megadetector 5.0.27__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +232 -223
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +341 -338
  65. megadetector/detection/pytorch_detector.py +308 -266
  66. megadetector/detection/run_detector.py +186 -166
  67. megadetector/detection/run_detector_batch.py +366 -364
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +312 -253
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +291 -283
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +808 -311
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +220 -147
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -0
  81. megadetector/postprocessing/load_api_results.py +25 -22
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +319 -302
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -69
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +11 -11
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1019 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1511 -406
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +73 -60
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2868
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +424 -404
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +126 -98
  124. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/METADATA +6 -3
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  128. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  129. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  130. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  131. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  132. megadetector/data_management/importers/awc_to_json.py +0 -191
  133. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  134. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  135. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  136. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  137. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  138. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  139. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  140. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  141. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  142. megadetector/data_management/importers/ena24_to_json.py +0 -276
  143. megadetector/data_management/importers/filenames_to_json.py +0 -386
  144. megadetector/data_management/importers/helena_to_cct.py +0 -283
  145. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  146. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  147. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  148. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  149. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  150. megadetector/data_management/importers/missouri_to_json.py +0 -490
  151. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  152. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  153. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  154. megadetector/data_management/importers/pc_to_json.py +0 -365
  155. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  156. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  157. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  158. megadetector/data_management/importers/rspb_to_json.py +0 -356
  159. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  160. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  161. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  162. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  163. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  164. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  165. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  166. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  167. megadetector/data_management/importers/ubc_to_json.py +0 -399
  168. megadetector/data_management/importers/umn_to_json.py +0 -507
  169. megadetector/data_management/importers/wellington_to_json.py +0 -263
  170. megadetector/data_management/importers/wi_to_json.py +0 -442
  171. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  172. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  173. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  174. megadetector-5.0.27.dist-info/RECORD +0 -208
  175. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  176. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
@@ -1,373 +0,0 @@
1
- """
2
-
3
- auckland_doc_test_to_json.py
4
-
5
- Convert Auckland DOC data set to COCO camera traps format. This was
6
- for a testing data set where a .csv file was provided with class
7
- information.
8
-
9
- """
10
-
11
- #%% Constants and imports
12
-
13
- import json
14
- import os
15
- import uuid
16
- import pandas as pd
17
- import datetime
18
- import ntpath
19
- import re
20
- import numpy as np
21
-
22
- from tqdm import tqdm
23
-
24
- from megadetector.visualization import visualize_db
25
- from megadetector.data_management.databases import integrity_check_json_db
26
- from megadetector.utils.path_utils import find_images
27
-
28
- input_base_dir = r'e:\auckland-test\2_Testing'
29
-
30
- input_metadata_file = r'G:\auckland-doc\Maukahuka - Auckland Island - Cat camera data Master April 2019 - DOC-5924483.xlsx'
31
-
32
- # Filenames will be stored in the output .json relative to this base dir
33
- output_base_dir = r'g:\auckland-doc'
34
- output_json_filename = os.path.join(output_base_dir, 'auckland-doc-test.json')
35
-
36
- assert os.path.isdir(input_base_dir)
37
- os.makedirs(output_base_dir,exist_ok=True)
38
-
39
- output_encoding = 'utf-8'
40
- read_image_sizes = True
41
-
42
- info = {}
43
- info['year'] = 2020
44
- info['version'] = '1.0'
45
- info['description'] = 'Auckaland DOC Camera Traps (test)'
46
- info['contributor'] = 'Auckland DOC'
47
- info['date_created'] = str(datetime.date.today())
48
-
49
-
50
- #%% Enumerate files
51
-
52
- print('Enumerating files from {}'.format(input_base_dir))
53
- absolute_image_paths = find_images(input_base_dir, recursive=True)
54
- print('Enumerated {} images'.format(len(absolute_image_paths)))
55
-
56
- relative_image_paths = []
57
- for fn in absolute_image_paths:
58
- relative_image_paths.append(os.path.relpath(fn,input_base_dir).replace('\\','/'))
59
-
60
- relative_image_paths_set = set(relative_image_paths)
61
-
62
- assert len(relative_image_paths_set) == len(relative_image_paths)
63
-
64
-
65
- #%% Create unique identifier for each image
66
-
67
- # The ground truth doesn't have full paths in it; create unique identifiers for each image
68
- # based on the camera name and filename.
69
- #
70
- # We store file identifiers as cameraname_filename.
71
- file_identifier_to_relative_paths = {}
72
- camera_names = set()
73
-
74
- # relative_path = relative_image_paths[0]
75
- for relative_path in relative_image_paths:
76
-
77
- # Example relative paths
78
- #
79
- # Summer_Trial_2019/A1_1_42_SD114_20190210/AucklandIsland_A1_1_42_SD114_20190210_01300001.jpg
80
- # Winter_Trial_2019/Installation/10_F4/10_F4_tmp_201908210001.JPG
81
- fn = ntpath.basename(relative_path)
82
-
83
- # Find the camera name
84
- tokens = relative_path.split('/')
85
-
86
- if tokens[1] == 'Installation' or 'Rebait' in tokens[1]:
87
- camera_name = tokens[2]
88
-
89
- else:
90
- # E..g. "A1_1_42_SD114_20190210" in the above example
91
- camera_token = tokens[1]
92
- camera_name = None
93
- m = re.search('^(.+)_SD',camera_token)
94
- if m:
95
- camera_name = m.group(1)
96
- else:
97
- # For camera tokens like C1_5_D_190207
98
- m = re.search('^(.+_.+_.+)',camera_token)
99
- camera_name = m.group(1)
100
-
101
- assert camera_name
102
- camera_names.add(camera_name)
103
-
104
- file_identifier = camera_name + '_' + fn
105
- if file_identifier not in file_identifier_to_relative_paths:
106
- file_identifier_to_relative_paths[file_identifier] = [relative_path]
107
- else:
108
- file_identifier_to_relative_paths[file_identifier].append(relative_path)
109
-
110
- print('Found {} unique camera names'.format(len(camera_names)))
111
-
112
-
113
- #%% Load input data
114
-
115
- input_metadata = pd.read_excel(input_metadata_file)
116
-
117
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
118
- len(input_metadata)))
119
-
120
- # The spreadsheet has a space after "Camera"
121
- input_metadata = input_metadata.rename(columns={'Camera ':'Camera'})
122
-
123
-
124
- #%% Assemble dictionaries
125
-
126
- image_id_to_image = {}
127
- category_name_to_category = {}
128
- annotations = []
129
-
130
- # Force the empty category to be ID 0
131
- empty_category = {}
132
- empty_category['name'] = 'empty'
133
- empty_category['id'] = 0
134
- category_name_to_category['empty'] = empty_category
135
-
136
- rows_not_found_in_folder = []
137
- rows_ambiguous = []
138
- rows_no_filename = []
139
- rows_no_annotation = []
140
-
141
- image_id_to_rows = {}
142
-
143
- next_id = 1
144
-
145
- category_names = ['cat','mouse','unknown','human','pig','sealion','penguin','dog','openadjusted']
146
-
147
- # array([nan, 'Blackbird', 'Bellbird', 'Tomtit', 'Song thrush', 'Pippit',
148
- # 'Pippet', '?', 'Dunnock', 'Song thursh', 'Kakariki', 'Tui', ' ',
149
- # 'Silvereye', 'NZ Pipit', 'Blackbird and Dunnock', 'Unknown',
150
- # 'Pipit', 'Songthrush'], dtype=object)
151
-
152
- def bird_name_to_category_name(bird_name):
153
- bird_name = bird_name.lower().strip().replace(' ','_').replace('song_thursh','song_thrush')
154
- bird_name = bird_name.replace('pippet','pipt').replace('pippit','pipit').replace('nz_pipit','pipit')
155
- if bird_name == '?' or bird_name == '' or bird_name == 'unknown':
156
- category_name = 'unknown_bird'
157
- else:
158
- category_name = bird_name
159
- return category_name
160
-
161
- bird_names = input_metadata.Bird_ID.unique()
162
- for bird_name in bird_names:
163
- if isinstance(bird_name,float):
164
- continue
165
- category_name = bird_name_to_category_name(bird_name)
166
- if category_name not in category_names:
167
- category_names.append(category_name)
168
-
169
- for category_name in category_names:
170
- cat = {}
171
- cat['name'] = category_name
172
- cat['id'] = next_id
173
- next_id = next_id +1
174
- category_name_to_category[category_name] = cat
175
-
176
- def create_annotation(image_id,category_name,count):
177
- assert isinstance(image_id,str)
178
- assert isinstance(category_name,str)
179
- assert isinstance(count,int) or isinstance(count,float)
180
- if isinstance(count,float):
181
- count = int(count)
182
- ann = {}
183
- ann['id'] = str(uuid.uuid1())
184
- ann['image_id'] = image_id
185
- category = category_name_to_category[category_name]
186
- category_id = category['id']
187
- ann['category_id'] = category_id
188
- ann['count'] = count
189
- return ann
190
-
191
- # i_row = 0; row = input_metadata.iloc[i_row]
192
- for i_row,row in tqdm(input_metadata.iterrows(),total=len(input_metadata)):
193
-
194
- # E.g.: AucklandIsland_A1_1_42_SD114_20190210_01300009.jpg
195
- filename = row['File']
196
- if isinstance(filename,float):
197
- rows_no_filename.append(i_row)
198
- continue
199
-
200
- camera_name = row['Camera']
201
- file_identifier = camera_name + '_' + filename
202
- if not file_identifier in file_identifier_to_relative_paths:
203
- rows_not_found_in_folder.append(i_row)
204
- continue
205
-
206
- relative_paths_this_file_id = file_identifier_to_relative_paths[file_identifier]
207
-
208
- if len(relative_paths_this_file_id) == 1:
209
- relative_path = relative_paths_this_file_id[0]
210
- else:
211
-
212
- # We have multiple files matching this identifier, can we uniquely resolve this
213
- # to one of those files based on the camera ID?
214
- matches = [s for s in relative_paths_this_file_id if camera_name in s]
215
- assert len(matches) > 0
216
- if len(matches) > 1:
217
- rows_ambiguous.append(i_row)
218
- continue
219
- relative_path = matches[0]
220
-
221
- assert filename.endswith('.jpg') or filename.endswith('.JPG')
222
- image_id = filename.lower().replace('.jpg','')
223
-
224
- if image_id in image_id_to_rows:
225
- image_id_to_rows[image_id].append(i_row)
226
- continue
227
-
228
- image_id_to_rows[image_id] = [i_row]
229
-
230
- im = {}
231
- im['id'] = image_id
232
- im['file_name'] = relative_path
233
- im['datetime'] = str(row['Date and time'])
234
- im['camera'] = row['Camera']
235
- im['sd_card'] = row['SD_Card']
236
- im['sd_change'] = row['SD_Change']
237
- im['comments'] = row['Comments']
238
-
239
- image_id_to_image[im['id']] = im
240
-
241
- # create_annotation(image_id,category_name,count)
242
-
243
- # 'SD_Change', 'Cat', 'Mouse', 'Bird', 'Bird_ID', 'False_trig', 'Unknown',
244
- # 'Human', 'Collared_cat', 'Cat_ID', 'Pig', 'Sea_lion', 'Open_adjusted',
245
- # 'Penguin', 'Dog', 'Comments', 'Unnamed: 22']
246
-
247
- # Each of these categories is handled a little differently...
248
-
249
- annotations_this_image = []
250
- if (not np.isnan(row['Cat'])):
251
- assert np.isnan(row['Collared_cat'] )
252
- annotations_this_image.append(create_annotation(im['id'],'cat',row['Cat']))
253
-
254
- if (not np.isnan(row['Collared_cat'])):
255
- assert np.isnan(row['Cat'] )
256
- annotations_this_image.append(create_annotation(im['id'],'cat',row['Collared_cat']))
257
-
258
- if (not np.isnan(row['Bird'])):
259
- if isinstance(row['Bird_ID'],str):
260
- category_name = bird_name_to_category_name(row['Bird_ID'])
261
- else:
262
- assert np.isnan(row['Bird_ID'])
263
- category_name = 'unknown_bird'
264
- annotations_this_image.append(create_annotation(im['id'],category_name,row['Bird']))
265
-
266
- if (not np.isnan(row['False_trig'])):
267
- annotations_this_image.append(create_annotation(im['id'],'empty',-1))
268
-
269
- # These are straightforward
270
- for s in ['Mouse','Unknown','Pig','Human','Sea_lion','Penguin','Dog','Open_adjusted']:
271
- if isinstance(row[s],float) or isinstance(row[s],int):
272
- if not np.isnan(row[s]):
273
- annotations_this_image.append(create_annotation(im['id'],s.lower().replace('_',''),row[s]))
274
- elif isinstance(row[s],str):
275
- print('File {}, label {}, value {}'.format(filename,s,row[s]))
276
- else:
277
- raise ValueError('Error handling count value {}'.format(row[s]))
278
-
279
- if len(annotations_this_image) > 1:
280
- print('Multiple annotations for filename {}'.format(filename))
281
-
282
- if len(annotations_this_image) == 0:
283
- rows_no_annotation.append(i_row)
284
-
285
- annotations.extend(annotations_this_image)
286
-
287
- # ...for each image
288
-
289
-
290
- #%% Summarize errors
291
-
292
- print('Of {} rows:\n'.format(len(input_metadata)))
293
-
294
- print('{} images not found in folder'.format(len(rows_not_found_in_folder)))
295
- print('{} images ambiguously mapped'.format(len(rows_ambiguous)))
296
- print('{} images no filename'.format(len(rows_no_filename)))
297
- print('{} images no annotation'.format(len(rows_no_annotation)))
298
- print('{} images handled successfully, {} total annotations'.format(len(image_id_to_image),len(annotations)))
299
-
300
-
301
- #%% Write output .json
302
-
303
- images = list(image_id_to_image.values())
304
- categories = list(category_name_to_category.values())
305
-
306
- data = {}
307
- data['info'] = info
308
- data['images'] = images
309
- data['annotations'] = annotations
310
- data['categories'] = categories
311
-
312
- json.dump(data, open(output_json_filename, 'w'), indent=1)
313
- print('Finished writing json to {}'.format(output_json_filename))
314
-
315
-
316
- #%% Validate .json file
317
-
318
- options = integrity_check_json_db.IntegrityCheckOptions()
319
- options.baseDir = input_base_dir
320
- options.bCheckImageSizes = False
321
- options.bCheckImageExistence = False
322
- options.bFindUnusedImages = False
323
-
324
- sortedCategories, data, _ = integrity_check_json_db.integrity_check_json_db(output_json_filename, options)
325
-
326
-
327
- #%% Preview labels
328
-
329
- viz_options = visualize_db.DbVizOptions()
330
- viz_options.num_to_visualize = 2000
331
- viz_options.trim_to_images_with_bboxes = False
332
- viz_options.add_search_links = False
333
- viz_options.sort_by_filename = False
334
- viz_options.parallelize_rendering = True
335
- viz_options.classes_to_exclude = ['empty']
336
- html_output_file, image_db = visualize_db.visualize_db(db_path=output_json_filename,
337
- output_dir=os.path.join(
338
- output_base_dir, 'preview'),
339
- image_base_dir=input_base_dir,
340
- options=viz_options)
341
- os.startfile(html_output_file)
342
-
343
-
344
- #%% Precision-recall analysis
345
-
346
- from megadetector.postprocessing.postprocess_batch_results import PostProcessingOptions
347
- from megadetector.postprocessing.postprocess_batch_results import process_batch_results
348
-
349
- api_output_file = r'g:\auckland-doc\auckland-doc_20200801\combined_api_outputs\auckland-doc_202008012020.08.01_reformatMaukahuka_Auckland_Island2_TestingSummer_Trial_2019_detections.filtered_rde_0.60_0.85_5_0.05.json'
350
- postprocessing_output_folder = r'G:\auckland-doc\auckland-doc_20200801\postprocessing'
351
- image_base = r'E:\auckland-test\2_Testing'
352
- ground_truth_json_file = output_json_filename
353
-
354
- output_base = os.path.join(postprocessing_output_folder,'pr_analysis')
355
- os.makedirs(output_base,exist_ok=True)
356
-
357
- options = PostProcessingOptions()
358
- options.unlabeled_classes.append('openadjusted')
359
- options.image_base_dir = image_base
360
- options.parallelize_rendering = True
361
- options.include_almost_detections = True
362
- options.num_images_to_sample = 2500
363
- options.confidence_threshold = 0.75
364
- options.almost_detection_confidence_threshold = 0.7
365
- options.ground_truth_json_file = ground_truth_json_file
366
- options.allow_missing_images = True
367
- options.ground_truth_filename_replacements = {}
368
- options.api_output_filename_replacements = {'2020.08.01_reformat\\Maukahuka_Auckland_Island\\2_Testing\\':''}
369
- options.api_output_file = api_output_file
370
- options.output_dir = output_base
371
- ppresults = process_batch_results(options)
372
- os.startfile(ppresults.output_html_file)
373
-
@@ -1,201 +0,0 @@
1
- """
2
-
3
- auckland_doc_to_json.py
4
-
5
- Convert Auckland DOC data set to COCO camera traps format. This was
6
- for a training data set where class names were encoded in path names.
7
-
8
- """
9
-
10
- #%% Constants and imports
11
-
12
- import json
13
- import os
14
- import uuid
15
- import datetime
16
-
17
- from tqdm import tqdm
18
-
19
- from megadetector.visualization import visualize_db
20
- from megadetector.data_management.databases import integrity_check_json_db
21
- from megadetector.utils.path_utils import find_images, split_path, insert_before_extension
22
-
23
- # Filenames will be stored in the output .json relative to this base dir
24
- input_base_dir = 'y:\\'
25
- output_base_dir = r'f:\auckland-doc'
26
- output_json_filename = os.path.join(output_base_dir, 'auckland-doc-Maukahuka_Auckland_Island.json')
27
-
28
- assert os.path.isdir(input_base_dir)
29
- os.makedirs(output_base_dir,exist_ok=True)
30
-
31
- output_encoding = 'utf-8'
32
- read_image_sizes = True
33
-
34
- info = {}
35
- info['year'] = 2019
36
- info['version'] = '1.0'
37
- info['description'] = 'Auckaland DOC Camera Traps'
38
- info['contributor'] = 'Auckland DOC'
39
- info['date_created'] = str(datetime.date.today())
40
-
41
-
42
- #%% Enumerate files
43
-
44
- print('Enumerating files from {}'.format(input_base_dir))
45
- image_files = find_images(input_base_dir, bRecursive=True)
46
- print('Enumerated {} images'.format(len(image_files)))
47
-
48
-
49
- #%% Assemble dictionaries
50
-
51
- images = []
52
- image_id_to_image = {}
53
- annotations = []
54
- categories = []
55
-
56
- category_name_to_category = {}
57
- category_id_to_category = {}
58
-
59
- # Force the empty category to be ID 0
60
- empty_category = {}
61
- empty_category['name'] = 'empty'
62
- empty_category['id'] = 0
63
- category_id_to_category[0] = empty_category
64
- categories.append(empty_category)
65
- next_id = 1
66
-
67
- behaviors = set()
68
-
69
- # fn = image_files[0]; print(fn)
70
- for fn in tqdm(image_files):
71
-
72
- # Typically y:\Maukahuka_Auckland_Island\1_Training\Winter_Trial_2019\cat\cat\eat\20190903_IDdY_34_E3_tmp_201908240051.JPG
73
- relative_path = os.path.relpath(fn,input_base_dir)
74
- tokens = split_path(fn)
75
- assert tokens[1] == 'Maukahuka_Auckland_Island'
76
-
77
- trainval_split = tokens[2]
78
- assert trainval_split in ['1_Training','2_Testing']
79
-
80
- # This data set has two top-level folders, "1_Training" (which has class names encoded
81
- # in paths) and "2_Testing" (which has no class information).
82
- if trainval_split == '2_Testing':
83
- category_name = 'test'
84
- else:
85
- category_name = tokens[-3]
86
- if category_name.startswith('2_'):
87
- category_name = category_name.replace('2_', '')
88
- category_name = category_name.lower().strip()
89
-
90
- if category_name not in category_name_to_category:
91
-
92
- category_id = next_id
93
- next_id += 1
94
- category = {}
95
- category['id'] = category_id
96
- category['name'] = category_name
97
- category['count'] = 0
98
- categories.append(category)
99
- category_name_to_category[category_name] = category
100
- category_id_to_category[category_id] = category
101
-
102
- else:
103
-
104
- category = category_name_to_category[category_name]
105
-
106
- category_id = category['id']
107
-
108
- category['count'] += 1
109
- behavior = None
110
- if (category_name) != 'test':
111
- behavior = fn.split('\\')[-2]
112
- behaviors.add(behavior)
113
-
114
- im = {}
115
- im['id'] = str(uuid.uuid1())
116
- im['file_name'] = relative_path
117
- image_id_to_image[im['id']] = im
118
-
119
- images.append(im)
120
-
121
- ann = {}
122
-
123
- ann['id'] = str(uuid.uuid1())
124
- ann['image_id'] = im['id']
125
- ann['category_id'] = category_id
126
- if behavior is not None:
127
- ann['behavior'] = behavior
128
- annotations.append(ann)
129
-
130
- # ...for each image
131
-
132
-
133
- #%% Write output .json
134
-
135
- data = {}
136
- data['info'] = info
137
- data['images'] = images
138
- data['annotations'] = annotations
139
- data['categories'] = categories
140
-
141
- json.dump(data, open(output_json_filename, 'w'), indent=2)
142
- print('Finished writing json to {}'.format(output_json_filename))
143
-
144
-
145
- #%% Write train/test .jsons
146
-
147
- train_images = []; test_images = []
148
- train_annotations = []; test_annotations = []
149
-
150
- for ann in tqdm(annotations):
151
- category_id = ann['category_id']
152
- image_id = ann['image_id']
153
- category_name = category_id_to_category[category_id]['name']
154
- im = image_id_to_image[image_id]
155
- if category_name == 'test':
156
- test_images.append(im)
157
- test_annotations.append(ann)
158
- else:
159
- train_images.append(im)
160
- train_annotations.append(ann)
161
-
162
- train_fn = insert_before_extension(output_json_filename,'train')
163
- test_fn = insert_before_extension(output_json_filename,'test')
164
-
165
- data['images'] = train_images
166
- data['annotations'] = train_annotations
167
- json.dump(data, open(train_fn, 'w'), indent=2)
168
-
169
- data['images'] = test_images
170
- data['annotations'] = test_annotations
171
- json.dump(data, open(test_fn, 'w'), indent=2)
172
-
173
-
174
- #%% Validate .json files
175
-
176
- options = integrity_check_json_db.IntegrityCheckOptions()
177
- options.baseDir = input_base_dir
178
- options.bCheckImageSizes = False
179
- options.bCheckImageExistence = True
180
- options.bFindUnusedImages = True
181
-
182
- sorted_categories, data, _ = integrity_check_json_db.integrity_check_json_db(output_json_filename, options)
183
- sorted_categories, data, _ = integrity_check_json_db.integrity_check_json_db(train_fn, options)
184
- sorted_categories, data, _ = integrity_check_json_db.integrity_check_json_db(test_fn, options)
185
-
186
-
187
- #%% Preview labels
188
-
189
- viz_options = visualize_db.DbVizOptions()
190
- viz_options.num_to_visualize = 2000
191
- viz_options.trim_to_images_with_bboxes = False
192
- viz_options.add_search_links = False
193
- viz_options.sort_by_filename = False
194
- viz_options.parallelize_rendering = True
195
- viz_options.classes_to_exclude = ['test']
196
- html_output_file, image_db = visualize_db.visualize_db(db_path=output_json_filename,
197
- output_dir=os.path.join(
198
- output_base_dir, 'preview'),
199
- image_base_dir=input_base_dir,
200
- options=viz_options)
201
- os.startfile(html_output_file)