megadetector 5.0.27__py3-none-any.whl → 5.0.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (176) hide show
  1. megadetector/api/batch_processing/api_core/batch_service/score.py +4 -5
  2. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +1 -1
  3. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +1 -1
  4. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  5. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  6. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  7. megadetector/api/synchronous/api_core/tests/load_test.py +2 -3
  8. megadetector/classification/aggregate_classifier_probs.py +3 -3
  9. megadetector/classification/analyze_failed_images.py +5 -5
  10. megadetector/classification/cache_batchapi_outputs.py +5 -5
  11. megadetector/classification/create_classification_dataset.py +11 -12
  12. megadetector/classification/crop_detections.py +10 -10
  13. megadetector/classification/csv_to_json.py +8 -8
  14. megadetector/classification/detect_and_crop.py +13 -15
  15. megadetector/classification/evaluate_model.py +7 -7
  16. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  17. megadetector/classification/json_to_azcopy_list.py +1 -1
  18. megadetector/classification/json_validator.py +29 -32
  19. megadetector/classification/map_classification_categories.py +9 -9
  20. megadetector/classification/merge_classification_detection_output.py +12 -9
  21. megadetector/classification/prepare_classification_script.py +19 -19
  22. megadetector/classification/prepare_classification_script_mc.py +23 -23
  23. megadetector/classification/run_classifier.py +4 -4
  24. megadetector/classification/save_mislabeled.py +6 -6
  25. megadetector/classification/train_classifier.py +1 -1
  26. megadetector/classification/train_classifier_tf.py +9 -9
  27. megadetector/classification/train_utils.py +10 -10
  28. megadetector/data_management/annotations/annotation_constants.py +1 -1
  29. megadetector/data_management/camtrap_dp_to_coco.py +45 -45
  30. megadetector/data_management/cct_json_utils.py +101 -101
  31. megadetector/data_management/cct_to_md.py +49 -49
  32. megadetector/data_management/cct_to_wi.py +33 -33
  33. megadetector/data_management/coco_to_labelme.py +75 -75
  34. megadetector/data_management/coco_to_yolo.py +189 -189
  35. megadetector/data_management/databases/add_width_and_height_to_db.py +3 -2
  36. megadetector/data_management/databases/combine_coco_camera_traps_files.py +38 -38
  37. megadetector/data_management/databases/integrity_check_json_db.py +202 -188
  38. megadetector/data_management/databases/subset_json_db.py +33 -33
  39. megadetector/data_management/generate_crops_from_cct.py +38 -38
  40. megadetector/data_management/get_image_sizes.py +54 -49
  41. megadetector/data_management/labelme_to_coco.py +130 -124
  42. megadetector/data_management/labelme_to_yolo.py +78 -72
  43. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  44. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  45. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  46. megadetector/data_management/lila/download_lila_subset.py +21 -24
  47. megadetector/data_management/lila/generate_lila_per_image_labels.py +91 -91
  48. megadetector/data_management/lila/get_lila_annotation_counts.py +30 -30
  49. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  50. megadetector/data_management/lila/lila_common.py +70 -70
  51. megadetector/data_management/lila/test_lila_metadata_urls.py +13 -14
  52. megadetector/data_management/mewc_to_md.py +339 -340
  53. megadetector/data_management/ocr_tools.py +258 -252
  54. megadetector/data_management/read_exif.py +232 -223
  55. megadetector/data_management/remap_coco_categories.py +26 -26
  56. megadetector/data_management/remove_exif.py +31 -20
  57. megadetector/data_management/rename_images.py +187 -187
  58. megadetector/data_management/resize_coco_dataset.py +41 -41
  59. megadetector/data_management/speciesnet_to_md.py +41 -41
  60. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  61. megadetector/data_management/yolo_output_to_md_output.py +117 -120
  62. megadetector/data_management/yolo_to_coco.py +195 -188
  63. megadetector/detection/change_detection.py +831 -0
  64. megadetector/detection/process_video.py +341 -338
  65. megadetector/detection/pytorch_detector.py +308 -266
  66. megadetector/detection/run_detector.py +186 -166
  67. megadetector/detection/run_detector_batch.py +366 -364
  68. megadetector/detection/run_inference_with_yolov5_val.py +328 -325
  69. megadetector/detection/run_tiled_inference.py +312 -253
  70. megadetector/detection/tf_detector.py +24 -24
  71. megadetector/detection/video_utils.py +291 -283
  72. megadetector/postprocessing/add_max_conf.py +15 -11
  73. megadetector/postprocessing/categorize_detections_by_size.py +44 -44
  74. megadetector/postprocessing/classification_postprocessing.py +808 -311
  75. megadetector/postprocessing/combine_batch_outputs.py +20 -21
  76. megadetector/postprocessing/compare_batch_results.py +528 -517
  77. megadetector/postprocessing/convert_output_format.py +97 -97
  78. megadetector/postprocessing/create_crop_folder.py +220 -147
  79. megadetector/postprocessing/detector_calibration.py +173 -168
  80. megadetector/postprocessing/generate_csv_report.py +508 -0
  81. megadetector/postprocessing/load_api_results.py +25 -22
  82. megadetector/postprocessing/md_to_coco.py +129 -98
  83. megadetector/postprocessing/md_to_labelme.py +89 -83
  84. megadetector/postprocessing/md_to_wi.py +40 -40
  85. megadetector/postprocessing/merge_detections.py +87 -114
  86. megadetector/postprocessing/postprocess_batch_results.py +319 -302
  87. megadetector/postprocessing/remap_detection_categories.py +36 -36
  88. megadetector/postprocessing/render_detection_confusion_matrix.py +205 -199
  89. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  90. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  91. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +702 -677
  92. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  93. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  94. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  95. megadetector/postprocessing/validate_batch_results.py +70 -70
  96. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  97. megadetector/taxonomy_mapping/map_new_lila_datasets.py +15 -15
  98. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +14 -14
  99. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +66 -69
  100. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  101. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  102. megadetector/taxonomy_mapping/species_lookup.py +33 -33
  103. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  104. megadetector/taxonomy_mapping/taxonomy_graph.py +11 -11
  105. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  106. megadetector/utils/azure_utils.py +22 -22
  107. megadetector/utils/ct_utils.py +1019 -200
  108. megadetector/utils/directory_listing.py +21 -77
  109. megadetector/utils/gpu_test.py +22 -22
  110. megadetector/utils/md_tests.py +541 -518
  111. megadetector/utils/path_utils.py +1511 -406
  112. megadetector/utils/process_utils.py +41 -41
  113. megadetector/utils/sas_blob_utils.py +53 -49
  114. megadetector/utils/split_locations_into_train_val.py +73 -60
  115. megadetector/utils/string_utils.py +147 -26
  116. megadetector/utils/url_utils.py +463 -173
  117. megadetector/utils/wi_utils.py +2629 -2868
  118. megadetector/utils/write_html_image_list.py +137 -137
  119. megadetector/visualization/plot_utils.py +21 -21
  120. megadetector/visualization/render_images_with_thumbnails.py +37 -73
  121. megadetector/visualization/visualization_utils.py +424 -404
  122. megadetector/visualization/visualize_db.py +197 -190
  123. megadetector/visualization/visualize_detector_output.py +126 -98
  124. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/METADATA +6 -3
  125. megadetector-5.0.29.dist-info/RECORD +163 -0
  126. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/WHEEL +1 -1
  127. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  128. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  129. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  130. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  131. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  132. megadetector/data_management/importers/awc_to_json.py +0 -191
  133. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  134. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  135. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  136. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  137. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  138. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  139. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  140. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  141. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  142. megadetector/data_management/importers/ena24_to_json.py +0 -276
  143. megadetector/data_management/importers/filenames_to_json.py +0 -386
  144. megadetector/data_management/importers/helena_to_cct.py +0 -283
  145. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  146. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  147. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  148. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  149. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  150. megadetector/data_management/importers/missouri_to_json.py +0 -490
  151. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  152. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  153. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  154. megadetector/data_management/importers/pc_to_json.py +0 -365
  155. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  156. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  157. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  158. megadetector/data_management/importers/rspb_to_json.py +0 -356
  159. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  160. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  161. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  162. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  163. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  164. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  165. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  166. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  167. megadetector/data_management/importers/ubc_to_json.py +0 -399
  168. megadetector/data_management/importers/umn_to_json.py +0 -507
  169. megadetector/data_management/importers/wellington_to_json.py +0 -263
  170. megadetector/data_management/importers/wi_to_json.py +0 -442
  171. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  172. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  173. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  174. megadetector-5.0.27.dist-info/RECORD +0 -208
  175. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/licenses/LICENSE +0 -0
  176. {megadetector-5.0.27.dist-info → megadetector-5.0.29.dist-info}/top_level.txt +0 -0
@@ -1,283 +0,0 @@
1
- """
2
-
3
- helena_to_cct.py
4
-
5
- Convert the Helena Detections data set to a COCO-camera-traps .json file
6
-
7
- """
8
-
9
- #%% Constants and environment
10
-
11
- import os
12
- import json
13
- import uuid
14
- import time
15
- import humanfriendly
16
- import numpy as np
17
-
18
- import pandas as pd
19
-
20
- from PIL import Image
21
- from datetime import datetime
22
-
23
- from megadetector.utils.path_utils import find_images
24
-
25
- base_directory = r'/mnt/blobfuse/wildlifeblobssc/'
26
- output_directory = r'/home/gramener'
27
- output_json_file = os.path.join(output_directory,'rspb.json')
28
- input_metadata_file = os.path.join(base_directory, 'StHelena_Detections.xlsx')
29
- image_directory = os.path.join(base_directory, 'StHELENA_images/')
30
- mapping_df = ''
31
- filename_col = 'image_name'
32
- load_width_and_height = True
33
- annotation_fields_to_copy = ['Fortnight', 'Detector', 'datetime', 'site']
34
-
35
- assert(os.path.isdir(image_directory))
36
-
37
- # This is one time process
38
- #%% Create Filenames and timestamps mapping CSV
39
-
40
- image_full_paths = find_images(image_directory, bRecursive=True)
41
- csv_file = os.path.join(output_directory, "mapping_names.csv")
42
- if not os.path.exists(csv_file):
43
- map_list = []
44
- for img_ in image_full_paths:
45
- try:
46
- date_cr = Image.open(img_)._getexif()[306]
47
- _tmp = {}
48
- # import pdb;pdb.set_trace()
49
- img_path = img_.replace(image_directory, "")
50
- img_folder = img_path.split("/")[0]
51
- site = img_path.split("/")[1]
52
- detector = img_path.split("/")[2]
53
- _tmp["image_name"] = img_path
54
- _tmp["Fortnight"] = img_folder.replace("Fortnight", "")
55
- _tmp["site"] = site
56
- _tmp["Detector"] = detector
57
- _tmp["datetime"] = "-".join(date_cr.split(":")[:-1])
58
- map_list.append(_tmp)
59
- except Exception as e:
60
- print(e)
61
- print(img_)
62
- mapping_df = pd.DataFrame(map_list)
63
- mapping_df.to_csv(csv_file, index=False)
64
- else:
65
- mapping_df = pd.read_csv(csv_file)
66
-
67
- #%% To create CCT JSON for RSPB dataset
68
-
69
- #%% Read source data
70
- input_metadata = pd.read_excel(input_metadata_file)
71
-
72
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
73
- len(input_metadata)))
74
-
75
- # Original Excel file had timestamp in different columns
76
- input_metadata['datetime'] = input_metadata[['DATUM', 'Hour', 'Mins']].apply(lambda x: '{0} {1}-{2}'.format(datetime.strftime(x[0], '%Y-%m-%d'),"{0:0=2d}".format(x[1]),"{0:0=2d}".format(x[2])), axis = 1)
77
- input_metadata['Detector'] = "Detector"+input_metadata['Detector'].astype('str')
78
- result = pd.merge(input_metadata, mapping_df, how='left', on=['datetime', "Fortnight", "site", "Detector"])
79
-
80
-
81
- #%% Map filenames to rows, verify image existence
82
-
83
- start_time = time.time()
84
- filenames_to_rows = {}
85
- image_filenames = result[filename_col]
86
- image_filenames = list(set(image_filenames))
87
-
88
- missing_files = []
89
- duplicate_rows = []
90
-
91
- # Build up a map from filenames to a list of rows, checking image existence as we go
92
- for iFile, fn in enumerate(image_filenames):
93
- try:
94
- if fn == 'nan' or type(fn) == float:
95
- pass
96
- else:
97
- if (fn in filenames_to_rows):
98
- duplicate_rows.append(iFile)
99
- filenames_to_rows[fn].append(iFile)
100
- else:
101
- filenames_to_rows[fn] = [iFile]
102
- image_path = os.path.join(image_directory, fn)
103
- if not os.path.isfile(image_path):
104
- missing_files.append(fn)
105
- except Exception as e:
106
- pass
107
-
108
- elapsed = time.time() - start_time
109
-
110
- print('Finished verifying image existence in {}, found {} missing files (of {})'.format(
111
- humanfriendly.format_timespan(elapsed),
112
- len(missing_files),len(image_filenames)))
113
-
114
- #%% Skipping this check because one image has multiple species
115
- # assert len(duplicate_rows) == 0
116
-
117
- #%% Check for images that aren't included in the metadata file
118
-
119
- images_missing_from_metadata = []
120
-
121
- for iImage, image_path in enumerate(image_full_paths):
122
-
123
- relative_path = os.path.relpath(image_path, image_directory)
124
- if relative_path not in filenames_to_rows:
125
- images_missing_from_metadata.append(relative_path)
126
-
127
- print('{} of {} files are not in metadata'.format(len(images_missing_from_metadata),len(image_full_paths)))
128
-
129
- #%% Create CCT dictionaries
130
-
131
- images = []
132
- annotations = []
133
-
134
- # Map categories to integer IDs
135
- #
136
- # The category '0' is reserved for 'empty'
137
-
138
- categories_to_category_id = {}
139
- categories_to_counts = {}
140
- categories_to_category_id['empty'] = 0
141
- categories_to_counts['empty'] = 0
142
-
143
- next_category_id = 1
144
-
145
- # For each image
146
-
147
- start_time = time.time()
148
- for image_name in image_filenames:
149
-
150
- if type(image_name) != str:
151
- continue
152
-
153
- image_path = os.path.join(image_directory, image_name)
154
- # Don't include images that don't exist on disk
155
- if not os.path.isfile(image_path):
156
- continue
157
-
158
- im = {}
159
- im['id'] = image_name.split('.')[0]
160
- im['file_name'] = image_name
161
-
162
- if load_width_and_height:
163
- pilImage = Image.open(image_path)
164
- width, height = pilImage.size
165
- im['width'] = width
166
- im['height'] = height
167
- else:
168
- im['width'] = -1
169
- im['height'] = -1
170
-
171
- images.append(im)
172
-
173
- rows = filenames_to_rows[image_name]
174
-
175
- # Some filenames will match to multiple rows
176
- # assert(len(rows) == 1)
177
-
178
- # iRow = rows[0]
179
- for iRow in rows:
180
- row = result.iloc[iRow]
181
-
182
- category = row['Species']
183
-
184
- # Have we seen this category before?
185
- if category in categories_to_category_id:
186
- categoryID = categories_to_category_id[category]
187
- categories_to_counts[category] += 1
188
- else:
189
- categoryID = next_category_id
190
- categories_to_category_id[category] = categoryID
191
- categories_to_counts[category] = 1
192
- next_category_id += 1
193
-
194
- # Create an annotation
195
- ann = {}
196
-
197
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
198
- # beyond the sheer improbability of collisions.
199
- ann['id'] = str(uuid.uuid1())
200
- ann['image_id'] = im['id']
201
- ann['category_id'] = categoryID
202
- # ann['datetime'] = row['datetime']
203
- # ann['site'] = row['site']
204
-
205
- for fieldname in annotation_fields_to_copy:
206
- ann[fieldname] = row[fieldname]
207
- if ann[fieldname] is np.nan:
208
- ann[fieldname] = ''
209
- ann[fieldname] = str(ann[fieldname])
210
-
211
- annotations.append(ann)
212
-
213
- # ...for each image
214
-
215
- # Convert categories to a CCT-style dictionary
216
- categories = []
217
-
218
- for category in categories_to_counts:
219
- print('Category {}, count {}'.format(
220
- category, categories_to_counts[category]))
221
- categoryID = categories_to_category_id[category]
222
- cat = {}
223
- cat['name'] = category
224
- cat['id'] = categoryID
225
- categories.append(cat)
226
-
227
- elapsed = time.time() - start_time
228
- print('Finished creating CCT dictionaries in {}'.format(
229
- humanfriendly.format_timespan(elapsed)))
230
-
231
-
232
- #%% Create info struct
233
-
234
- info = {}
235
- info['year'] = 2012
236
- info['version'] = 1
237
- info['description'] = 'RSPB Dataset'
238
- info['contributor'] = 'Helena Detection'
239
-
240
-
241
- #%% Write output
242
-
243
- json_data = {}
244
- json_data['images'] = images
245
- json_data['annotations'] = annotations
246
- json_data['categories'] = categories
247
- json_data['info'] = info
248
- json.dump(json_data, open(output_json_file, 'w'), indent=4)
249
-
250
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
251
- len(images), len(annotations), len(categories)))
252
-
253
- #%% Validate output
254
-
255
- from megadetector.data_management.databases import integrity_check_json_db
256
-
257
- options = integrity_check_json_db.IntegrityCheckOptions()
258
- options.baseDir = image_directory
259
- options.bCheckImageSizes = False
260
- options.bCheckImageExistence = False
261
- options.bFindUnusedImages = False
262
- data = integrity_check_json_db.integrity_check_json_db(output_json_file,options)
263
-
264
-
265
- #%% Preview labels
266
-
267
- from megadetector.visualization import visualize_db
268
- from megadetector.data_management.databases import integrity_check_json_db
269
-
270
- viz_options = visualize_db.DbVizOptions()
271
- viz_options.num_to_visualize = None
272
- viz_options.trim_to_images_with_bboxes = False
273
- viz_options.add_search_links = True
274
- viz_options.sort_by_filename = False
275
- viz_options.parallelize_rendering = True
276
- viz_options.classes_to_exclude = ['empty']
277
- html_output_file,image_db = visualize_db.visualize_db(db_path=output_json_file,
278
- output_dir=os.path.join(
279
- output_directory, 'RSPB/preview'),
280
- image_base_dir=image_directory,
281
- options=viz_options)
282
- os.startfile(html_output_file)
283
-