mindstudio-probe 1.0.3__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (262) hide show
  1. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/METADATA +36 -34
  3. mindstudio_probe-1.0.4.dist-info/RECORD +276 -0
  4. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +101 -237
  7. msprobe/{config/config.json → config.json} +49 -49
  8. msprobe/core/advisor/advisor.py +124 -124
  9. msprobe/core/advisor/advisor_const.py +59 -59
  10. msprobe/core/advisor/advisor_result.py +58 -58
  11. msprobe/core/common/const.py +341 -318
  12. msprobe/core/common/exceptions.py +99 -99
  13. msprobe/core/common/{file_check.py → file_utils.py} +478 -283
  14. msprobe/core/common/log.py +76 -69
  15. msprobe/core/common/utils.py +385 -616
  16. msprobe/core/common_config.py +85 -71
  17. msprobe/core/compare/acc_compare.py +299 -298
  18. msprobe/core/compare/check.py +95 -95
  19. msprobe/core/compare/compare_cli.py +49 -49
  20. msprobe/core/compare/highlight.py +223 -222
  21. msprobe/core/compare/multiprocessing_compute.py +149 -149
  22. msprobe/core/compare/npy_compare.py +295 -295
  23. msprobe/core/compare/utils.py +430 -429
  24. msprobe/core/data_dump/data_collector.py +154 -144
  25. msprobe/core/data_dump/data_processor/base.py +314 -293
  26. msprobe/core/data_dump/data_processor/factory.py +59 -59
  27. msprobe/core/data_dump/data_processor/mindspore_processor.py +186 -198
  28. msprobe/core/data_dump/data_processor/pytorch_processor.py +366 -389
  29. msprobe/core/data_dump/json_writer.py +96 -116
  30. msprobe/core/data_dump/scope.py +178 -178
  31. msprobe/core/grad_probe/constant.py +70 -70
  32. msprobe/core/grad_probe/grad_compare.py +171 -175
  33. msprobe/core/grad_probe/utils.py +64 -52
  34. msprobe/docs/01.installation.md +89 -0
  35. msprobe/docs/02.config_introduction.md +165 -0
  36. msprobe/docs/03.config_examples.md +247 -0
  37. msprobe/docs/04.acl_config_examples.md +76 -0
  38. msprobe/docs/05.data_dump_PyTorch.md +198 -0
  39. msprobe/docs/06.data_dump_MindSpore.md +243 -0
  40. msprobe/docs/07.accuracy_checker_PyTorch.md +274 -0
  41. msprobe/docs/08.accuracy_checker_online_PyTorch.md +198 -0
  42. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  43. msprobe/docs/10.accuracy_compare_PyTorch.md +245 -0
  44. msprobe/docs/11.accuracy_compare_MindSpore.md +202 -0
  45. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  46. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  47. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  48. msprobe/docs/15.free_benchmarking_PyTorch.md +164 -0
  49. msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +207 -207
  50. msprobe/docs/FAQ_PyTorch.md +177 -0
  51. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  52. msprobe/docs/img/free_benchmark_framework.png +0 -0
  53. msprobe/mindspore/__init__.py +1 -1
  54. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +254 -245
  55. msprobe/mindspore/api_accuracy_checker/api_info.py +69 -69
  56. msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
  57. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
  58. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  59. msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
  60. msprobe/mindspore/api_accuracy_checker/main.py +8 -15
  61. msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
  62. msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
  63. msprobe/mindspore/cell_processor.py +34 -34
  64. msprobe/mindspore/common/const.py +106 -87
  65. msprobe/mindspore/common/log.py +37 -37
  66. msprobe/mindspore/common/utils.py +81 -57
  67. msprobe/mindspore/compare/distributed_compare.py +75 -75
  68. msprobe/mindspore/compare/ms_compare.py +219 -117
  69. msprobe/mindspore/compare/ms_graph_compare.py +348 -317
  70. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
  71. msprobe/mindspore/debugger/debugger_config.py +66 -74
  72. msprobe/mindspore/debugger/precision_debugger.py +126 -107
  73. msprobe/mindspore/dump/dump_tool_factory.py +35 -35
  74. msprobe/mindspore/dump/hook_cell/api_registry.py +118 -104
  75. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
  76. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +922 -925
  77. msprobe/mindspore/dump/hook_cell/wrap_api.py +113 -0
  78. msprobe/mindspore/dump/jit_dump.py +72 -56
  79. msprobe/mindspore/dump/kernel_graph_dump.py +59 -60
  80. msprobe/mindspore/dump/kernel_kbyk_dump.py +64 -65
  81. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +116 -116
  82. msprobe/mindspore/free_benchmark/common/config.py +12 -12
  83. msprobe/mindspore/free_benchmark/common/handler_params.py +17 -17
  84. msprobe/mindspore/free_benchmark/common/utils.py +71 -71
  85. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
  86. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +43 -42
  87. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +107 -107
  88. msprobe/mindspore/free_benchmark/handler/base_handler.py +90 -90
  89. msprobe/mindspore/free_benchmark/handler/check_handler.py +41 -41
  90. msprobe/mindspore/free_benchmark/handler/fix_handler.py +36 -36
  91. msprobe/mindspore/free_benchmark/handler/handler_factory.py +21 -21
  92. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +67 -67
  93. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +21 -21
  94. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +63 -63
  95. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +51 -0
  96. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +35 -34
  97. msprobe/mindspore/free_benchmark/perturbation/no_change.py +12 -12
  98. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +29 -27
  99. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +33 -33
  100. msprobe/mindspore/grad_probe/global_context.py +90 -91
  101. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
  102. msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
  103. msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
  104. msprobe/mindspore/grad_probe/hook.py +94 -92
  105. msprobe/mindspore/grad_probe/utils.py +29 -28
  106. msprobe/mindspore/ms_config.py +128 -126
  107. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +44 -45
  108. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +34 -34
  109. msprobe/mindspore/runtime.py +4 -4
  110. msprobe/mindspore/service.py +378 -354
  111. msprobe/mindspore/task_handler_factory.py +24 -24
  112. msprobe/msprobe.py +105 -107
  113. msprobe/pytorch/__init__.py +3 -3
  114. msprobe/pytorch/api_accuracy_checker/common/config.py +53 -55
  115. msprobe/pytorch/api_accuracy_checker/common/utils.py +214 -165
  116. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +213 -213
  117. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +606 -581
  118. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  119. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  120. msprobe/pytorch/api_accuracy_checker/compare/compare.py +386 -381
  121. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +73 -73
  122. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +245 -244
  123. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
  124. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +335 -332
  125. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +200 -199
  126. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +133 -134
  127. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +592 -581
  128. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +70 -74
  129. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  130. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +197 -202
  131. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +325 -324
  132. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +204 -204
  133. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +219 -218
  134. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +10 -10
  135. msprobe/pytorch/bench_functions/__init__.py +15 -15
  136. msprobe/pytorch/bench_functions/apply_adam_w.py +28 -28
  137. msprobe/pytorch/bench_functions/confusion_transpose.py +19 -19
  138. msprobe/pytorch/bench_functions/fast_gelu.py +55 -55
  139. msprobe/pytorch/bench_functions/layer_norm_eval.py +6 -6
  140. msprobe/pytorch/bench_functions/linear.py +12 -12
  141. msprobe/pytorch/bench_functions/matmul_backward.py +48 -48
  142. msprobe/pytorch/bench_functions/npu_fusion_attention.py +509 -421
  143. msprobe/pytorch/bench_functions/rms_norm.py +15 -15
  144. msprobe/pytorch/bench_functions/rotary_mul.py +52 -52
  145. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +26 -26
  146. msprobe/pytorch/bench_functions/swiglu.py +55 -55
  147. msprobe/pytorch/common/__init__.py +2 -2
  148. msprobe/pytorch/common/compare_script.template +14 -14
  149. msprobe/pytorch/common/log.py +20 -31
  150. msprobe/pytorch/common/parse_json.py +39 -39
  151. msprobe/pytorch/common/utils.py +305 -300
  152. msprobe/pytorch/compare/distributed_compare.py +66 -66
  153. msprobe/pytorch/compare/mapping.yaml +607 -607
  154. msprobe/pytorch/compare/match.py +34 -33
  155. msprobe/pytorch/compare/pt_compare.py +50 -40
  156. msprobe/pytorch/debugger/debugger_config.py +95 -95
  157. msprobe/pytorch/debugger/precision_debugger.py +125 -125
  158. msprobe/pytorch/free_benchmark/__init__.py +8 -8
  159. msprobe/pytorch/free_benchmark/common/constant.py +70 -70
  160. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  161. msprobe/pytorch/free_benchmark/common/enums.py +37 -37
  162. msprobe/pytorch/free_benchmark/common/params.py +129 -129
  163. msprobe/pytorch/free_benchmark/common/utils.py +102 -102
  164. msprobe/pytorch/free_benchmark/compare/grad_saver.py +179 -179
  165. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +104 -104
  166. msprobe/pytorch/free_benchmark/main.py +105 -105
  167. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +13 -13
  168. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +41 -41
  169. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +90 -90
  170. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +104 -104
  171. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +63 -63
  172. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +68 -68
  173. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +28 -28
  174. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +45 -45
  175. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +19 -19
  176. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +217 -217
  177. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +39 -39
  178. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +23 -23
  179. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +30 -30
  180. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +170 -170
  181. msprobe/pytorch/function_factory.py +76 -75
  182. msprobe/pytorch/functional/dump_module.py +39 -39
  183. msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
  184. msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
  185. msprobe/pytorch/hook_module/api_registry.py +161 -161
  186. msprobe/pytorch/hook_module/hook_module.py +120 -120
  187. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
  188. msprobe/pytorch/hook_module/utils.py +30 -29
  189. msprobe/pytorch/hook_module/wrap_aten.py +110 -110
  190. msprobe/pytorch/hook_module/wrap_distributed.py +78 -78
  191. msprobe/pytorch/hook_module/wrap_functional.py +105 -105
  192. msprobe/pytorch/hook_module/wrap_npu_custom.py +93 -84
  193. msprobe/pytorch/hook_module/wrap_tensor.py +71 -71
  194. msprobe/pytorch/hook_module/wrap_torch.py +86 -86
  195. msprobe/pytorch/hook_module/wrap_vf.py +62 -62
  196. msprobe/pytorch/module_processer.py +138 -138
  197. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  198. msprobe/pytorch/online_dispatch/compare.py +236 -236
  199. msprobe/pytorch/online_dispatch/dispatch.py +271 -271
  200. msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
  201. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  202. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +49 -49
  203. msprobe/pytorch/online_dispatch/utils.py +130 -146
  204. msprobe/pytorch/parse.py +4 -4
  205. msprobe/pytorch/parse_tool/cli.py +32 -32
  206. msprobe/pytorch/parse_tool/lib/compare.py +260 -271
  207. msprobe/pytorch/parse_tool/lib/config.py +52 -52
  208. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  209. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  210. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  211. msprobe/pytorch/parse_tool/lib/parse_tool.py +158 -158
  212. msprobe/pytorch/parse_tool/lib/utils.py +316 -321
  213. msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
  214. msprobe/pytorch/pt_config.py +188 -187
  215. msprobe/pytorch/service.py +246 -252
  216. mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
  217. msprobe/config/README.md +0 -539
  218. msprobe/mindspore/doc/compare.md +0 -58
  219. msprobe/mindspore/doc/dump.md +0 -217
  220. msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
  221. msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
  222. msprobe/pytorch/doc/FAQ.md +0 -193
  223. msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
  224. msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
  225. msprobe/pytorch/doc/dump.md +0 -260
  226. msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  227. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
  228. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  229. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  230. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  231. msprobe/pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md +0 -90
  232. msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
  233. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/top_level.txt +0 -0
  234. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  235. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  236. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  237. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  238. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  239. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  240. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  241. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  242. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  243. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  244. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  245. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  246. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  247. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  248. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  249. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  250. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  251. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  252. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  253. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  254. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  255. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  256. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  257. /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
  258. /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
  259. /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
  260. /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
  261. /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
  262. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -1,317 +1,348 @@
1
- import csv
2
- import glob
3
- import os
4
- import sys
5
- import copy
6
-
7
- import numpy as np
8
- import pandas as pd
9
- from msprobe.core.common.const import CompareConst, GraphMode
10
- from msprobe.core.common.exceptions import FileCheckException
11
- from msprobe.core.common.file_check import create_directory
12
- from msprobe.core.common.log import logger
13
- from msprobe.core.common.utils import add_time_with_xlsx, CompareException
14
- from msprobe.core.compare.multiprocessing_compute import _ms_graph_handle_multi_process, check_accuracy
15
- from msprobe.core.compare.npy_compare import npy_data_check, statistics_data_check, reshape_value, compare_ops_apply
16
- from msprobe.core.common.file_check import FileOpen
17
-
18
- class row_data:
19
- def __init__(self, mode):
20
- self.basic_data = copy.deepcopy(CompareConst.MS_GRAPH_BASE)
21
- self.npy_data = copy.deepcopy(CompareConst.MS_GRAPH_NPY)
22
- self.statistic_data = copy.deepcopy(CompareConst.MS_GRAPH_STATISTIC)
23
- if mode == GraphMode.NPY_MODE:
24
- self.data = {**self.basic_data, **self.npy_data}
25
- else:
26
- self.data = {**self.basic_data, **self.statistic_data}
27
-
28
- def __call__(self):
29
- return self.data
30
-
31
-
32
- def generate_step(npu_path, rank_id):
33
- step_set = set()
34
- rank_path = os.path.join(npu_path, f"rank_{rank_id}")
35
- if not os.path.exists(rank_path):
36
- return []
37
- for path in os.listdir(rank_path):
38
- if path not in ["execution_order", "graphs"]:
39
- data_path = os.path.join(rank_path, path)
40
- for graph_path in os.listdir(data_path):
41
- step_set.update([int(i) for i in os.listdir(os.path.join(data_path, graph_path))])
42
- return sorted(step_set)
43
-
44
-
45
- def generate_path_by_rank_step(base_path, rank_id, step_id):
46
- path_with_rank_id = os.path.join(base_path, f"rank_{rank_id}")
47
- if not os.path.exists(path_with_rank_id):
48
- return ''
49
- for path in os.listdir(path_with_rank_id):
50
- if path not in ["execution_order", "graphs"]:
51
-
52
- return os.path.join(path_with_rank_id, path, "*", str(step_id))
53
- logger.error(f"Data_path {path_with_rank_id} is not exist.")
54
- return ''
55
-
56
-
57
- def statistic_data_read(statistic_file_list, statistic_file_path):
58
- data_list = []
59
- statistic_data_list = []
60
- for statistic_file in statistic_file_list:
61
- with open(statistic_file, "r") as f:
62
- csv_reader = csv.reader(f, delimiter=",")
63
- header = next(csv_reader)
64
- header_index = {'Data Type': None, 'Shape': None, 'Max Value': None, 'Min Value': None,
65
- 'Avg Value': None, 'L2Norm Value': None}
66
- for key in header_index.keys():
67
- for index, value in enumerate(header):
68
- if key == value:
69
- header_index[key] = index
70
- for key in header_index.keys():
71
- if header_index[key] is None:
72
- logger.error(f"Data_path {statistic_file_path} has no key {key}")
73
- raise FileCheckException(f"Data_path {statistic_file_path} has no key {key}")
74
- statistic_data_list.extend([row for row in csv_reader])
75
-
76
- for data in statistic_data_list:
77
- compare_key = f"{data[1]}.{data[2]}.{data[3]}.{data[5]}"
78
- timestamp = int(data[4])
79
- data_list.append(
80
- [statistic_file_path, compare_key, timestamp, data[header_index['Data Type']],
81
- data[header_index['Shape']], data[header_index['Max Value']], data[header_index['Min Value']],
82
- data[header_index['Avg Value']], data[header_index['L2Norm Value']]])
83
- return data_list
84
-
85
-
86
- def generate_data_name(data_path):
87
- data_list = []
88
-
89
- mapping_path = os.path.join(data_path, "mapping.csv")
90
- statistic_path = os.path.join(data_path, "statistic.csv")
91
- npy_path = os.path.join(data_path, "*.npy")
92
-
93
- mapping_file_list = glob.glob(mapping_path)
94
- statistic_file_list = glob.glob(statistic_path)
95
- npy_file_list = glob.glob(npy_path)
96
-
97
- mapping_exist = bool(mapping_file_list)
98
- statistic_exist = bool(statistic_file_list)
99
- npy_exist = bool(npy_file_list)
100
-
101
- mapping_dict = []
102
- if mapping_exist:
103
- for mapping_file in mapping_file_list:
104
- with FileOpen(mapping_file, "r") as f:
105
- csv_reader = csv.reader(f, delimiter=",")
106
- header = next(csv_reader)
107
- for row in csv_reader:
108
- mapping_dict[row[0]] = row[1]
109
-
110
- if npy_exist:
111
- for data in npy_file_list:
112
- if data in mapping_dict:
113
- split_list = mapping_dict[data].split(".")
114
- else:
115
- split_list = data.split(".")
116
- compare_key = f"{split_list[1]}.{split_list[2]}.{split_list[3]}.{split_list[5]}.{split_list[6]}"
117
- timestamp = int(split_list[4])
118
-
119
- data_list.append([os.path.join(data_path, data), compare_key, timestamp])
120
- elif statistic_exist:
121
- data_list = statistic_data_read(statistic_file_list, os.path.join(data_path, statistic_path))
122
-
123
- if npy_exist:
124
- mode = GraphMode.NPY_MODE
125
- elif statistic_exist:
126
- mode = GraphMode.STATISTIC_MODE
127
- else:
128
- mode = GraphMode.ERROR_MODE
129
- logger.error(f"Error mode.")
130
- return mode, data_list
131
-
132
-
133
- def read_npy_data(data_path):
134
- try:
135
- data_value = np.load(data_path)
136
- if data_value.dtype == np.float16:
137
- data_value = data_value.astype(np.float32)
138
- except FileNotFoundError as e:
139
- data_value = None
140
- except EOFError:
141
- data_value = None
142
- return data_value
143
-
144
-
145
- class GraphMSComparator:
146
- def __init__(self, input_param, output_path):
147
- self.output_path = output_path
148
- self.base_npu_path = input_param.get('npu_path', None)
149
- self.base_bench_path = input_param.get('bench_path', None)
150
- self.rank_list = input_param.get('rank_id', [])
151
- self.step_list = input_param.get('step_id', [])
152
-
153
- @staticmethod
154
- def compare_ops(compare_result_db, mode):
155
-
156
- def npy_mode_compute(row):
157
- result_dict = row_data(GraphMode.NPY_MODE)()
158
-
159
- def process_npy_file(file_path, name_prefix, result):
160
- if os.path.exists(file_path):
161
- data = read_npy_data(file_path)
162
- result[f'{name_prefix} Name'] = file_path
163
- result[f'{name_prefix} Dtype'] = data.dtype
164
- result[f'{name_prefix} Tensor Shape'] = data.shape
165
- result[f'{name_prefix} max'] = np.max(data)
166
- result[f'{name_prefix} min'] = np.min(data)
167
- result[f'{name_prefix} mean'] = np.mean(data)
168
- result[f'{name_prefix} l2norm'] = np.linalg.norm(data)
169
- return data
170
- return ""
171
-
172
- n_value = process_npy_file(row[CompareConst.NPU_NAME], 'NPU', result_dict)
173
- b_value = process_npy_file(row[CompareConst.BENCH_NAME], 'Bench', result_dict)
174
-
175
- error_flag, error_message = npy_data_check(n_value, b_value)
176
- result_dict[CompareConst.ERROR_MESSAGE] = error_message
177
-
178
- if not error_flag:
179
- n_value, b_value = reshape_value(n_value, b_value)
180
- result_list, err_msg = compare_ops_apply(n_value, b_value, False, "")
181
- result_dict[CompareConst.COSINE] = result_list[0]
182
- result_dict[CompareConst.MAX_ABS_ERR] = result_list[1]
183
- result_dict[CompareConst.MAX_RELATIVE_ERR] = result_list[2]
184
- result_dict[CompareConst.ONE_THOUSANDTH_ERR_RATIO] = result_list[3]
185
- result_dict[CompareConst.FIVE_THOUSANDTHS_ERR_RATIO] = result_list[4]
186
- result_dict[CompareConst.ACCURACY] = check_accuracy(result_list[0], result_list[1])
187
- result_dict[CompareConst.ERROR_MESSAGE] = err_msg
188
-
189
- return pd.Series(result_dict)
190
-
191
- def statistic_mode_compute(row):
192
- result_dict = row_data('STATISTIC')()
193
-
194
- def update_result_dict(result, rows, prefix):
195
- result[f'{prefix} Name'] = rows[f'{prefix} Name']
196
- result[f'{prefix} Dtype'] = rows[f'{prefix} Dtype']
197
- result[f'{prefix} Tensor Shape'] = rows[f'{prefix} Tensor Shape']
198
- result[f'{prefix} max'] = np.float32(rows[f'{prefix} max'])
199
- result[f'{prefix} min'] = np.float32(rows[f'{prefix} min'])
200
- result[f'{prefix} mean'] = np.float32(rows[f'{prefix} mean'])
201
- result[f'{prefix} l2norm'] = np.float32(rows[f'{prefix} l2norm'])
202
-
203
- # 使用示例
204
- update_result_dict(result_dict, row, 'NPU')
205
- update_result_dict(result_dict, row, 'Bench')
206
- error_flag, error_message = statistics_data_check(result_dict)
207
- result_dict[CompareConst.ERROR_MESSAGE] += error_message
208
- if not error_flag:
209
- result_dict[CompareConst.MAX_DIFF] = np.abs(
210
- result_dict[CompareConst.NPU_MAX] - result_dict[CompareConst.BENCH_MAX])
211
- result_dict[CompareConst.MIN_DIFF] = np.abs(
212
- result_dict[CompareConst.NPU_MIN] - result_dict[CompareConst.BENCH_MIN])
213
- result_dict[CompareConst.MEAN_DIFF] = np.abs(
214
- result_dict[CompareConst.NPU_MEAN] - result_dict[CompareConst.BENCH_MEAN])
215
- result_dict[CompareConst.NORM_DIFF] = np.abs(
216
- result_dict[CompareConst.NPU_NORM] - result_dict[CompareConst.BENCH_NORM])
217
- result_dict[CompareConst.MAX_RELATIVE_ERR] = result_dict[CompareConst.MAX_DIFF] / result_dict[
218
- CompareConst.BENCH_MAX] if result_dict[CompareConst.BENCH_MAX] > 0 else 0
219
- result_dict[CompareConst.MAX_RELATIVE_ERR] = str(result_dict[CompareConst.MAX_RELATIVE_ERR] * 100) + "%"
220
- result_dict[CompareConst.MIN_RELATIVE_ERR] = result_dict[CompareConst.MIN_DIFF] / result_dict[
221
- CompareConst.BENCH_MIN] if result_dict[CompareConst.BENCH_MIN] > 0 else 0
222
- result_dict[CompareConst.MIN_RELATIVE_ERR] = str(result_dict[CompareConst.MIN_RELATIVE_ERR] * 100) + "%"
223
- result_dict[CompareConst.MEAN_RELATIVE_ERR] = result_dict[CompareConst.MEAN_DIFF] / result_dict[
224
- CompareConst.BENCH_MEAN] if result_dict[CompareConst.BENCH_MEAN] > 0 else 0
225
- result_dict[CompareConst.MEAN_RELATIVE_ERR] = str(
226
- result_dict[CompareConst.MEAN_RELATIVE_ERR] * 100) + "%"
227
- result_dict[CompareConst.NORM_RELATIVE_ERR] = result_dict[CompareConst.NORM_DIFF] / result_dict[
228
- CompareConst.BENCH_NORM] if result_dict[CompareConst.BENCH_NORM] > 0 else 0
229
- result_dict[CompareConst.NORM_RELATIVE_ERR] = str(
230
- result_dict[CompareConst.NORM_RELATIVE_ERR] * 100) + "%"
231
- magnitude_diff = result_dict[CompareConst.MAX_DIFF] / (
232
- max(result_dict[CompareConst.NPU_MAX], result_dict[CompareConst.BENCH_MAX]) + 1e-10)
233
- if magnitude_diff > CompareConst.MAGNITUDE:
234
- result_dict[CompareConst.ACCURACY] = 'No'
235
- else:
236
- result_dict[CompareConst.ACCURACY] = 'Yes'
237
-
238
- return pd.Series(result_dict)
239
-
240
- if mode == GraphMode.NPY_MODE:
241
- compare_result_db = compare_result_db.apply(npy_mode_compute, axis=1)
242
- else:
243
- compare_result_db = compare_result_db.apply(statistic_mode_compute, axis=1)
244
- return compare_result_db
245
-
246
- def compare_core(self):
247
- logger.info("Please check whether the input data belongs to you. If not, there may be security risks.")
248
-
249
- # split by rank and step
250
- if not self.rank_list:
251
- self.rank_list = [int(i.split("_")[-1]) for i in os.listdir(self.base_npu_path)]
252
- for rank_id in self.rank_list:
253
- if not self.step_list:
254
- self.step_list = generate_step(self.base_npu_path, rank_id)
255
- for step_id in self.step_list:
256
- compare_result_df, mode = self.compare_process(rank_id, step_id)
257
- if isinstance(compare_result_df, list):
258
- is_empty = not compare_result_df
259
- elif isinstance(compare_result_df, pd.DataFrame):
260
- is_empty = compare_result_df.empty
261
- else:
262
- is_empty = True
263
- if is_empty or not mode:
264
- continue
265
- compare_result_df = self._do_multi_process(compare_result_df, mode)
266
- compare_result_name = add_time_with_xlsx(f"compare_result_{str(rank_id)}_{str(step_id)}")
267
- compare_result_path = os.path.join(os.path.realpath(self.output_path), f"{compare_result_name}")
268
- compare_result_df.to_excel(compare_result_path, index=False)
269
- logger.info(f"Compare rank: {rank_id} step: {step_id} finish. Compare result: {compare_result_path}.")
270
-
271
- def compare_process(self, rank_id, step_id):
272
- # generate data_path
273
- npu_data_path = generate_path_by_rank_step(self.base_npu_path, rank_id, step_id)
274
- bench_data_path = generate_path_by_rank_step(self.base_bench_path, rank_id, step_id)
275
- if not npu_data_path or not bench_data_path:
276
- return [], ''
277
-
278
- # generate file name
279
- npu_mode, npu_data_list = generate_data_name(npu_data_path)
280
- match_mode, match_data_list = generate_data_name(bench_data_path)
281
-
282
- if npu_mode == "ERROR_MODE" or match_mode == "ERROR_MODE":
283
- logger.warning(f"Data_path {npu_data_path} or {bench_data_path} is not exist.")
284
- return [], ''
285
- if npu_mode != match_mode:
286
- logger.error(f"NPU mode {npu_mode} not equal to MATCH mode {match_mode}.")
287
- return [], ''
288
-
289
- if npu_mode == 'NPY_MODE':
290
- npu_data_df = pd.DataFrame(npu_data_list, columns=[CompareConst.NPU_NAME, 'Compare Key', 'TimeStamp'])
291
- bench_data_df = pd.DataFrame(match_data_list, columns=[CompareConst.BENCH_NAME, 'Compare Key', 'TimeStamp'])
292
- else:
293
- npu_data_df = pd.DataFrame(npu_data_list,
294
- columns=[CompareConst.NPU_NAME, 'Compare Key', 'TimeStamp', CompareConst.NPU_DTYPE, CompareConst.NPU_SHAPE,
295
- CompareConst.NPU_MAX, CompareConst.NPU_MIN, CompareConst.NPU_MEAN, CompareConst.NPU_NORM])
296
- bench_data_df = pd.DataFrame(match_data_list,
297
- columns=[CompareConst.BENCH_NAME, 'Compare Key', 'TimeStamp', CompareConst.BENCH_DTYPE,
298
- CompareConst.BENCH_SHAPE, CompareConst.BENCH_MAX, CompareConst.BENCH_MIN, CompareConst.BENCH_MEAN,
299
- CompareConst.BENCH_NORM])
300
-
301
- npu_data_df['Local Index'] = npu_data_df.sort_values('TimeStamp').groupby('Compare Key').cumcount()
302
- bench_data_df['Local Index'] = bench_data_df.sort_values('TimeStamp').groupby('Compare Key').cumcount()
303
-
304
- compare_result_df = pd.merge(npu_data_df, bench_data_df, on=['Compare Key', 'Local Index'], how='outer')
305
-
306
- compare_result_df[CompareConst.NPU_NAME] = compare_result_df[CompareConst.NPU_NAME].fillna('')
307
- compare_result_df[CompareConst.BENCH_NAME] = compare_result_df[CompareConst.BENCH_NAME].fillna('')
308
-
309
- return compare_result_df, npu_mode
310
-
311
- def _do_multi_process(self, result_df, mode):
312
- try:
313
- result_df = _ms_graph_handle_multi_process(self.compare_ops, result_df, mode)
314
- except ValueError as e:
315
- logger.error('result dataframe is not found.')
316
- raise CompareException(CompareException.INVALID_DATA_ERROR) from e
317
- return result_df
1
+ import copy
2
+ import csv
3
+ import glob
4
+ import os
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+ from msprobe.core.common.const import CompareConst, GraphMode, Const, FileCheckConst
9
+ from msprobe.core.common.file_utils import FileOpen, check_path_before_create, change_mode, load_npy
10
+ from msprobe.core.common.log import logger
11
+ from msprobe.core.common.utils import add_time_with_xlsx, CompareException
12
+ from msprobe.core.compare.multiprocessing_compute import _ms_graph_handle_multi_process, check_accuracy
13
+ from msprobe.core.compare.npy_compare import npy_data_check, statistics_data_check, reshape_value, compare_ops_apply
14
+ from msprobe.mindspore.common.utils import convert_to_int, list_lowest_level_directories
15
+
16
+
17
+ class row_data:
18
+ def __init__(self, mode):
19
+ self.basic_data = copy.deepcopy(CompareConst.MS_GRAPH_BASE)
20
+ self.npy_data = copy.deepcopy(CompareConst.MS_GRAPH_NPY)
21
+ self.statistic_data = copy.deepcopy(CompareConst.MS_GRAPH_STATISTIC)
22
+ if mode == GraphMode.NPY_MODE:
23
+ self.data = {**self.basic_data, **self.npy_data}
24
+ else:
25
+ self.data = {**self.basic_data, **self.statistic_data}
26
+
27
+ def __call__(self):
28
+ return self.data
29
+
30
+
31
+ def npy_data_read(data_path, npy_file_list, mapping_dict):
32
+ data_list = []
33
+ for data in npy_file_list:
34
+ if data in mapping_dict:
35
+ split_list = mapping_dict[data].split(Const.SEP)
36
+ else:
37
+ split_list = data.split(Const.SEP)
38
+ if len(split_list) < 7:
39
+ continue
40
+ compare_key = f"{split_list[1]}.{split_list[2]}.{split_list[3]}.{split_list[5]}.{split_list[6]}"
41
+ timestamp = convert_to_int(split_list[4])
42
+
43
+ data_list.append([os.path.join(data_path, data), compare_key, timestamp])
44
+ return data_list
45
+
46
+
47
+ def statistic_data_read(statistic_file_list, statistic_file_path):
48
+ data_list = []
49
+ statistic_data_list = []
50
+ header_index = {'Data Type': None, 'Shape': None, 'Max Value': None, 'Min Value': None,
51
+ 'Avg Value': None, 'L2Norm Value': None}
52
+ for statistic_file in statistic_file_list:
53
+ with FileOpen(statistic_file, "r") as f:
54
+ csv_reader = csv.reader(f, delimiter=",")
55
+ header = next(csv_reader)
56
+ for key in header_index.keys():
57
+ for index, value in enumerate(header):
58
+ if key == value:
59
+ header_index[key] = index
60
+ statistic_data_list.extend([row for row in csv_reader])
61
+
62
+ for key in header_index.keys():
63
+ if header_index[key] is None:
64
+ logger.warning(f"Data_path {statistic_file_path} has no key {key}.")
65
+
66
+ for data in statistic_data_list:
67
+ compare_key = f"{data[1]}.{data[2]}.{data[3]}.{data[5]}"
68
+ timestamp = int(data[4])
69
+ result_data = [statistic_file_path, compare_key, timestamp]
70
+ for key in header_index.keys():
71
+ if header_index[key] is None:
72
+ result_data.append(np.nan)
73
+ else:
74
+ result_data.append(data[header_index[key]])
75
+ data_list.append(result_data)
76
+ return data_list
77
+
78
+
79
+ def generate_data_name(data_path):
80
+ data_list = []
81
+
82
+ mapping_path = os.path.join(data_path, "mapping.csv")
83
+ statistic_path = os.path.join(data_path, "statistic.csv")
84
+ npy_path = os.path.join(data_path, "*.npy")
85
+
86
+ mapping_file_list = glob.glob(mapping_path)
87
+ statistic_file_list = glob.glob(statistic_path)
88
+ npy_file_list = glob.glob(npy_path)
89
+
90
+ mapping_exist = bool(mapping_file_list)
91
+ statistic_exist = bool(statistic_file_list)
92
+ npy_exist = bool(npy_file_list)
93
+
94
+ mapping_dict = {}
95
+ if mapping_exist:
96
+ for mapping_file in mapping_file_list:
97
+ with FileOpen(mapping_file, "r") as f:
98
+ csv_reader = csv.reader(f, delimiter=",")
99
+ header = next(csv_reader)
100
+ for row in csv_reader:
101
+ mapping_dict[row[0]] = row[1]
102
+
103
+ if npy_exist:
104
+ data_list = npy_data_read(data_path, npy_file_list, mapping_dict)
105
+
106
+ elif statistic_exist:
107
+ data_list = statistic_data_read(statistic_file_list, os.path.join(data_path, statistic_path))
108
+
109
+ if npy_exist:
110
+ mode = GraphMode.NPY_MODE
111
+ elif statistic_exist:
112
+ mode = GraphMode.STATISTIC_MODE
113
+ else:
114
+ mode = GraphMode.ERROR_MODE
115
+ logger.error(f"Error mode.")
116
+ return mode, data_list
117
+
118
+
119
+ class GraphMSComparator:
120
+ def __init__(self, input_param, output_path):
121
+ self.output_path = output_path
122
+ self.base_npu_path = input_param.get('npu_path', None)
123
+ self.base_bench_path = input_param.get('bench_path', None)
124
+ self.rank_list = [convert_to_int(rank_id) for rank_id in input_param.get('rank_id', [])]
125
+ self.step_list = [convert_to_int(step_id) for step_id in input_param.get('step_id', [])]
126
+ # split by rank and step, generate rank step path
127
+ self.npu_rank_step_dict = self.generate_rank_step_path(self.base_npu_path)
128
+ self.bench_rank_step_dict = self.generate_rank_step_path(self.base_bench_path)
129
+ self.common_rank_step = sorted(
130
+ set(self.npu_rank_step_dict.keys()).intersection(self.bench_rank_step_dict.keys()))
131
+
132
+ @staticmethod
133
+ def compare_ops(compare_result_db, mode):
134
+
135
+ def npy_mode_compute(row):
136
+ result_dict = row_data(GraphMode.NPY_MODE)()
137
+
138
+ def process_npy_file(file_path, name_prefix, result):
139
+ if os.path.exists(file_path):
140
+ data = load_npy(file_path)
141
+ result[f'{name_prefix} Name'] = file_path
142
+ result[f'{name_prefix} Dtype'] = data.dtype
143
+ result[f'{name_prefix} Tensor Shape'] = data.shape
144
+ result[f'{name_prefix} max'] = np.max(data)
145
+ result[f'{name_prefix} min'] = np.min(data)
146
+ result[f'{name_prefix} mean'] = np.mean(data)
147
+ result[f'{name_prefix} l2norm'] = np.linalg.norm(data)
148
+ return data
149
+ return ""
150
+
151
+ n_value = process_npy_file(row[CompareConst.NPU_NAME], 'NPU', result_dict)
152
+ b_value = process_npy_file(row[CompareConst.BENCH_NAME], 'Bench', result_dict)
153
+
154
+ error_flag, error_message = npy_data_check(n_value, b_value)
155
+ result_dict[CompareConst.ERROR_MESSAGE] = error_message
156
+
157
+ if not error_flag:
158
+ n_value, b_value = reshape_value(n_value, b_value)
159
+ result_list, err_msg = compare_ops_apply(n_value, b_value, False, "")
160
+ result_dict[CompareConst.COSINE] = result_list[0]
161
+ result_dict[CompareConst.MAX_ABS_ERR] = result_list[1]
162
+ result_dict[CompareConst.MAX_RELATIVE_ERR] = result_list[2]
163
+ result_dict[CompareConst.ONE_THOUSANDTH_ERR_RATIO] = result_list[3]
164
+ result_dict[CompareConst.FIVE_THOUSANDTHS_ERR_RATIO] = result_list[4]
165
+ result_dict[CompareConst.ACCURACY] = check_accuracy(result_list[0], result_list[1])
166
+ result_dict[CompareConst.ERROR_MESSAGE] = err_msg
167
+
168
+ return pd.Series(result_dict)
169
+
170
+ def statistic_mode_compute(row):
171
+ result_dict = row_data('STATISTIC')()
172
+
173
+ def update_result_dict(result, rows, prefix):
174
+ result[f'{prefix} Name'] = rows[f'{prefix} Name']
175
+ result[f'{prefix} Dtype'] = rows[f'{prefix} Dtype']
176
+ result[f'{prefix} Tensor Shape'] = rows[f'{prefix} Tensor Shape']
177
+ result[f'{prefix} max'] = np.float32(rows[f'{prefix} max'])
178
+ result[f'{prefix} min'] = np.float32(rows[f'{prefix} min'])
179
+ result[f'{prefix} mean'] = np.float32(rows[f'{prefix} mean'])
180
+ result[f'{prefix} l2norm'] = np.float32(rows[f'{prefix} l2norm'])
181
+
182
+ # 使用示例
183
+ update_result_dict(result_dict, row, 'NPU')
184
+ update_result_dict(result_dict, row, 'Bench')
185
+ error_flag, error_message = statistics_data_check(result_dict)
186
+ result_dict[CompareConst.ERROR_MESSAGE] += error_message
187
+ if not error_flag:
188
+ result_dict[CompareConst.MAX_DIFF] = np.abs(
189
+ result_dict[CompareConst.NPU_MAX] - result_dict[CompareConst.BENCH_MAX])
190
+ result_dict[CompareConst.MIN_DIFF] = np.abs(
191
+ result_dict[CompareConst.NPU_MIN] - result_dict[CompareConst.BENCH_MIN])
192
+ result_dict[CompareConst.MEAN_DIFF] = np.abs(
193
+ result_dict[CompareConst.NPU_MEAN] - result_dict[CompareConst.BENCH_MEAN])
194
+ result_dict[CompareConst.NORM_DIFF] = np.abs(
195
+ result_dict[CompareConst.NPU_NORM] - result_dict[CompareConst.BENCH_NORM])
196
+ result_dict[CompareConst.MAX_RELATIVE_ERR] = result_dict[CompareConst.MAX_DIFF] / result_dict[
197
+ CompareConst.BENCH_MAX] if result_dict[CompareConst.BENCH_MAX] > 0 else 0
198
+ result_dict[CompareConst.MAX_RELATIVE_ERR] = str(result_dict[CompareConst.MAX_RELATIVE_ERR] * 100) + "%"
199
+ result_dict[CompareConst.MIN_RELATIVE_ERR] = result_dict[CompareConst.MIN_DIFF] / result_dict[
200
+ CompareConst.BENCH_MIN] if result_dict[CompareConst.BENCH_MIN] > 0 else 0
201
+ result_dict[CompareConst.MIN_RELATIVE_ERR] = str(result_dict[CompareConst.MIN_RELATIVE_ERR] * 100) + "%"
202
+ result_dict[CompareConst.MEAN_RELATIVE_ERR] = result_dict[CompareConst.MEAN_DIFF] / result_dict[
203
+ CompareConst.BENCH_MEAN] if result_dict[CompareConst.BENCH_MEAN] > 0 else 0
204
+ result_dict[CompareConst.MEAN_RELATIVE_ERR] = str(
205
+ result_dict[CompareConst.MEAN_RELATIVE_ERR] * 100) + "%"
206
+ result_dict[CompareConst.NORM_RELATIVE_ERR] = result_dict[CompareConst.NORM_DIFF] / result_dict[
207
+ CompareConst.BENCH_NORM] if result_dict[CompareConst.BENCH_NORM] > 0 else 0
208
+ result_dict[CompareConst.NORM_RELATIVE_ERR] = str(
209
+ result_dict[CompareConst.NORM_RELATIVE_ERR] * 100) + "%"
210
+ magnitude_diff = result_dict[CompareConst.MAX_DIFF] / (
211
+ max(result_dict[CompareConst.NPU_MAX], result_dict[CompareConst.BENCH_MAX]) + 1e-10)
212
+ if magnitude_diff > CompareConst.MAGNITUDE:
213
+ result_dict[CompareConst.ACCURACY] = 'No'
214
+ else:
215
+ result_dict[CompareConst.ACCURACY] = 'Yes'
216
+
217
+ return pd.Series(result_dict)
218
+
219
+ if mode == GraphMode.NPY_MODE:
220
+ compare_result_db = compare_result_db.apply(npy_mode_compute, axis=1)
221
+ else:
222
+ compare_result_db = compare_result_db.apply(statistic_mode_compute, axis=1)
223
+ return compare_result_db
224
+
225
+ def compare_core(self):
226
+ logger.info("Please check whether the input data belongs to you. If not, there may be security risks.")
227
+
228
+ for rank_id, step_id in self.common_rank_step:
229
+ compare_result_df, mode = self.compare_process(rank_id, step_id)
230
+ if isinstance(compare_result_df, list):
231
+ is_empty = not compare_result_df
232
+ elif isinstance(compare_result_df, pd.DataFrame):
233
+ is_empty = compare_result_df.empty
234
+ else:
235
+ is_empty = True
236
+ if is_empty or not mode:
237
+ continue
238
+ compare_result_df = self._do_multi_process(compare_result_df, mode)
239
+ compare_result_name = add_time_with_xlsx(f"compare_result_{str(rank_id)}_{str(step_id)}")
240
+ compare_result_path = os.path.join(os.path.realpath(self.output_path), f"{compare_result_name}")
241
+ check_path_before_create(compare_result_path)
242
+ compare_result_df.to_excel(compare_result_path, index=False)
243
+ change_mode(compare_result_path, FileCheckConst.DATA_FILE_AUTHORITY)
244
+ logger.info(f"Compare rank: {rank_id} step: {step_id} finish. Compare result: {compare_result_path}.")
245
+
246
+ def compare_process(self, rank_id, step_id):
247
+ # generate data_path
248
+ npu_data_path_list = self.npu_rank_step_dict.get((rank_id, step_id))
249
+ bench_data_path_list = self.bench_rank_step_dict.get((rank_id, step_id))
250
+ if not npu_data_path_list or not npu_data_path_list:
251
+ return [], ''
252
+
253
+ # generate file name
254
+ npu_mode = 'ERROR_MODE'
255
+ bench_mode = 'ERROR_MODE'
256
+ npu_data_list = []
257
+ bench_data_list = []
258
+ for npu_data_path in npu_data_path_list:
259
+ npu_mode, data_list = generate_data_name(npu_data_path)
260
+ npu_data_list.extend(data_list)
261
+ for bench_data_path in bench_data_path_list:
262
+ bench_mode, data_list = generate_data_name(bench_data_path)
263
+ bench_data_list.extend(data_list)
264
+
265
+ if npu_mode == "ERROR_MODE" or bench_mode == "ERROR_MODE":
266
+ logger.warning(f"Data_path {npu_data_path} or {bench_data_path} is not exist.")
267
+ return [], ''
268
+ if npu_mode != bench_mode:
269
+ logger.error(f"NPU mode {npu_mode} not equal to MATCH mode {bench_mode}.")
270
+ return [], ''
271
+
272
+ if npu_mode == 'NPY_MODE':
273
+ npu_data_df = pd.DataFrame(npu_data_list, columns=[CompareConst.NPU_NAME, 'Compare Key', 'TimeStamp'])
274
+ bench_data_df = pd.DataFrame(bench_data_list, columns=[CompareConst.BENCH_NAME, 'Compare Key', 'TimeStamp'])
275
+ else:
276
+ npu_data_df = pd.DataFrame(npu_data_list,
277
+ columns=[CompareConst.NPU_NAME, 'Compare Key', 'TimeStamp',
278
+ CompareConst.NPU_DTYPE, CompareConst.NPU_SHAPE,
279
+ CompareConst.NPU_MAX, CompareConst.NPU_MIN, CompareConst.NPU_MEAN,
280
+ CompareConst.NPU_NORM])
281
+ bench_data_df = pd.DataFrame(bench_data_list,
282
+ columns=[CompareConst.BENCH_NAME, 'Compare Key', 'TimeStamp',
283
+ CompareConst.BENCH_DTYPE,
284
+ CompareConst.BENCH_SHAPE, CompareConst.BENCH_MAX,
285
+ CompareConst.BENCH_MIN, CompareConst.BENCH_MEAN,
286
+ CompareConst.BENCH_NORM])
287
+
288
+ npu_float_type = [CompareConst.NPU_MAX, CompareConst.NPU_MIN, CompareConst.NPU_MEAN, CompareConst.NPU_NORM]
289
+ npu_data_df[npu_float_type] = npu_data_df[npu_float_type].astype(np.float32)
290
+
291
+ bench_float_type = [CompareConst.BENCH_MAX, CompareConst.BENCH_MIN, CompareConst.BENCH_MEAN,
292
+ CompareConst.BENCH_NORM]
293
+ bench_data_df[bench_float_type] = bench_data_df[bench_float_type].astype(np.float32)
294
+
295
+ npu_data_df['Local Index'] = npu_data_df.sort_values('TimeStamp').groupby('Compare Key').cumcount()
296
+ bench_data_df['Local Index'] = bench_data_df.sort_values('TimeStamp').groupby('Compare Key').cumcount()
297
+
298
+ compare_result_df = pd.merge(npu_data_df, bench_data_df, on=['Compare Key', 'Local Index'], how='outer')
299
+
300
+ compare_result_df[CompareConst.NPU_NAME] = compare_result_df[CompareConst.NPU_NAME].fillna('')
301
+ compare_result_df[CompareConst.BENCH_NAME] = compare_result_df[CompareConst.BENCH_NAME].fillna('')
302
+
303
+ return compare_result_df, npu_mode
304
+
305
+ def generate_rank_step_path(self, base_path):
306
+
307
+ def generate_rank_step_id(path_with_rank_step):
308
+ split_path = path_with_rank_step.split("/")
309
+ rank_id = -1
310
+ if "rank_" in path_with_rank_step:
311
+ # KBK mode
312
+ if len(split_path) > 4:
313
+ rank_id = convert_to_int(split_path[-4].split("_")[-1])
314
+ step_id = convert_to_int(split_path[-1])
315
+ else:
316
+ if len(split_path) > 4:
317
+ rank_id = convert_to_int(split_path[-4])
318
+ if rank_id == -1 and len(split_path) > 3:
319
+ rank_id = convert_to_int(split_path[-3])
320
+ step_id = convert_to_int(split_path[-1])
321
+ return rank_id, step_id
322
+
323
+ base_path = os.path.abspath(base_path)
324
+ lowest_level = list_lowest_level_directories(base_path)
325
+
326
+ rank_step_path_dict = {}
327
+ for dir_path in lowest_level:
328
+ rank_id, step_id = generate_rank_step_id(dir_path)
329
+ if rank_id == -1 or step_id == -1:
330
+ continue
331
+ if self.rank_list and rank_id not in self.rank_list:
332
+ continue
333
+ if self.step_list and step_id not in self.step_list:
334
+ continue
335
+ rank_step_key = (rank_id, step_id)
336
+ if rank_step_key in rank_step_path_dict:
337
+ rank_step_path_dict[rank_step_key].append(dir_path)
338
+ else:
339
+ rank_step_path_dict[rank_step_key] = [dir_path]
340
+ return dict(sorted(rank_step_path_dict.items()))
341
+
342
+ def _do_multi_process(self, result_df, mode):
343
+ try:
344
+ result_df = _ms_graph_handle_multi_process(self.compare_ops, result_df, mode)
345
+ except ValueError as e:
346
+ logger.error('result dataframe is not found.')
347
+ raise CompareException(CompareException.INVALID_DATA_ERROR) from e
348
+ return result_df