megadetector 5.0.27__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +232 -223
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +341 -338
  65. megadetector/detection/pytorch_detector.py +308 -266
  66. megadetector/detection/run_detector.py +186 -166
  67. megadetector/detection/run_detector_batch.py +366 -364
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +312 -253
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +291 -283
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +808 -311
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +220 -147
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -0
  81. megadetector/postprocessing/load_api_results.py +25 -22
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +319 -302
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -69
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +11 -11
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1019 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1511 -406
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +73 -60
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2868
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +424 -404
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +126 -98
  124. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/METADATA +6 -3
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  128. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  129. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  130. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  131. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  132. megadetector/data_management/importers/awc_to_json.py +0 -191
  133. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  134. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  135. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  136. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  137. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  138. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  139. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  140. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  141. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  142. megadetector/data_management/importers/ena24_to_json.py +0 -276
  143. megadetector/data_management/importers/filenames_to_json.py +0 -386
  144. megadetector/data_management/importers/helena_to_cct.py +0 -283
  145. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  146. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  147. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  148. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  149. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  150. megadetector/data_management/importers/missouri_to_json.py +0 -490
  151. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  152. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  153. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  154. megadetector/data_management/importers/pc_to_json.py +0 -365
  155. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  156. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  157. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  158. megadetector/data_management/importers/rspb_to_json.py +0 -356
  159. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  160. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  161. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  162. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  163. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  164. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  165. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  166. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  167. megadetector/data_management/importers/ubc_to_json.py +0 -399
  168. megadetector/data_management/importers/umn_to_json.py +0 -507
  169. megadetector/data_management/importers/wellington_to_json.py +0 -263
  170. megadetector/data_management/importers/wi_to_json.py +0 -442
  171. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  172. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  173. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  174. megadetector-5.0.27.dist-info/RECORD +0 -208
  175. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  176. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
@@ -1,181 +0,0 @@
1
- """
2
-
3
- noaa_seals_2019.py
4
-
5
- Prepare the NOAA Arctic Seals 2019 metadata for LILA.
6
-
7
- """
8
-
9
- #%% Imports and constants
10
-
11
- import os
12
- import pandas as pd
13
- from tqdm import tqdm
14
-
15
- from megadetector.utils import url_utils
16
- from megadetector.visualization import visualization_utils
17
-
18
- # A list of files in the lilablobssc container for this data set
19
- container_file_list = r'C:\temp\seals\seal_files.txt'
20
-
21
- # The raw detection files provided by NOAA
22
- detections_fn = r'C:\temp\seals\surv_test_kamera_detections_20210212.csv'
23
-
24
- # A version of the above with filename columns added
25
- detections_fn_full_paths = detections_fn.replace('.csv','_full_paths.csv')
26
-
27
- base_url = 'https://lilablobssc.blob.core.windows.net/noaa-kotz'
28
-
29
-
30
- #%% Read input .csv
31
-
32
- df = pd.read_csv(detections_fn)
33
- df['rgb_image_path'] = ''
34
- df['ir_image_path'] = ''
35
- print('Read {} rows from {}'.format(len(df),detections_fn))
36
-
37
- camera_view_to_path = {}
38
- camera_view_to_path['C'] = 'CENT'
39
- camera_view_to_path['L'] = 'LEFT'
40
-
41
- valid_flights = set(['fl04','fl05','fl06','fl07'])
42
-
43
-
44
- #%% Read list of files
45
-
46
- with open(container_file_list,'r') as f:
47
- all_files = f.readlines()
48
- all_files = [s.strip() for s in all_files]
49
- all_files = set(all_files)
50
-
51
-
52
- #%% Convert paths to full paths
53
-
54
- missing_ir_files = []
55
-
56
- # i_row = 0; row = df.iloc[i_row]
57
- for i_row,row in tqdm(df.iterrows(),total=len(df)):
58
-
59
- assert row['flight'] in valid_flights
60
- assert row['camera_view'] in camera_view_to_path
61
-
62
- assert isinstance(row['rgb_image_name'],str)
63
- rgb_image_path = 'Images/{}/{}/{}'.format(row['flight'],camera_view_to_path[row['camera_view']],
64
- row['rgb_image_name'])
65
- assert rgb_image_path in all_files
66
- df.loc[i_row,'rgb_image_path'] = rgb_image_path
67
-
68
- if not isinstance(row['ir_image_name'],str):
69
- continue
70
-
71
- ir_image_path = 'Images/{}/{}/{}'.format(row['flight'],camera_view_to_path[row['camera_view']],
72
- row['ir_image_name'])
73
- # assert ir_image_path in all_files
74
- if ir_image_path not in all_files:
75
- missing_ir_files.append(ir_image_path)
76
- df.loc[i_row,'ir_image_path'] = ir_image_path
77
-
78
- # ...for each row
79
-
80
- missing_ir_files = list(set(missing_ir_files))
81
- missing_ir_files.sort()
82
- print('{} missing IR files (of {})'.format(len(missing_ir_files),len(df)))
83
-
84
- for s in missing_ir_files:
85
- print(s)
86
-
87
-
88
- #%% Write results
89
-
90
- df.to_csv(detections_fn_full_paths,index=False)
91
-
92
-
93
- #%% Load output file, just to be sure
94
-
95
- df = pd.read_csv(detections_fn_full_paths)
96
-
97
-
98
- #%% Render annotations on an image
99
-
100
- import random; i_image = random.randint(0,len(df))
101
- # i_image = 2004
102
- row = df.iloc[i_image]
103
- rgb_image_path = row['rgb_image_path']
104
- rgb_image_url = base_url + '/' + rgb_image_path
105
- ir_image_path = row['ir_image_path']
106
- ir_image_url = base_url + '/' + ir_image_path
107
-
108
-
109
- #%% Download the image
110
-
111
- rgb_image_fn = url_utils.download_url(rgb_image_url,progress_updater=True)
112
- ir_image_fn = url_utils.download_url(ir_image_url,progress_updater=True)
113
-
114
-
115
- #%% Find all the rows (detections) associated with this image
116
-
117
- # as l,r,t,b
118
- rgb_boxes = []
119
- ir_boxes = []
120
-
121
- for i_row,row in df.iterrows():
122
-
123
- if row['rgb_image_path'] == rgb_image_path:
124
- box_l = row['rgb_left']
125
- box_r = row['rgb_right']
126
- box_t = row['rgb_top']
127
- box_b = row['rgb_bottom']
128
- rgb_boxes.append([box_l,box_r,box_t,box_b])
129
-
130
- if row['ir_image_path'] == ir_image_path:
131
- box_l = row['ir_left']
132
- box_r = row['ir_right']
133
- box_t = row['ir_top']
134
- box_b = row['ir_bottom']
135
- ir_boxes.append([box_l,box_r,box_t,box_b])
136
-
137
- print('Found {} RGB, {} IR annotations for this image'.format(len(rgb_boxes),
138
- len(ir_boxes)))
139
-
140
-
141
- #%% Render the detections on the image(s)
142
-
143
- img_rgb = visualization_utils.load_image(rgb_image_fn)
144
- img_ir = visualization_utils.load_image(ir_image_fn)
145
-
146
- for b in rgb_boxes:
147
-
148
- # In pixel coordinates
149
- box_left = b[0]; box_right = b[1]; box_top = b[2]; box_bottom = b[3]
150
- assert box_top > box_bottom; assert box_right > box_left
151
- ymin = box_bottom; ymax = box_top; xmin = box_left; xmax = box_right
152
-
153
- visualization_utils.draw_bounding_box_on_image(img_rgb,ymin,xmin,ymax,xmax,
154
- use_normalized_coordinates=False,
155
- thickness=3)
156
-
157
- for b in ir_boxes:
158
-
159
- # In pixel coordinates
160
- box_left = b[0]; box_right = b[1]; box_top = b[2]; box_bottom = b[3]
161
- assert box_top > box_bottom; assert box_right > box_left
162
- ymin = box_bottom; ymax = box_top; xmin = box_left; xmax = box_right
163
-
164
- visualization_utils.draw_bounding_box_on_image(img_ir,ymin,xmin,ymax,xmax,
165
- use_normalized_coordinates=False,
166
- thickness=3)
167
-
168
- # visualization_utils.show_images_in_a_row([img_rgb,img_ir])
169
-
170
-
171
- #%% Save images
172
-
173
- img_rgb.save(r'c:\temp\seals_rgb.png')
174
- img_ir.save(r'c:\temp\seals_ir.png')
175
-
176
-
177
- #%% Clean up
178
-
179
- import shutil
180
- tmp_dir = os.path.dirname(rgb_image_fn)
181
- shutil.rmtree(tmp_dir)
@@ -1,364 +0,0 @@
1
- """
2
-
3
- Prepare the OSU Small Animals dataset for LILA release:
4
-
5
- 1. Convert metadata to COCO
6
- 2. Extract location, datestamp, and sequence information
7
- 3. Remove redundant or excluded images
8
-
9
- """
10
-
11
- #%% Imports and constants
12
-
13
- import os
14
-
15
- input_folder = os.path.expanduser('~/osu-small-animals')
16
- assert os.path.isdir(input_folder)
17
-
18
- output_folder = os.path.expanduser('~/osu-small-animals-lila')
19
- os.makedirs(output_folder,exist_ok=True)
20
- output_file = os.path.join(output_folder,'osu-small-animals.json')
21
-
22
- preview_folder = os.path.expanduser('~/osu-small-animals-preview')
23
- os.makedirs(preview_folder,exist_ok=True)
24
-
25
- common_to_latin_file = r'osu-small-animals-common-to-latin.txt'
26
- assert os.path.isfile(common_to_latin_file)
27
-
28
-
29
- #%% Support functions
30
-
31
- def custom_relative_path_to_location(relative_path):
32
-
33
- bn = os.path.basename(relative_path).upper()
34
-
35
- # This only impacted six images
36
- if bn.startswith('RCNX'):
37
- site = 'OSTN'
38
- return site
39
-
40
- # FCS1__2019-07-08__10-37-46(1).JPG
41
- # BIWA4S2020-06-25_16-19-56.JPG
42
- # GRN3c__2019-05-05__01-39-23(1).JPG
43
-
44
- tokens = bn.split('_')
45
- site = tokens[0]
46
- if '2020' in site:
47
- site = site.split('2020')[0]
48
-
49
- assert len(site) <= 8
50
- assert site.isalnum()
51
-
52
- return site
53
-
54
-
55
- #%% Read EXIF data from all images
56
-
57
- from megadetector.data_management.read_exif import \
58
- ReadExifOptions, read_exif_from_folder
59
- import json
60
-
61
- exif_cache_file = os.path.join(input_folder,'exif_info.json')
62
-
63
- if os.path.isfile(exif_cache_file):
64
-
65
- print('Reading EXIF data from cache')
66
- with open(exif_cache_file,'r') as f:
67
- exif_info = json.load(f)
68
-
69
- else:
70
-
71
- read_exif_options = ReadExifOptions()
72
- read_exif_options.n_workers = 8
73
-
74
- exif_info = read_exif_from_folder(input_folder=input_folder,
75
- output_file=exif_cache_file,
76
- options=read_exif_options,
77
- filenames=None,
78
- recursive=True)
79
-
80
-
81
- #%% Verify that no GPS data is present
82
-
83
- from megadetector.data_management.read_exif import has_gps_info
84
-
85
- missing_exif_tags = []
86
-
87
- # im = exif_info[0]
88
- for im in exif_info:
89
- if im['exif_tags'] is None:
90
- missing_exif_tags.append(im['file_name'])
91
- continue
92
- else:
93
- assert not has_gps_info(im)
94
-
95
-
96
- #%% Read common --> latin mapping
97
-
98
- with open(common_to_latin_file,'r') as f:
99
- lines = f.readlines()
100
-
101
- common_to_latin = {}
102
-
103
- # s = lines[0]
104
- for s in lines:
105
- s = s.strip()
106
- tokens = s.split('\t')
107
- assert len(tokens) == 2
108
- common = tokens[0].lower().replace(' ','_')
109
- latin = tokens[1].replace('_',' ').lower()
110
- assert common not in common_to_latin.keys()
111
- assert latin not in common_to_latin.values()
112
- common_to_latin[common] = latin
113
-
114
-
115
- #%% Convert non-excluded, non-split images to COCO format
116
-
117
- from datetime import datetime
118
-
119
- from tqdm import tqdm
120
-
121
- # One-off typo fix
122
- name_replacements = \
123
- {
124
- 'common_five-linked_skink':'common_five-lined_skink'
125
- }
126
-
127
- category_name_to_category = {}
128
- # Force the empty category to be ID 0
129
- empty_category = {}
130
- empty_category['id'] = 0
131
- empty_category['name'] = 'empty'
132
- category_name_to_category['empty'] = empty_category
133
- next_category_id = 1
134
-
135
- images = []
136
- annotations = []
137
-
138
- error_images = []
139
- excluded_images = []
140
-
141
- # exif_im = exif_info[0]
142
- for exif_im in tqdm(exif_info):
143
-
144
- fn_relative = exif_im['file_name']
145
- assert '\\' not in fn_relative
146
-
147
- if 'Split_images' in fn_relative or 'Exclusions' in fn_relative:
148
- excluded_images.append(fn_relative)
149
- continue
150
-
151
- if 'error' in exif_im:
152
- assert exif_im['error'] is not None
153
- error_images.append(fn_relative)
154
- continue
155
-
156
- location_name = custom_relative_path_to_location(fn_relative)
157
-
158
- exif_tags = exif_im['exif_tags']
159
-
160
- # Convert '2021:05:27 14:42:00' to '2021-05-27 14:42:00'
161
- datestamp = exif_tags['DateTime']
162
- datestamp_tokens = datestamp.split(' ')
163
- assert len(datestamp_tokens) == 2
164
- date_string = datestamp_tokens[0]
165
- time_string = datestamp_tokens[1]
166
- assert len(date_string) == 10 and len(date_string.split(':')) == 3
167
- date_string = date_string.replace(':','-')
168
- assert len(time_string) == 8 and len(time_string.split(':')) == 3
169
- datestamp_string = date_string + ' ' + time_string
170
- datestamp_object = datetime.strptime(datestamp_string, '%Y-%m-%d %H:%M:%S')
171
- assert str(datestamp_object) == datestamp_string
172
-
173
- # E.g.:
174
- #
175
- # Images/Sorted_by_species/Testudines/Snapping Turtle/CBG10__2021-05-27__14-42-00(1).JPG'
176
- common_name = os.path.basename(os.path.dirname(fn_relative)).lower().replace(' ','_')
177
-
178
- if common_name in name_replacements:
179
- common_name = name_replacements[common_name]
180
-
181
- if common_name == 'blanks':
182
- common_name = 'empty'
183
- else:
184
- assert common_name in common_to_latin
185
-
186
- if common_name in category_name_to_category:
187
-
188
- category = category_name_to_category[common_name]
189
-
190
- else:
191
-
192
- category = {}
193
- category['name'] = common_name
194
- category['latin_name'] = common_to_latin[common_name]
195
- category['id'] = next_category_id
196
- next_category_id += 1
197
- category_name_to_category[common_name] = category
198
-
199
- im = {}
200
- im['id'] = fn_relative
201
- im['file_name'] = fn_relative
202
- im['datetime'] = datestamp_object
203
- im['location'] = location_name
204
-
205
- annotation = {}
206
- annotation['id'] = 'ann_' + fn_relative
207
- annotation['image_id'] = im['id']
208
- annotation['category_id'] = category['id']
209
- annotation['sequence_level_annotation'] = False
210
-
211
- images.append(im)
212
- annotations.append(annotation)
213
-
214
- # ...for each image
215
-
216
- cct_dict = {}
217
- cct_dict['images'] = images
218
- cct_dict['annotations'] = annotations
219
- cct_dict['categories'] = list(category_name_to_category.values())
220
-
221
- cct_dict['info'] = {}
222
- cct_dict['info']['version'] = '2024.10.03'
223
- cct_dict['info']['description'] = 'OSU small animals dataset'
224
-
225
- print('\nExcluded {} of {} images ({} errors)'.format(
226
- len(excluded_images),
227
- len(exif_info),
228
- len(error_images)))
229
-
230
- assert len(images) == len(exif_info) - (len(error_images) + len(excluded_images))
231
-
232
-
233
- #%% Create sequences from timestamps
234
-
235
- from megadetector.data_management import cct_json_utils
236
-
237
- print('Assembling images into sequences')
238
- cct_json_utils.create_sequences(cct_dict)
239
-
240
- # Convert datetimes to strings so we can serialize to json
241
- for im in cct_dict['images']:
242
- im['datetime'] = str(im['datetime'])
243
-
244
-
245
- #%% Write COCO data
246
-
247
- with open(output_file,'w') as f:
248
- json.dump(cct_dict,f,indent=1)
249
-
250
-
251
- #%% Copy images (prep)
252
-
253
- from megadetector.utils.path_utils import parallel_copy_files
254
-
255
- input_file_to_output_file = {}
256
-
257
- # im = cct_dict['images'][0]
258
- for im in tqdm(cct_dict['images']):
259
- fn_relative = im['file_name']
260
- fn_source_abs = os.path.join(input_folder,fn_relative)
261
- assert os.path.isfile(fn_source_abs)
262
- fn_dest_abs = os.path.join(output_folder,fn_relative)
263
- assert fn_source_abs not in input_file_to_output_file
264
- input_file_to_output_file[fn_source_abs] = fn_dest_abs
265
-
266
-
267
- #%% Copy images (execution)
268
-
269
- parallel_copy_files(input_file_to_output_file, max_workers=10,
270
- use_threads=True, overwrite=False, verbose=False)
271
-
272
-
273
- #%% Validate .json file
274
-
275
- from megadetector.data_management.databases import integrity_check_json_db
276
-
277
- options = integrity_check_json_db.IntegrityCheckOptions()
278
- options.baseDir = input_folder
279
- options.bCheckImageSizes = False
280
- options.bCheckImageExistence = True
281
- options.bFindUnusedImages = True
282
- options.bRequireLocation = True
283
-
284
- sorted_categories, data, _ = integrity_check_json_db.integrity_check_json_db(output_file, options)
285
-
286
-
287
- #%% Preview labels
288
-
289
- from megadetector.visualization import visualize_db
290
-
291
- viz_options = visualize_db.DbVizOptions()
292
- viz_options.num_to_visualize = 5000
293
- viz_options.parallelize_rendering = True
294
- viz_options.htmlOptions['maxFiguresPerHtmlFile'] = 2500
295
- viz_options.parallelize_rendering_with_threads = True
296
-
297
- html_output_file, image_db = visualize_db.visualize_db(db_path=output_file,
298
- output_dir=preview_folder,
299
- image_base_dir=input_folder,
300
- options=viz_options)
301
-
302
- os.startfile(html_output_file)
303
-
304
-
305
- #%% Print unique locations
306
-
307
- all_locations = set()
308
-
309
- for im in cct_dict['images']:
310
- all_locations.add(im['location'])
311
-
312
- all_locations = sorted(list(all_locations))
313
-
314
-
315
- #%% Notes
316
-
317
- """
318
- 31899 eastern_gartersnake
319
- 14567 song_sparrow
320
- 14169 meadow_vole
321
- 11448 empty
322
- 10548 white-footed_mouse
323
- 5934 northern_house_wren
324
- 5075 invertebrate
325
- 5045 common_five-lined_skink
326
- 4242 masked_shrew
327
- 3263 eastern_cottontail
328
- 2325 long-tailed_weasel
329
- 1510 woodland_jumping_mouse
330
- 1272 plains_gartersnake
331
- 1189 eastern_massasauga
332
- 985 virginia_opossum
333
- 802 common_yellowthroat
334
- 746 n._short-tailed_shrew
335
- 529 dekay's_brownsnake
336
- 425 american_mink
337
- 340 american_toad
338
- 293 eastern_racer_snake
339
- 264 smooth_greensnake
340
- 198 eastern_chipmunk
341
- 193 northern_leopard_frog
342
- 160 meadow_jumping_mouse
343
- 155 butler's_gartersnake
344
- 133 eastern_ribbonsnake
345
- 121 northern_watersnake
346
- 111 star-nosed_mole
347
- 104 striped_skunk
348
- 72 eastern_milksnake
349
- 68 gray_ratsnake
350
- 67 eastern_hog-nosed_snake
351
- 62 raccoon
352
- 47 green_frog
353
- 44 woodchuck
354
- 44 kirtland's_snake
355
- 23 indigo_bunting
356
- 23 painted_turtle
357
- 13 sora
358
- 12 american_bullfrog
359
- 10 gray_catbird
360
- 9 red-bellied_snake
361
- 8 brown_rat
362
- 6 snapping_turtle
363
- 1 eastern_bluebird
364
- """