megadetector 5.0.27__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +232 -223
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +341 -338
  65. megadetector/detection/pytorch_detector.py +308 -266
  66. megadetector/detection/run_detector.py +186 -166
  67. megadetector/detection/run_detector_batch.py +366 -364
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +312 -253
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +291 -283
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +808 -311
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +220 -147
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -0
  81. megadetector/postprocessing/load_api_results.py +25 -22
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +319 -302
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -69
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +11 -11
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1019 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1511 -406
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +73 -60
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2868
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +424 -404
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +126 -98
  124. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/METADATA +6 -3
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  128. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  129. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  130. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  131. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  132. megadetector/data_management/importers/awc_to_json.py +0 -191
  133. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  134. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  135. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  136. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  137. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  138. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  139. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  140. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  141. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  142. megadetector/data_management/importers/ena24_to_json.py +0 -276
  143. megadetector/data_management/importers/filenames_to_json.py +0 -386
  144. megadetector/data_management/importers/helena_to_cct.py +0 -283
  145. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  146. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  147. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  148. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  149. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  150. megadetector/data_management/importers/missouri_to_json.py +0 -490
  151. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  152. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  153. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  154. megadetector/data_management/importers/pc_to_json.py +0 -365
  155. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  156. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  157. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  158. megadetector/data_management/importers/rspb_to_json.py +0 -356
  159. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  160. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  161. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  162. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  163. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  164. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  165. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  166. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  167. megadetector/data_management/importers/ubc_to_json.py +0 -399
  168. megadetector/data_management/importers/umn_to_json.py +0 -507
  169. megadetector/data_management/importers/wellington_to_json.py +0 -263
  170. megadetector/data_management/importers/wi_to_json.py +0 -442
  171. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  172. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  173. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  174. megadetector-5.0.27.dist-info/RECORD +0 -208
  175. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  176. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
@@ -1,150 +0,0 @@
1
- """
2
-
3
- jb_csv_to_json.py
4
-
5
- Convert a particular .csv file to CCT format. Images were not available at
6
- the time I wrote this script, so this is much shorter than other scripts
7
- in this folder.
8
-
9
- """
10
-
11
- #%% Constants and environment
12
-
13
- import pandas as pd
14
- import uuid
15
- import json
16
-
17
- input_metadata_file = r'd:\temp\pre_bounding_box.csv'
18
- output_file = r'd:\temp\pre_bounding_box.json'
19
- filename_col = 'filename'
20
- label_col = 'category'
21
-
22
-
23
- #%% Read source data
24
-
25
- input_metadata = pd.read_csv(input_metadata_file)
26
-
27
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
28
- len(input_metadata)))
29
-
30
-
31
- #%% Confirm filename uniqueness (this data set has one label per image)
32
-
33
- imageFilenames = input_metadata[filename_col]
34
-
35
- duplicateRows = []
36
- filenamesToRows = {}
37
-
38
- # Build up a map from filenames to a list of rows, checking image existence as we go
39
- for iFile,fn in enumerate(imageFilenames):
40
-
41
- if (fn in filenamesToRows):
42
- duplicateRows.append(iFile)
43
- filenamesToRows[fn].append(iFile)
44
- else:
45
- filenamesToRows[fn] = [iFile]
46
-
47
- assert(len(duplicateRows) == 0)
48
-
49
-
50
- #%% Create CCT dictionaries
51
-
52
- images = []
53
- annotations = []
54
-
55
- # Map categories to integer IDs (that's what COCO likes)
56
- nextCategoryID = 1
57
- categories = []
58
- categoryNamesToCategories = {}
59
-
60
- cat = {}
61
- cat['name'] = 'empty'
62
- cat['id'] = 0
63
- categories.append(cat)
64
- categoryNamesToCategories['empty'] = cat
65
-
66
- # For each image
67
- #
68
- # Because in practice images are 1:1 with annotations in this data set,
69
- # this is also a loop over annotations.
70
-
71
- # imageName = imageFilenames[0]
72
- for imageName in imageFilenames:
73
-
74
- rows = filenamesToRows[imageName]
75
-
76
- # As per above, this is convenient and appears to be true; asserting to be safe
77
- assert(len(rows) == 1)
78
- iRow = rows[0]
79
-
80
- row = input_metadata.iloc[iRow]
81
-
82
- im = {}
83
- # Filenames look like "290716114012001a1116.jpg"
84
- im['id'] = imageName.split('.')[0]
85
- im['file_name'] = imageName
86
- im['seq_id'] = '-1'
87
-
88
- images.append(im)
89
-
90
- categoryName = row[label_col].lower()
91
-
92
- # Have we seen this category before?
93
- if categoryName in categoryNamesToCategories:
94
- categoryID = categoryNamesToCategories[categoryName]['id']
95
- else:
96
- cat = {}
97
- categoryID = nextCategoryID
98
- cat['name'] = categoryName
99
- cat['id'] = nextCategoryID
100
- categories.append(cat)
101
- categoryNamesToCategories[categoryName] = cat
102
- nextCategoryID += 1
103
-
104
- # Create an annotation
105
- ann = {}
106
-
107
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
108
- # beyond the sheer improbability of collisions.
109
- ann['id'] = str(uuid.uuid1())
110
- ann['image_id'] = im['id']
111
- ann['category_id'] = categoryID
112
-
113
- annotations.append(ann)
114
-
115
- # ...for each image
116
-
117
- print('Finished creating dictionaries')
118
-
119
-
120
- #%% Create info struct
121
-
122
- info = {}
123
- info['year'] = 2019
124
- info['version'] = 1
125
- info['description'] = 'COCO style database'
126
- info['secondary_contributor'] = 'Converted to COCO .json by Dan Morris'
127
- info['contributor'] = ''
128
-
129
-
130
- #%% Write output
131
-
132
- json_data = {}
133
- json_data['images'] = images
134
- json_data['annotations'] = annotations
135
- json_data['categories'] = categories
136
- json_data['info'] = info
137
- json.dump(json_data, open(output_file,'w'), indent=4)
138
-
139
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
140
- len(images),len(annotations),len(categories)))
141
-
142
-
143
- #%% Validate
144
-
145
- from megadetector.data_management.databases import integrity_check_json_db
146
-
147
- options = integrity_check_json_db.IntegrityCheckOptions()
148
- sortedCategories,data = integrity_check_json_db.integrity_check_json_db(output_file, options)
149
-
150
-
@@ -1,250 +0,0 @@
1
- """
2
-
3
- mcgill_to_json.py
4
-
5
- Convert the .csv file provided for the McGill test data set to a
6
- COCO-camera-traps .json file
7
-
8
- """
9
-
10
- #%% Constants and environment
11
-
12
- import pandas as pd
13
- import os
14
- import glob
15
- import json
16
- import uuid
17
- import time
18
- import ntpath
19
- import humanfriendly
20
- import PIL
21
- import math
22
-
23
- baseDir = r'D:\wildlife_data\mcgill_test'
24
- input_metadata_file = os.path.join(baseDir, 'dan_500_photos_metadata.csv')
25
- output_file = os.path.join(baseDir, 'mcgill_test.json')
26
- image_directory = baseDir
27
-
28
- assert(os.path.isdir(image_directory))
29
- assert(os.path.isfile(input_metadata_file))
30
-
31
-
32
- #%% Read source data
33
-
34
- input_metadata = pd.read_csv(input_metadata_file)
35
-
36
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
37
- len(input_metadata)))
38
-
39
-
40
- #%% Map filenames to rows, verify image existence
41
-
42
- # Create an additional column for concatenated filenames
43
- input_metadata['relative_path'] = ''
44
- input_metadata['full_path'] = ''
45
-
46
- startTime = time.time()
47
-
48
- # Maps relative filenames to rows
49
- filenamesToRows = {}
50
-
51
- duplicateRows = []
52
-
53
- # Build up a map from filenames to a list of rows, checking image existence as we go
54
- # row = input_metadata.iloc[0]
55
- for iFile,row in input_metadata.iterrows():
56
-
57
- relativePath = os.path.join(row['site'],row['date_range'],str(row['camera']),
58
- str(row['folder']),row['filename'])
59
- fullPath = os.path.join(baseDir,relativePath)
60
-
61
- if (relativePath in filenamesToRows):
62
- duplicateRows.append(iFile)
63
- filenamesToRows[relativePath].append(iFile)
64
- else:
65
- filenamesToRows[relativePath] = [iFile]
66
- assert(os.path.isfile(fullPath))
67
-
68
- row['relative_path'] = relativePath
69
- row['full_path'] = fullPath
70
-
71
- input_metadata.iloc[iFile] = row
72
-
73
- elapsed = time.time() - startTime
74
- print('Finished verifying image existence in {}, found {} filenames with multiple labels'.format(
75
- humanfriendly.format_timespan(elapsed),len(duplicateRows)))
76
-
77
- # I didn't expect this to be true a priori, but it appears to be true, and
78
- # it saves us the trouble of checking consistency across multiple occurrences
79
- # of an image.
80
- assert(len(duplicateRows) == 0)
81
-
82
-
83
- #%% Check for images that aren't included in the metadata file
84
-
85
- # Enumerate all images
86
- imageFullPaths = glob.glob(os.path.join(image_directory,'**/*.JPG'), recursive=True)
87
-
88
- for iImage,imagePath in enumerate(imageFullPaths):
89
-
90
- imageRelPath = ntpath.relpath(imagePath, image_directory)
91
- assert(imageRelPath in filenamesToRows)
92
-
93
- print('Finished checking {} images to make sure they\'re in the metadata'.format(
94
- len(imageFullPaths)))
95
-
96
-
97
- #%% Create CCT dictionaries
98
-
99
- # Also gets image sizes, so this takes ~6 minutes
100
- #
101
- # Implicitly checks images for overt corruptness, i.e. by not crashing.
102
-
103
- images = []
104
- annotations = []
105
- categories = []
106
-
107
- emptyCategory = {}
108
- emptyCategory['id'] = 0
109
- emptyCategory['name'] = 'empty'
110
- emptyCategory['latin'] = 'empty'
111
- emptyCategory['count'] = 0
112
- categories.append(emptyCategory)
113
-
114
- # Map categories to integer IDs (that's what COCO likes)
115
- nextCategoryID = 1
116
- labelToCategory = {'empty':emptyCategory}
117
-
118
- # For each image
119
- #
120
- # Because in practice images are 1:1 with annotations in this data set,
121
- # this is also a loop over annotations.
122
-
123
- startTime = time.time()
124
-
125
- # row = input_metadata.iloc[0]
126
- for iFile,row in input_metadata.iterrows():
127
-
128
- relPath = row['relative_path'].replace('\\','/')
129
- im = {}
130
- # Filenames look like "290716114012001a1116.jpg"
131
- im['id'] = relPath.replace('/','_').replace(' ','_')
132
-
133
- im['file_name'] = relPath
134
-
135
- im['seq_id'] = -1
136
- im['frame_num'] = -1
137
-
138
- # In the form "001a"
139
- im['site']= row['site']
140
-
141
- # Can be in the form '111' or 's46'
142
- im['camera'] = row['camera']
143
-
144
- # In the form "7/29/2016 11:40"
145
- im['datetime'] = row['timestamp']
146
-
147
- otherFields = ['motion','temp_F','n_present','n_waterhole','n_contact','notes']
148
-
149
- for s in otherFields:
150
- im[s] = row[s]
151
-
152
- # Check image height and width
153
- fullPath = row['full_path']
154
- assert(os.path.isfile(fullPath))
155
- pilImage = PIL.Image.open(fullPath)
156
- width, height = pilImage.size
157
- im['width'] = width
158
- im['height'] = height
159
-
160
- images.append(im)
161
-
162
- label = row['species']
163
- if not isinstance(label,str):
164
- # NaN is the only thing we should see that's not a string
165
- assert math.isnan(label)
166
- label = 'empty'
167
- else:
168
- label = label.lower()
169
-
170
- latin = row['binomial']
171
- if not isinstance(latin,str):
172
- # NaN is the only thing we should see that's not a string
173
- assert math.isnan(latin)
174
- latin = 'empty'
175
- else:
176
- latin = latin.lower()
177
-
178
- if label == 'empty':
179
- if latin != 'empty':
180
- latin = 'empty'
181
-
182
- if label == 'unknown':
183
- if latin != 'unknown':
184
- latin = 'unknown'
185
-
186
- if label not in labelToCategory:
187
- print('Adding category {} ({})'.format(label,latin))
188
- category = {}
189
- categoryID = nextCategoryID
190
- category['id'] = categoryID
191
- nextCategoryID += 1
192
- category['name'] = label
193
- category['latin'] = latin
194
- category['count'] = 1
195
- labelToCategory[label] = category
196
- categories.append(category)
197
- else:
198
- category = labelToCategory[label]
199
- category['count'] = category['count'] + 1
200
- categoryID = category['id']
201
-
202
- # Create an annotation
203
- ann = {}
204
-
205
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
206
- # beyond the sheer improbability of collisions.
207
- ann['id'] = str(uuid.uuid1())
208
- ann['image_id'] = im['id']
209
- ann['category_id'] = categoryID
210
-
211
- annotations.append(ann)
212
-
213
- # ...for each image
214
-
215
- # Convert categories to a CCT-style dictionary
216
-
217
-
218
- for category in categories:
219
- print('Category {}, count {}'.format(category['name'],category['count']))
220
-
221
- elapsed = time.time() - startTime
222
- print('Finished creating CCT dictionaries in {}'.format(
223
- humanfriendly.format_timespan(elapsed)))
224
-
225
-
226
- #%% Create info struct
227
-
228
- info = {}
229
- info['year'] = 2019
230
- info['version'] = 1
231
- info['description'] = 'COCO style database'
232
- info['secondary_contributor'] = 'Converted to COCO .json by Dan Morris'
233
- info['contributor'] = 'McGill University'
234
-
235
-
236
- #%% Write output
237
-
238
- json_data = {}
239
- json_data['images'] = images
240
- json_data['annotations'] = annotations
241
- json_data['categories'] = categories
242
- json_data['info'] = info
243
- json.dump(json_data, open(output_file,'w'), indent=4)
244
-
245
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
246
- len(images),len(annotations),len(categories)))
247
-
248
-
249
-
250
-