mindstudio-probe 1.0.3__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (262) hide show
  1. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/METADATA +36 -34
  3. mindstudio_probe-1.0.4.dist-info/RECORD +276 -0
  4. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +101 -237
  7. msprobe/{config/config.json → config.json} +49 -49
  8. msprobe/core/advisor/advisor.py +124 -124
  9. msprobe/core/advisor/advisor_const.py +59 -59
  10. msprobe/core/advisor/advisor_result.py +58 -58
  11. msprobe/core/common/const.py +341 -318
  12. msprobe/core/common/exceptions.py +99 -99
  13. msprobe/core/common/{file_check.py → file_utils.py} +478 -283
  14. msprobe/core/common/log.py +76 -69
  15. msprobe/core/common/utils.py +385 -616
  16. msprobe/core/common_config.py +85 -71
  17. msprobe/core/compare/acc_compare.py +299 -298
  18. msprobe/core/compare/check.py +95 -95
  19. msprobe/core/compare/compare_cli.py +49 -49
  20. msprobe/core/compare/highlight.py +223 -222
  21. msprobe/core/compare/multiprocessing_compute.py +149 -149
  22. msprobe/core/compare/npy_compare.py +295 -295
  23. msprobe/core/compare/utils.py +430 -429
  24. msprobe/core/data_dump/data_collector.py +154 -144
  25. msprobe/core/data_dump/data_processor/base.py +314 -293
  26. msprobe/core/data_dump/data_processor/factory.py +59 -59
  27. msprobe/core/data_dump/data_processor/mindspore_processor.py +186 -198
  28. msprobe/core/data_dump/data_processor/pytorch_processor.py +366 -389
  29. msprobe/core/data_dump/json_writer.py +96 -116
  30. msprobe/core/data_dump/scope.py +178 -178
  31. msprobe/core/grad_probe/constant.py +70 -70
  32. msprobe/core/grad_probe/grad_compare.py +171 -175
  33. msprobe/core/grad_probe/utils.py +64 -52
  34. msprobe/docs/01.installation.md +89 -0
  35. msprobe/docs/02.config_introduction.md +165 -0
  36. msprobe/docs/03.config_examples.md +247 -0
  37. msprobe/docs/04.acl_config_examples.md +76 -0
  38. msprobe/docs/05.data_dump_PyTorch.md +198 -0
  39. msprobe/docs/06.data_dump_MindSpore.md +243 -0
  40. msprobe/docs/07.accuracy_checker_PyTorch.md +274 -0
  41. msprobe/docs/08.accuracy_checker_online_PyTorch.md +198 -0
  42. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  43. msprobe/docs/10.accuracy_compare_PyTorch.md +245 -0
  44. msprobe/docs/11.accuracy_compare_MindSpore.md +202 -0
  45. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  46. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  47. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  48. msprobe/docs/15.free_benchmarking_PyTorch.md +164 -0
  49. msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +207 -207
  50. msprobe/docs/FAQ_PyTorch.md +177 -0
  51. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  52. msprobe/docs/img/free_benchmark_framework.png +0 -0
  53. msprobe/mindspore/__init__.py +1 -1
  54. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +254 -245
  55. msprobe/mindspore/api_accuracy_checker/api_info.py +69 -69
  56. msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
  57. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
  58. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  59. msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
  60. msprobe/mindspore/api_accuracy_checker/main.py +8 -15
  61. msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
  62. msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
  63. msprobe/mindspore/cell_processor.py +34 -34
  64. msprobe/mindspore/common/const.py +106 -87
  65. msprobe/mindspore/common/log.py +37 -37
  66. msprobe/mindspore/common/utils.py +81 -57
  67. msprobe/mindspore/compare/distributed_compare.py +75 -75
  68. msprobe/mindspore/compare/ms_compare.py +219 -117
  69. msprobe/mindspore/compare/ms_graph_compare.py +348 -317
  70. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
  71. msprobe/mindspore/debugger/debugger_config.py +66 -74
  72. msprobe/mindspore/debugger/precision_debugger.py +126 -107
  73. msprobe/mindspore/dump/dump_tool_factory.py +35 -35
  74. msprobe/mindspore/dump/hook_cell/api_registry.py +118 -104
  75. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
  76. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +922 -925
  77. msprobe/mindspore/dump/hook_cell/wrap_api.py +113 -0
  78. msprobe/mindspore/dump/jit_dump.py +72 -56
  79. msprobe/mindspore/dump/kernel_graph_dump.py +59 -60
  80. msprobe/mindspore/dump/kernel_kbyk_dump.py +64 -65
  81. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +116 -116
  82. msprobe/mindspore/free_benchmark/common/config.py +12 -12
  83. msprobe/mindspore/free_benchmark/common/handler_params.py +17 -17
  84. msprobe/mindspore/free_benchmark/common/utils.py +71 -71
  85. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
  86. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +43 -42
  87. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +107 -107
  88. msprobe/mindspore/free_benchmark/handler/base_handler.py +90 -90
  89. msprobe/mindspore/free_benchmark/handler/check_handler.py +41 -41
  90. msprobe/mindspore/free_benchmark/handler/fix_handler.py +36 -36
  91. msprobe/mindspore/free_benchmark/handler/handler_factory.py +21 -21
  92. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +67 -67
  93. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +21 -21
  94. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +63 -63
  95. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +51 -0
  96. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +35 -34
  97. msprobe/mindspore/free_benchmark/perturbation/no_change.py +12 -12
  98. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +29 -27
  99. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +33 -33
  100. msprobe/mindspore/grad_probe/global_context.py +90 -91
  101. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
  102. msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
  103. msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
  104. msprobe/mindspore/grad_probe/hook.py +94 -92
  105. msprobe/mindspore/grad_probe/utils.py +29 -28
  106. msprobe/mindspore/ms_config.py +128 -126
  107. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +44 -45
  108. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +34 -34
  109. msprobe/mindspore/runtime.py +4 -4
  110. msprobe/mindspore/service.py +378 -354
  111. msprobe/mindspore/task_handler_factory.py +24 -24
  112. msprobe/msprobe.py +105 -107
  113. msprobe/pytorch/__init__.py +3 -3
  114. msprobe/pytorch/api_accuracy_checker/common/config.py +53 -55
  115. msprobe/pytorch/api_accuracy_checker/common/utils.py +214 -165
  116. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +213 -213
  117. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +606 -581
  118. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  119. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  120. msprobe/pytorch/api_accuracy_checker/compare/compare.py +386 -381
  121. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +73 -73
  122. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +245 -244
  123. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
  124. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +335 -332
  125. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +200 -199
  126. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +133 -134
  127. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +592 -581
  128. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +70 -74
  129. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  130. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +197 -202
  131. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +325 -324
  132. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +204 -204
  133. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +219 -218
  134. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +10 -10
  135. msprobe/pytorch/bench_functions/__init__.py +15 -15
  136. msprobe/pytorch/bench_functions/apply_adam_w.py +28 -28
  137. msprobe/pytorch/bench_functions/confusion_transpose.py +19 -19
  138. msprobe/pytorch/bench_functions/fast_gelu.py +55 -55
  139. msprobe/pytorch/bench_functions/layer_norm_eval.py +6 -6
  140. msprobe/pytorch/bench_functions/linear.py +12 -12
  141. msprobe/pytorch/bench_functions/matmul_backward.py +48 -48
  142. msprobe/pytorch/bench_functions/npu_fusion_attention.py +509 -421
  143. msprobe/pytorch/bench_functions/rms_norm.py +15 -15
  144. msprobe/pytorch/bench_functions/rotary_mul.py +52 -52
  145. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +26 -26
  146. msprobe/pytorch/bench_functions/swiglu.py +55 -55
  147. msprobe/pytorch/common/__init__.py +2 -2
  148. msprobe/pytorch/common/compare_script.template +14 -14
  149. msprobe/pytorch/common/log.py +20 -31
  150. msprobe/pytorch/common/parse_json.py +39 -39
  151. msprobe/pytorch/common/utils.py +305 -300
  152. msprobe/pytorch/compare/distributed_compare.py +66 -66
  153. msprobe/pytorch/compare/mapping.yaml +607 -607
  154. msprobe/pytorch/compare/match.py +34 -33
  155. msprobe/pytorch/compare/pt_compare.py +50 -40
  156. msprobe/pytorch/debugger/debugger_config.py +95 -95
  157. msprobe/pytorch/debugger/precision_debugger.py +125 -125
  158. msprobe/pytorch/free_benchmark/__init__.py +8 -8
  159. msprobe/pytorch/free_benchmark/common/constant.py +70 -70
  160. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  161. msprobe/pytorch/free_benchmark/common/enums.py +37 -37
  162. msprobe/pytorch/free_benchmark/common/params.py +129 -129
  163. msprobe/pytorch/free_benchmark/common/utils.py +102 -102
  164. msprobe/pytorch/free_benchmark/compare/grad_saver.py +179 -179
  165. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +104 -104
  166. msprobe/pytorch/free_benchmark/main.py +105 -105
  167. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +13 -13
  168. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +41 -41
  169. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +90 -90
  170. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +104 -104
  171. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +63 -63
  172. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +68 -68
  173. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +28 -28
  174. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +45 -45
  175. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +19 -19
  176. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +217 -217
  177. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +39 -39
  178. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +23 -23
  179. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +30 -30
  180. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +170 -170
  181. msprobe/pytorch/function_factory.py +76 -75
  182. msprobe/pytorch/functional/dump_module.py +39 -39
  183. msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
  184. msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
  185. msprobe/pytorch/hook_module/api_registry.py +161 -161
  186. msprobe/pytorch/hook_module/hook_module.py +120 -120
  187. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
  188. msprobe/pytorch/hook_module/utils.py +30 -29
  189. msprobe/pytorch/hook_module/wrap_aten.py +110 -110
  190. msprobe/pytorch/hook_module/wrap_distributed.py +78 -78
  191. msprobe/pytorch/hook_module/wrap_functional.py +105 -105
  192. msprobe/pytorch/hook_module/wrap_npu_custom.py +93 -84
  193. msprobe/pytorch/hook_module/wrap_tensor.py +71 -71
  194. msprobe/pytorch/hook_module/wrap_torch.py +86 -86
  195. msprobe/pytorch/hook_module/wrap_vf.py +62 -62
  196. msprobe/pytorch/module_processer.py +138 -138
  197. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  198. msprobe/pytorch/online_dispatch/compare.py +236 -236
  199. msprobe/pytorch/online_dispatch/dispatch.py +271 -271
  200. msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
  201. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  202. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +49 -49
  203. msprobe/pytorch/online_dispatch/utils.py +130 -146
  204. msprobe/pytorch/parse.py +4 -4
  205. msprobe/pytorch/parse_tool/cli.py +32 -32
  206. msprobe/pytorch/parse_tool/lib/compare.py +260 -271
  207. msprobe/pytorch/parse_tool/lib/config.py +52 -52
  208. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  209. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  210. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  211. msprobe/pytorch/parse_tool/lib/parse_tool.py +158 -158
  212. msprobe/pytorch/parse_tool/lib/utils.py +316 -321
  213. msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
  214. msprobe/pytorch/pt_config.py +188 -187
  215. msprobe/pytorch/service.py +246 -252
  216. mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
  217. msprobe/config/README.md +0 -539
  218. msprobe/mindspore/doc/compare.md +0 -58
  219. msprobe/mindspore/doc/dump.md +0 -217
  220. msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
  221. msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
  222. msprobe/pytorch/doc/FAQ.md +0 -193
  223. msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
  224. msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
  225. msprobe/pytorch/doc/dump.md +0 -260
  226. msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  227. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
  228. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  229. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  230. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  231. msprobe/pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md +0 -90
  232. msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
  233. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/top_level.txt +0 -0
  234. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  235. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  236. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  237. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  238. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  239. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  240. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  241. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  242. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  243. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  244. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  245. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  246. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  247. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  248. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  249. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  250. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  251. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  252. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  253. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  254. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  255. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  256. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  257. /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
  258. /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
  259. /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
  260. /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
  261. /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
  262. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -0,0 +1,276 @@
1
+ msprobe/README.md,sha256=C6cGyeA2XDoFo1IXLGFUUS3nOPfgBML1h88Z_lMSQeI,4103
2
+ msprobe/__init__.py,sha256=syp-SBJqUvsTl2TRa4iyHzvWMmFmkBjtu2VvVRPcdgA,63
3
+ msprobe/config.json,sha256=PMB6TKlRpFPf-2L9KPqmR5ftQpdJP6mP2HcAJT8KcTo,1139
4
+ msprobe/msprobe.py,sha256=lJR_VokSvNOSMy9uQEFPJ1DrkYkVu4WAkDLeg41HSsk,5069
5
+ msprobe/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ msprobe/core/common_config.py,sha256=kWHzdsmA_rSryGU2a1lPMi02hyh00oEqHqpp4wj45-k,5054
7
+ msprobe/core/advisor/advisor.py,sha256=RsZz_CXcaHvrTm145qH0iBRdUClYSjjUhSjGuWjetnc,5630
8
+ msprobe/core/advisor/advisor_const.py,sha256=2geZd9N5z4DErajKoRLwdPwcW4urgprLMFtDxuNAzQY,2642
9
+ msprobe/core/advisor/advisor_result.py,sha256=G62qe7rgURJ9giyW_uObAbut-e4OOgKBX1zzA8JTOUU,2400
10
+ msprobe/core/common/const.py,sha256=nsUsL6oTZ47HN1OqlQd1sUq3VrvLBZBS428UEvXYDBQ,10209
11
+ msprobe/core/common/exceptions.py,sha256=6PsVv5Dg8r6hMlovnlxp6y2RL33nYX23F7Cx4CyeGHs,2882
12
+ msprobe/core/common/file_utils.py,sha256=FxRSiHzx8m6tomfyttJY4V3keIQ2EsTUcz9diK7r4lg,17912
13
+ msprobe/core/common/log.py,sha256=knTcpbOj9hUTIxMqrNrMNwji2T49G3J71ytpKktdHu0,2168
14
+ msprobe/core/common/utils.py,sha256=b5YU5tUx16n3Nyxw6DOX3AoVILrTj38FGLbZFm4tdek,14852
15
+ msprobe/core/compare/acc_compare.py,sha256=I9TnZHKnYSap_Lb92UxZUwLkYe9TpafPyea7igDmYss,14842
16
+ msprobe/core/compare/check.py,sha256=zkVBP1bxTIKiayMyO7gRHKjm-hZMmQqSWiGHgFU-SB0,3693
17
+ msprobe/core/compare/compare_cli.py,sha256=hvOoLNhoNaZ5n7_fJ9U0r2vsi8dfIoU7Gi2oqi90ii8,2520
18
+ msprobe/core/compare/highlight.py,sha256=m7AoazgYQ4526wa-lW8wfR7sAYl4toKVzZaSKWZPg30,10285
19
+ msprobe/core/compare/multiprocessing_compute.py,sha256=yf0s07brQxNkkIq23yvlziQtHqtBkH3YKYREwUnpJJY,5906
20
+ msprobe/core/compare/npy_compare.py,sha256=hY-0Yd7l3H-KrO-i9Mcl0u2XGTFVcSrJBI1BQYn1jLY,11877
21
+ msprobe/core/compare/utils.py,sha256=fwI-L5vWsqqnO0Dds5n4UmRqZ4_MxsEhncBnPdTcdgo,19303
22
+ msprobe/core/data_dump/data_collector.py,sha256=AxBwsJaNreeoqq84vM9VBguUcuTfjuvUJ5bAA-2PJws,6447
23
+ msprobe/core/data_dump/json_writer.py,sha256=bcbEdvuI4yUH8RhgMWK6QlBxFJFi4eVblRusP-94aCY,3913
24
+ msprobe/core/data_dump/scope.py,sha256=zCfbpLPHfeNdHqMin9bmIBvH1l0xGUI0J7crc8KYuqQ,6021
25
+ msprobe/core/data_dump/data_processor/base.py,sha256=R938l6t0Ma3QN7xpI5JPQqpKzTD-MhB_GU5N2BKSh34,11832
26
+ msprobe/core/data_dump/data_processor/factory.py,sha256=zYWM7FtaV8X-82ydaNxJoljU4rarfiWO-0QSMtgAv0I,3074
27
+ msprobe/core/data_dump/data_processor/mindspore_processor.py,sha256=C1eY4YuI7v8SguWpZAx7E6kJEG0OXHSmUjN-lRfuMx0,7993
28
+ msprobe/core/data_dump/data_processor/pytorch_processor.py,sha256=YRk7p8lAVv6Nh18_B5dORL770hMdqPq8avFWu4IhLnY,15877
29
+ msprobe/core/grad_probe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
30
+ msprobe/core/grad_probe/constant.py,sha256=YhVvdm--0N40znLWGtK782_KG5EbUpcztgn0TCs2oBs,1641
31
+ msprobe/core/grad_probe/grad_compare.py,sha256=a7oEHwtVJHbOPenNn1qH_e3SX1nBRLG72iY8E0OKFrQ,7574
32
+ msprobe/core/grad_probe/utils.py,sha256=9tG1UGKX_AjxJuIJAnj1H7QJcwmTCnxg460beTwIRL0,1967
33
+ msprobe/docs/01.installation.md,sha256=N_xkgSOdnywkogFEPd8KoByX-QnpRwZGP8Vi3wBjt2s,3058
34
+ msprobe/docs/02.config_introduction.md,sha256=dDdwYnuasVx8vjRY1ppjPuh2lzdFZ_tMR5NvX6MmVV0,22731
35
+ msprobe/docs/03.config_examples.md,sha256=VJkWaE6OaV0qF0lyibomlHoCRfS3-ZRMnbvJVNOANfU,4127
36
+ msprobe/docs/04.acl_config_examples.md,sha256=k-srTfYo3Q-peqVnhAgLs-JDS3N8m8tJrOgJMBk28gk,2353
37
+ msprobe/docs/05.data_dump_PyTorch.md,sha256=16gCZMfvg1CsmVGNNpDFSZH7eHewENIKJ-C27tOTnL0,7806
38
+ msprobe/docs/06.data_dump_MindSpore.md,sha256=q2BAyXvNPcvkCrigIrl2g9hmTYIj91-9wjagdb2MmNc,11835
39
+ msprobe/docs/07.accuracy_checker_PyTorch.md,sha256=pWaDVb0iYwGmoT0uvudBfPR7WTqaC64VJ4sY1S19GVg,28149
40
+ msprobe/docs/08.accuracy_checker_online_PyTorch.md,sha256=ErDWTHmB0EFXzrB43n1jku3s0Zoc7hNnm-FjEmrA7aY,10308
41
+ msprobe/docs/09.accuracy_checker_MindSpore.md,sha256=2ETsPSpQrIdaNYDzaDLCqRCm6PSL_-5tQ_xoQGqKqgc,5191
42
+ msprobe/docs/10.accuracy_compare_PyTorch.md,sha256=Na5DAYenqmeC0WT1O2hIfj4Hksq8JpYf0Ls62PXK_Os,16115
43
+ msprobe/docs/11.accuracy_compare_MindSpore.md,sha256=BesVE-Xx7pNiXhhc_a4Vb-dM9HTukrlANVtkLFd7Vvs,11183
44
+ msprobe/docs/12.overflow_check_PyTorch.md,sha256=SkuTYAAzynawgFUoBjX4npNRDodZ04yaorqqFtwk_Is,3638
45
+ msprobe/docs/13.overflow_check_MindSpore.md,sha256=fj9FyNKcwwzWBXmxhGdVSG3NB-KO8ki5mD2Xjs2aBJk,2375
46
+ msprobe/docs/14.data_parse_PyTorch.md,sha256=ERT5L3igrm1HrPsNbFMFbEtA5jvJ9HukWPP2CCuROdY,18749
47
+ msprobe/docs/15.free_benchmarking_PyTorch.md,sha256=iqP8qwn0YBcIh9xYGPJYfkFVhpjZOtuxWTpcTMOANbs,11019
48
+ msprobe/docs/17.grad_probe.md,sha256=clBXCTvrUeYkCy-L6qfew5VpXeLAgSOEVJMpnxGLqWQ,9239
49
+ msprobe/docs/FAQ_PyTorch.md,sha256=5ZXFCJL_ejRRVOBl9eINGTWzvaTVd5FdDYSICdyLmcU,8820
50
+ msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md,sha256=4NkHEa8VN3ebeUgrw9T-7rlL-qL_xB63w81O5m29D6s,10799
51
+ msprobe/docs/img/BLOOM-7B_1.png,sha256=Ul9XNHCX52PYufGaZ5mPfwTNJxwUO46KOKp7JxvDeAk,3534
52
+ msprobe/docs/img/BLOOM-7B_2.png,sha256=HKefltWpBM2UkVHFy9rB238g6W5w-8CpsueW6Zf52HM,5251
53
+ msprobe/docs/img/BLOOM-7B_3.png,sha256=gtL8dXIoqoJwk2Nd-KKChVM47IBdEY6KVYVRejnwKt0,5095
54
+ msprobe/docs/img/BLOOM-7B_4.png,sha256=1yuQ2Dh7ak-VZt_kLprXVHtvfUxaxfsgrKdYzudHR94,4727
55
+ msprobe/docs/img/GPT-3_1.png,sha256=EVm59Bvd3cX01RpZBqDyMVECjsiySTNy5RR9YyJoCTw,7898
56
+ msprobe/docs/img/GPT-3_2.png,sha256=4wNkqagB28IJi808pnvUB72E03b2OeWdAASq5ggyl8A,6716
57
+ msprobe/docs/img/GPT-3_3.png,sha256=6-fbdYtgcYU1xe9yOg6tAnKQ8SfZ6-x6rPVNSRxGP8I,8732
58
+ msprobe/docs/img/GPT-3_4.png,sha256=QYpb7ZJaOAM_wJ5qdQQon0TKu7apVRL7ijovl18Uvzg,6609
59
+ msprobe/docs/img/GPT-3_5.png,sha256=8eiCyqLmiaH6xwqpyTe3XTcesbGQUw8gApDI7ONBBkA,4676
60
+ msprobe/docs/img/GPT-3_6.png,sha256=4IZvCeYHgK7gB87dgf6HgTaQ5uBK0s2sZXLblsDIVtQ,7658
61
+ msprobe/docs/img/GPT-3_7.png,sha256=dil9jwfsYxtFupUu_aTCnKjuuEk3X_UMnqWJS0NzWCA,8139
62
+ msprobe/docs/img/GPT-3_8.png,sha256=RNXIQgrCObpYtoKTkdTxr66AkndY_k2mGbksNgIqccQ,6084
63
+ msprobe/docs/img/YOLOV5S_1.png,sha256=kCI017bFT7X3RrBPLMESTrnHZcRJYF-Ko_oJpjcsFWw,7019
64
+ msprobe/docs/img/YOLOV5S_2.png,sha256=NH4vy35cGDl3qjlcUhDTWNpGEKcuboQ_YILxWQpvx40,5796
65
+ msprobe/docs/img/accuracy_checking_details.png,sha256=dAedq5tbuzM3uEKPZzoanFSkzc0ep3HSW0r_3iTWMvE,39062
66
+ msprobe/docs/img/accuracy_checking_result.png,sha256=6dVDcp3hl-zFIOgLigbRrMdgeBDiMfKWxupL8Hugvxo,6022
67
+ msprobe/docs/img/api_precision_compare_details.png,sha256=QkN8uldQ6j1Bvd4WxtucZXUMr--AoBUjSCJ01hTkpFw,25476
68
+ msprobe/docs/img/api_precision_compare_result.png,sha256=Kp9bIK1rlw3zDyX4Oqw1CVPohTtJBig0RYK2iIhum9g,4538
69
+ msprobe/docs/img/auto_analyze_log.png,sha256=3Jd9bl0BBrYxs5fFlcKYqeIjFbPlYegVmw4GGUe6s1o,65144
70
+ msprobe/docs/img/compare_result_pkl.png,sha256=pMCd38zNjQ1LzcA_86DPlNA_jAfKJ0QYcSBDmzVA0Jw,36133
71
+ msprobe/docs/img/compare_result_pkl_md5.png.png,sha256=ys9key_66mHsKST53SmGdzhYyA4dJtB2PVrGcqQkld0,20464
72
+ msprobe/docs/img/cpu_info.png,sha256=8n9pjTDB8_Q8_i1mo4CMNqb2JF96UGTBCPWLgPo_XBU,33797
73
+ msprobe/docs/img/free_benchmark.png,sha256=TjEImRJHHyt0-0R1fFWdhx1y4Lx8PM3wYgrF2XInkS0,72372
74
+ msprobe/docs/img/free_benchmark_framework.png,sha256=hfYfF7Au7sgHaQeduovUdfL-nhWguIGeZZDaUHO3AfI,259617
75
+ msprobe/docs/img/grad_probe_image-1.png,sha256=CfCd5eWGxfajKaEIWz2wSv5do1EeJRg9WEMLI7wUqVs,42344
76
+ msprobe/docs/img/grad_probe_image-2.png,sha256=K7fC5F2ln5bYzqaXazF_adQhIdv4cjqPdo9qiQyc6uM,26563
77
+ msprobe/docs/img/grad_probe_image-3.png,sha256=x-xvegKI7yQEl4lFzrKA9K0zRdT6m6kTdvs1epXaTjg,22581
78
+ msprobe/docs/img/grad_probe_image-4.png,sha256=QX8iEZR4fiopqy2tFSPrWZo6AtYimYmpfy6rVVtXfk4,22779
79
+ msprobe/docs/img/grad_probe_image.png,sha256=Uva-rNS275o4l1vHXCKAAAQmGOuzkKhjiFrCdm7iHVY,11977
80
+ msprobe/docs/img/module_compare.png,sha256=8LjiAcZwLK-Me6YrkpWaAfOKFycStSapWdLsqZyS8oo,56655
81
+ msprobe/mindspore/__init__.py,sha256=PJIhj2bJyso2JNQCYcct_G1FfCZikub59E9khVk2HIU,76
82
+ msprobe/mindspore/cell_processor.py,sha256=Aiypi1eWh0dUqSNM8NmaN_gqEaAsxa-UVisjbwN7XTc,1180
83
+ msprobe/mindspore/ms_config.py,sha256=naAxopsLVz5iuXeO79d9nzBekY5PFZvvNCjSTKASNX8,5270
84
+ msprobe/mindspore/runtime.py,sha256=8cdkkNgW37dVo_k5XgGUg_Juy31o86n6g2QIGuyHvAA,90
85
+ msprobe/mindspore/service.py,sha256=BFU2yhEifkBdimgaBgIjfwcVaF28oE_a46YrBSQr8Zo,18069
86
+ msprobe/mindspore/task_handler_factory.py,sha256=x3cwKfuCl0ghZbHqL7a6PI1T54WnIh6Z7y00nvd2kCY,940
87
+ msprobe/mindspore/api_accuracy_checker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
88
+ msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py,sha256=rsOPMYcvwbgV3lmDiWH9hLPDjzyXDudZMCok8eKE_3E,12951
89
+ msprobe/mindspore/api_accuracy_checker/api_info.py,sha256=HteTN9aGyDdo44Za8fAoETkK_741eGlBguzcKPJ8-OQ,3654
90
+ msprobe/mindspore/api_accuracy_checker/api_runner.py,sha256=GPdIWQKAYJbyn1ENyqdxz438QWz96nw4b6-dUAwUsCQ,7648
91
+ msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py,sha256=SAZUf_J95S3KpvoyMXxcnfqh8Fsqfa8O6hwV97qWaJE,7782
92
+ msprobe/mindspore/api_accuracy_checker/cmd_parser.py,sha256=GThZCtFsvBKtwFYvlcxv3R_jd_EmrhwSRVRDNBJZYxY,472
93
+ msprobe/mindspore/api_accuracy_checker/compute_element.py,sha256=ElyQi5nHf3It3f_FiY3ikZnr6PPHei1SOetP7jEaOGY,11712
94
+ msprobe/mindspore/api_accuracy_checker/main.py,sha256=5BTuAE84hsCq7KnX7u4ehzDsgDNuYN5PhnAjnWLBORs,370
95
+ msprobe/mindspore/api_accuracy_checker/type_mapping.py,sha256=NZo4gu9QMapW0SF-wlOxzvmN-DJN_qge6AnCGZ6RX5s,2448
96
+ msprobe/mindspore/api_accuracy_checker/utils.py,sha256=O5idt-0YLQixvFJLVv1NLEG51oNOKQ6DDFt2Ciox7Xo,3114
97
+ msprobe/mindspore/common/const.py,sha256=YzmRj763mx7MSUZSvMyTdx-yBdpu0_ZtyAR7yT2FLlw,3064
98
+ msprobe/mindspore/common/log.py,sha256=DU645l6b0icOTQUxl0BztJFOQRVhbeZSTqbMaQAzMqE,1205
99
+ msprobe/mindspore/common/utils.py,sha256=IQifhLG9Quv12YHGFjPh0U72YmiX6gObYkf9t2w6R48,2594
100
+ msprobe/mindspore/compare/distributed_compare.py,sha256=TJoUfz0k0CjNzCMEjph4Xbf3rCjuozfONL0hJDo0upY,3818
101
+ msprobe/mindspore/compare/ms_compare.py,sha256=FfxCO0vGprKBDbsFoOs8sMDj97P0kC_5UpqVhCHvUak,12575
102
+ msprobe/mindspore/compare/ms_graph_compare.py,sha256=vjaIjn4e8C6lELmkr2LzVDOH6fQr0bFhSBE12jKVBA8,17362
103
+ msprobe/mindspore/compare/ms_to_pt_api.yaml,sha256=NGzy6_yIArM6V0zYsW3sg3KLMJe0sr9ljKiIcHujJus,13203
104
+ msprobe/mindspore/debugger/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
105
+ msprobe/mindspore/debugger/debugger_config.py,sha256=9rFVDH-C2pDs42uZ4GMzj6cHh1tgnDDJGWQSD9STrA0,3157
106
+ msprobe/mindspore/debugger/precision_debugger.py,sha256=7OKws3QGk7-rDg03z5vv8c_qzn3bC0NpG9EOPT1FxtQ,4451
107
+ msprobe/mindspore/dump/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
+ msprobe/mindspore/dump/dump_tool_factory.py,sha256=ZEmllD5ITBQXT-luxZa8RXzaa-vHwhgOdI_f-Jgk97Y,1227
109
+ msprobe/mindspore/dump/jit_dump.py,sha256=aUJfCWlrSLZuWCwDJCmUV5r0G78zofFDO2ZAsLXp67c,2488
110
+ msprobe/mindspore/dump/kernel_graph_dump.py,sha256=3ZD0YqVg8E_DB_lbBwhxE9sPVYbTyRsBK6YDEX_6QYo,3047
111
+ msprobe/mindspore/dump/kernel_kbyk_dump.py,sha256=cjcKABER4dPtLdAXSkUK0TJIdEPc3SCnxQh5vNfCfMU,2328
112
+ msprobe/mindspore/dump/hook_cell/api_registry.py,sha256=ocsiEdlO7t1aIYvdTRqPt4nCnZfyLAiNgWpzhMiI1TU,5634
113
+ msprobe/mindspore/dump/hook_cell/hook_cell.py,sha256=XF9SeZHQeTYil85aG6UH0eaNGTaJgPTg1OElDoSU2XA,1983
114
+ msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml,sha256=d5ZEHsYFd3LZaugIO72ryghRRQC7DCsTPL1m8X3ksRw,12155
115
+ msprobe/mindspore/dump/hook_cell/wrap_api.py,sha256=D0U4aPmkkXt_XW-GTEsmSm-pI5R47qD1dYrZStIkyZM,4426
116
+ msprobe/mindspore/free_benchmark/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
117
+ msprobe/mindspore/free_benchmark/api_pynative_self_check.py,sha256=CJV_gGuTWnTyb6gpn2TGKvvDiOzA2lDUw-DaL0qRBLU,3861
118
+ msprobe/mindspore/free_benchmark/self_check_tool_factory.py,sha256=-jDkgVnDWTQq-rucV5OyQl3jqPFGQVer58KadmUYS9Y,1137
119
+ msprobe/mindspore/free_benchmark/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
120
+ msprobe/mindspore/free_benchmark/common/config.py,sha256=e1Jt86tzAWhD8RWasTV4f4udxHg1A5lAdr9c3h2TcYs,384
121
+ msprobe/mindspore/free_benchmark/common/handler_params.py,sha256=rDUugIb95VmG-2Wm0PvNKmcg8GkqVKe3qtXWJ28f7qs,459
122
+ msprobe/mindspore/free_benchmark/common/utils.py,sha256=SavdFzNEwbhHyHZdJR5sBdFPUE4oKoui0JOWU9SoCpw,2153
123
+ msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml,sha256=lsGOW1R6w2_xZsZ4L012lmeXTUwa-BcjpvNske4U9jU,10579
124
+ msprobe/mindspore/free_benchmark/decorator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
125
+ msprobe/mindspore/free_benchmark/decorator/dec_forward.py,sha256=W5-0uA0zZNhFjnmTF5gGgha-8lb1q4TrTdwJWcMiNDc,1803
126
+ msprobe/mindspore/free_benchmark/decorator/decorator_factory.py,sha256=iqFR22sbD0ebawCh-l1oi98wCO6nRsCxo2m9E76-xRg,2920
127
+ msprobe/mindspore/free_benchmark/handler/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
128
+ msprobe/mindspore/free_benchmark/handler/base_handler.py,sha256=a8P9iGDCeUT6cZhD5c9WEGZHsOg5gN9k2tqkRPLO0kw,3932
129
+ msprobe/mindspore/free_benchmark/handler/check_handler.py,sha256=Qyl_eOZxqzbHgEvVvjzSPNe3wfd_sTq0nz_JIlZhfKU,1902
130
+ msprobe/mindspore/free_benchmark/handler/fix_handler.py,sha256=DWQzpVae3ZLQSt8csmtjmOrBKyP3HjXnuX2PtmI8OP4,1376
131
+ msprobe/mindspore/free_benchmark/handler/handler_factory.py,sha256=_xQud7UpuuJZhWl6fzz4t9-adN0Z_9P4hVNi9whJwfg,690
132
+ msprobe/mindspore/free_benchmark/perturbation/add_noise.py,sha256=_8JcpY3fBACPN4FPf8j1rZITpBR311n-LomtcrocRxM,2132
133
+ msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py,sha256=C9dVstB8o2QsHjnnJIZxer9tmMJOEM-D5isiL0-Ghng,646
134
+ msprobe/mindspore/free_benchmark/perturbation/bit_noise.py,sha256=P0UW402A6t5OKDO4KlZRVt7KyX35CmtntWix-w-6dDk,2768
135
+ msprobe/mindspore/free_benchmark/perturbation/exchange_value.py,sha256=dOTT3jlLml4xSef3fifib_unFJ9Ht-eYCiqw-1FnXbg,1747
136
+ msprobe/mindspore/free_benchmark/perturbation/improve_precision.py,sha256=TGh4-eo-nPr3Oq0hf-9AR6GtFvTcwiBf4BtKYwzT8A4,1569
137
+ msprobe/mindspore/free_benchmark/perturbation/no_change.py,sha256=dPhdfoZIOwzfY49_tU59Yiz9grAjjwrhmVUTiTwJaAQ,431
138
+ msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py,sha256=lv2wmFKFdmLWp2E7kAcYpYwTiIsVP3cNRToKXRMp0q8,1085
139
+ msprobe/mindspore/grad_probe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
140
+ msprobe/mindspore/grad_probe/global_context.py,sha256=OSkyaxIRmPyU9hEDGB2GHlRWnl-NE_15NNHWFhM37gM,3493
141
+ msprobe/mindspore/grad_probe/grad_analyzer.py,sha256=KARp8BRqX8KsgXiIhw9C1iriG-Ph1xppXLA-ZnXBUK0,9315
142
+ msprobe/mindspore/grad_probe/grad_monitor.py,sha256=kM5eH_-pz1TbCaE87H4XkOe9ndDqBHEdaokmuW7mDs4,935
143
+ msprobe/mindspore/grad_probe/grad_stat_csv.py,sha256=7_m_C4P7Yi-gAjXyLPW-d2cvRBR4v2CRzfg0hPMWMEM,3714
144
+ msprobe/mindspore/grad_probe/hook.py,sha256=F4lFSkQEsJfRC2fNJXKZwwaH3agzXNRUXV1HmP-7zmU,4314
145
+ msprobe/mindspore/grad_probe/utils.py,sha256=e7RAx4hyP1tciyHCtLCXDTbkuVZsWZxgltySEGo2Rog,1055
146
+ msprobe/mindspore/overflow_check/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
147
+ msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py,sha256=Y3ToB6IFBI9ygEytYJk-qebs0Rq2Qmb94NN7KeZ13qM,2199
148
+ msprobe/mindspore/overflow_check/overflow_check_tool_factory.py,sha256=HQaq9kWuZCa5vUIB2elPcNvtdmnsFNGaCNfqmeGCIm0,1196
149
+ msprobe/pytorch/__init__.py,sha256=GA5OIczDRCvSgxBTQkTwSfPaLxKRUiBzSJH1CNxkmu8,195
150
+ msprobe/pytorch/function_factory.py,sha256=0ogN4Qv9eoMFsB2Xi10otiIjlQojq4M4iuZAnTMA2ew,2963
151
+ msprobe/pytorch/module_processer.py,sha256=G-DXQvN9yuqj8DLo1fHpBGHSzIKKbqUkVm41RoRGv-M,5653
152
+ msprobe/pytorch/parse.py,sha256=wVmEIPnAF7gQSTMBp_SKlIQH6KWUmuplItLTurmAECU,87
153
+ msprobe/pytorch/pt_config.py,sha256=hiQ6Wvrev_BhiaIwcGuZo4dM2X5Z2rtIpZAulq2Iq6E,8111
154
+ msprobe/pytorch/service.py,sha256=aWOaP0MHu6fBV43KM8opByO8MUbrOBRSNTzAMhinG6g,12142
155
+ msprobe/pytorch/api_accuracy_checker/.keep,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
156
+ msprobe/pytorch/api_accuracy_checker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
157
+ msprobe/pytorch/api_accuracy_checker/config.yaml,sha256=pk9mTKFHC4iTzgs2JHeQrGCPbABmjHbtrPiUPvBZSYE,142
158
+ msprobe/pytorch/api_accuracy_checker/common/.keep,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
159
+ msprobe/pytorch/api_accuracy_checker/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
160
+ msprobe/pytorch/api_accuracy_checker/common/config.py,sha256=EHZDezem9NmHnXQZ3VTjcp-zxv3FhUTY69n7F9N6G1Q,1910
161
+ msprobe/pytorch/api_accuracy_checker/common/utils.py,sha256=-XF1A3klhlAnSLUaP4f3sKI1H1TLzmd5Q_85rPRKFVM,7318
162
+ msprobe/pytorch/api_accuracy_checker/compare/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
163
+ msprobe/pytorch/api_accuracy_checker/compare/algorithm.py,sha256=cYz9q5w0_RYLoR8D7gAg7pvmIoLz1mCZBWCEXUM3qUI,8479
164
+ msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py,sha256=2D6mQvCLSmHFHuDz5b71MSsBOfOqktiBziqLR5eQKJQ,30903
165
+ msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml,sha256=CnWLLvFwI44QOE6qwcMK6ZjLfOh4PIox9202hz6ZHEc,1998
166
+ msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml,sha256=Pt5MQFazR6DwvI19SF8wUTHp2z_SLdoDz643AUdoWcY,8112
167
+ msprobe/pytorch/api_accuracy_checker/compare/compare.py,sha256=FTDGthU84a_IFuSjHpIMdPq6AZ5WRi634Ch71aoApXE,22261
168
+ msprobe/pytorch/api_accuracy_checker/compare/compare_column.py,sha256=aLs1a3GXdkrE6Uw6a0YXup9S1nJPY59UXxriR4VHTqU,3907
169
+ msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py,sha256=T-5zsItMKSoMr9RWON9mRlnxxmspM8ugeJbYX-EEvvY,9159
170
+ msprobe/pytorch/api_accuracy_checker/run_ut/.keep,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
171
+ msprobe/pytorch/api_accuracy_checker/run_ut/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
172
+ msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py,sha256=c194j9T_NF2sSEFg_mVOhwe7mKezmRwocN44o6Tg_Vc,13732
173
+ msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py,sha256=uDAVP_9SNczVFy6KSae4vzbXJvYnB7C0fJCdXmdLTTM,8372
174
+ msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py,sha256=WAn-CTon6e0kOUnsI-J9IjHmAMJiixbiyThKIwPfDKM,5530
175
+ msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py,sha256=ecHc5iuYnLuzMIjQg1-oiCwvGofXuyIvFkLOkNBE1ds,27471
176
+ msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py,sha256=Wpe9YvsE4Vp3VRZNgD1EGR9PC1OD8gIQLzHLAFIl7qs,3255
177
+ msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json,sha256=6caXsuV9H9eDG2Zd0m_qJG_TsZ2Mk8z8RV8tS7r2m4o,92
178
+ msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
179
+ msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py,sha256=37hmrH5p71ugKzrfQw5zUy1NXmwDYp7qJtY94vZNmk0,7666
180
+ msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py,sha256=82dS3osEQZoeh4-7dpZdKtexaXp1CdDdp94bEuPwULw,12663
181
+ msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py,sha256=ZtwNTBhEPkSBTgQZIFbEXewYRi6638j7CkZpc6vIGLc,9406
182
+ msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py,sha256=Gad6DC62hMABa8II6k_5o82NgXtF0MMf5Rf1bn26e7s,9009
183
+ msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py,sha256=5u_4SJmd73JJQfdNxbLh-6eWmp_tHuFV1CcREA7VbYQ,318
184
+ msprobe/pytorch/bench_functions/__init__.py,sha256=XOe1LWwMuZrHiRVTTBhJ3ltxyOLLDnaqWHt1o3OpzZA,533
185
+ msprobe/pytorch/bench_functions/apply_adam_w.py,sha256=XkGIUW23wAf5QVDqqokfevAkJIlu4oGO-oZdeNxQGa8,1066
186
+ msprobe/pytorch/bench_functions/confusion_transpose.py,sha256=HwWFyLxaJvCbkZFE4R4MjuhKAhC-NrwMxR6icuWP8OE,670
187
+ msprobe/pytorch/bench_functions/fast_gelu.py,sha256=bHtMY-7AkN0jVVFXLx16OwvvfSRevo4nMuguD3L_pzQ,1259
188
+ msprobe/pytorch/bench_functions/layer_norm_eval.py,sha256=vt-AlAxu1FfIuTfLNQ_hKYwMLnFr_zA3OGDc5RhsQXU,184
189
+ msprobe/pytorch/bench_functions/linear.py,sha256=u4zmq3PBDvamTJDnwc-aP4XZtKm6vAPc2jF3lskDl3Q,320
190
+ msprobe/pytorch/bench_functions/matmul_backward.py,sha256=8J7d6YzpNUbQ2OeawG2cGM_1UqXqYh16hLA5tBYF3RU,2526
191
+ msprobe/pytorch/bench_functions/npu_fusion_attention.py,sha256=hdbCpDJT-OIrzoYH_eLPsl46MNuOTvXE9b0r46vrOjg,21903
192
+ msprobe/pytorch/bench_functions/rms_norm.py,sha256=wxp32-3U0A2iWBko8Hl_uOZekrLNPq1pO3rOthZ-jWg,448
193
+ msprobe/pytorch/bench_functions/rotary_mul.py,sha256=ESQ-2cmcNgTqmnB0E-o75L_a9v2kV0gX_CKXhavMeN0,2447
194
+ msprobe/pytorch/bench_functions/scaled_mask_softmax.py,sha256=1H1W7aIjNzB7sx7Q_Hasu0duKk41cOWqTW2FZqII_UE,894
195
+ msprobe/pytorch/bench_functions/swiglu.py,sha256=vkKMY-l3d5THdTe2UVEHe-kIPEcn7dC4u7azE_VOhw4,2387
196
+ msprobe/pytorch/common/__init__.py,sha256=_cUT4CazdgRh-EBpHjXSDfVDxPDBWFiWFaQU96ozSb8,85
197
+ msprobe/pytorch/common/compare_script.template,sha256=CsfmJ5IuPycAYa0-IfVPXrXVu-o6g8BeEF9v17UK_1w,286
198
+ msprobe/pytorch/common/log.py,sha256=ONfJPe-YFcCAJvcZtXLmTWsQdT0kVk4KHqhEbaZDZ-w,529
199
+ msprobe/pytorch/common/parse_json.py,sha256=spM76N4Ch4K0iss7RKYNc0nufiCNIQiNluVc7BM5WgM,1497
200
+ msprobe/pytorch/common/utils.py,sha256=m0_zjOMRTljIVAjnPDLMZp7Dmy1Pm4-ZDGMPWMUJoHQ,9632
201
+ msprobe/pytorch/compare/distributed_compare.py,sha256=CQIGDsOxPzFIXpWVABDiPrKwmklqQYN4uYq-VjR5z6Y,3454
202
+ msprobe/pytorch/compare/mapping.yaml,sha256=Udlbf1dWDAdnTs8VcDTiSkqsMNj93o2qFUU2ocFgt2k,11697
203
+ msprobe/pytorch/compare/match.py,sha256=t9hCaCLT7qbGaokmRkBdSWv6ID2MkpJD3T_0aB1ay1I,1262
204
+ msprobe/pytorch/compare/pt_compare.py,sha256=ucvV0J5p8j63j0VZjVCUJ89lDbnO9CkLLHbyK0lMQ2U,2559
205
+ msprobe/pytorch/debugger/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
206
+ msprobe/pytorch/debugger/debugger_config.py,sha256=7BAXh3Kau8DRcY4KDYOwpzb4v9gX5u1qWv7pUGzdyrE,5119
207
+ msprobe/pytorch/debugger/precision_debugger.py,sha256=Il2t5g0K2ndEHDgcDv1v9H3B6pfWI_n2jzNR6jmmZqQ,4569
208
+ msprobe/pytorch/free_benchmark/__init__.py,sha256=NToeonls2HrglVK3PBMpvTpZzgpmonBiSpCO3DQfFTA,276
209
+ msprobe/pytorch/free_benchmark/main.py,sha256=uBTDhwvkFCwpWbT46zTRUylTiib9USfKyEqNHmx5BFA,4017
210
+ msprobe/pytorch/free_benchmark/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
211
+ msprobe/pytorch/free_benchmark/common/constant.py,sha256=UeBE1OREX3cEJOEEcpq4O-yN7Xu-CfB-KXpAx1NGZXI,1929
212
+ msprobe/pytorch/free_benchmark/common/counter.py,sha256=LqRx7cZ9rr5bD4ueOSe6i_2lyWb4yEDpBVXuWKepg4Y,2718
213
+ msprobe/pytorch/free_benchmark/common/enums.py,sha256=9ANtwOludQIp-Rq2fMUnShEhxyR9DIVUNkTcOFpaYYA,645
214
+ msprobe/pytorch/free_benchmark/common/params.py,sha256=cwrCLL0ZEJkdDdg59Lt7uiRShiH7lwb004zGe_GDgBo,3990
215
+ msprobe/pytorch/free_benchmark/common/utils.py,sha256=gzHiyOGZemgifROYdpI60Jq7-t6-SG8qfk4X1ObLSiM,3992
216
+ msprobe/pytorch/free_benchmark/compare/grad_saver.py,sha256=HyMuJdYwN3rtX0EixwOC0OkR1DdoI_4XVKr11j9CrbE,7620
217
+ msprobe/pytorch/free_benchmark/compare/single_benchmark.py,sha256=HT3Tn7bCCnltWYp0hoEAy3J8eboe8xLiwH2tMV9lbdA,3865
218
+ msprobe/pytorch/free_benchmark/perturbed_layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
219
+ msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py,sha256=1logqs9vU8AskKyiDyBckrNtyDs_3W1yHsab52Cg_8Q,315
220
+ msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py,sha256=g8PZLLekmYF2w1J6dwnGwbjMViEoyhmuwIoA53zCuU8,1767
221
+ msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py,sha256=nsLNMhP9mt99KMtH2wmwHT1QdUfwgZ6NVzeOh2XUhGI,856
222
+ msprobe/pytorch/free_benchmark/perturbed_layers/npu/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
223
+ msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py,sha256=h-VZE6NSO89_ZlJQ81D_EumZaOBtFiLwimu_5s0sKZ0,3476
224
+ msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py,sha256=-DaLKbvnM6-844d3OVmf6u0BFefC_PBg6aG6YFKnpNs,3947
225
+ msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py,sha256=3P3rGWiuIrLamyvTRqrzmEKZ0rrcOAxS0mfP1YuBlT0,2466
226
+ msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py,sha256=RWdnvF-j1tZq9LigiEdkjwc3W4GvA_2Mbk34EU0Ae0g,2718
227
+ msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py,sha256=q7-7J_J3I6QHUewVlJcnlL3tQjnUKa37GIJZlZcO9pQ,918
228
+ msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py,sha256=icNY2iQZA1a_pWMDxDfaNq1OxQ4vGFFQB7WdyhbycI8,1557
229
+ msprobe/pytorch/free_benchmark/result_handlers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
230
+ msprobe/pytorch/free_benchmark/result_handlers/base_handler.py,sha256=IRjR7pkTYSB6_Kmo2WtDKqyE-r2wD5cJPIelY_LlcpE,9365
231
+ msprobe/pytorch/free_benchmark/result_handlers/check_handler.py,sha256=_lfAn4AMnThHFVtqZysrvCsI1a7NStuLNYIogqKJqDU,1622
232
+ msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py,sha256=qXOSxzPULwf5q-UuNVPGfNoLCQIPsYo37pldIAvwJaM,857
233
+ msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py,sha256=5jUkVzy81pOHGK2SdNLL98YkNnO9bcaGENsu3diVcPQ,1317
234
+ msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py,sha256=UET1xdYD_csgHmj6n68hxcrnXzaHRJSZ25_HNN4L_b0,7182
235
+ msprobe/pytorch/functional/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
236
+ msprobe/pytorch/functional/data_processor.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
237
+ msprobe/pytorch/functional/dump_module.py,sha256=be4KsstIvl98nyC5o_BsVe0uMi8HP4n16KP7tDJ1EvQ,1843
238
+ msprobe/pytorch/grad_probe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
239
+ msprobe/pytorch/grad_probe/grad_monitor.py,sha256=o0QTmhmemxMKWTvHViW69ZFFyLKcJz9PButFMF02x8c,4282
240
+ msprobe/pytorch/grad_probe/grad_stat_csv.py,sha256=PvQYH8geYQ_QhYhkb_WxvSbuhfot8-5HA_ioK3PqYlI,4045
241
+ msprobe/pytorch/hook_module/__init__.py,sha256=Pi9uPQOVMzTeHXDUyptqZDFXIlq-wV2KrrLJ8KwrIlg,43
242
+ msprobe/pytorch/hook_module/api_registry.py,sha256=6XGe_3kPwUWC1PXyOfRFBNoa7cKfjfhrpA4DMlsMMYc,7848
243
+ msprobe/pytorch/hook_module/hook_module.py,sha256=WPIA2JlZKuE4lqvGtpQ_dfaSteCh4UvM0sOHwfWJdrI,4931
244
+ msprobe/pytorch/hook_module/support_wrap_ops.yaml,sha256=jovioDnO0KW2tSRoPhxaxIpQV8ULAXkd-YtnsZutcRY,27870
245
+ msprobe/pytorch/hook_module/utils.py,sha256=wrHt7qjINCzLTKo7m8n96KLuiutJkHBr5S-MLM_zupo,1151
246
+ msprobe/pytorch/hook_module/wrap_aten.py,sha256=fBwOo0lT8jKUlhgzr-i_meDXnbjp1fl0-2_c7AqGZQk,3838
247
+ msprobe/pytorch/hook_module/wrap_distributed.py,sha256=n82bVFxeYjShhqoyjsZNjaxaU2JL5NARiqJyy6BONc8,2637
248
+ msprobe/pytorch/hook_module/wrap_functional.py,sha256=PagZalLd6q03SSK9xIQyO1PgbsbTA2Q2jOiq0QVP3f4,4463
249
+ msprobe/pytorch/hook_module/wrap_npu_custom.py,sha256=ZgR4Ps38CewMg1SzYqI0NgH-fwAQtMX-jbs50Ok5ygA,3069
250
+ msprobe/pytorch/hook_module/wrap_tensor.py,sha256=LgKtzqQ3csWXoD5MTfqARFPghK_7KR_Wj_9lPUkV1E0,2137
251
+ msprobe/pytorch/hook_module/wrap_torch.py,sha256=qnsaZWB9oVNChf9a_iMDhZE--eIekC8cEZfSI_CGCag,2667
252
+ msprobe/pytorch/hook_module/wrap_vf.py,sha256=w6aaUx5y_7XiCgz8d8_s_6A-YLKekNaTvMTf-gowGWg,1881
253
+ msprobe/pytorch/online_dispatch/__init__.py,sha256=26TwsLkd9AoRbnUOjZ4oc4mv2S8sTXFucu_7M3r2v2M,734
254
+ msprobe/pytorch/online_dispatch/compare.py,sha256=bcnGK5mqIKi3yi7xQZgVmi_90AcljB0az8Yp5MV22Mc,10581
255
+ msprobe/pytorch/online_dispatch/dispatch.py,sha256=WQaU6dwNxbwycSnEVQ8cfU7PaqC6vK11uv30FoNnKI0,11971
256
+ msprobe/pytorch/online_dispatch/dump_compare.py,sha256=F6pYomr0wk_j7z2U7kRvbpgRt6XfY7gODH1fMIwiefI,5870
257
+ msprobe/pytorch/online_dispatch/single_compare.py,sha256=-KV7avTdPAkwkLWIXSRUABhkoU0EeiGb7XGvtZ1vhic,16692
258
+ msprobe/pytorch/online_dispatch/torch_ops_config.yaml,sha256=SskYLMEVSE5Ohd_NYt8QpPBYKfwPzEtQMeaNw8m5RH0,740
259
+ msprobe/pytorch/online_dispatch/utils.py,sha256=xTDV8jfG8O5yU8vWnaDZW6_34WoQyGBMJIiUschlEQk,4173
260
+ msprobe/pytorch/parse_tool/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
261
+ msprobe/pytorch/parse_tool/cli.py,sha256=l3zgi1tbTIW5ptsZIg4Xhi1SAgcbihBMv-_FzJu8ai8,1097
262
+ msprobe/pytorch/parse_tool/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
263
+ msprobe/pytorch/parse_tool/lib/compare.py,sha256=jCTCVczudZGddFwlT_17toqE2tIQ28BjGDW0n4zmh4U,13363
264
+ msprobe/pytorch/parse_tool/lib/config.py,sha256=kLbz5EFkOgl3T4lRLmmoZgkpJ41yqH4StVjNgucs7xA,1992
265
+ msprobe/pytorch/parse_tool/lib/file_desc.py,sha256=l0RCGU4-DCM5p5iPuCGLcjyMd710owdjnuTKYAZ0kdc,1147
266
+ msprobe/pytorch/parse_tool/lib/interactive_cli.py,sha256=wkbpBK6LGufJvfFANoermyWLNLez8CR4ipcqv0DmBIo,3678
267
+ msprobe/pytorch/parse_tool/lib/parse_exception.py,sha256=0gRawclT_z1U0K9FkawMgFuGz3zvvqGeIgAbxZB6pSw,1763
268
+ msprobe/pytorch/parse_tool/lib/parse_tool.py,sha256=xR6UyuSov23Cri_8RBsy-e90Ehot2_Mjr-9NLtIzLQY,7972
269
+ msprobe/pytorch/parse_tool/lib/utils.py,sha256=G0NYLZpNZkOlUKOvqipDSLc8kBrUseDksKCzHeTBa3w,12232
270
+ msprobe/pytorch/parse_tool/lib/visualization.py,sha256=8tg4MLEmtsu32rm65ISLlfLqu-FCsYiISN5UlfghLK4,4083
271
+ mindstudio_probe-1.0.4.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
272
+ mindstudio_probe-1.0.4.dist-info/METADATA,sha256=YKGhee3UepjO7dVx5pRmszi5J82hYA64iBSzUbSWyYQ,1308
273
+ mindstudio_probe-1.0.4.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
274
+ mindstudio_probe-1.0.4.dist-info/entry_points.txt,sha256=D2Vi0uZD_DqVIrJ9_Cw7y9SP5AHH4-8VHLjlPXUjIpk,50
275
+ mindstudio_probe-1.0.4.dist-info/top_level.txt,sha256=LxFEFqelENSyWmRtocCiEUF04IE8aZvwTl7ADB598Tk,8
276
+ mindstudio_probe-1.0.4.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: bdist_wheel (0.37.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,2 +1,3 @@
1
1
  [console_scripts]
2
2
  msprobe = msprobe.msprobe:main
3
+
msprobe/README.md CHANGED
@@ -1,237 +1,101 @@
1
- # MindStudio精度调试工具
2
-
3
- MindStudio精度调试工具(MindStudio Probe),简称msprobe,是MindStudio Training Tools工具链下精度调试部分的工具包。主要包括精度预检和精度比对等子工具,当前适配场景包括PyTorch和MindSpore。
4
-
5
- ## 工具安装
6
-
7
- 精度工具合一软件包名称:`mindstudio_probe-{version}-py3-none-any.whl`
8
-
9
- ### pip安装
10
- ```shell
11
- pip install mindstudio-probe
12
- ```
13
- 使用`pip install mindstudio-probe==版本号`可安装指定版本的包。
14
-
15
- pip命令会自动安装最新的包及其配套依赖。
16
-
17
- 提示如下信息则表示安装成功。
18
-
19
- ```bash
20
- Successfully installed mindstudio_probe-{version}
21
- ```
22
-
23
- ### 下载whl包安装
24
- 1. 使用pip命令安装依赖:
25
-
26
- 1. 根据实际环境安装torch或mindspore
27
-
28
- 2. 安装numpy、openpyxl、pandas、PyYAML、rich、tqdm、einops、matplotlib、pyOpenSSL、twisted
29
-
30
-
31
- 若环境中已安装部分依赖,不需要重复安装。
32
-
33
- 2. whl包获取。
34
-
35
- 请通过下表链接下载工具whl包。
36
-
37
- | 版本 | 发布日期 | 支持PyTorch版本 | 支持MindSpore版本 | 下载链接 | 校验码 |
38
- | ----- | ---------- | ---------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
39
- | 1.0.2 | 2024-08-09 | 1.11/2.0/2.1/2.2 | 2.3.1 | [mindstudio_probe-1.0.2-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/msprobe/1.0/mindstudio_probe-1.0.2-py3-none-any.whl) | e4a980e5d98c426ce5ce9842520d9bc031d3b3de621c74b3d59414cc6e238e0e |
40
- | 1.0.1 | 2024-07-25 | 2.0/2.1/2.2 | 2.3.1 | [mindstudio_probe-1.0.1-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/msprobe/1.0/mindstudio_probe-1.0.1-py3-none-any.whl) | b699e224e4d4e3bcf9412c54fa858a1ee370f0d7a2bc69cb3f1273ac14a6dc82 |
41
- | 1.0 | 2024-07-09 | 2.0/2.1/2.2 | 2.3.0 | [ascend_training_accuracy_tools-1.0-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/att/1.0/ascend_training_accuracy_tools-1.0-py3-none-any.whl) | 5016dfe886c5d340ec6f60a959673355855f313c91f100680da814efb49f8e81 |
42
- | 0.0.3 | 2024-06-11 | 2.0/2.1/2.2 | 2.3.0 | [ascend_training_accuracy_tools-0.0.3-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/att/0.0/ascend_training_accuracy_tools-0.0.3-py3-none-any.whl) | f46d9714704859e2d67861a65bbb3c76b0a250cf6e238b978b5b959ab1fe125a |
43
- | 0.0.2 | 2024-05-23 | 2.0/2.1/2.2 | 2.3.0 | [ascend_training_accuracy_tools-0.0.2-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/att/0.0/ascend_training_accuracy_tools-0.0.2-py3-none-any.whl) | 2e35809bde559e9c4d2f16a02ccde779ed9e436bb65fded0b7ebaf6ac2c88d93 |
44
- | 0.0.1 | 2024-03-15 | 2.0/2.1 | - | [ascend_training_accuracy_tools-0.0.1-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/att/0.0/ascend_training_accuracy_tools-0.0.1-py3-none-any.whl) | 5801510d4e827e4859bc9a5aca021e4d30c2ea42d60a4c8ad0c2baab1b7782c9 |
45
-
46
- 3. whl包校验。
47
-
48
- 1. 根据以上下载链接下载whl包到Linux安装环境。
49
-
50
- 2. 进入whl包所在目录,执行如下命令。
51
-
52
- ```bash
53
- sha256sum {name}.whl
54
- ```
55
-
56
- {name}为whl包名称。
57
-
58
- 若回显呈现对应版本whl包一致的**校验码**,则表示下载了正确的ptdbg_ascend精度工具whl安装包。示例如下:
59
-
60
- ```bash
61
- sha256sum ascend_training_accuracy_tools-0.0.1-py3-none-any.whl
62
- 5801510d4e827e4859bc9a5aca021e4d30c2ea42d60a4c8ad0c2baab1b7782c9 *ascend_training_accuracy_tools-0.0.1-py3-none-any.whl
63
- ```
64
-
65
- 4. 执行如下命令进行安装。
66
-
67
- ```bash
68
- pip3 install ./mindstudio_probe-{version}-py3-none-any.whl
69
- ```
70
-
71
- 若为覆盖安装,请在命令行末尾增加“--force-reinstall”参数强制安装,例如:
72
-
73
- ```bash
74
- pip3 install ./mindstudio_probe-{version}-py3-none-any.whl --force-reinstall
75
- ```
76
-
77
- 提示如下信息则表示安装成功。
78
-
79
- ```bash
80
- Successfully installed mindstudio_probe-{version}
81
- ```
82
-
83
- ### 从源码安装
84
- 1. 克隆或者下载项目源代码
85
-
86
- ```shell
87
- git clone https://gitee.com/ascend/mstt.git
88
- cd debug/accuracy_tools
89
- ```
90
-
91
- 2. 安装setuptools和wheel
92
-
93
- ```shell
94
- pip install setuptools wheel
95
- ```
96
-
97
- 3. 安装msprobe
98
-
99
- ```shell
100
- python setup.py bdist_wheel
101
- cd dist
102
- pip install mindstudio_probe*.whl
103
- ```
104
- 提示出现如下信息则表示源码安装成功。
105
- ```shell
106
- Successfully installed ... mindstudio_probe-{version} ...
107
- ```
108
-
109
- ### 查看msprobe工具信息
110
-
111
- 执行如下命令查看msprobe工具信息。
112
-
113
- ```bash
114
- pip show mindstudio-probe
115
- ```
116
-
117
- 输出结果如下示例:
118
-
119
- ```bash
120
- Name: mindstudio-probe
121
- Version: 1.0
122
- Summary: This is a pytorch precision comparison tools
123
- Home-page:
124
- Author:
125
- Author-email:
126
- License:
127
- Location: /home/xx/anaconda3/envs/pt21py38/lib/python3.8/site-packages
128
- Requires: numpy, openpyxl, pandas, pyyaml, rich, tqdm, wheel
129
- Required-by:
130
- ```
131
-
132
- 关键字段含义:
133
-
134
- - Name:工具名称。
135
- - Version:工具版本号。
136
- - Summary:工具概述。
137
- - Location:工具安装路径。
138
- - Requires:工具依赖。
139
-
140
- ## 工具使用
141
-
142
- 安装msprobe工具后,可以按照如下思路选择合适的子工具进行精度调试:
143
-
144
- 1. 判断框架场景。
145
-
146
- 当前支持PyTorch和MindSpore场景。
147
-
148
- 2. 执行数据采集。
149
-
150
- 工具通过在训练脚本中添加PrecisionDebugger接口的方式对API执行精度数据dump操作。
151
-
152
- PyTorch场景:详见[PyTorch_精度数据采集](./pytorch/doc/dump.md)。
153
-
154
- MindSpore场景:详见[MindSpore_精度数据采集](./mindspore/doc/dump.md)。
155
-
156
- 3. 执行精度预检。
157
-
158
- 在昇腾NPU上扫描用户训练模型中所有API,进行API复现,给出精度情况的诊断和分析。
159
-
160
- PyTorch场景:详见[PyTorch_精度预检工具](./pytorch/doc/api_accuracy_checker.md)。
161
-
162
- MindSpore场景:暂不支持。
163
-
164
- 4. 执行精度比对。
165
-
166
- 进行PyTorch整网API粒度的数据dump、精度比对和溢出检测,从而定位训练场景下的精度问题。
167
-
168
- PyTorch场景:详见[PyTorch_精度比对工具](./pytorch/doc/ptdbg_ascend_compare.md)。
169
-
170
- MindSpore场景:详见[MindSpore_精度比对工具](./mindspore/doc/compare.md)。
171
-
172
- 5. 执行溢出解析。
173
-
174
- 溢出解析是在执行精度数据dump时,配置了溢出检测dump,那么对于输入正常但输出存在溢出的API,可以判断是否为正常溢出。
175
-
176
- PyTorch场景:详见[PyTorch_溢出解析工具](./pytorch/doc/run_overflow_check.md)。
177
-
178
- MindSpore场景:暂不支持。
179
-
180
- 6. 执行数据解析。
181
-
182
- 用于比对前后两次NPU ACL层级dump数据的一致性。
183
-
184
- PyTorch场景:详见[PyTorch_数据解析工具](./pytorch/doc/parse_tool.md)。
185
-
186
- MindSpore场景:暂不支持。
187
-
188
- 6. 执行梯度采集和比对。
189
-
190
- 用于采集梯度数据并进行梯度相似度比对。可以精准定位问题出现的step。
191
-
192
- 详见[梯度状态监测工具](./doc/grad_probe/grad_probe.md)。
193
-
194
-
195
-
196
- 上述流程中的工具均为msprobe工具的子工具,使用相同的命令行,格式如下:
197
-
198
- 精度预检工具
199
-
200
- ```bash
201
- msprobe -f <framework> run_ut [-h]
202
- ```
203
-
204
- ```bash
205
- msprobe -f <framework> multi_run_ut [-h]
206
- ```
207
-
208
- ```bash
209
- msprobe -f <framework> api_precision_compare [-h]
210
- ```
211
-
212
- 精度比对工具
213
-
214
- ```bash
215
- msprobe -f <framework> compare [-h]
216
- ```
217
-
218
- 溢出解析工具
219
-
220
- ```bash
221
- msprobe -f <framework> run_overflow_check [-h]
222
- ```
223
-
224
- 数据解析工具
225
-
226
- ```bash
227
- msprobe -f <framework> parse [-h]
228
- ```
229
-
230
- | 参数 | 说明 |
231
- | ---- | ------------------------------------------------------------ |
232
- | -f | 框架,请按所使用框架配置,当前支持配置为:pytorch、mindspore。 |
233
- | -h | 帮助信息。 |
234
-
235
- ## 贡献
236
-
237
- push代码前,请务必保证已经完成了基础功能测试和网络测试。
1
+ # 📖 msprobe 使用手册
2
+
3
+ ![version](https://img.shields.io/badge/version-1.0.3-blueviolet)
4
+ ![python](https://img.shields.io/badge/python-3.8|3.9|3.10-blue)
5
+ ![platform](https://img.shields.io/badge/platform-Linux-yellow)
6
+
7
+ [**msprobe**](./) 是 MindStudio Training Tools 工具链下精度调试部分的工具包。主要包括精度预检、溢出检测和精度比对等功能,目前适配 [PyTorch](https://pytorch.org/) 和 [MindSpore](https://www.mindspore.cn/) 框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。
8
+
9
+ 为方便使用,本工具提供了一个统一、简易的程序接口,**PrecisionDebugger**,以 PyTorch 框架为例,通过以下示例模板和 **config.json** 可轻松使用各种功能。
10
+
11
+ ```python
12
+ from msprobe.pytorch import PrecisionDebugger
13
+
14
+ debugger = PrecisionDebugger(config_path='./config.json')
15
+ ...
16
+ debugger.start() # 一般在训练循环开头启动工具
17
+ ... # 循环体
18
+ debugger.stop() # 一般在训练循环末尾结束工具
19
+ debugger.step() # 在训练循环的最后需要重置工具,非循环场景不需要
20
+ ```
21
+
22
+ 除了在训练脚本中调用接口函数,还可以通过命令行使用 **msprobe** 的其他功能,具体的使用规则和 **config.json** 的配置要求详见以下章节。
23
+
24
+ ## ⚙️ [安装](./docs/01.installation.md)
25
+
26
+ ## 🛠️ config.json [介绍](./docs/02.config_introduction.md) 和 [示例](./docs/03.config_examples.md)
27
+
28
+ ## 🧰 主要功能
29
+
30
+ ### 1 数据采集
31
+
32
+ msprobe 通过在训练脚本中添加 PrecisionDebugger 接口的方式对 API 执行精度数据 dump 操作,对应 config.json 中的 task 为 statistics 或 tensor。
33
+
34
+ [PyTorch 场景的数据采集](./docs/05.data_dump_PyTorch.md)
35
+
36
+ [MindSpore 场景的数据采集](./docs/06.data_dump_MindSpore.md)
37
+
38
+ ### 2 精度预检
39
+
40
+ 精度预检旨在昇腾 NPU 上扫描训练模型中的所有 API 进行 API 复现,给出精度情况的诊断和分析。对应 config.json 中的 task 为 run_ut。
41
+
42
+ PyTorch 场景的[离线预检](./docs/07.accuracy_checker_PyTorch.md)和[在线预检](./docs/08.accuracy_checker_online_PyTorch.md)
43
+
44
+ MindSpore 动态图场景的[离线预检](./docs/09.accuracy_checker_MindSpore.md)
45
+
46
+ ### 3 精度比对
47
+
48
+ 该功能进行 PyTorch 整网 API 粒度的数据 dump、精度比对,进而定位训练场景下的精度问题。
49
+
50
+ [PyTorch 场景的精度比对](./docs/10.accuracy_compare_PyTorch.md)
51
+
52
+ [MindSpore 场景的精度比对](./docs/11.accuracy_compare_MindSpore.md)
53
+
54
+ ### 4 溢出检测与解析
55
+
56
+ 溢出检测与解析是在执行精度数据 dump 时,判断是否存在输入正常但输出存在溢出的 API,从而判断是否为正常溢出。对应 config.json 中的 overflow_check。
57
+
58
+ [PyTorch 场景的溢出检测与解析](./docs/12.overflow_check_PyTorch.md)
59
+
60
+ [MindSpore 场景的溢出检测与解析](./docs/13.overflow_check_MindSpore.md)
61
+
62
+ ### 5 数据解析
63
+
64
+ 该功能用于比对前后两次 NPU ACL 层级 dump 数据的一致性。
65
+
66
+ [PyTorch 场景的数据解析](./docs/14.data_parse_PyTorch.md)
67
+
68
+ ### 6 无标杆比对
69
+
70
+ [PyTorch 场景的无标杆比对](./docs/15.free_benchmarking_PyTorch.md)(待补充)
71
+
72
+ [MindSpore 场景的无标杆比对](./docs/16.overflow_check_MindSpore.md)(待补充)
73
+
74
+ ### 7 梯度状态监测
75
+
76
+ 本功能用于采集梯度数据并进行梯度相似度比对,可以精准定位出现问题的 step。
77
+
78
+ [兼容 PyTorch 和 MindSpore 框架的梯度监测](./docs/17.grad_probe.md)
79
+
80
+ ## 🌟 新版本特性
81
+
82
+ 【精度预检】
83
+ - 落盘数据小。
84
+ - 支持随机生成模式和真实数据模式。
85
+ - 单 API 测试,排除整网中的累计误差问题。
86
+
87
+ 【梯度检测】
88
+ - 使用便捷,无需在训练流程里插入代码。
89
+ - 可以精准定位问题出现的 step。
90
+
91
+ ## 📑 补充材料
92
+
93
+ [msprobe 标准性能基线报告](./docs/S01.report_msprobe_dump_standard_performance_baseline.md)
94
+
95
+ [无标杆工具场景验证和性能基线报告](./docs/S02.report_free_benchmarking_validation_performance_baseline.md)
96
+
97
+ ## ❓ FAQ
98
+
99
+ [FAQ for PyTorch](./docs/FAQ_PyTorch.md)
100
+
101
+ FAQ for MindSpore