mindstudio-probe 1.0.3__py3-none-any.whl → 1.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/LICENSE +201 -201
- {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/METADATA +36 -34
- mindstudio_probe-1.0.4.dist-info/RECORD +276 -0
- {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/WHEEL +1 -1
- {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/entry_points.txt +1 -0
- msprobe/README.md +101 -237
- msprobe/{config/config.json → config.json} +49 -49
- msprobe/core/advisor/advisor.py +124 -124
- msprobe/core/advisor/advisor_const.py +59 -59
- msprobe/core/advisor/advisor_result.py +58 -58
- msprobe/core/common/const.py +341 -318
- msprobe/core/common/exceptions.py +99 -99
- msprobe/core/common/{file_check.py → file_utils.py} +478 -283
- msprobe/core/common/log.py +76 -69
- msprobe/core/common/utils.py +385 -616
- msprobe/core/common_config.py +85 -71
- msprobe/core/compare/acc_compare.py +299 -298
- msprobe/core/compare/check.py +95 -95
- msprobe/core/compare/compare_cli.py +49 -49
- msprobe/core/compare/highlight.py +223 -222
- msprobe/core/compare/multiprocessing_compute.py +149 -149
- msprobe/core/compare/npy_compare.py +295 -295
- msprobe/core/compare/utils.py +430 -429
- msprobe/core/data_dump/data_collector.py +154 -144
- msprobe/core/data_dump/data_processor/base.py +314 -293
- msprobe/core/data_dump/data_processor/factory.py +59 -59
- msprobe/core/data_dump/data_processor/mindspore_processor.py +186 -198
- msprobe/core/data_dump/data_processor/pytorch_processor.py +366 -389
- msprobe/core/data_dump/json_writer.py +96 -116
- msprobe/core/data_dump/scope.py +178 -178
- msprobe/core/grad_probe/constant.py +70 -70
- msprobe/core/grad_probe/grad_compare.py +171 -175
- msprobe/core/grad_probe/utils.py +64 -52
- msprobe/docs/01.installation.md +89 -0
- msprobe/docs/02.config_introduction.md +165 -0
- msprobe/docs/03.config_examples.md +247 -0
- msprobe/docs/04.acl_config_examples.md +76 -0
- msprobe/docs/05.data_dump_PyTorch.md +198 -0
- msprobe/docs/06.data_dump_MindSpore.md +243 -0
- msprobe/docs/07.accuracy_checker_PyTorch.md +274 -0
- msprobe/docs/08.accuracy_checker_online_PyTorch.md +198 -0
- msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
- msprobe/docs/10.accuracy_compare_PyTorch.md +245 -0
- msprobe/docs/11.accuracy_compare_MindSpore.md +202 -0
- msprobe/docs/12.overflow_check_PyTorch.md +79 -0
- msprobe/docs/13.overflow_check_MindSpore.md +31 -0
- msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
- msprobe/docs/15.free_benchmarking_PyTorch.md +164 -0
- msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +207 -207
- msprobe/docs/FAQ_PyTorch.md +177 -0
- msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
- msprobe/docs/img/free_benchmark_framework.png +0 -0
- msprobe/mindspore/__init__.py +1 -1
- msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +254 -245
- msprobe/mindspore/api_accuracy_checker/api_info.py +69 -69
- msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
- msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
- msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
- msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
- msprobe/mindspore/api_accuracy_checker/main.py +8 -15
- msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
- msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
- msprobe/mindspore/cell_processor.py +34 -34
- msprobe/mindspore/common/const.py +106 -87
- msprobe/mindspore/common/log.py +37 -37
- msprobe/mindspore/common/utils.py +81 -57
- msprobe/mindspore/compare/distributed_compare.py +75 -75
- msprobe/mindspore/compare/ms_compare.py +219 -117
- msprobe/mindspore/compare/ms_graph_compare.py +348 -317
- msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
- msprobe/mindspore/debugger/debugger_config.py +66 -74
- msprobe/mindspore/debugger/precision_debugger.py +126 -107
- msprobe/mindspore/dump/dump_tool_factory.py +35 -35
- msprobe/mindspore/dump/hook_cell/api_registry.py +118 -104
- msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
- msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +922 -925
- msprobe/mindspore/dump/hook_cell/wrap_api.py +113 -0
- msprobe/mindspore/dump/jit_dump.py +72 -56
- msprobe/mindspore/dump/kernel_graph_dump.py +59 -60
- msprobe/mindspore/dump/kernel_kbyk_dump.py +64 -65
- msprobe/mindspore/free_benchmark/api_pynative_self_check.py +116 -116
- msprobe/mindspore/free_benchmark/common/config.py +12 -12
- msprobe/mindspore/free_benchmark/common/handler_params.py +17 -17
- msprobe/mindspore/free_benchmark/common/utils.py +71 -71
- msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
- msprobe/mindspore/free_benchmark/decorator/dec_forward.py +43 -42
- msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +107 -107
- msprobe/mindspore/free_benchmark/handler/base_handler.py +90 -90
- msprobe/mindspore/free_benchmark/handler/check_handler.py +41 -41
- msprobe/mindspore/free_benchmark/handler/fix_handler.py +36 -36
- msprobe/mindspore/free_benchmark/handler/handler_factory.py +21 -21
- msprobe/mindspore/free_benchmark/perturbation/add_noise.py +67 -67
- msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +21 -21
- msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +63 -63
- msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +51 -0
- msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +35 -34
- msprobe/mindspore/free_benchmark/perturbation/no_change.py +12 -12
- msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +29 -27
- msprobe/mindspore/free_benchmark/self_check_tool_factory.py +33 -33
- msprobe/mindspore/grad_probe/global_context.py +90 -91
- msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
- msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
- msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
- msprobe/mindspore/grad_probe/hook.py +94 -92
- msprobe/mindspore/grad_probe/utils.py +29 -28
- msprobe/mindspore/ms_config.py +128 -126
- msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +44 -45
- msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +34 -34
- msprobe/mindspore/runtime.py +4 -4
- msprobe/mindspore/service.py +378 -354
- msprobe/mindspore/task_handler_factory.py +24 -24
- msprobe/msprobe.py +105 -107
- msprobe/pytorch/__init__.py +3 -3
- msprobe/pytorch/api_accuracy_checker/common/config.py +53 -55
- msprobe/pytorch/api_accuracy_checker/common/utils.py +214 -165
- msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +213 -213
- msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +606 -581
- msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
- msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
- msprobe/pytorch/api_accuracy_checker/compare/compare.py +386 -381
- msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +73 -73
- msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +245 -244
- msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
- msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +335 -332
- msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +200 -199
- msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +133 -134
- msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +592 -581
- msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +70 -74
- msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +197 -202
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +325 -324
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +204 -204
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +219 -218
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +10 -10
- msprobe/pytorch/bench_functions/__init__.py +15 -15
- msprobe/pytorch/bench_functions/apply_adam_w.py +28 -28
- msprobe/pytorch/bench_functions/confusion_transpose.py +19 -19
- msprobe/pytorch/bench_functions/fast_gelu.py +55 -55
- msprobe/pytorch/bench_functions/layer_norm_eval.py +6 -6
- msprobe/pytorch/bench_functions/linear.py +12 -12
- msprobe/pytorch/bench_functions/matmul_backward.py +48 -48
- msprobe/pytorch/bench_functions/npu_fusion_attention.py +509 -421
- msprobe/pytorch/bench_functions/rms_norm.py +15 -15
- msprobe/pytorch/bench_functions/rotary_mul.py +52 -52
- msprobe/pytorch/bench_functions/scaled_mask_softmax.py +26 -26
- msprobe/pytorch/bench_functions/swiglu.py +55 -55
- msprobe/pytorch/common/__init__.py +2 -2
- msprobe/pytorch/common/compare_script.template +14 -14
- msprobe/pytorch/common/log.py +20 -31
- msprobe/pytorch/common/parse_json.py +39 -39
- msprobe/pytorch/common/utils.py +305 -300
- msprobe/pytorch/compare/distributed_compare.py +66 -66
- msprobe/pytorch/compare/mapping.yaml +607 -607
- msprobe/pytorch/compare/match.py +34 -33
- msprobe/pytorch/compare/pt_compare.py +50 -40
- msprobe/pytorch/debugger/debugger_config.py +95 -95
- msprobe/pytorch/debugger/precision_debugger.py +125 -125
- msprobe/pytorch/free_benchmark/__init__.py +8 -8
- msprobe/pytorch/free_benchmark/common/constant.py +70 -70
- msprobe/pytorch/free_benchmark/common/counter.py +71 -71
- msprobe/pytorch/free_benchmark/common/enums.py +37 -37
- msprobe/pytorch/free_benchmark/common/params.py +129 -129
- msprobe/pytorch/free_benchmark/common/utils.py +102 -102
- msprobe/pytorch/free_benchmark/compare/grad_saver.py +179 -179
- msprobe/pytorch/free_benchmark/compare/single_benchmark.py +104 -104
- msprobe/pytorch/free_benchmark/main.py +105 -105
- msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +13 -13
- msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +41 -41
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +90 -90
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +104 -104
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +63 -63
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +68 -68
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +28 -28
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +45 -45
- msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +19 -19
- msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +217 -217
- msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +39 -39
- msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +23 -23
- msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +30 -30
- msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +170 -170
- msprobe/pytorch/function_factory.py +76 -75
- msprobe/pytorch/functional/dump_module.py +39 -39
- msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
- msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
- msprobe/pytorch/hook_module/api_registry.py +161 -161
- msprobe/pytorch/hook_module/hook_module.py +120 -120
- msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
- msprobe/pytorch/hook_module/utils.py +30 -29
- msprobe/pytorch/hook_module/wrap_aten.py +110 -110
- msprobe/pytorch/hook_module/wrap_distributed.py +78 -78
- msprobe/pytorch/hook_module/wrap_functional.py +105 -105
- msprobe/pytorch/hook_module/wrap_npu_custom.py +93 -84
- msprobe/pytorch/hook_module/wrap_tensor.py +71 -71
- msprobe/pytorch/hook_module/wrap_torch.py +86 -86
- msprobe/pytorch/hook_module/wrap_vf.py +62 -62
- msprobe/pytorch/module_processer.py +138 -138
- msprobe/pytorch/online_dispatch/__init__.py +20 -20
- msprobe/pytorch/online_dispatch/compare.py +236 -236
- msprobe/pytorch/online_dispatch/dispatch.py +271 -271
- msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
- msprobe/pytorch/online_dispatch/single_compare.py +391 -391
- msprobe/pytorch/online_dispatch/torch_ops_config.yaml +49 -49
- msprobe/pytorch/online_dispatch/utils.py +130 -146
- msprobe/pytorch/parse.py +4 -4
- msprobe/pytorch/parse_tool/cli.py +32 -32
- msprobe/pytorch/parse_tool/lib/compare.py +260 -271
- msprobe/pytorch/parse_tool/lib/config.py +52 -52
- msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
- msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
- msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
- msprobe/pytorch/parse_tool/lib/parse_tool.py +158 -158
- msprobe/pytorch/parse_tool/lib/utils.py +316 -321
- msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
- msprobe/pytorch/pt_config.py +188 -187
- msprobe/pytorch/service.py +246 -252
- mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
- msprobe/config/README.md +0 -539
- msprobe/mindspore/doc/compare.md +0 -58
- msprobe/mindspore/doc/dump.md +0 -217
- msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
- msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
- msprobe/pytorch/doc/FAQ.md +0 -193
- msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
- msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
- msprobe/pytorch/doc/dump.md +0 -260
- msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
- msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
- msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
- msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
- msprobe/pytorch/doc/run_overflow_check.md +0 -25
- msprobe/pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md +0 -90
- msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
- {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/top_level.txt +0 -0
- /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
- /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
- /msprobe/{config → docs}/img/free_benchmark.png +0 -0
- /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
- /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
- /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
- /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
- /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
- /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
|
@@ -1,15 +1,15 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
def npu_rms_norm(x, gamma, epsilon=1e-5):
|
|
5
|
-
rstd = torch.rsqrt(torch.mean(torch.pow(x, 2), axis=-1, keepdim=True) + epsilon)
|
|
6
|
-
res = x * rstd * gamma
|
|
7
|
-
return res
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
def npu_rms_norm_backward(grad, x, gamma, rstd):
|
|
11
|
-
mean_gy = (grad * x * gamma * rstd).mean(dim=-1, keepdim=True)
|
|
12
|
-
grad_x = (grad * gamma - x * rstd * mean_gy) * rstd
|
|
13
|
-
grad_gamma = x * grad * rstd
|
|
14
|
-
return grad_x.cpu(), grad_gamma.cpu()
|
|
15
|
-
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def npu_rms_norm(x, gamma, epsilon=1e-5):
|
|
5
|
+
rstd = torch.rsqrt(torch.mean(torch.pow(x, 2), axis=-1, keepdim=True) + epsilon)
|
|
6
|
+
res = x * rstd * gamma
|
|
7
|
+
return res, rstd.float()
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def npu_rms_norm_backward(grad, x, gamma, rstd):
|
|
11
|
+
mean_gy = (grad * x * gamma * rstd).mean(dim=-1, keepdim=True)
|
|
12
|
+
grad_x = (grad * gamma - x * rstd * mean_gy) * rstd
|
|
13
|
+
grad_gamma = x * grad * rstd
|
|
14
|
+
return grad_x.cpu(), grad_gamma.cpu()
|
|
15
|
+
|
|
@@ -1,52 +1,52 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
def npu_rotary_mul(x, r1, r2):
|
|
5
|
-
x1, x2 = torch.chunk(x, 2, -1)
|
|
6
|
-
x_new = torch.cat((-x2, x1), dim=-1)
|
|
7
|
-
output = r1 * x + r2 * x_new
|
|
8
|
-
return output
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
def npu_rotary_mul_backward(dy_tensor, x, r1, r2):
|
|
12
|
-
x.requires_grad = True
|
|
13
|
-
r1.requires_grad = True
|
|
14
|
-
r2.requires_grad = True
|
|
15
|
-
# golden
|
|
16
|
-
x1, x2 = torch.chunk(x, 2, -1)
|
|
17
|
-
x_new = torch.cat((-x2, x1), dim=-1)
|
|
18
|
-
golden_tensor = r1 * x + r2 * x_new
|
|
19
|
-
golden_tensor.backward(dy_tensor)
|
|
20
|
-
r1_shape = r1.shape
|
|
21
|
-
r1_grad = torch.zeros(r1_shape).type(torch.float32)
|
|
22
|
-
r2_grad = torch.zeros(r1_shape).type(torch.float32)
|
|
23
|
-
x1, x2 = torch.chunk(x.float(), 2, -1)
|
|
24
|
-
x_new2 = torch.cat((-x2, x1), dim=-1)
|
|
25
|
-
x_shape = x.shape
|
|
26
|
-
h = x.float()
|
|
27
|
-
grad = dy_tensor.float()
|
|
28
|
-
condition_1 = (((r1_shape[0] == 1 and x_shape[0] != 1) or (r1_shape[0] == 1 and x_shape[0] == 1)) and
|
|
29
|
-
((r1_shape[2] == 1 and x_shape[2] != 1) or (r1_shape[2] == 1 and x_shape[2] == 1)) and
|
|
30
|
-
(r1_shape[1] == x_shape[1]) and (r1_shape[3] == x_shape[3]))
|
|
31
|
-
condition_2 = (((r1_shape[0] == 1 and x_shape[0] != 1) or (r1_shape[0] == 1 and x_shape[0] == 1)) and
|
|
32
|
-
((r1_shape[1] == 1 and x_shape[1] != 1) or (r1_shape[1] == 1 and x_shape[1] == 1)) and
|
|
33
|
-
(r1_shape[2] == x_shape[2]) and (r1_shape[3] == x_shape[3]))
|
|
34
|
-
condition_3 = (((r1_shape[2] == 1 and x_shape[2] != 1) or (r1_shape[2] == 1 and x_shape[2] == 1)) and
|
|
35
|
-
((r1_shape[1] == 1 and x_shape[1] != 1) or (r1_shape[1] == 1 and x_shape[1] == 1)) and
|
|
36
|
-
(r1_shape[0] == x_shape[0]) and (r1_shape[3] == x_shape[3]))
|
|
37
|
-
if condition_1:
|
|
38
|
-
for i in range(x_shape[0]):
|
|
39
|
-
for j in range(x_shape[2]):
|
|
40
|
-
r2_grad[0, :, 0, :] += (x_new2[i, :, j, :] * grad[i, :, j, :])
|
|
41
|
-
r1_grad[0, :, 0, :] += (h[i, :, j, :] * grad[i, :, j, :])
|
|
42
|
-
elif condition_2:
|
|
43
|
-
for i in range(x_shape[0]):
|
|
44
|
-
for j in range(x_shape[1]):
|
|
45
|
-
r2_grad[0, 0, :, :] += (x_new2[i, j, :, :] * grad[i, j, :, :])
|
|
46
|
-
r1_grad[0, 0, :, :] += (h[i, j, :, :] * grad[i, j, :, :])
|
|
47
|
-
elif condition_3:
|
|
48
|
-
for i in range(x_shape[1]):
|
|
49
|
-
for j in range(x_shape[2]):
|
|
50
|
-
r2_grad[:, 0, 0, :] += (x_new2[:, i, j, :] * grad[:, i, j, :])
|
|
51
|
-
r1_grad[:, 0, 0, :] += (h[:, i, j, :] * grad[:, i, j, :])
|
|
52
|
-
return x.grad.cpu(), r1_grad.cpu(), r2_grad.cpu()
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def npu_rotary_mul(x, r1, r2):
|
|
5
|
+
x1, x2 = torch.chunk(x, 2, -1)
|
|
6
|
+
x_new = torch.cat((-x2, x1), dim=-1)
|
|
7
|
+
output = r1 * x + r2 * x_new
|
|
8
|
+
return output
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def npu_rotary_mul_backward(dy_tensor, x, r1, r2):
|
|
12
|
+
x.requires_grad = True
|
|
13
|
+
r1.requires_grad = True
|
|
14
|
+
r2.requires_grad = True
|
|
15
|
+
# golden
|
|
16
|
+
x1, x2 = torch.chunk(x, 2, -1)
|
|
17
|
+
x_new = torch.cat((-x2, x1), dim=-1)
|
|
18
|
+
golden_tensor = r1 * x + r2 * x_new
|
|
19
|
+
golden_tensor.backward(dy_tensor)
|
|
20
|
+
r1_shape = r1.shape
|
|
21
|
+
r1_grad = torch.zeros(r1_shape).type(torch.float32)
|
|
22
|
+
r2_grad = torch.zeros(r1_shape).type(torch.float32)
|
|
23
|
+
x1, x2 = torch.chunk(x.float(), 2, -1)
|
|
24
|
+
x_new2 = torch.cat((-x2, x1), dim=-1)
|
|
25
|
+
x_shape = x.shape
|
|
26
|
+
h = x.float()
|
|
27
|
+
grad = dy_tensor.float()
|
|
28
|
+
condition_1 = (((r1_shape[0] == 1 and x_shape[0] != 1) or (r1_shape[0] == 1 and x_shape[0] == 1)) and
|
|
29
|
+
((r1_shape[2] == 1 and x_shape[2] != 1) or (r1_shape[2] == 1 and x_shape[2] == 1)) and
|
|
30
|
+
(r1_shape[1] == x_shape[1]) and (r1_shape[3] == x_shape[3]))
|
|
31
|
+
condition_2 = (((r1_shape[0] == 1 and x_shape[0] != 1) or (r1_shape[0] == 1 and x_shape[0] == 1)) and
|
|
32
|
+
((r1_shape[1] == 1 and x_shape[1] != 1) or (r1_shape[1] == 1 and x_shape[1] == 1)) and
|
|
33
|
+
(r1_shape[2] == x_shape[2]) and (r1_shape[3] == x_shape[3]))
|
|
34
|
+
condition_3 = (((r1_shape[2] == 1 and x_shape[2] != 1) or (r1_shape[2] == 1 and x_shape[2] == 1)) and
|
|
35
|
+
((r1_shape[1] == 1 and x_shape[1] != 1) or (r1_shape[1] == 1 and x_shape[1] == 1)) and
|
|
36
|
+
(r1_shape[0] == x_shape[0]) and (r1_shape[3] == x_shape[3]))
|
|
37
|
+
if condition_1:
|
|
38
|
+
for i in range(x_shape[0]):
|
|
39
|
+
for j in range(x_shape[2]):
|
|
40
|
+
r2_grad[0, :, 0, :] += (x_new2[i, :, j, :] * grad[i, :, j, :])
|
|
41
|
+
r1_grad[0, :, 0, :] += (h[i, :, j, :] * grad[i, :, j, :])
|
|
42
|
+
elif condition_2:
|
|
43
|
+
for i in range(x_shape[0]):
|
|
44
|
+
for j in range(x_shape[1]):
|
|
45
|
+
r2_grad[0, 0, :, :] += (x_new2[i, j, :, :] * grad[i, j, :, :])
|
|
46
|
+
r1_grad[0, 0, :, :] += (h[i, j, :, :] * grad[i, j, :, :])
|
|
47
|
+
elif condition_3:
|
|
48
|
+
for i in range(x_shape[1]):
|
|
49
|
+
for j in range(x_shape[2]):
|
|
50
|
+
r2_grad[:, 0, 0, :] += (x_new2[:, i, j, :] * grad[:, i, j, :])
|
|
51
|
+
r1_grad[:, 0, 0, :] += (h[:, i, j, :] * grad[:, i, j, :])
|
|
52
|
+
return x.grad.cpu(), r1_grad.cpu(), r2_grad.cpu()
|
|
@@ -1,26 +1,26 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
def npu_scaled_masked_softmax(x, mask, scale, fixed_triu_mask):
|
|
5
|
-
if fixed_triu_mask:
|
|
6
|
-
mask = (torch.triu(torch.ones(mask.shape), k=1)).bool().to(mask.device)
|
|
7
|
-
dtype = x.dtype
|
|
8
|
-
x = (x * scale).masked_fill(mask, value=-10000)
|
|
9
|
-
x = x - torch.max(x, dim=-1, keepdims=True)[0]
|
|
10
|
-
x = torch.exp(x.float())
|
|
11
|
-
y = torch.div(x, torch.sum(x, dim=-1, keepdims=True))
|
|
12
|
-
return y.to(dtype)
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
def npu_scaled_masked_softmax_backward(y_grad, y, mask, scale, fixed_triu_mask):
|
|
16
|
-
if fixed_triu_mask:
|
|
17
|
-
mask = (torch.triu(torch.ones(mask.shape), k=1)).bool().to(mask.device)
|
|
18
|
-
dtype = y_grad.dtype
|
|
19
|
-
y_grad = y_grad.float()
|
|
20
|
-
y = y.float()
|
|
21
|
-
x_grad = y_grad * y
|
|
22
|
-
x_grad = y_grad - torch.sum(x_grad, dim=-1, keepdims=True)
|
|
23
|
-
x_grad = x_grad * y
|
|
24
|
-
x_grad = x_grad * scale
|
|
25
|
-
x_grad = x_grad.masked_fill(mask, value=0)
|
|
26
|
-
return x_grad.to(dtype).cpu()
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def npu_scaled_masked_softmax(x, mask, scale, fixed_triu_mask):
|
|
5
|
+
if fixed_triu_mask:
|
|
6
|
+
mask = (torch.triu(torch.ones(mask.shape), k=1)).bool().to(mask.device)
|
|
7
|
+
dtype = x.dtype
|
|
8
|
+
x = (x * scale).masked_fill(mask, value=-10000)
|
|
9
|
+
x = x - torch.max(x, dim=-1, keepdims=True)[0]
|
|
10
|
+
x = torch.exp(x.float())
|
|
11
|
+
y = torch.div(x, torch.sum(x, dim=-1, keepdims=True))
|
|
12
|
+
return y.to(dtype)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def npu_scaled_masked_softmax_backward(y_grad, y, mask, scale, fixed_triu_mask):
|
|
16
|
+
if fixed_triu_mask:
|
|
17
|
+
mask = (torch.triu(torch.ones(mask.shape), k=1)).bool().to(mask.device)
|
|
18
|
+
dtype = y_grad.dtype
|
|
19
|
+
y_grad = y_grad.float()
|
|
20
|
+
y = y.float()
|
|
21
|
+
x_grad = y_grad * y
|
|
22
|
+
x_grad = y_grad - torch.sum(x_grad, dim=-1, keepdims=True)
|
|
23
|
+
x_grad = x_grad * y
|
|
24
|
+
x_grad = x_grad * scale
|
|
25
|
+
x_grad = x_grad.masked_fill(mask, value=0)
|
|
26
|
+
return x_grad.to(dtype).cpu()
|
|
@@ -1,55 +1,55 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
def npu_swiglu(x, dim=-1):
|
|
5
|
-
tensor_dtype = x.dtype
|
|
6
|
-
|
|
7
|
-
inTensors = torch.chunk(x, 2, dim=dim)
|
|
8
|
-
if tensor_dtype == torch.float32:
|
|
9
|
-
tensor_scalar = torch.sigmoid(torch.mul(inTensors[0], 1.0))
|
|
10
|
-
output_data = torch.mul(torch.mul(tensor_scalar, inTensors[0]), inTensors[1])
|
|
11
|
-
else:
|
|
12
|
-
tensor_self_float = inTensors[0].type(torch.float)
|
|
13
|
-
tensor_other_float = inTensors[1].type(torch.float)
|
|
14
|
-
tensor_out_float = torch.nn.functional.silu(tensor_self_float).type(tensor_dtype).type(
|
|
15
|
-
torch.float32) * tensor_other_float
|
|
16
|
-
output_data = tensor_out_float.type(tensor_dtype)
|
|
17
|
-
return output_data
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
def npu_swiglu_backward(grad, x, dim=-1):
|
|
21
|
-
tensor_dtype = grad.dtype
|
|
22
|
-
in_tensors = torch.chunk(x, 2, dim=dim)
|
|
23
|
-
tensor_grad_out = grad
|
|
24
|
-
|
|
25
|
-
if tensor_dtype == torch.float16:
|
|
26
|
-
tensor_out1 = torch.mul(
|
|
27
|
-
torch.mul(in_tensors[1].type(torch.float32), swish_grad(1, in_tensors[0].type(torch.float32))),
|
|
28
|
-
tensor_grad_out.type(torch.float32)).type(torch.float16)
|
|
29
|
-
tensor_out2 = torch.mul(tensor_grad_out.type(torch.float32),
|
|
30
|
-
swish(1, in_tensors[0].type(torch.float32))).type(torch.float16)
|
|
31
|
-
output = torch.cat((tensor_out1, tensor_out2), dim)
|
|
32
|
-
elif tensor_dtype == torch.bfloat16:
|
|
33
|
-
tensor_self_float = in_tensors[0].type(torch.float)
|
|
34
|
-
tensor_other_float = in_tensors[1].type(torch.float)
|
|
35
|
-
tensor_gradout_float = tensor_grad_out.type(torch.float)
|
|
36
|
-
|
|
37
|
-
tensor_out1 = torch.mul(tensor_gradout_float, swish_grad(1.0, tensor_self_float)).type(torch.bfloat16).type(
|
|
38
|
-
torch.float32) * tensor_other_float
|
|
39
|
-
tensor_out2 = swish(1.0, tensor_self_float).type(torch.bfloat16).type(torch.float32) * tensor_gradout_float
|
|
40
|
-
tensor_out_float = torch.cat((tensor_out1, tensor_out2), dim=dim)
|
|
41
|
-
output = tensor_out_float.type(torch.bfloat16)
|
|
42
|
-
else:
|
|
43
|
-
tensor_out1 = torch.mul(torch.mul(in_tensors[1], swish_grad(1.0, in_tensors[0])), tensor_grad_out)
|
|
44
|
-
tensor_out2 = torch.mul(tensor_grad_out, swish(1.0, in_tensors[0]))
|
|
45
|
-
output = torch.cat((tensor_out1, tensor_out2), dim)
|
|
46
|
-
return output.cpu()
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
def swish_grad(beta, x):
|
|
50
|
-
return torch.sigmoid(beta * x) + x * (1 - torch.sigmoid(beta * x)) * torch.sigmoid(beta * x) * beta
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
def swish(beta, x):
|
|
54
|
-
return x * torch.sigmoid(beta * x)
|
|
55
|
-
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def npu_swiglu(x, dim=-1):
|
|
5
|
+
tensor_dtype = x.dtype
|
|
6
|
+
|
|
7
|
+
inTensors = torch.chunk(x, 2, dim=dim)
|
|
8
|
+
if tensor_dtype == torch.float32:
|
|
9
|
+
tensor_scalar = torch.sigmoid(torch.mul(inTensors[0], 1.0))
|
|
10
|
+
output_data = torch.mul(torch.mul(tensor_scalar, inTensors[0]), inTensors[1])
|
|
11
|
+
else:
|
|
12
|
+
tensor_self_float = inTensors[0].type(torch.float)
|
|
13
|
+
tensor_other_float = inTensors[1].type(torch.float)
|
|
14
|
+
tensor_out_float = torch.nn.functional.silu(tensor_self_float).type(tensor_dtype).type(
|
|
15
|
+
torch.float32) * tensor_other_float
|
|
16
|
+
output_data = tensor_out_float.type(tensor_dtype)
|
|
17
|
+
return output_data
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def npu_swiglu_backward(grad, x, dim=-1):
|
|
21
|
+
tensor_dtype = grad.dtype
|
|
22
|
+
in_tensors = torch.chunk(x, 2, dim=dim)
|
|
23
|
+
tensor_grad_out = grad
|
|
24
|
+
|
|
25
|
+
if tensor_dtype == torch.float16:
|
|
26
|
+
tensor_out1 = torch.mul(
|
|
27
|
+
torch.mul(in_tensors[1].type(torch.float32), swish_grad(1, in_tensors[0].type(torch.float32))),
|
|
28
|
+
tensor_grad_out.type(torch.float32)).type(torch.float16)
|
|
29
|
+
tensor_out2 = torch.mul(tensor_grad_out.type(torch.float32),
|
|
30
|
+
swish(1, in_tensors[0].type(torch.float32))).type(torch.float16)
|
|
31
|
+
output = torch.cat((tensor_out1, tensor_out2), dim)
|
|
32
|
+
elif tensor_dtype == torch.bfloat16:
|
|
33
|
+
tensor_self_float = in_tensors[0].type(torch.float)
|
|
34
|
+
tensor_other_float = in_tensors[1].type(torch.float)
|
|
35
|
+
tensor_gradout_float = tensor_grad_out.type(torch.float)
|
|
36
|
+
|
|
37
|
+
tensor_out1 = torch.mul(tensor_gradout_float, swish_grad(1.0, tensor_self_float)).type(torch.bfloat16).type(
|
|
38
|
+
torch.float32) * tensor_other_float
|
|
39
|
+
tensor_out2 = swish(1.0, tensor_self_float).type(torch.bfloat16).type(torch.float32) * tensor_gradout_float
|
|
40
|
+
tensor_out_float = torch.cat((tensor_out1, tensor_out2), dim=dim)
|
|
41
|
+
output = tensor_out_float.type(torch.bfloat16)
|
|
42
|
+
else:
|
|
43
|
+
tensor_out1 = torch.mul(torch.mul(in_tensors[1], swish_grad(1.0, in_tensors[0])), tensor_grad_out)
|
|
44
|
+
tensor_out2 = torch.mul(tensor_grad_out, swish(1.0, in_tensors[0]))
|
|
45
|
+
output = torch.cat((tensor_out1, tensor_out2), dim)
|
|
46
|
+
return output.cpu()
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def swish_grad(beta, x):
|
|
50
|
+
return torch.sigmoid(beta * x) + x * (1 - torch.sigmoid(beta * x)) * torch.sigmoid(beta * x) * beta
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def swish(beta, x):
|
|
54
|
+
return x * torch.sigmoid(beta * x)
|
|
55
|
+
|
|
@@ -1,2 +1,2 @@
|
|
|
1
|
-
from .parse_json import parse_json_info_forward_backward
|
|
2
|
-
from .utils import seed_all
|
|
1
|
+
from .parse_json import parse_json_info_forward_backward
|
|
2
|
+
from .utils import seed_all
|
|
@@ -1,14 +1,14 @@
|
|
|
1
|
-
from ptdbg_ascend import compare
|
|
2
|
-
|
|
3
|
-
pkl_path = "%s"
|
|
4
|
-
dump_data_dir = "%s"
|
|
5
|
-
|
|
6
|
-
dump_path_param = {
|
|
7
|
-
"npu_pkl_path": ,
|
|
8
|
-
"bench_pkl_path": ,
|
|
9
|
-
"npu_dump_data_dir": ,
|
|
10
|
-
"bench_dump_data_dir": ,
|
|
11
|
-
"is_print_compare_log": True
|
|
12
|
-
}
|
|
13
|
-
|
|
14
|
-
compare(dump_path_param, output_path="", stack_mode=%s)
|
|
1
|
+
from ptdbg_ascend import compare
|
|
2
|
+
|
|
3
|
+
pkl_path = "%s"
|
|
4
|
+
dump_data_dir = "%s"
|
|
5
|
+
|
|
6
|
+
dump_path_param = {
|
|
7
|
+
"npu_pkl_path": ,
|
|
8
|
+
"bench_pkl_path": ,
|
|
9
|
+
"npu_dump_data_dir": ,
|
|
10
|
+
"bench_dump_data_dir": ,
|
|
11
|
+
"is_print_compare_log": True
|
|
12
|
+
}
|
|
13
|
+
|
|
14
|
+
compare(dump_path_param, output_path="", stack_mode=%s)
|
msprobe/pytorch/common/log.py
CHANGED
|
@@ -1,32 +1,21 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import time
|
|
3
|
-
import sys
|
|
4
|
-
from msprobe.pytorch.common.utils import get_rank_if_initialized
|
|
5
|
-
from msprobe.core.common.log import BaseLogger
|
|
6
|
-
from msprobe.core.common.exceptions import DistributedNotInitializedError
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
class PyTorchLogger(BaseLogger):
|
|
10
|
-
def __init__(self):
|
|
11
|
-
super().__init__()
|
|
12
|
-
|
|
13
|
-
def get_rank(self):
|
|
14
|
-
try:
|
|
15
|
-
current_rank = get_rank_if_initialized()
|
|
16
|
-
except DistributedNotInitializedError:
|
|
17
|
-
current_rank = None
|
|
18
|
-
return current_rank
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
current_rank = self.get_rank()
|
|
22
|
-
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
|
23
|
-
pid = os.getpid()
|
|
24
|
-
if current_rank is not None:
|
|
25
|
-
full_msg = f"{current_time} ({pid}) [rank {current_rank}] [{level}] {msg}"
|
|
26
|
-
else:
|
|
27
|
-
full_msg = f"{current_time} ({pid}) [{level}] {msg}"
|
|
28
|
-
print(full_msg, end=end)
|
|
29
|
-
sys.stdout.flush()
|
|
30
|
-
|
|
31
|
-
|
|
1
|
+
import os
|
|
2
|
+
import time
|
|
3
|
+
import sys
|
|
4
|
+
from msprobe.pytorch.common.utils import get_rank_if_initialized
|
|
5
|
+
from msprobe.core.common.log import BaseLogger
|
|
6
|
+
from msprobe.core.common.exceptions import DistributedNotInitializedError
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class PyTorchLogger(BaseLogger):
|
|
10
|
+
def __init__(self):
|
|
11
|
+
super().__init__()
|
|
12
|
+
|
|
13
|
+
def get_rank(self):
|
|
14
|
+
try:
|
|
15
|
+
current_rank = get_rank_if_initialized()
|
|
16
|
+
except DistributedNotInitializedError:
|
|
17
|
+
current_rank = None
|
|
18
|
+
return current_rank
|
|
19
|
+
|
|
20
|
+
|
|
32
21
|
logger = PyTorchLogger()
|
|
@@ -1,39 +1,39 @@
|
|
|
1
|
-
import json
|
|
2
|
-
|
|
3
|
-
from msprobe.core.common.exceptions import ParseJsonException
|
|
4
|
-
from msprobe.core.common.
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
def parse_json_info_forward_backward(json_path):
|
|
8
|
-
def parse_data_name_with_pattern(data_name, pattern):
|
|
9
|
-
name_struct = data_name.split('.')
|
|
10
|
-
if not name_struct[-1] == pattern:
|
|
11
|
-
raise ParseJsonException(ParseJsonException.UnexpectedNameStruct,
|
|
12
|
-
f"{data_name} in file {json_path}")
|
|
13
|
-
api_name = '.'.join(name_struct[:-1])
|
|
14
|
-
return api_name
|
|
15
|
-
|
|
16
|
-
with FileOpen(json_path, 'r') as f:
|
|
17
|
-
dump_json = json.load(f)
|
|
18
|
-
|
|
19
|
-
real_data_path = dump_json.get("dump_data_dir")
|
|
20
|
-
dump_data = dump_json.get("data")
|
|
21
|
-
if not dump_data:
|
|
22
|
-
raise ParseJsonException(ParseJsonException.InvalidDumpJson, "dump数据中没有data字段")
|
|
23
|
-
|
|
24
|
-
forward_data = {}
|
|
25
|
-
backward_data = {}
|
|
26
|
-
for data_name, data_item in dump_data.items():
|
|
27
|
-
if "Module" in data_name:
|
|
28
|
-
continue
|
|
29
|
-
if "forward" in data_name:
|
|
30
|
-
api_name = parse_data_name_with_pattern(data_name, "forward")
|
|
31
|
-
forward_data.update({api_name: data_item})
|
|
32
|
-
elif "backward" in data_name:
|
|
33
|
-
api_name = parse_data_name_with_pattern(data_name, "backward")
|
|
34
|
-
backward_data.update({api_name: data_item})
|
|
35
|
-
else:
|
|
36
|
-
raise ParseJsonException(ParseJsonException.UnexpectedNameStruct,
|
|
37
|
-
f"{data_name} in file {json_path}.")
|
|
38
|
-
|
|
39
|
-
return forward_data, backward_data, real_data_path
|
|
1
|
+
import json
|
|
2
|
+
|
|
3
|
+
from msprobe.core.common.exceptions import ParseJsonException
|
|
4
|
+
from msprobe.core.common.file_utils import FileOpen
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def parse_json_info_forward_backward(json_path):
|
|
8
|
+
def parse_data_name_with_pattern(data_name, pattern):
|
|
9
|
+
name_struct = data_name.split('.')
|
|
10
|
+
if not name_struct[-1] == pattern:
|
|
11
|
+
raise ParseJsonException(ParseJsonException.UnexpectedNameStruct,
|
|
12
|
+
f"{data_name} in file {json_path}")
|
|
13
|
+
api_name = '.'.join(name_struct[:-1])
|
|
14
|
+
return api_name
|
|
15
|
+
|
|
16
|
+
with FileOpen(json_path, 'r') as f:
|
|
17
|
+
dump_json = json.load(f)
|
|
18
|
+
|
|
19
|
+
real_data_path = dump_json.get("dump_data_dir")
|
|
20
|
+
dump_data = dump_json.get("data")
|
|
21
|
+
if not dump_data:
|
|
22
|
+
raise ParseJsonException(ParseJsonException.InvalidDumpJson, "dump数据中没有data字段")
|
|
23
|
+
|
|
24
|
+
forward_data = {}
|
|
25
|
+
backward_data = {}
|
|
26
|
+
for data_name, data_item in dump_data.items():
|
|
27
|
+
if "Module" in data_name:
|
|
28
|
+
continue
|
|
29
|
+
if "forward" in data_name:
|
|
30
|
+
api_name = parse_data_name_with_pattern(data_name, "forward")
|
|
31
|
+
forward_data.update({api_name: data_item})
|
|
32
|
+
elif "backward" in data_name:
|
|
33
|
+
api_name = parse_data_name_with_pattern(data_name, "backward")
|
|
34
|
+
backward_data.update({api_name: data_item})
|
|
35
|
+
else:
|
|
36
|
+
raise ParseJsonException(ParseJsonException.UnexpectedNameStruct,
|
|
37
|
+
f"{data_name} in file {json_path}.")
|
|
38
|
+
|
|
39
|
+
return forward_data, backward_data, real_data_path
|