mindstudio-probe 1.0.3__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (262) hide show
  1. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/METADATA +36 -34
  3. mindstudio_probe-1.0.4.dist-info/RECORD +276 -0
  4. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +101 -237
  7. msprobe/{config/config.json → config.json} +49 -49
  8. msprobe/core/advisor/advisor.py +124 -124
  9. msprobe/core/advisor/advisor_const.py +59 -59
  10. msprobe/core/advisor/advisor_result.py +58 -58
  11. msprobe/core/common/const.py +341 -318
  12. msprobe/core/common/exceptions.py +99 -99
  13. msprobe/core/common/{file_check.py → file_utils.py} +478 -283
  14. msprobe/core/common/log.py +76 -69
  15. msprobe/core/common/utils.py +385 -616
  16. msprobe/core/common_config.py +85 -71
  17. msprobe/core/compare/acc_compare.py +299 -298
  18. msprobe/core/compare/check.py +95 -95
  19. msprobe/core/compare/compare_cli.py +49 -49
  20. msprobe/core/compare/highlight.py +223 -222
  21. msprobe/core/compare/multiprocessing_compute.py +149 -149
  22. msprobe/core/compare/npy_compare.py +295 -295
  23. msprobe/core/compare/utils.py +430 -429
  24. msprobe/core/data_dump/data_collector.py +154 -144
  25. msprobe/core/data_dump/data_processor/base.py +314 -293
  26. msprobe/core/data_dump/data_processor/factory.py +59 -59
  27. msprobe/core/data_dump/data_processor/mindspore_processor.py +186 -198
  28. msprobe/core/data_dump/data_processor/pytorch_processor.py +366 -389
  29. msprobe/core/data_dump/json_writer.py +96 -116
  30. msprobe/core/data_dump/scope.py +178 -178
  31. msprobe/core/grad_probe/constant.py +70 -70
  32. msprobe/core/grad_probe/grad_compare.py +171 -175
  33. msprobe/core/grad_probe/utils.py +64 -52
  34. msprobe/docs/01.installation.md +89 -0
  35. msprobe/docs/02.config_introduction.md +165 -0
  36. msprobe/docs/03.config_examples.md +247 -0
  37. msprobe/docs/04.acl_config_examples.md +76 -0
  38. msprobe/docs/05.data_dump_PyTorch.md +198 -0
  39. msprobe/docs/06.data_dump_MindSpore.md +243 -0
  40. msprobe/docs/07.accuracy_checker_PyTorch.md +274 -0
  41. msprobe/docs/08.accuracy_checker_online_PyTorch.md +198 -0
  42. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  43. msprobe/docs/10.accuracy_compare_PyTorch.md +245 -0
  44. msprobe/docs/11.accuracy_compare_MindSpore.md +202 -0
  45. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  46. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  47. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  48. msprobe/docs/15.free_benchmarking_PyTorch.md +164 -0
  49. msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +207 -207
  50. msprobe/docs/FAQ_PyTorch.md +177 -0
  51. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  52. msprobe/docs/img/free_benchmark_framework.png +0 -0
  53. msprobe/mindspore/__init__.py +1 -1
  54. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +254 -245
  55. msprobe/mindspore/api_accuracy_checker/api_info.py +69 -69
  56. msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
  57. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
  58. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  59. msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
  60. msprobe/mindspore/api_accuracy_checker/main.py +8 -15
  61. msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
  62. msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
  63. msprobe/mindspore/cell_processor.py +34 -34
  64. msprobe/mindspore/common/const.py +106 -87
  65. msprobe/mindspore/common/log.py +37 -37
  66. msprobe/mindspore/common/utils.py +81 -57
  67. msprobe/mindspore/compare/distributed_compare.py +75 -75
  68. msprobe/mindspore/compare/ms_compare.py +219 -117
  69. msprobe/mindspore/compare/ms_graph_compare.py +348 -317
  70. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
  71. msprobe/mindspore/debugger/debugger_config.py +66 -74
  72. msprobe/mindspore/debugger/precision_debugger.py +126 -107
  73. msprobe/mindspore/dump/dump_tool_factory.py +35 -35
  74. msprobe/mindspore/dump/hook_cell/api_registry.py +118 -104
  75. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
  76. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +922 -925
  77. msprobe/mindspore/dump/hook_cell/wrap_api.py +113 -0
  78. msprobe/mindspore/dump/jit_dump.py +72 -56
  79. msprobe/mindspore/dump/kernel_graph_dump.py +59 -60
  80. msprobe/mindspore/dump/kernel_kbyk_dump.py +64 -65
  81. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +116 -116
  82. msprobe/mindspore/free_benchmark/common/config.py +12 -12
  83. msprobe/mindspore/free_benchmark/common/handler_params.py +17 -17
  84. msprobe/mindspore/free_benchmark/common/utils.py +71 -71
  85. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
  86. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +43 -42
  87. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +107 -107
  88. msprobe/mindspore/free_benchmark/handler/base_handler.py +90 -90
  89. msprobe/mindspore/free_benchmark/handler/check_handler.py +41 -41
  90. msprobe/mindspore/free_benchmark/handler/fix_handler.py +36 -36
  91. msprobe/mindspore/free_benchmark/handler/handler_factory.py +21 -21
  92. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +67 -67
  93. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +21 -21
  94. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +63 -63
  95. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +51 -0
  96. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +35 -34
  97. msprobe/mindspore/free_benchmark/perturbation/no_change.py +12 -12
  98. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +29 -27
  99. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +33 -33
  100. msprobe/mindspore/grad_probe/global_context.py +90 -91
  101. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
  102. msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
  103. msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
  104. msprobe/mindspore/grad_probe/hook.py +94 -92
  105. msprobe/mindspore/grad_probe/utils.py +29 -28
  106. msprobe/mindspore/ms_config.py +128 -126
  107. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +44 -45
  108. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +34 -34
  109. msprobe/mindspore/runtime.py +4 -4
  110. msprobe/mindspore/service.py +378 -354
  111. msprobe/mindspore/task_handler_factory.py +24 -24
  112. msprobe/msprobe.py +105 -107
  113. msprobe/pytorch/__init__.py +3 -3
  114. msprobe/pytorch/api_accuracy_checker/common/config.py +53 -55
  115. msprobe/pytorch/api_accuracy_checker/common/utils.py +214 -165
  116. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +213 -213
  117. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +606 -581
  118. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  119. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  120. msprobe/pytorch/api_accuracy_checker/compare/compare.py +386 -381
  121. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +73 -73
  122. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +245 -244
  123. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
  124. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +335 -332
  125. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +200 -199
  126. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +133 -134
  127. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +592 -581
  128. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +70 -74
  129. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  130. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +197 -202
  131. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +325 -324
  132. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +204 -204
  133. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +219 -218
  134. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +10 -10
  135. msprobe/pytorch/bench_functions/__init__.py +15 -15
  136. msprobe/pytorch/bench_functions/apply_adam_w.py +28 -28
  137. msprobe/pytorch/bench_functions/confusion_transpose.py +19 -19
  138. msprobe/pytorch/bench_functions/fast_gelu.py +55 -55
  139. msprobe/pytorch/bench_functions/layer_norm_eval.py +6 -6
  140. msprobe/pytorch/bench_functions/linear.py +12 -12
  141. msprobe/pytorch/bench_functions/matmul_backward.py +48 -48
  142. msprobe/pytorch/bench_functions/npu_fusion_attention.py +509 -421
  143. msprobe/pytorch/bench_functions/rms_norm.py +15 -15
  144. msprobe/pytorch/bench_functions/rotary_mul.py +52 -52
  145. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +26 -26
  146. msprobe/pytorch/bench_functions/swiglu.py +55 -55
  147. msprobe/pytorch/common/__init__.py +2 -2
  148. msprobe/pytorch/common/compare_script.template +14 -14
  149. msprobe/pytorch/common/log.py +20 -31
  150. msprobe/pytorch/common/parse_json.py +39 -39
  151. msprobe/pytorch/common/utils.py +305 -300
  152. msprobe/pytorch/compare/distributed_compare.py +66 -66
  153. msprobe/pytorch/compare/mapping.yaml +607 -607
  154. msprobe/pytorch/compare/match.py +34 -33
  155. msprobe/pytorch/compare/pt_compare.py +50 -40
  156. msprobe/pytorch/debugger/debugger_config.py +95 -95
  157. msprobe/pytorch/debugger/precision_debugger.py +125 -125
  158. msprobe/pytorch/free_benchmark/__init__.py +8 -8
  159. msprobe/pytorch/free_benchmark/common/constant.py +70 -70
  160. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  161. msprobe/pytorch/free_benchmark/common/enums.py +37 -37
  162. msprobe/pytorch/free_benchmark/common/params.py +129 -129
  163. msprobe/pytorch/free_benchmark/common/utils.py +102 -102
  164. msprobe/pytorch/free_benchmark/compare/grad_saver.py +179 -179
  165. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +104 -104
  166. msprobe/pytorch/free_benchmark/main.py +105 -105
  167. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +13 -13
  168. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +41 -41
  169. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +90 -90
  170. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +104 -104
  171. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +63 -63
  172. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +68 -68
  173. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +28 -28
  174. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +45 -45
  175. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +19 -19
  176. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +217 -217
  177. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +39 -39
  178. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +23 -23
  179. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +30 -30
  180. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +170 -170
  181. msprobe/pytorch/function_factory.py +76 -75
  182. msprobe/pytorch/functional/dump_module.py +39 -39
  183. msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
  184. msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
  185. msprobe/pytorch/hook_module/api_registry.py +161 -161
  186. msprobe/pytorch/hook_module/hook_module.py +120 -120
  187. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
  188. msprobe/pytorch/hook_module/utils.py +30 -29
  189. msprobe/pytorch/hook_module/wrap_aten.py +110 -110
  190. msprobe/pytorch/hook_module/wrap_distributed.py +78 -78
  191. msprobe/pytorch/hook_module/wrap_functional.py +105 -105
  192. msprobe/pytorch/hook_module/wrap_npu_custom.py +93 -84
  193. msprobe/pytorch/hook_module/wrap_tensor.py +71 -71
  194. msprobe/pytorch/hook_module/wrap_torch.py +86 -86
  195. msprobe/pytorch/hook_module/wrap_vf.py +62 -62
  196. msprobe/pytorch/module_processer.py +138 -138
  197. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  198. msprobe/pytorch/online_dispatch/compare.py +236 -236
  199. msprobe/pytorch/online_dispatch/dispatch.py +271 -271
  200. msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
  201. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  202. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +49 -49
  203. msprobe/pytorch/online_dispatch/utils.py +130 -146
  204. msprobe/pytorch/parse.py +4 -4
  205. msprobe/pytorch/parse_tool/cli.py +32 -32
  206. msprobe/pytorch/parse_tool/lib/compare.py +260 -271
  207. msprobe/pytorch/parse_tool/lib/config.py +52 -52
  208. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  209. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  210. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  211. msprobe/pytorch/parse_tool/lib/parse_tool.py +158 -158
  212. msprobe/pytorch/parse_tool/lib/utils.py +316 -321
  213. msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
  214. msprobe/pytorch/pt_config.py +188 -187
  215. msprobe/pytorch/service.py +246 -252
  216. mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
  217. msprobe/config/README.md +0 -539
  218. msprobe/mindspore/doc/compare.md +0 -58
  219. msprobe/mindspore/doc/dump.md +0 -217
  220. msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
  221. msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
  222. msprobe/pytorch/doc/FAQ.md +0 -193
  223. msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
  224. msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
  225. msprobe/pytorch/doc/dump.md +0 -260
  226. msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  227. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
  228. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  229. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  230. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  231. msprobe/pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md +0 -90
  232. msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
  233. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.0.4.dist-info}/top_level.txt +0 -0
  234. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  235. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  236. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  237. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  238. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  239. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  240. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  241. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  242. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  243. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  244. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  245. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  246. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  247. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  248. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  249. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  250. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  251. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  252. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  253. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  254. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  255. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  256. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  257. /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
  258. /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
  259. /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
  260. /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
  261. /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
  262. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -1,295 +1,295 @@
1
- import abc
2
- import numpy as np
3
- from msprobe.core.common.utils import format_value
4
- from msprobe.core.common.const import Const, CompareConst
5
- from msprobe.core.common.log import logger
6
-
7
-
8
- def handle_inf_nan(n_value, b_value):
9
- """处理inf和nan的数据"""
10
- n_inf = np.isinf(n_value)
11
- b_inf = np.isinf(b_value)
12
- n_nan = np.isnan(n_value)
13
- b_nan = np.isnan(b_value)
14
- n_invalid = np.any(n_inf) or np.any(n_nan)
15
- b_invalid = np.any(b_inf) or np.any(b_nan)
16
- if n_invalid or b_invalid:
17
- if np.array_equal(n_inf, b_inf) and np.array_equal(n_nan, b_nan):
18
- n_value[n_inf] = 0
19
- b_value[b_inf] = 0
20
- n_value[n_nan] = 0
21
- b_value[b_nan] = 0
22
- else:
23
- return CompareConst.NAN, CompareConst.NAN
24
- return n_value, b_value
25
-
26
-
27
- def get_error_type(n_value, b_value, error_flag):
28
- """判断数据是否有异常并返回异常的n_value, b_value,同时返回error_flag"""
29
- if error_flag:
30
- return CompareConst.READ_NONE, CompareConst.READ_NONE, True
31
- if n_value.size == 0: # 判断读取到的数据是否为空
32
- return CompareConst.NONE, CompareConst.NONE, True
33
- if n_value.shape != b_value.shape: # 判断NPU和bench的数据结构是否一致
34
- return CompareConst.SHAPE_UNMATCH, CompareConst.SHAPE_UNMATCH, True
35
- if not n_value.shape: # 判断数据是否为标量
36
- return n_value, b_value, False
37
-
38
- n_value, b_value = handle_inf_nan(n_value, b_value) # 判断是否有nan/inf数据
39
- if n_value is CompareConst.NAN or b_value is CompareConst.NAN:
40
- return CompareConst.NAN, CompareConst.NAN, True
41
- return n_value, b_value, False
42
-
43
-
44
- def reshape_value(n_value, b_value):
45
- """返回reshape后的数据"""
46
- if not n_value.shape: # 判断数据是否为标量
47
- if n_value.dtype == bool:
48
- n_value = n_value.astype(float)
49
- b_value = b_value.astype(float)
50
- return n_value, b_value
51
-
52
- n_value = n_value.reshape(-1).astype(float)
53
- b_value = b_value.reshape(-1).astype(float)
54
- return n_value, b_value
55
-
56
-
57
- def get_error_message(n_value, b_value, npu_op_name, error_flag, error_file=None):
58
- """获取异常情况的错误信息"""
59
- if error_flag:
60
- if n_value == CompareConst.READ_NONE:
61
- if error_file:
62
- return "Dump file: {} not found.".format(error_file)
63
- return CompareConst.NO_BENCH
64
- if n_value == CompareConst.NONE:
65
- return "This is empty data, can not compare."
66
- if n_value == CompareConst.SHAPE_UNMATCH:
67
- return "Shape of NPU and bench Tensor do not match. Skipped."
68
- if n_value == CompareConst.NAN:
69
- return "The position of inf or nan in NPU and bench Tensor do not match."
70
- else:
71
- if not n_value.shape:
72
- return "This is type of scalar data, can not compare."
73
- if n_value.dtype != b_value.dtype:
74
- logger.warning("Dtype of NPU and bench Tensor do not match: {}".format(npu_op_name))
75
- return "Dtype of NPU and bench Tensor do not match."
76
- return ""
77
-
78
-
79
- def npy_data_check(n_value, b_value):
80
- error_message = ""
81
- if n_value is None or b_value is None:
82
- error_message += "Dump file not found.\n"
83
- if n_value == "" or b_value == "":
84
- error_message += "Dump file not found.\n"
85
-
86
- # 检查 n_value 和 b_value 是否为空
87
- if not error_message and (n_value.size == 0 or b_value.size == 0):
88
- error_message += "This is empty data, can not compare.\n"
89
-
90
- if not error_message:
91
- if not n_value.shape or not b_value.shape:
92
- error_message += "This is type of scalar data, can not compare.\n"
93
- if n_value.shape != b_value.shape:
94
- error_message += "Shape of NPU and bench Tensor do not match.\n"
95
- if n_value.dtype != b_value.dtype:
96
- error_message += "Dtype of NPU and bench Tensor do not match. Skipped.\n"
97
-
98
- if not error_message:
99
- n_value, b_value = handle_inf_nan(n_value, b_value) # 判断是否有 nan/inf 数据
100
- if CompareConst.NAN in (n_value, b_value):
101
- error_message += "The position of inf or nan in NPU and bench Tensor do not match.\n"
102
- if error_message == "":
103
- error_flag = False
104
- else:
105
- error_flag = True
106
- return error_flag, error_message
107
-
108
-
109
- def statistics_data_check(result_dict):
110
- error_message = ""
111
-
112
- if result_dict.get(CompareConst.NPU_NAME) is None or result_dict.get(CompareConst.BENCH_NAME) is None:
113
- error_message += "Dump file not found.\n"
114
-
115
- if not result_dict.get(CompareConst.NPU_SHAPE) or not result_dict.get(CompareConst.BENCH_SHAPE):
116
- error_message += "This is type of scalar data, can not compare.\n"
117
- elif result_dict.get(CompareConst.NPU_SHAPE) != result_dict.get(CompareConst.BENCH_SHAPE):
118
- error_message += "Tensor shapes do not match.\n"
119
-
120
- if result_dict.get(CompareConst.NPU_DTYPE) != result_dict.get(CompareConst.BENCH_DTYPE):
121
- error_message += "Dtype of NPU and bench Tensor do not match. Skipped.\n"
122
-
123
- if error_message == "":
124
- error_flag = False
125
- else:
126
- error_flag = True
127
- return error_flag, error_message
128
-
129
-
130
- class TensorComparisonBasic(abc.ABC):
131
- """NPU和bench中npy数据的比较模板"""
132
- @abc.abstractmethod
133
- def apply(self, n_value, b_value, error_flag, relative_err=None):
134
- raise NotImplementedError
135
-
136
-
137
- class GetCosineSimilarity(TensorComparisonBasic):
138
- """计算cosine相似度"""
139
- @staticmethod
140
- def correct_data(result):
141
- if result == CompareConst.NAN:
142
- return result
143
- if float(result) > CompareConst.COSINE_THRESHOLD:
144
- return 1.0
145
- return result
146
-
147
- def apply(self, n_value, b_value, error_flag, relative_err=None):
148
- if error_flag:
149
- if n_value == CompareConst.READ_NONE:
150
- return CompareConst.NONE, ''
151
- if n_value == CompareConst.NONE:
152
- return CompareConst.UNSUPPORTED, ''
153
- if n_value == CompareConst.SHAPE_UNMATCH:
154
- return CompareConst.SHAPE_UNMATCH, ''
155
- if n_value == CompareConst.NAN:
156
- return "N/A", ''
157
-
158
- if not n_value.shape:
159
- return CompareConst.UNSUPPORTED, ''
160
-
161
- with np.errstate(divide='ignore', invalid='ignore'):
162
- if len(n_value) == 1:
163
- return CompareConst.UNSUPPORTED, "This tensor is scalar."
164
- num = n_value.dot(b_value)
165
- a_norm = np.linalg.norm(n_value)
166
- b_norm = np.linalg.norm(b_value)
167
-
168
- if a_norm <= Const.FLOAT_EPSILON and b_norm <= Const.FLOAT_EPSILON:
169
- return 1.0, ''
170
- if a_norm <= Const.FLOAT_EPSILON:
171
- return CompareConst.NAN, 'Cannot compare by Cosine Similarity, All the data is Zero in npu dump data.'
172
- if b_norm <= Const.FLOAT_EPSILON:
173
- return CompareConst.NAN, 'Cannot compare by Cosine Similarity, All the data is Zero in Bench dump data.'
174
-
175
- cos = num / (a_norm * b_norm)
176
- if np.isnan(cos):
177
- return CompareConst.NAN, 'Cannot compare by Cosine Similarity, the dump data has NaN.'
178
- result = format_value(cos)
179
- result = self.correct_data(result)
180
- return 1.0 if float(result) > 0.99999 else result, ''
181
-
182
-
183
- class GetMaxAbsErr(TensorComparisonBasic):
184
- """计算最大绝对误差"""
185
- def apply(self, n_value, b_value, error_flag, relative_err=None):
186
- if error_flag:
187
- if n_value == CompareConst.READ_NONE:
188
- return CompareConst.NONE, ""
189
- if n_value == CompareConst.NONE:
190
- return 0, ""
191
- if n_value == CompareConst.SHAPE_UNMATCH:
192
- return CompareConst.SHAPE_UNMATCH, ""
193
- if n_value == CompareConst.NAN:
194
- return "N/A", ""
195
-
196
- temp_res = n_value - b_value
197
- max_value = np.max(np.abs(temp_res))
198
- return format_value(max_value), ""
199
-
200
-
201
- def get_relative_err(n_value, b_value):
202
- """计算相对误差"""
203
- with np.errstate(divide='ignore', invalid='ignore'):
204
- if b_value.dtype not in CompareConst.FLOAT_TYPE:
205
- n_value, b_value = n_value.astype(float), b_value.astype(float)
206
- zero_mask = (b_value == 0)
207
- b_value[zero_mask] += np.finfo(b_value.dtype).eps
208
- n_value[zero_mask] += np.finfo(b_value.dtype).eps
209
- relative_err = np.divide((n_value - b_value), b_value)
210
- return np.abs(relative_err)
211
-
212
-
213
- class GetMaxRelativeErr(TensorComparisonBasic):
214
- """计算最大相对误差"""
215
- def apply(self, n_value, b_value, error_flag, relative_err=None):
216
- if error_flag:
217
- if n_value == CompareConst.READ_NONE:
218
- return CompareConst.NONE, ''
219
- if n_value == CompareConst.NONE:
220
- return 0, ''
221
- if n_value == CompareConst.SHAPE_UNMATCH:
222
- return CompareConst.SHAPE_UNMATCH, ''
223
- if n_value == CompareConst.NAN:
224
- return "N/A", ''
225
-
226
- if relative_err is None:
227
- relative_err = get_relative_err(n_value, b_value)
228
- max_relative_err = np.max(np.abs(relative_err))
229
- if np.isnan(max_relative_err):
230
- message = 'Cannot compare by MaxRelativeError, the data contains nan in dump data.'
231
- return CompareConst.NAN, message
232
- return format_value(max_relative_err), ''
233
-
234
-
235
- class GetThousandErrRatio(TensorComparisonBasic):
236
- """计算相对误差小于千分之一的比例"""
237
- def apply(self, n_value, b_value, error_flag, relative_err=None):
238
- if error_flag:
239
- if n_value == CompareConst.READ_NONE:
240
- return CompareConst.NONE, ""
241
- if n_value == CompareConst.NONE:
242
- return 0, ""
243
- if n_value == CompareConst.SHAPE_UNMATCH:
244
- return CompareConst.SHAPE_UNMATCH, ""
245
- if n_value == CompareConst.NAN:
246
- return "N/A", ""
247
-
248
- if not n_value.shape:
249
- return CompareConst.NAN, ""
250
- if relative_err is None:
251
- relative_err = get_relative_err(n_value, b_value)
252
- if not np.size(relative_err):
253
- return CompareConst.NAN, ""
254
- return format_value(np.sum(relative_err < CompareConst.THOUSAND_RATIO_THRESHOLD) / np.size(relative_err)), ""
255
-
256
-
257
- class GetFiveThousandErrRatio(TensorComparisonBasic):
258
- """计算相对误差小于千分之五的比例"""
259
- def apply(self, n_value, b_value, error_flag, relative_err=None):
260
- if error_flag:
261
- if n_value == CompareConst.READ_NONE:
262
- return CompareConst.NONE, ""
263
- if n_value == CompareConst.NONE:
264
- return 0, ""
265
- if n_value == CompareConst.SHAPE_UNMATCH:
266
- return CompareConst.SHAPE_UNMATCH, ""
267
- if n_value == CompareConst.NAN:
268
- return "N/A", ""
269
-
270
- if not n_value.shape:
271
- return CompareConst.NAN, ""
272
- if relative_err is None:
273
- relative_err = get_relative_err(n_value, b_value)
274
- if not np.size(relative_err):
275
- return CompareConst.NAN, ""
276
- return format_value(np.sum(relative_err < CompareConst.FIVE_THOUSAND_RATIO_THRESHOLD) / np.size(relative_err)), ""
277
-
278
-
279
- class CompareOps:
280
- compare_ops = {
281
- "cosine_similarity": GetCosineSimilarity(),
282
- "max_abs_error": GetMaxAbsErr(),
283
- "max_relative_error": GetMaxRelativeErr(),
284
- "one_thousand_err_ratio": GetThousandErrRatio(),
285
- "five_thousand_err_ratio": GetFiveThousandErrRatio()
286
- }
287
-
288
-
289
- def compare_ops_apply(n_value, b_value, error_flag, err_msg, relative_err=None):
290
- result_list = []
291
- for op in CompareOps.compare_ops.values():
292
- result, msg = op.apply(n_value, b_value, error_flag, relative_err=relative_err)
293
- err_msg += msg
294
- result_list.append(result)
295
- return result_list, err_msg
1
+ import abc
2
+ import numpy as np
3
+ from msprobe.core.common.utils import format_value
4
+ from msprobe.core.common.const import Const, CompareConst
5
+ from msprobe.core.common.log import logger
6
+
7
+
8
+ def handle_inf_nan(n_value, b_value):
9
+ """处理inf和nan的数据"""
10
+ n_inf = np.isinf(n_value)
11
+ b_inf = np.isinf(b_value)
12
+ n_nan = np.isnan(n_value)
13
+ b_nan = np.isnan(b_value)
14
+ n_invalid = np.any(n_inf) or np.any(n_nan)
15
+ b_invalid = np.any(b_inf) or np.any(b_nan)
16
+ if n_invalid or b_invalid:
17
+ if np.array_equal(n_inf, b_inf) and np.array_equal(n_nan, b_nan):
18
+ n_value[n_inf] = 0
19
+ b_value[b_inf] = 0
20
+ n_value[n_nan] = 0
21
+ b_value[b_nan] = 0
22
+ else:
23
+ return CompareConst.NAN, CompareConst.NAN
24
+ return n_value, b_value
25
+
26
+
27
+ def get_error_type(n_value, b_value, error_flag):
28
+ """判断数据是否有异常并返回异常的n_value, b_value,同时返回error_flag"""
29
+ if error_flag:
30
+ return CompareConst.READ_NONE, CompareConst.READ_NONE, True
31
+ if n_value.size == 0: # 判断读取到的数据是否为空
32
+ return CompareConst.NONE, CompareConst.NONE, True
33
+ if n_value.shape != b_value.shape: # 判断NPU和bench的数据结构是否一致
34
+ return CompareConst.SHAPE_UNMATCH, CompareConst.SHAPE_UNMATCH, True
35
+ if not n_value.shape: # 判断数据是否为标量
36
+ return n_value, b_value, False
37
+
38
+ n_value, b_value = handle_inf_nan(n_value, b_value) # 判断是否有nan/inf数据
39
+ if n_value is CompareConst.NAN or b_value is CompareConst.NAN:
40
+ return CompareConst.NAN, CompareConst.NAN, True
41
+ return n_value, b_value, False
42
+
43
+
44
+ def reshape_value(n_value, b_value):
45
+ """返回reshape后的数据"""
46
+ if not n_value.shape: # 判断数据是否为标量
47
+ if n_value.dtype == bool:
48
+ n_value = n_value.astype(float)
49
+ b_value = b_value.astype(float)
50
+ return n_value, b_value
51
+
52
+ n_value = n_value.reshape(-1).astype(float)
53
+ b_value = b_value.reshape(-1).astype(float)
54
+ return n_value, b_value
55
+
56
+
57
+ def get_error_message(n_value, b_value, npu_op_name, error_flag, error_file=None):
58
+ """获取异常情况的错误信息"""
59
+ if error_flag:
60
+ if n_value == CompareConst.READ_NONE:
61
+ if error_file:
62
+ return "Dump file: {} not found.".format(error_file)
63
+ return CompareConst.NO_BENCH
64
+ if n_value == CompareConst.NONE:
65
+ return "This is empty data, can not compare."
66
+ if n_value == CompareConst.SHAPE_UNMATCH:
67
+ return "Shape of NPU and bench Tensor do not match. Skipped."
68
+ if n_value == CompareConst.NAN:
69
+ return "The position of inf or nan in NPU and bench Tensor do not match."
70
+ else:
71
+ if not n_value.shape:
72
+ return "This is type of scalar data, can not compare."
73
+ if n_value.dtype != b_value.dtype:
74
+ logger.warning("Dtype of NPU and bench Tensor do not match: {}".format(npu_op_name))
75
+ return "Dtype of NPU and bench Tensor do not match."
76
+ return ""
77
+
78
+
79
+ def npy_data_check(n_value, b_value):
80
+ error_message = ""
81
+ if n_value is None or b_value is None:
82
+ error_message += "Dump file not found.\n"
83
+ if n_value == "" or b_value == "":
84
+ error_message += "Dump file not found.\n"
85
+
86
+ # 检查 n_value 和 b_value 是否为空
87
+ if not error_message and (n_value.size == 0 or b_value.size == 0):
88
+ error_message += "This is empty data, can not compare.\n"
89
+
90
+ if not error_message:
91
+ if not n_value.shape or not b_value.shape:
92
+ error_message += "This is type of scalar data, can not compare.\n"
93
+ if n_value.shape != b_value.shape:
94
+ error_message += "Shape of NPU and bench Tensor do not match.\n"
95
+ if n_value.dtype != b_value.dtype:
96
+ error_message += "Dtype of NPU and bench Tensor do not match. Skipped.\n"
97
+
98
+ if not error_message:
99
+ n_value, b_value = handle_inf_nan(n_value, b_value) # 判断是否有 nan/inf 数据
100
+ if CompareConst.NAN in (n_value, b_value):
101
+ error_message += "The position of inf or nan in NPU and bench Tensor do not match.\n"
102
+ if error_message == "":
103
+ error_flag = False
104
+ else:
105
+ error_flag = True
106
+ return error_flag, error_message
107
+
108
+
109
+ def statistics_data_check(result_dict):
110
+ error_message = ""
111
+
112
+ if result_dict.get(CompareConst.NPU_NAME) is None or result_dict.get(CompareConst.BENCH_NAME) is None:
113
+ error_message += "Dump file not found.\n"
114
+
115
+ if not result_dict.get(CompareConst.NPU_SHAPE) or not result_dict.get(CompareConst.BENCH_SHAPE):
116
+ error_message += "This is type of scalar data, can not compare.\n"
117
+ elif result_dict.get(CompareConst.NPU_SHAPE) != result_dict.get(CompareConst.BENCH_SHAPE):
118
+ error_message += "Tensor shapes do not match.\n"
119
+
120
+ if result_dict.get(CompareConst.NPU_DTYPE) != result_dict.get(CompareConst.BENCH_DTYPE):
121
+ error_message += "Dtype of NPU and bench Tensor do not match. Skipped.\n"
122
+
123
+ if error_message == "":
124
+ error_flag = False
125
+ else:
126
+ error_flag = True
127
+ return error_flag, error_message
128
+
129
+
130
+ class TensorComparisonBasic(abc.ABC):
131
+ """NPU和bench中npy数据的比较模板"""
132
+ @abc.abstractmethod
133
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
134
+ raise NotImplementedError
135
+
136
+
137
+ class GetCosineSimilarity(TensorComparisonBasic):
138
+ """计算cosine相似度"""
139
+ @staticmethod
140
+ def correct_data(result):
141
+ if result == CompareConst.NAN:
142
+ return result
143
+ if float(result) > CompareConst.COSINE_THRESHOLD:
144
+ return round(float(result), 6)
145
+ return result
146
+
147
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
148
+ if error_flag:
149
+ if n_value == CompareConst.READ_NONE:
150
+ return CompareConst.NONE, ''
151
+ if n_value == CompareConst.NONE:
152
+ return CompareConst.UNSUPPORTED, ''
153
+ if n_value == CompareConst.SHAPE_UNMATCH:
154
+ return CompareConst.SHAPE_UNMATCH, ''
155
+ if n_value == CompareConst.NAN:
156
+ return "N/A", ''
157
+
158
+ if not n_value.shape:
159
+ return CompareConst.UNSUPPORTED, ''
160
+
161
+ with np.errstate(divide='ignore', invalid='ignore'):
162
+ if len(n_value) == 1:
163
+ return CompareConst.UNSUPPORTED, "This tensor is scalar."
164
+ num = n_value.dot(b_value)
165
+ a_norm = np.linalg.norm(n_value)
166
+ b_norm = np.linalg.norm(b_value)
167
+
168
+ if a_norm <= Const.FLOAT_EPSILON and b_norm <= Const.FLOAT_EPSILON:
169
+ return 1.0, ''
170
+ if a_norm <= Const.FLOAT_EPSILON:
171
+ return CompareConst.NAN, 'Cannot compare by Cosine Similarity, All the data is Zero in npu dump data.'
172
+ if b_norm <= Const.FLOAT_EPSILON:
173
+ return CompareConst.NAN, 'Cannot compare by Cosine Similarity, All the data is Zero in Bench dump data.'
174
+
175
+ cos = num / (a_norm * b_norm)
176
+ if np.isnan(cos):
177
+ return CompareConst.NAN, 'Cannot compare by Cosine Similarity, the dump data has NaN.'
178
+ result = format_value(cos)
179
+ result = self.correct_data(result)
180
+ return 1.0 if float(result) > 0.99999 else result, ''
181
+
182
+
183
+ class GetMaxAbsErr(TensorComparisonBasic):
184
+ """计算最大绝对误差"""
185
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
186
+ if error_flag:
187
+ if n_value == CompareConst.READ_NONE:
188
+ return CompareConst.NONE, ""
189
+ if n_value == CompareConst.NONE:
190
+ return 0, ""
191
+ if n_value == CompareConst.SHAPE_UNMATCH:
192
+ return CompareConst.SHAPE_UNMATCH, ""
193
+ if n_value == CompareConst.NAN:
194
+ return "N/A", ""
195
+
196
+ temp_res = n_value - b_value
197
+ max_value = np.max(np.abs(temp_res))
198
+ return format_value(max_value), ""
199
+
200
+
201
+ def get_relative_err(n_value, b_value):
202
+ """计算相对误差"""
203
+ with np.errstate(divide='ignore', invalid='ignore'):
204
+ if b_value.dtype not in CompareConst.FLOAT_TYPE:
205
+ n_value, b_value = n_value.astype(float), b_value.astype(float)
206
+ zero_mask = (b_value == 0)
207
+ b_value[zero_mask] += np.finfo(b_value.dtype).eps
208
+ n_value[zero_mask] += np.finfo(b_value.dtype).eps
209
+ relative_err = np.divide((n_value - b_value), b_value)
210
+ return np.abs(relative_err)
211
+
212
+
213
+ class GetMaxRelativeErr(TensorComparisonBasic):
214
+ """计算最大相对误差"""
215
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
216
+ if error_flag:
217
+ if n_value == CompareConst.READ_NONE:
218
+ return CompareConst.NONE, ''
219
+ if n_value == CompareConst.NONE:
220
+ return 0, ''
221
+ if n_value == CompareConst.SHAPE_UNMATCH:
222
+ return CompareConst.SHAPE_UNMATCH, ''
223
+ if n_value == CompareConst.NAN:
224
+ return "N/A", ''
225
+
226
+ if relative_err is None:
227
+ relative_err = get_relative_err(n_value, b_value)
228
+ max_relative_err = np.max(np.abs(relative_err))
229
+ if np.isnan(max_relative_err):
230
+ message = 'Cannot compare by MaxRelativeError, the data contains nan in dump data.'
231
+ return CompareConst.NAN, message
232
+ return format_value(max_relative_err), ''
233
+
234
+
235
+ class GetThousandErrRatio(TensorComparisonBasic):
236
+ """计算相对误差小于千分之一的比例"""
237
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
238
+ if error_flag:
239
+ if n_value == CompareConst.READ_NONE:
240
+ return CompareConst.NONE, ""
241
+ if n_value == CompareConst.NONE:
242
+ return 0, ""
243
+ if n_value == CompareConst.SHAPE_UNMATCH:
244
+ return CompareConst.SHAPE_UNMATCH, ""
245
+ if n_value == CompareConst.NAN:
246
+ return "N/A", ""
247
+
248
+ if not n_value.shape:
249
+ return CompareConst.NAN, ""
250
+ if relative_err is None:
251
+ relative_err = get_relative_err(n_value, b_value)
252
+ if not np.size(relative_err):
253
+ return CompareConst.NAN, ""
254
+ return format_value(np.sum(relative_err < CompareConst.THOUSAND_RATIO_THRESHOLD) / np.size(relative_err)), ""
255
+
256
+
257
+ class GetFiveThousandErrRatio(TensorComparisonBasic):
258
+ """计算相对误差小于千分之五的比例"""
259
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
260
+ if error_flag:
261
+ if n_value == CompareConst.READ_NONE:
262
+ return CompareConst.NONE, ""
263
+ if n_value == CompareConst.NONE:
264
+ return 0, ""
265
+ if n_value == CompareConst.SHAPE_UNMATCH:
266
+ return CompareConst.SHAPE_UNMATCH, ""
267
+ if n_value == CompareConst.NAN:
268
+ return "N/A", ""
269
+
270
+ if not n_value.shape:
271
+ return CompareConst.NAN, ""
272
+ if relative_err is None:
273
+ relative_err = get_relative_err(n_value, b_value)
274
+ if not np.size(relative_err):
275
+ return CompareConst.NAN, ""
276
+ return format_value(np.sum(relative_err < CompareConst.FIVE_THOUSAND_RATIO_THRESHOLD) / np.size(relative_err)), ""
277
+
278
+
279
+ class CompareOps:
280
+ compare_ops = {
281
+ "cosine_similarity": GetCosineSimilarity(),
282
+ "max_abs_error": GetMaxAbsErr(),
283
+ "max_relative_error": GetMaxRelativeErr(),
284
+ "one_thousand_err_ratio": GetThousandErrRatio(),
285
+ "five_thousand_err_ratio": GetFiveThousandErrRatio()
286
+ }
287
+
288
+
289
+ def compare_ops_apply(n_value, b_value, error_flag, err_msg, relative_err=None):
290
+ result_list = []
291
+ for op in CompareOps.compare_ops.values():
292
+ result, msg = op.apply(n_value, b_value, error_flag, relative_err=relative_err)
293
+ err_msg += msg
294
+ result_list.append(result)
295
+ return result_list, err_msg