megadetector 5.0.10__py3-none-any.whl → 5.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (226) hide show
  1. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
  2. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
  3. megadetector-5.0.11.dist-info/RECORD +5 -0
  4. megadetector-5.0.11.dist-info/top_level.txt +1 -0
  5. api/__init__.py +0 -0
  6. api/batch_processing/__init__.py +0 -0
  7. api/batch_processing/api_core/__init__.py +0 -0
  8. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  9. api/batch_processing/api_core/batch_service/score.py +0 -439
  10. api/batch_processing/api_core/server.py +0 -294
  11. api/batch_processing/api_core/server_api_config.py +0 -98
  12. api/batch_processing/api_core/server_app_config.py +0 -55
  13. api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  14. api/batch_processing/api_core/server_job_status_table.py +0 -152
  15. api/batch_processing/api_core/server_orchestration.py +0 -360
  16. api/batch_processing/api_core/server_utils.py +0 -92
  17. api/batch_processing/api_core_support/__init__.py +0 -0
  18. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  19. api/batch_processing/api_support/__init__.py +0 -0
  20. api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  21. api/batch_processing/data_preparation/__init__.py +0 -0
  22. api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
  23. api/batch_processing/data_preparation/manage_video_batch.py +0 -327
  24. api/batch_processing/integration/digiKam/setup.py +0 -6
  25. api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
  26. api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
  27. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
  28. api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
  29. api/batch_processing/postprocessing/__init__.py +0 -0
  30. api/batch_processing/postprocessing/add_max_conf.py +0 -64
  31. api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
  32. api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
  33. api/batch_processing/postprocessing/compare_batch_results.py +0 -958
  34. api/batch_processing/postprocessing/convert_output_format.py +0 -397
  35. api/batch_processing/postprocessing/load_api_results.py +0 -195
  36. api/batch_processing/postprocessing/md_to_coco.py +0 -310
  37. api/batch_processing/postprocessing/md_to_labelme.py +0 -330
  38. api/batch_processing/postprocessing/merge_detections.py +0 -401
  39. api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
  40. api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
  41. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
  42. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
  43. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
  44. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
  45. api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
  46. api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
  47. api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
  48. api/synchronous/__init__.py +0 -0
  49. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  50. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
  51. api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
  52. api/synchronous/api_core/animal_detection_api/config.py +0 -35
  53. api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
  54. api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
  55. api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
  56. api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
  57. api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
  58. api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
  59. api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
  60. api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
  61. api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
  62. api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
  63. api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
  64. api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
  65. api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
  66. api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
  67. api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
  68. api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
  69. api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
  70. api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
  71. api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
  72. api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
  73. api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
  74. api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
  75. api/synchronous/api_core/tests/__init__.py +0 -0
  76. api/synchronous/api_core/tests/load_test.py +0 -110
  77. classification/__init__.py +0 -0
  78. classification/aggregate_classifier_probs.py +0 -108
  79. classification/analyze_failed_images.py +0 -227
  80. classification/cache_batchapi_outputs.py +0 -198
  81. classification/create_classification_dataset.py +0 -627
  82. classification/crop_detections.py +0 -516
  83. classification/csv_to_json.py +0 -226
  84. classification/detect_and_crop.py +0 -855
  85. classification/efficientnet/__init__.py +0 -9
  86. classification/efficientnet/model.py +0 -415
  87. classification/efficientnet/utils.py +0 -610
  88. classification/evaluate_model.py +0 -520
  89. classification/identify_mislabeled_candidates.py +0 -152
  90. classification/json_to_azcopy_list.py +0 -63
  91. classification/json_validator.py +0 -695
  92. classification/map_classification_categories.py +0 -276
  93. classification/merge_classification_detection_output.py +0 -506
  94. classification/prepare_classification_script.py +0 -194
  95. classification/prepare_classification_script_mc.py +0 -228
  96. classification/run_classifier.py +0 -286
  97. classification/save_mislabeled.py +0 -110
  98. classification/train_classifier.py +0 -825
  99. classification/train_classifier_tf.py +0 -724
  100. classification/train_utils.py +0 -322
  101. data_management/__init__.py +0 -0
  102. data_management/annotations/__init__.py +0 -0
  103. data_management/annotations/annotation_constants.py +0 -34
  104. data_management/camtrap_dp_to_coco.py +0 -238
  105. data_management/cct_json_utils.py +0 -395
  106. data_management/cct_to_md.py +0 -176
  107. data_management/cct_to_wi.py +0 -289
  108. data_management/coco_to_labelme.py +0 -272
  109. data_management/coco_to_yolo.py +0 -662
  110. data_management/databases/__init__.py +0 -0
  111. data_management/databases/add_width_and_height_to_db.py +0 -33
  112. data_management/databases/combine_coco_camera_traps_files.py +0 -206
  113. data_management/databases/integrity_check_json_db.py +0 -477
  114. data_management/databases/subset_json_db.py +0 -115
  115. data_management/generate_crops_from_cct.py +0 -149
  116. data_management/get_image_sizes.py +0 -188
  117. data_management/importers/add_nacti_sizes.py +0 -52
  118. data_management/importers/add_timestamps_to_icct.py +0 -79
  119. data_management/importers/animl_results_to_md_results.py +0 -158
  120. data_management/importers/auckland_doc_test_to_json.py +0 -372
  121. data_management/importers/auckland_doc_to_json.py +0 -200
  122. data_management/importers/awc_to_json.py +0 -189
  123. data_management/importers/bellevue_to_json.py +0 -273
  124. data_management/importers/cacophony-thermal-importer.py +0 -796
  125. data_management/importers/carrizo_shrubfree_2018.py +0 -268
  126. data_management/importers/carrizo_trail_cam_2017.py +0 -287
  127. data_management/importers/cct_field_adjustments.py +0 -57
  128. data_management/importers/channel_islands_to_cct.py +0 -913
  129. data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  130. data_management/importers/eMammal/eMammal_helpers.py +0 -249
  131. data_management/importers/eMammal/make_eMammal_json.py +0 -223
  132. data_management/importers/ena24_to_json.py +0 -275
  133. data_management/importers/filenames_to_json.py +0 -385
  134. data_management/importers/helena_to_cct.py +0 -282
  135. data_management/importers/idaho-camera-traps.py +0 -1407
  136. data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  137. data_management/importers/jb_csv_to_json.py +0 -150
  138. data_management/importers/mcgill_to_json.py +0 -250
  139. data_management/importers/missouri_to_json.py +0 -489
  140. data_management/importers/nacti_fieldname_adjustments.py +0 -79
  141. data_management/importers/noaa_seals_2019.py +0 -181
  142. data_management/importers/pc_to_json.py +0 -365
  143. data_management/importers/plot_wni_giraffes.py +0 -123
  144. data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
  145. data_management/importers/prepare_zsl_imerit.py +0 -131
  146. data_management/importers/rspb_to_json.py +0 -356
  147. data_management/importers/save_the_elephants_survey_A.py +0 -320
  148. data_management/importers/save_the_elephants_survey_B.py +0 -332
  149. data_management/importers/snapshot_safari_importer.py +0 -758
  150. data_management/importers/snapshot_safari_importer_reprise.py +0 -665
  151. data_management/importers/snapshot_serengeti_lila.py +0 -1067
  152. data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  153. data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  154. data_management/importers/sulross_get_exif.py +0 -65
  155. data_management/importers/timelapse_csv_set_to_json.py +0 -490
  156. data_management/importers/ubc_to_json.py +0 -399
  157. data_management/importers/umn_to_json.py +0 -507
  158. data_management/importers/wellington_to_json.py +0 -263
  159. data_management/importers/wi_to_json.py +0 -441
  160. data_management/importers/zamba_results_to_md_results.py +0 -181
  161. data_management/labelme_to_coco.py +0 -548
  162. data_management/labelme_to_yolo.py +0 -272
  163. data_management/lila/__init__.py +0 -0
  164. data_management/lila/add_locations_to_island_camera_traps.py +0 -97
  165. data_management/lila/add_locations_to_nacti.py +0 -147
  166. data_management/lila/create_lila_blank_set.py +0 -557
  167. data_management/lila/create_lila_test_set.py +0 -151
  168. data_management/lila/create_links_to_md_results_files.py +0 -106
  169. data_management/lila/download_lila_subset.py +0 -177
  170. data_management/lila/generate_lila_per_image_labels.py +0 -515
  171. data_management/lila/get_lila_annotation_counts.py +0 -170
  172. data_management/lila/get_lila_image_counts.py +0 -111
  173. data_management/lila/lila_common.py +0 -300
  174. data_management/lila/test_lila_metadata_urls.py +0 -132
  175. data_management/ocr_tools.py +0 -874
  176. data_management/read_exif.py +0 -681
  177. data_management/remap_coco_categories.py +0 -84
  178. data_management/remove_exif.py +0 -66
  179. data_management/resize_coco_dataset.py +0 -189
  180. data_management/wi_download_csv_to_coco.py +0 -246
  181. data_management/yolo_output_to_md_output.py +0 -441
  182. data_management/yolo_to_coco.py +0 -676
  183. detection/__init__.py +0 -0
  184. detection/detector_training/__init__.py +0 -0
  185. detection/detector_training/model_main_tf2.py +0 -114
  186. detection/process_video.py +0 -703
  187. detection/pytorch_detector.py +0 -337
  188. detection/run_detector.py +0 -779
  189. detection/run_detector_batch.py +0 -1219
  190. detection/run_inference_with_yolov5_val.py +0 -917
  191. detection/run_tiled_inference.py +0 -935
  192. detection/tf_detector.py +0 -188
  193. detection/video_utils.py +0 -606
  194. docs/source/conf.py +0 -43
  195. md_utils/__init__.py +0 -0
  196. md_utils/azure_utils.py +0 -174
  197. md_utils/ct_utils.py +0 -612
  198. md_utils/directory_listing.py +0 -246
  199. md_utils/md_tests.py +0 -968
  200. md_utils/path_utils.py +0 -1044
  201. md_utils/process_utils.py +0 -157
  202. md_utils/sas_blob_utils.py +0 -509
  203. md_utils/split_locations_into_train_val.py +0 -228
  204. md_utils/string_utils.py +0 -92
  205. md_utils/url_utils.py +0 -323
  206. md_utils/write_html_image_list.py +0 -225
  207. md_visualization/__init__.py +0 -0
  208. md_visualization/plot_utils.py +0 -293
  209. md_visualization/render_images_with_thumbnails.py +0 -275
  210. md_visualization/visualization_utils.py +0 -1537
  211. md_visualization/visualize_db.py +0 -551
  212. md_visualization/visualize_detector_output.py +0 -406
  213. megadetector-5.0.10.dist-info/RECORD +0 -224
  214. megadetector-5.0.10.dist-info/top_level.txt +0 -8
  215. taxonomy_mapping/__init__.py +0 -0
  216. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
  217. taxonomy_mapping/map_new_lila_datasets.py +0 -154
  218. taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
  219. taxonomy_mapping/preview_lila_taxonomy.py +0 -591
  220. taxonomy_mapping/retrieve_sample_image.py +0 -71
  221. taxonomy_mapping/simple_image_download.py +0 -218
  222. taxonomy_mapping/species_lookup.py +0 -834
  223. taxonomy_mapping/taxonomy_csv_checker.py +0 -159
  224. taxonomy_mapping/taxonomy_graph.py +0 -346
  225. taxonomy_mapping/validate_lila_category_mappings.py +0 -83
  226. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
@@ -1,272 +0,0 @@
1
- """
2
-
3
- labelme_to_yolo.py
4
-
5
- Create YOLO .txt files in a folder containing labelme .json files.
6
-
7
- """
8
-
9
- #%% Imports
10
-
11
- import os
12
- import json
13
-
14
- from multiprocessing.pool import Pool, ThreadPool
15
- from functools import partial
16
-
17
- from md_utils.path_utils import recursive_file_list
18
- from tqdm import tqdm
19
-
20
-
21
- #%% Main function
22
-
23
- def labelme_file_to_yolo_file(labelme_file,
24
- category_name_to_category_id,
25
- yolo_file=None,
26
- required_token=None,
27
- overwrite_behavior='overwrite'):
28
- """
29
- Convert the single .json file labelme_file to yolo format, writing the results to the text
30
- file yolo_file (defaults to s/json/txt).
31
-
32
- If required_token is not None and the dict in labelme_file does not contain the key [required_token],
33
- this function no-ops (i.e., does not generate a YOLO file).
34
-
35
- overwrite_behavior should be 'skip' or 'overwrite' (default).
36
- """
37
-
38
- result = {}
39
- result['labelme_file'] = labelme_file
40
- result['status'] = 'unknown'
41
-
42
- assert os.path.isfile(labelme_file), 'Could not find labelme .json file {}'.format(labelme_file)
43
- assert labelme_file.endswith('.json'), 'Illegal labelme .json file {}'.format(labelme_file)
44
-
45
- if yolo_file is None:
46
- yolo_file = os.path.splitext(labelme_file)[0] + '.txt'
47
-
48
- if os.path.isfile(yolo_file):
49
- if overwrite_behavior == 'skip':
50
- result['status'] = 'skip-exists'
51
- return result
52
- else:
53
- assert overwrite_behavior == 'overwrite', \
54
- 'Unrecognized overwrite behavior {}'.format(overwrite_behavior)
55
-
56
- with open(labelme_file,'r') as f:
57
- labelme_data = json.load(f)
58
-
59
- if required_token is not None and required_token not in labelme_data:
60
- result['status'] = 'skip-no-required-token'
61
- return result
62
-
63
- im_height = labelme_data['imageHeight']
64
- im_width = labelme_data['imageWidth']
65
-
66
- yolo_lines = []
67
-
68
- for shape in labelme_data['shapes']:
69
-
70
- assert shape['shape_type'] == 'rectangle', \
71
- 'I only know how to convert rectangles to YOLO format'
72
- assert shape['label'] in category_name_to_category_id, \
73
- 'Category {} not in category mapping'.format(shape['label'])
74
- assert len(shape['points']) == 2, 'Illegal rectangle'
75
- category_id = category_name_to_category_id[shape['label']]
76
-
77
- p0 = shape['points'][0]
78
- p1 = shape['points'][1]
79
-
80
- # Labelme: [[x0,y0],[x1,y1]] (arbitrarily sorted) (absolute coordinates)
81
- #
82
- # YOLO: [class, x_center, y_center, width, height] (normalized coordinates)
83
- minx_abs = min(p0[0],p1[0])
84
- maxx_abs = max(p0[0],p1[0])
85
- miny_abs = min(p0[1],p1[1])
86
- maxy_abs = max(p0[1],p1[1])
87
-
88
- if (minx_abs >= (im_width-1)) or (maxx_abs <= 0) or \
89
- (miny_abs >= (im_height-1)) or (maxy_abs <= 0):
90
- print('Skipping invalid shape in {}'.format(labelme_file))
91
- continue
92
-
93
- # Clip to [0,1]... it's not obvious that the YOLO format doesn't allow bounding
94
- # boxes to extend outside the image, but YOLOv5 and YOLOv8 get sad about boxes
95
- # that extend outside the image.
96
- maxx_abs = min(maxx_abs,im_width-1)
97
- maxy_abs = min(maxy_abs,im_height-1)
98
- minx_abs = max(minx_abs,0.0)
99
- miny_abs = max(miny_abs,0.0)
100
-
101
- minx_rel = minx_abs / (im_width-1)
102
- maxx_rel = maxx_abs / (im_width-1)
103
- miny_rel = miny_abs / (im_height-1)
104
- maxy_rel = maxy_abs / (im_height-1)
105
-
106
- assert maxx_rel >= minx_rel
107
- assert maxy_rel >= miny_rel
108
-
109
- xcenter_rel = (maxx_rel + minx_rel) / 2.0
110
- ycenter_rel = (maxy_rel + miny_rel) / 2.0
111
- w_rel = maxx_rel - minx_rel
112
- h_rel = maxy_rel - miny_rel
113
-
114
- yolo_line = '{} {:.3f} {:.3f} {:.3f} {:.3f}'.format(category_id,
115
- xcenter_rel, ycenter_rel, w_rel, h_rel)
116
- yolo_lines.append(yolo_line)
117
-
118
- # ...for each shape
119
-
120
- with open(yolo_file,'w') as f:
121
- for s in yolo_lines:
122
- f.write(s + '\n')
123
-
124
- result['status'] = 'converted'
125
- return result
126
-
127
-
128
- def labelme_folder_to_yolo(labelme_folder,
129
- category_name_to_category_id=None,
130
- required_token=None,
131
- overwrite_behavior='overwrite',
132
- relative_filenames_to_convert=None,
133
- n_workers=1,
134
- use_threads=True):
135
- """
136
- Given a folder with images and labelme .json files, convert the .json files
137
- to YOLO .txt format. If category_name_to_category_id is None, first reads
138
- all the labels in the folder to build a zero-indexed name --> ID mapping.
139
-
140
- If required_token is not None and a labelme_file does not contain the key [required_token],
141
- it won't be converted. Typically used to specify a field that indicates which files have
142
- been reviewed.
143
-
144
- If relative_filenames_to_convert is not None, this should be a list of .json (not image)
145
- files that should get converted, relative to the base folder.
146
-
147
- overwrite_behavior should be 'skip' or 'overwrite' (default).
148
-
149
- returns a dict with:
150
- 'category_name_to_category_id', whether it was passed in or constructed
151
- 'image_results': a list of results for each image (converted, skipped, error)
152
-
153
- """
154
-
155
- if relative_filenames_to_convert is not None:
156
- labelme_files_relative = relative_filenames_to_convert
157
- assert all([fn.endswith('.json') for fn in labelme_files_relative]), \
158
- 'relative_filenames_to_convert contains non-json files'
159
- else:
160
- labelme_files_relative = recursive_file_list(labelme_folder,return_relative_paths=True)
161
- labelme_files_relative = [fn for fn in labelme_files_relative if fn.endswith('.json')]
162
-
163
- if required_token is None:
164
- valid_labelme_files_relative = labelme_files_relative
165
- else:
166
- valid_labelme_files_relative = []
167
-
168
- # fn_relative = labelme_files_relative[-1]
169
- for fn_relative in labelme_files_relative:
170
-
171
- fn_abs = os.path.join(labelme_folder,fn_relative)
172
-
173
- with open(fn_abs,'r') as f:
174
- labelme_data = json.load(f)
175
- if required_token not in labelme_data:
176
- continue
177
-
178
- valid_labelme_files_relative.append(fn_relative)
179
-
180
- print('{} of {} files are valid'.format(len(valid_labelme_files_relative),
181
- len(labelme_files_relative)))
182
-
183
- del labelme_files_relative
184
-
185
- if category_name_to_category_id is None:
186
-
187
- category_name_to_category_id = {}
188
-
189
- for fn_relative in valid_labelme_files_relative:
190
-
191
- fn_abs = os.path.join(labelme_folder,fn_relative)
192
- with open(fn_abs,'r') as f:
193
- labelme_data = json.load(f)
194
- for shape in labelme_data['shapes']:
195
- label = shape['label']
196
- if label not in category_name_to_category_id:
197
- category_name_to_category_id[label] = len(category_name_to_category_id)
198
- # ...for each file
199
-
200
- # ...if we need to build a category mapping
201
-
202
- image_results = []
203
-
204
- n_workers = min(n_workers,len(valid_labelme_files_relative))
205
-
206
- if n_workers <= 1:
207
- for fn_relative in tqdm(valid_labelme_files_relative):
208
-
209
- fn_abs = os.path.join(labelme_folder,fn_relative)
210
- image_result = labelme_file_to_yolo_file(fn_abs,
211
- category_name_to_category_id,
212
- yolo_file=None,
213
- required_token=required_token,
214
- overwrite_behavior=overwrite_behavior)
215
- image_results.append(image_result)
216
- # ...for each file
217
- else:
218
- if use_threads:
219
- pool = ThreadPool(n_workers)
220
- else:
221
- pool = Pool(n_workers)
222
-
223
- valid_labelme_files_abs = [os.path.join(labelme_folder,fn_relative) for \
224
- fn_relative in valid_labelme_files_relative]
225
-
226
- image_results = list(tqdm(pool.imap(
227
- partial(labelme_file_to_yolo_file,
228
- category_name_to_category_id=category_name_to_category_id,
229
- yolo_file=None,
230
- required_token=required_token,
231
- overwrite_behavior=overwrite_behavior),
232
- valid_labelme_files_abs),
233
- total=len(valid_labelme_files_abs)))
234
-
235
- assert len(valid_labelme_files_relative) == len(image_results)
236
-
237
- print('Converted {} labelme .json files to YOLO'.format(
238
- len(valid_labelme_files_relative)))
239
-
240
- labelme_to_yolo_results = {}
241
- labelme_to_yolo_results['category_name_to_category_id'] = category_name_to_category_id
242
- labelme_to_yolo_results['image_results'] = image_results
243
-
244
- return labelme_to_yolo_results
245
-
246
- # ...def labelme_folder_to_yolo(...)
247
-
248
-
249
- #%% Interactive driver
250
-
251
- if False:
252
-
253
- pass
254
-
255
- #%%
256
-
257
- labelme_file = os.path.expanduser('~/tmp/labels/x.json')
258
- required_token = 'saved_by_labelme'
259
- category_name_to_category_id = {'animal':0}
260
- labelme_folder = os.path.expanduser('~/tmp/labels')
261
-
262
- #%%
263
-
264
- category_name_to_category_id = \
265
- labelme_folder_to_yolo(labelme_folder,
266
- category_name_to_category_id=category_name_to_category_id,
267
- required_token=required_token,
268
- overwrite_behavior='overwrite')
269
-
270
- #%% Command-line driver
271
-
272
- # TODO
File without changes
@@ -1,97 +0,0 @@
1
- """
2
-
3
- add_locations_to_island_camera_traps.py
4
-
5
- The Island Conservation Camera Traps dataset had unique camera identifiers embedded
6
- in filenames, but not in the proper metadata fields. This script copies that information
7
- to metadata.
8
-
9
- """
10
-
11
- #%% Imports and constants
12
-
13
- import os
14
- import json
15
- from tqdm import tqdm
16
-
17
- input_fn = os.path.expanduser('~/lila/metadata/island_conservation.json')
18
- output_fn = os.path.expanduser('~/tmp/island_conservation.json')
19
- preview_folder = os.path.expanduser('~/tmp/island_conservation_preview')
20
- image_directory = os.path.expanduser('~/data/icct/public/')
21
-
22
-
23
- #%% Read input file
24
-
25
- with open(input_fn,'r') as f:
26
- d = json.load(f)
27
-
28
- d['info']
29
- d['info']['version'] = '1.01'
30
-
31
-
32
- #%% Find locations
33
-
34
- images = d['images']
35
-
36
- locations = set()
37
-
38
- for i_image,im in tqdm(enumerate(images),total=len(images)):
39
- tokens_fn = im['file_name'].split('/')
40
- tokens_id = im['id'].split('_')
41
- assert tokens_fn[0] == tokens_id[0]
42
- assert tokens_fn[1] == tokens_id[1]
43
- location = tokens_fn[0] + '_' + tokens_fn[1]
44
- im['location'] = location
45
- locations.add(location)
46
-
47
- locations = sorted(list(locations))
48
-
49
- for s in locations:
50
- print(s)
51
-
52
-
53
- #%% Write output file
54
-
55
- with open(output_fn,'w') as f:
56
- json.dump(d,f,indent=1)
57
-
58
-
59
- #%% Validate .json files
60
-
61
- from data_management.databases import integrity_check_json_db
62
-
63
- options = integrity_check_json_db.IntegrityCheckOptions()
64
- options.baseDir = image_directory
65
- options.bCheckImageSizes = False
66
- options.bCheckImageExistence = True
67
- options.bFindUnusedImages = True
68
-
69
- sorted_categories, data, error_info = integrity_check_json_db.integrity_check_json_db(output_fn, options)
70
-
71
-
72
- #%% Preview labels
73
-
74
- from md_visualization import visualize_db
75
-
76
- viz_options = visualize_db.DbVizOptions()
77
- viz_options.num_to_visualize = 2000
78
- viz_options.trim_to_images_with_bboxes = False
79
- viz_options.add_search_links = False
80
- viz_options.sort_by_filename = False
81
- viz_options.parallelize_rendering = True
82
- viz_options.classes_to_exclude = ['test']
83
- html_output_file, image_db = visualize_db.visualize_db(db_path=output_fn,
84
- output_dir=preview_folder,
85
- image_base_dir=image_directory,
86
- options=viz_options)
87
-
88
- from md_utils import path_utils
89
- path_utils.open_file(html_output_file)
90
-
91
-
92
- #%% Zip output file
93
-
94
- from md_utils.path_utils import zip_file
95
-
96
- zip_file(output_fn, verbose=True)
97
- assert os.path.isfile(output_fn + '.zip')
@@ -1,147 +0,0 @@
1
- """
2
-
3
- add_locations_to_nacti.py
4
-
5
- As of 10.2023, NACTI metadata only has very coarse location information (e.g. "Florida"),
6
- but camera IDs are embedded in filenames. This script pulls that information from filenames
7
- and adds it to metadata.
8
-
9
- """
10
-
11
- #%% Imports and constants
12
-
13
- import os
14
- import json
15
- import shutil
16
-
17
- from tqdm import tqdm
18
- from collections import defaultdict
19
-
20
- input_file = r'd:\lila\nacti\nacti_metadata.json.1.13\nacti_metadata.json'
21
- output_file = r'g:\temp\nacti_metadata.1.14.json'
22
-
23
-
24
- #%% Read metadata
25
-
26
- with open(input_file,'r') as f:
27
- d = json.load(f)
28
-
29
- assert d['info']['version'] == 1.13
30
-
31
-
32
- #%% Map images to locations (according to the metadata)
33
-
34
- file_name_to_original_location = {}
35
-
36
- # im = dataset_labels['images'][0]
37
- for im in tqdm(d['images']):
38
- file_name_to_original_location[im['file_name']] = im['location']
39
-
40
- original_locations = set(file_name_to_original_location.values())
41
-
42
- print('Found {} locations in the original metadata:'.format(len(original_locations)))
43
- for loc in original_locations:
44
- print('[{}]'.format(loc))
45
-
46
-
47
- #%% Map images to new locations
48
-
49
- def path_to_location(relative_path):
50
-
51
- relative_path = relative_path.replace('\\','/')
52
- if relative_path in file_name_to_original_location:
53
- location_name = file_name_to_original_location[relative_path]
54
- if location_name == 'San Juan Mntns, Colorado':
55
- # "part0/sub000/2010_Unit150_Ivan097_img0003.jpg"
56
- tokens = relative_path.split('/')[-1].split('_')
57
- assert tokens[1].startswith('Unit')
58
- location_name = 'sanjuan_{}_{}_{}'.format(tokens[0],tokens[1],tokens[2])
59
- elif location_name == 'Lebec, California':
60
- # "part0/sub035/CA-03_08_13_2015_CA-03_0009738.jpg"
61
- tokens = relative_path.split('/')[-1].split('_')
62
- assert tokens[0].startswith('CA-') or tokens[0].startswith('TAG-')
63
- location_name = 'lebec_{}'.format(tokens[0])
64
- elif location_name == 'Archbold, FL':
65
- # "part1/sub110/FL-01_01_25_2016_FL-01_0040421.jpg"
66
- tokens = relative_path.split('/')[-1].split('_')
67
- assert tokens[0].startswith('FL-')
68
- location_name = 'archbold_{}'.format(tokens[0])
69
- else:
70
- assert location_name == ''
71
- tokens = relative_path.split('/')[-1].split('_')
72
- if tokens[0].startswith('CA-') or tokens[0].startswith('TAG-') or tokens[0].startswith('FL-'):
73
- location_name = '{}'.format(tokens[0])
74
-
75
- else:
76
-
77
- location_name = 'unknown'
78
-
79
- # print('Returning location {} for file {}'.format(location_name,relative_path))
80
-
81
- return location_name
82
-
83
- file_name_to_updated_location = {}
84
- updated_location_to_count = defaultdict(int)
85
- for im in tqdm(d['images']):
86
-
87
- updated_location = path_to_location(im['file_name'])
88
- file_name_to_updated_location[im['file_name']] = updated_location
89
- updated_location_to_count[updated_location] += 1
90
-
91
- updated_location_to_count = {k: v for k, v in sorted(updated_location_to_count.items(),
92
- key=lambda item: item[1],
93
- reverse=True)}
94
-
95
- updated_locations = set(file_name_to_updated_location.values())
96
-
97
- print('Found {} updated locations in the original metadata:'.format(len(updated_locations)))
98
- for loc in updated_location_to_count:
99
- print('{}: {}'.format(loc,updated_location_to_count[loc]))
100
-
101
-
102
- #%% Re-write metadata
103
-
104
- for im in d['images']:
105
- im['location'] = file_name_to_updated_location[im['file_name']]
106
- d['info']['version'] = 1.14
107
-
108
- with open(output_file,'w') as f:
109
- json.dump(d,f,indent=1)
110
-
111
-
112
- #%% For each location, sample some random images to make sure they look consistent
113
-
114
- input_base = r'd:\lila\nacti-unzipped'
115
- assert os.path.isdir(input_base)
116
-
117
- location_to_images = defaultdict(list)
118
-
119
- for im in d['images']:
120
- location_to_images[im['location']].append(im)
121
-
122
- n_to_sample = 10
123
- import random
124
- random.seed(0)
125
- sampling_folder_base = r'g:\temp\nacti_samples'
126
-
127
- for location in tqdm(location_to_images):
128
-
129
- images_this_location = location_to_images[location]
130
- if len(images_this_location) > n_to_sample:
131
- images_this_location = random.sample(images_this_location,n_to_sample)
132
-
133
- for i_image,im in enumerate(images_this_location):
134
-
135
- fn_relative = im['file_name']
136
- source_fn_abs = os.path.join(input_base,fn_relative)
137
- assert os.path.isfile(source_fn_abs)
138
- ext = os.path.splitext(fn_relative)[1]
139
- target_fn_abs = os.path.join(sampling_folder_base,'{}/{}'.format(
140
- location,'image_{}{}'.format(str(i_image).zfill(2),ext)))
141
- os.makedirs(os.path.dirname(target_fn_abs),exist_ok=True)
142
- shutil.copyfile(source_fn_abs,target_fn_abs)
143
-
144
- # ...for each image
145
-
146
- # ...for each location
147
-