to other compare algorithms."
21
+ return cos, True, msg
22
+ n_value_max = np.max(np.abs(n_value))
23
+ b_value_max = np.max(np.abs(b_value))
24
+ if n_value_max <= np.finfo(float).eps and b_value_max <= np.finfo(float).eps:
25
+ msg = "All the data in device and bench outputs are zero."
26
+ return cos, True, msg
27
+ elif n_value_max <= np.finfo(float).eps:
28
+ msg = "All the data is zero in device dump data."
29
+ return CompareConst.SPACE, False, msg
30
+ elif b_value_max <= np.finfo(float).eps:
31
+ msg = "All the data is zero in bench dump data."
32
+ return CompareConst.SPACE, False, msg
33
+ else:
34
+ n_value = n_value.astype(float) / n_value_max
35
+ b_value = b_value.astype(float) / b_value_max
36
+ cos = np.dot(n_value, b_value) / (np.linalg.norm(n_value) * np.linalg.norm(b_value))
37
+ if np.isnan(cos):
38
+ msg = "Dump data has NaN when comparing with Cosine Similarity."
39
+ cos = np.clip(cos, -1, 1)
40
+ return cos, cos > 0.99, msg
41
+
42
+
43
+ #rmse
44
+ def get_rmse(abs_err, inf_nan_mask):
45
+ masked_ae = np.where(inf_nan_mask, 0, abs_err)
46
+ mse = np.mean(np.square(masked_ae))
47
+ inf_nan_cnt = np.sum(inf_nan_mask)
48
+ mse = mse * (abs_err.size / (abs_err.size - inf_nan_cnt + 0.0001) + 0.0001)
49
+ rmse = np.sqrt(mse)
50
+ return rmse
51
+
52
+
53
+ #误差均衡性
54
+ def get_error_balance(bench_data, device_data):
55
+ larger_count = np.sum(np.greater(device_data - bench_data.astype(device_data.dtype), 0))
56
+ smaller_count = np.sum(np.less(device_data - bench_data.astype(device_data.dtype), 0))
57
+ total_count = bench_data.size
58
+ error_balance = abs(larger_count - smaller_count) / total_count if total_count > 0 else 0
59
+ return error_balance
60
+
61
+
62
+ #小值域错误占比
63
+ def get_small_value_err_ratio(small_value_mask, abs_err_greater_mask):
64
+ err_mask = np.logical_and(small_value_mask, abs_err_greater_mask)
65
+ small_value_err_num = np.sum(err_mask)
66
+ small_value_num = np.sum(small_value_mask)
67
+ return 0 if small_value_num == 0 else small_value_err_num / small_value_num
68
+
69
+
70
+ def get_rel_err(abs_err, abs_bench_with_eps, small_value_mask, inf_nan_mask):
71
+ rel_err_tmp = abs_err / abs_bench_with_eps
72
+ rel_err_mask = np.logical_or(small_value_mask, inf_nan_mask)
73
+ rel_err = np.where(rel_err_mask, -1, rel_err_tmp)
74
+ return rel_err
75
+
76
+
77
+ def get_abs_err(bench_data, device_data):
78
+ abs_err = np.abs(device_data - bench_data)
79
+ return abs_err
80
+
81
+
82
+ def get_rel_err_origin(abs_err, b_value):
83
+ rel_err_origin = np.abs(abs_err / b_value)
84
+ return rel_err_origin
85
+
86
+
87
+ def get_max_abs_err(abs_err):
88
+ max_abs_err = abs_err.max()
89
+ bool_result = max_abs_err < 0.001
90
+ return max_abs_err, bool_result
91
+
92
+
93
+ #相对误差最大值
94
+ def get_max_rel_err(rel_err):
95
+ return np.max(rel_err) if np.max(rel_err) >= 0 else 0
96
+
97
+
98
+ #相对误差均值
99
+ def get_mean_rel_err(rel_err):
100
+ non_negative_rel_err = rel_err[rel_err >= 0]
101
+ return np.mean(non_negative_rel_err) if non_negative_rel_err.size > 0 else 0
102
+
103
+
104
+ def get_rel_err_ratio(rel_err, thresholding):
105
+ if np.size(rel_err) == 0:
106
+ ratio = 1
107
+ else:
108
+ ratio = np.divide(np.sum(rel_err < thresholding), np.size(rel_err))
109
+ bool_result = ratio > (1 - thresholding)
110
+ return ratio, bool_result
111
+
112
+
113
+ def get_finite_and_infinite_mask(bench_output, device_output):
114
+ device_finite_mask = np.isfinite(device_output)
115
+ bench_finite_mask = np.isfinite(bench_output.astype(device_output.dtype))
116
+ both_finite_mask = np.logical_and(device_finite_mask, bench_finite_mask)
117
+ inf_nan_mask = np.logical_not(both_finite_mask)
118
+ return both_finite_mask, inf_nan_mask
119
+
120
+
121
+ def get_small_value_mask(abs_bench, both_finite_mask, small_value_threshold):
122
+ small_value_mask = np.less_equal(abs_bench, small_value_threshold)
123
+ small_value_mask = np.logical_and(small_value_mask, both_finite_mask)
124
+ return small_value_mask
125
+
126
+
127
+ def get_abs_bench_with_eps(bench, dtype):
128
+ abs_bench = np.abs(bench)
129
+ eps = np.finfo(bench.dtype).eps if dtype != torch.bfloat16 else CompareConst.BFLOAT16_EPS
130
+ abs_bench_with_eps = abs_bench + eps
131
+ return abs_bench, abs_bench_with_eps
132
+
133
+
134
+ def check_inf_nan_value(inf_nan_mask, bench_output, device_output, dtype, rtol):
135
+ '''
136
+ 新精度标准的绝对阈值法中,检查npu和golden输出的inf、nan是否一致
137
+ 输入:
138
+ inf_nan_mask:npu输出和golden输出的inf、nan的mask
139
+ bench_output:golden输出
140
+ device_output:npu输出
141
+ dtype:npu输出的dtype
142
+ 输出:
143
+ inf_nan_err_ratio:npu输出和golden输出的inf、nan不一致的比例
144
+ '''
145
+ abs_gpu, abs_gpu_with_eps = get_abs_bench_with_eps(bench_output, dtype)
146
+ golden_same_dtype = bench_output.astype(device_output.dtype)
147
+ a_min = np.finfo(device_output.dtype).min if dtype != torch.bfloat16 else CompareConst.BFLOAT16_MIN
148
+ a_max = np.finfo(device_output.dtype).max if dtype != torch.bfloat16 else CompareConst.BFLOAT16_MAX
149
+ golden_clip = np.clip(golden_same_dtype, a_min, a_max)
150
+ npu_clip = np.clip(device_output, a_min, a_max)
151
+ clipped_abs_ae = np.abs(npu_clip - golden_clip)
152
+ clipped_re = clipped_abs_ae / abs_gpu_with_eps
153
+ pass_mask = np.less_equal(clipped_re, rtol)
154
+ both_nan_mask = np.logical_and(np.isnan(device_output), np.isnan(golden_clip))
155
+ pass_mask = np.logical_or(pass_mask, both_nan_mask)
156
+ not_pass_mask = np.logical_not(pass_mask)
157
+ not_pass_mask = np.logical_and(not_pass_mask, inf_nan_mask)
158
+
159
+ inf_nan_err_cnt = np.sum(not_pass_mask)
160
+ return 0 if np.sum(inf_nan_mask) == 0 else inf_nan_err_cnt / np.sum(inf_nan_mask)
161
+
162
+
163
+ def check_small_value(abs_err, small_value_mask, small_value_atol):
164
+ '''
165
+ 新精度标准的相对阈值法中,检查npu和golden小值域输出的相对误差是否满足阈值
166
+ 输入:
167
+ rel_err:npu输出和golden输出的相对误差
168
+ normal_value_mask:npu输出和golden输出的正常值mask
169
+ rtol:相对误差的阈值
170
+ 输出:
171
+ rel_err_ratio:npu输出和golden输出的相对误差不满足阈值的比例
172
+ '''
173
+ greater_mask = np.greater(abs_err, small_value_atol)
174
+ err_mask = np.logical_and(greater_mask, small_value_mask)
175
+ err_cnt = np.sum(err_mask)
176
+ return 0 if np.sum(small_value_mask) == 0 else err_cnt / np.sum(small_value_mask)
177
+
178
+
179
+ def check_norm_value(normal_value_mask, rel_err, rtol):
180
+ '''
181
+ 新精度标准的绝对阈值法中,检查npu和golden正常值输出的绝对误差是否满足阈值
182
+ 输入:
183
+ abs_err:npu输出和golden输出的绝对误差
184
+ normal_value_mask:npu输出和golden输出的正常值mask
185
+ atol:绝对误差的阈值
186
+ 输出:
187
+ abs_err_ratio:npu输出和golden输出的绝对误差不满足阈值的比例
188
+ '''
189
+ err_mask = np.greater(rel_err, rtol)
190
+ err_mask = np.logical_and(err_mask, normal_value_mask)
191
+ err_cnt = np.sum(err_mask)
192
+ return 0 if np.sum(normal_value_mask) == 0 else err_cnt / np.sum(normal_value_mask)
193
+
194
+
195
+ def get_ulp_err(bench_output, device_output, dtype):
196
+ parameters = ULP_PARAMETERS.get(dtype)
197
+ min_eb = parameters.get('min_eb')[0]
198
+ exponent_num = parameters.get('exponent_num')[0]
199
+ abs_bench = np.abs(bench_output)
200
+ eb = np.where(abs_bench == 0, 0, np.floor(np.log2(abs_bench)))
201
+ eb = np.maximum(eb, min_eb)
202
+
203
+ if dtype == torch.float32:
204
+ ulp_err = calc_ulp_err(bench_output, device_output, eb, exponent_num, np.float64)
205
+ else:
206
+ ulp_err = calc_ulp_err(bench_output, device_output, eb, exponent_num, np.float32)
207
+ ulp_err = np.abs(ulp_err)
208
+ return ulp_err
209
+
210
+
211
+ def calc_ulp_err(bench_output, device_output, eb, exponent_num, data_type):
212
+ return (device_output.astype(data_type) - bench_output).astype(data_type) * \
213
+ np.exp2(-eb + exponent_num).astype(data_type)