megadetector 5.0.10__py3-none-any.whl → 5.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (226) hide show
  1. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
  2. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
  3. megadetector-5.0.11.dist-info/RECORD +5 -0
  4. megadetector-5.0.11.dist-info/top_level.txt +1 -0
  5. api/__init__.py +0 -0
  6. api/batch_processing/__init__.py +0 -0
  7. api/batch_processing/api_core/__init__.py +0 -0
  8. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  9. api/batch_processing/api_core/batch_service/score.py +0 -439
  10. api/batch_processing/api_core/server.py +0 -294
  11. api/batch_processing/api_core/server_api_config.py +0 -98
  12. api/batch_processing/api_core/server_app_config.py +0 -55
  13. api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  14. api/batch_processing/api_core/server_job_status_table.py +0 -152
  15. api/batch_processing/api_core/server_orchestration.py +0 -360
  16. api/batch_processing/api_core/server_utils.py +0 -92
  17. api/batch_processing/api_core_support/__init__.py +0 -0
  18. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  19. api/batch_processing/api_support/__init__.py +0 -0
  20. api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  21. api/batch_processing/data_preparation/__init__.py +0 -0
  22. api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
  23. api/batch_processing/data_preparation/manage_video_batch.py +0 -327
  24. api/batch_processing/integration/digiKam/setup.py +0 -6
  25. api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
  26. api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
  27. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
  28. api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
  29. api/batch_processing/postprocessing/__init__.py +0 -0
  30. api/batch_processing/postprocessing/add_max_conf.py +0 -64
  31. api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
  32. api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
  33. api/batch_processing/postprocessing/compare_batch_results.py +0 -958
  34. api/batch_processing/postprocessing/convert_output_format.py +0 -397
  35. api/batch_processing/postprocessing/load_api_results.py +0 -195
  36. api/batch_processing/postprocessing/md_to_coco.py +0 -310
  37. api/batch_processing/postprocessing/md_to_labelme.py +0 -330
  38. api/batch_processing/postprocessing/merge_detections.py +0 -401
  39. api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
  40. api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
  41. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
  42. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
  43. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
  44. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
  45. api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
  46. api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
  47. api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
  48. api/synchronous/__init__.py +0 -0
  49. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  50. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
  51. api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
  52. api/synchronous/api_core/animal_detection_api/config.py +0 -35
  53. api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
  54. api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
  55. api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
  56. api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
  57. api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
  58. api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
  59. api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
  60. api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
  61. api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
  62. api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
  63. api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
  64. api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
  65. api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
  66. api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
  67. api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
  68. api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
  69. api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
  70. api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
  71. api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
  72. api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
  73. api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
  74. api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
  75. api/synchronous/api_core/tests/__init__.py +0 -0
  76. api/synchronous/api_core/tests/load_test.py +0 -110
  77. classification/__init__.py +0 -0
  78. classification/aggregate_classifier_probs.py +0 -108
  79. classification/analyze_failed_images.py +0 -227
  80. classification/cache_batchapi_outputs.py +0 -198
  81. classification/create_classification_dataset.py +0 -627
  82. classification/crop_detections.py +0 -516
  83. classification/csv_to_json.py +0 -226
  84. classification/detect_and_crop.py +0 -855
  85. classification/efficientnet/__init__.py +0 -9
  86. classification/efficientnet/model.py +0 -415
  87. classification/efficientnet/utils.py +0 -610
  88. classification/evaluate_model.py +0 -520
  89. classification/identify_mislabeled_candidates.py +0 -152
  90. classification/json_to_azcopy_list.py +0 -63
  91. classification/json_validator.py +0 -695
  92. classification/map_classification_categories.py +0 -276
  93. classification/merge_classification_detection_output.py +0 -506
  94. classification/prepare_classification_script.py +0 -194
  95. classification/prepare_classification_script_mc.py +0 -228
  96. classification/run_classifier.py +0 -286
  97. classification/save_mislabeled.py +0 -110
  98. classification/train_classifier.py +0 -825
  99. classification/train_classifier_tf.py +0 -724
  100. classification/train_utils.py +0 -322
  101. data_management/__init__.py +0 -0
  102. data_management/annotations/__init__.py +0 -0
  103. data_management/annotations/annotation_constants.py +0 -34
  104. data_management/camtrap_dp_to_coco.py +0 -238
  105. data_management/cct_json_utils.py +0 -395
  106. data_management/cct_to_md.py +0 -176
  107. data_management/cct_to_wi.py +0 -289
  108. data_management/coco_to_labelme.py +0 -272
  109. data_management/coco_to_yolo.py +0 -662
  110. data_management/databases/__init__.py +0 -0
  111. data_management/databases/add_width_and_height_to_db.py +0 -33
  112. data_management/databases/combine_coco_camera_traps_files.py +0 -206
  113. data_management/databases/integrity_check_json_db.py +0 -477
  114. data_management/databases/subset_json_db.py +0 -115
  115. data_management/generate_crops_from_cct.py +0 -149
  116. data_management/get_image_sizes.py +0 -188
  117. data_management/importers/add_nacti_sizes.py +0 -52
  118. data_management/importers/add_timestamps_to_icct.py +0 -79
  119. data_management/importers/animl_results_to_md_results.py +0 -158
  120. data_management/importers/auckland_doc_test_to_json.py +0 -372
  121. data_management/importers/auckland_doc_to_json.py +0 -200
  122. data_management/importers/awc_to_json.py +0 -189
  123. data_management/importers/bellevue_to_json.py +0 -273
  124. data_management/importers/cacophony-thermal-importer.py +0 -796
  125. data_management/importers/carrizo_shrubfree_2018.py +0 -268
  126. data_management/importers/carrizo_trail_cam_2017.py +0 -287
  127. data_management/importers/cct_field_adjustments.py +0 -57
  128. data_management/importers/channel_islands_to_cct.py +0 -913
  129. data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  130. data_management/importers/eMammal/eMammal_helpers.py +0 -249
  131. data_management/importers/eMammal/make_eMammal_json.py +0 -223
  132. data_management/importers/ena24_to_json.py +0 -275
  133. data_management/importers/filenames_to_json.py +0 -385
  134. data_management/importers/helena_to_cct.py +0 -282
  135. data_management/importers/idaho-camera-traps.py +0 -1407
  136. data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  137. data_management/importers/jb_csv_to_json.py +0 -150
  138. data_management/importers/mcgill_to_json.py +0 -250
  139. data_management/importers/missouri_to_json.py +0 -489
  140. data_management/importers/nacti_fieldname_adjustments.py +0 -79
  141. data_management/importers/noaa_seals_2019.py +0 -181
  142. data_management/importers/pc_to_json.py +0 -365
  143. data_management/importers/plot_wni_giraffes.py +0 -123
  144. data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
  145. data_management/importers/prepare_zsl_imerit.py +0 -131
  146. data_management/importers/rspb_to_json.py +0 -356
  147. data_management/importers/save_the_elephants_survey_A.py +0 -320
  148. data_management/importers/save_the_elephants_survey_B.py +0 -332
  149. data_management/importers/snapshot_safari_importer.py +0 -758
  150. data_management/importers/snapshot_safari_importer_reprise.py +0 -665
  151. data_management/importers/snapshot_serengeti_lila.py +0 -1067
  152. data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  153. data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  154. data_management/importers/sulross_get_exif.py +0 -65
  155. data_management/importers/timelapse_csv_set_to_json.py +0 -490
  156. data_management/importers/ubc_to_json.py +0 -399
  157. data_management/importers/umn_to_json.py +0 -507
  158. data_management/importers/wellington_to_json.py +0 -263
  159. data_management/importers/wi_to_json.py +0 -441
  160. data_management/importers/zamba_results_to_md_results.py +0 -181
  161. data_management/labelme_to_coco.py +0 -548
  162. data_management/labelme_to_yolo.py +0 -272
  163. data_management/lila/__init__.py +0 -0
  164. data_management/lila/add_locations_to_island_camera_traps.py +0 -97
  165. data_management/lila/add_locations_to_nacti.py +0 -147
  166. data_management/lila/create_lila_blank_set.py +0 -557
  167. data_management/lila/create_lila_test_set.py +0 -151
  168. data_management/lila/create_links_to_md_results_files.py +0 -106
  169. data_management/lila/download_lila_subset.py +0 -177
  170. data_management/lila/generate_lila_per_image_labels.py +0 -515
  171. data_management/lila/get_lila_annotation_counts.py +0 -170
  172. data_management/lila/get_lila_image_counts.py +0 -111
  173. data_management/lila/lila_common.py +0 -300
  174. data_management/lila/test_lila_metadata_urls.py +0 -132
  175. data_management/ocr_tools.py +0 -874
  176. data_management/read_exif.py +0 -681
  177. data_management/remap_coco_categories.py +0 -84
  178. data_management/remove_exif.py +0 -66
  179. data_management/resize_coco_dataset.py +0 -189
  180. data_management/wi_download_csv_to_coco.py +0 -246
  181. data_management/yolo_output_to_md_output.py +0 -441
  182. data_management/yolo_to_coco.py +0 -676
  183. detection/__init__.py +0 -0
  184. detection/detector_training/__init__.py +0 -0
  185. detection/detector_training/model_main_tf2.py +0 -114
  186. detection/process_video.py +0 -703
  187. detection/pytorch_detector.py +0 -337
  188. detection/run_detector.py +0 -779
  189. detection/run_detector_batch.py +0 -1219
  190. detection/run_inference_with_yolov5_val.py +0 -917
  191. detection/run_tiled_inference.py +0 -935
  192. detection/tf_detector.py +0 -188
  193. detection/video_utils.py +0 -606
  194. docs/source/conf.py +0 -43
  195. md_utils/__init__.py +0 -0
  196. md_utils/azure_utils.py +0 -174
  197. md_utils/ct_utils.py +0 -612
  198. md_utils/directory_listing.py +0 -246
  199. md_utils/md_tests.py +0 -968
  200. md_utils/path_utils.py +0 -1044
  201. md_utils/process_utils.py +0 -157
  202. md_utils/sas_blob_utils.py +0 -509
  203. md_utils/split_locations_into_train_val.py +0 -228
  204. md_utils/string_utils.py +0 -92
  205. md_utils/url_utils.py +0 -323
  206. md_utils/write_html_image_list.py +0 -225
  207. md_visualization/__init__.py +0 -0
  208. md_visualization/plot_utils.py +0 -293
  209. md_visualization/render_images_with_thumbnails.py +0 -275
  210. md_visualization/visualization_utils.py +0 -1537
  211. md_visualization/visualize_db.py +0 -551
  212. md_visualization/visualize_detector_output.py +0 -406
  213. megadetector-5.0.10.dist-info/RECORD +0 -224
  214. megadetector-5.0.10.dist-info/top_level.txt +0 -8
  215. taxonomy_mapping/__init__.py +0 -0
  216. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
  217. taxonomy_mapping/map_new_lila_datasets.py +0 -154
  218. taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
  219. taxonomy_mapping/preview_lila_taxonomy.py +0 -591
  220. taxonomy_mapping/retrieve_sample_image.py +0 -71
  221. taxonomy_mapping/simple_image_download.py +0 -218
  222. taxonomy_mapping/species_lookup.py +0 -834
  223. taxonomy_mapping/taxonomy_csv_checker.py +0 -159
  224. taxonomy_mapping/taxonomy_graph.py +0 -346
  225. taxonomy_mapping/validate_lila_category_mappings.py +0 -83
  226. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
@@ -1,397 +0,0 @@
1
- """
2
-
3
- convert_output_format.py
4
-
5
- Converts between file formats output by our batch processing API. Currently
6
- supports json <--> csv conversion, but this should be the landing place for any
7
- conversion - including between hypothetical alternative .json versions - that we support
8
- in the future.
9
-
10
- The .csv format is largely obsolete, don't use it unless you're super-duper sure you need it.
11
-
12
- """
13
-
14
- #%% Constants and imports
15
-
16
- import argparse
17
- import json
18
- import csv
19
- import sys
20
- import os
21
-
22
- from tqdm import tqdm
23
-
24
- from api.batch_processing.postprocessing.load_api_results import load_api_results_csv
25
- from data_management.annotations import annotation_constants
26
-
27
- from md_utils import ct_utils
28
-
29
- CONF_DIGITS = 3
30
-
31
-
32
- #%% Conversion functions
33
-
34
- def convert_json_to_csv(input_path,output_path=None,min_confidence=None,
35
- omit_bounding_boxes=False,output_encoding=None,
36
- overwrite=True):
37
- """
38
- Converts a MD results .json file to a totally non-standard .csv format.
39
-
40
- If [output_path] is None, will convert x.json to x.csv.
41
-
42
- TODO: this function should obviously be using Pandas or some other sensible structured
43
- representation of tabular data. Even a list of dicts. This implementation is quite
44
- brittle and depends on adding fields to every row in exactly the right order.
45
-
46
- Args:
47
- input_path (str): the input .json file to convert
48
- output_path (str, optional): the output .csv file to generate; if this is None, uses
49
- [input_path].csv
50
- min_confidence (float, optional): the minimum-confidence detection we should include
51
- in the "detections" column; has no impact on the other columns
52
- omit_bounding_boxes (bool): whether to leave out the json-formatted bounding boxes
53
- that make up the "detections" column, which are not generally useful for someone who
54
- wants to consume this data as a .csv file
55
- output_encoding (str, optional): encoding to use for the .csv file
56
- overwrite (bool): whether to overwrite an existing .csv file; if this is False and the
57
- output file exists, no-ops and returns
58
-
59
- """
60
-
61
- if output_path is None:
62
- output_path = os.path.splitext(input_path)[0]+'.csv'
63
-
64
- if os.path.isfile(output_path) and (not overwrite):
65
- print('File {} exists, skipping json --> csv conversion'.format(output_path))
66
- return
67
-
68
- print('Loading json results from {}...'.format(input_path))
69
- json_output = json.load(open(input_path))
70
-
71
- rows = []
72
-
73
- fixed_columns = ['image_path', 'max_confidence', 'detections']
74
-
75
- # We add an output column for each class other than 'empty',
76
- # containing the maximum probability of that class for each image
77
- # n_non_empty_detection_categories = len(annotation_constants.annotation_bbox_categories) - 1
78
- n_non_empty_detection_categories = annotation_constants.NUM_DETECTOR_CATEGORIES
79
- detection_category_column_names = []
80
- assert annotation_constants.detector_bbox_categories[0] == 'empty'
81
- for cat_id in range(1,n_non_empty_detection_categories+1):
82
- cat_name = annotation_constants.detector_bbox_categories[cat_id]
83
- detection_category_column_names.append('max_conf_' + cat_name)
84
-
85
- n_classification_categories = 0
86
-
87
- if 'classification_categories' in json_output.keys():
88
- classification_category_id_to_name = json_output['classification_categories']
89
- classification_category_ids = list(classification_category_id_to_name.keys())
90
- classification_category_id_to_column_number = {}
91
- classification_category_column_names = []
92
- for i_category,category_id in enumerate(classification_category_ids):
93
- category_name = classification_category_id_to_name[category_id].\
94
- replace(' ','_').replace(',','')
95
- classification_category_column_names.append('max_classification_conf_' + category_name)
96
- classification_category_id_to_column_number[category_id] = i_category
97
-
98
- n_classification_categories = len(classification_category_ids)
99
-
100
- # There are several .json fields for which we add .csv columns; other random bespoke fields
101
- # will be ignored.
102
- optional_fields = ['width','height','datetime','exif_metadata']
103
- optional_fields_present = set()
104
-
105
- # Iterate once over the data to check for optional fields
106
- print('Looking for optional fields...')
107
-
108
- for im in tqdm(json_output['images']):
109
- # Which optional fields are present for this image?
110
- for k in im.keys():
111
- if k in optional_fields:
112
- optional_fields_present.add(k)
113
-
114
- optional_fields_present = sorted(list(optional_fields_present))
115
- if len(optional_fields_present) > 0:
116
- print('Found {} optional fields'.format(len(optional_fields_present)))
117
-
118
- expected_row_length = len(fixed_columns) + len(detection_category_column_names) + \
119
- n_classification_categories + len(optional_fields_present)
120
-
121
- print('Formatting results...')
122
-
123
- # i_image = 0; im = json_output['images'][i_image]
124
- for im in tqdm(json_output['images']):
125
-
126
- image_id = im['file']
127
-
128
- if 'failure' in im and im['failure'] is not None:
129
- row = [image_id, 'failure', im['failure']]
130
- rows.append(row)
131
- # print('Skipping failed image {} ({})'.format(im['file'],im['failure']))
132
- continue
133
-
134
- max_conf = ct_utils.get_max_conf(im)
135
- detections = []
136
- max_detection_category_probabilities = [None] * n_non_empty_detection_categories
137
- max_classification_category_probabilities = [0] * n_classification_categories
138
-
139
- # d = im['detections'][0]
140
- for d in im['detections']:
141
-
142
- # Skip sub-threshold detections
143
- if (min_confidence is not None) and (d['conf'] < min_confidence):
144
- continue
145
-
146
- input_bbox = d['bbox']
147
-
148
- # Our .json format is xmin/ymin/w/h
149
- #
150
- # Our .csv format was ymin/xmin/ymax/xmax
151
- xmin = input_bbox[0]
152
- ymin = input_bbox[1]
153
- xmax = input_bbox[0] + input_bbox[2]
154
- ymax = input_bbox[1] + input_bbox[3]
155
- output_detection = [ymin, xmin, ymax, xmax]
156
-
157
- output_detection.append(d['conf'])
158
-
159
- # Category 0 is empty, for which we don't have a column, so the max
160
- # confidence for category N goes in column N-1
161
- detection_category_id = int(d['category'])
162
- assert detection_category_id > 0 and detection_category_id <= \
163
- n_non_empty_detection_categories
164
- detection_category_column = detection_category_id - 1
165
- detection_category_max = max_detection_category_probabilities[detection_category_column]
166
- if detection_category_max is None or d['conf'] > detection_category_max:
167
- max_detection_category_probabilities[detection_category_column] = d['conf']
168
-
169
- output_detection.append(detection_category_id)
170
- detections.append(output_detection)
171
-
172
- if 'classifications' in d:
173
- assert n_classification_categories > 0,\
174
- 'Oops, I have classification results, but no classification metadata'
175
- for c in d['classifications']:
176
- category_id = c[0]
177
- p = c[1]
178
- category_index = classification_category_id_to_column_number[category_id]
179
- if (max_classification_category_probabilities[category_index] < p):
180
- max_classification_category_probabilities[category_index] = p
181
-
182
- # ...for each classification
183
-
184
- # ...if we have classification results for this detection
185
-
186
- # ...for each detection
187
-
188
- detection_string = ''
189
- if not omit_bounding_boxes:
190
- detection_string = json.dumps(detections)
191
-
192
- row = [image_id, max_conf, detection_string]
193
- row.extend(max_detection_category_probabilities)
194
- row.extend(max_classification_category_probabilities)
195
-
196
- for field_name in optional_fields_present:
197
- if field_name not in im:
198
- row.append('')
199
- else:
200
- row.append(str(im[field_name]))
201
-
202
- assert len(row) == expected_row_length
203
- rows.append(row)
204
-
205
- # ...for each image
206
-
207
- print('Writing to csv...')
208
-
209
- with open(output_path, 'w', newline='', encoding=output_encoding) as f:
210
- writer = csv.writer(f, delimiter=',')
211
- header = fixed_columns
212
- header.extend(detection_category_column_names)
213
- if n_classification_categories > 0:
214
- header.extend(classification_category_column_names)
215
- for field_name in optional_fields_present:
216
- header.append(field_name)
217
- writer.writerow(header)
218
- writer.writerows(rows)
219
-
220
- # ...def convert_json_to_csv(...)
221
-
222
-
223
- def convert_csv_to_json(input_path,output_path=None,overwrite=True):
224
- """
225
- Convert .csv to .json. If output_path is None, will convert x.csv to x.json.
226
-
227
- Args:
228
- input_path (str): .csv filename to convert to .json
229
- output_path (str, optional): the output .json file to generate; if this is None, uses
230
- [input_path].json
231
- overwrite (bool): whether to overwrite an existing .json file; if this is False and the
232
- output file exists, no-ops and returns
233
-
234
- """
235
-
236
- if output_path is None:
237
- output_path = os.path.splitext(input_path)[0]+'.json'
238
-
239
- if os.path.isfile(output_path) and (not overwrite):
240
- print('File {} exists, skipping csv --> json conversion'.format(output_path))
241
- return
242
-
243
- # Format spec:
244
- #
245
- # https://github.com/agentmorris/MegaDetector/tree/master/api/batch_processing
246
-
247
- print('Loading csv results...')
248
- df = load_api_results_csv(input_path)
249
-
250
- info = {
251
- "format_version":"1.2",
252
- "detector": "unknown",
253
- "detection_completion_time" : "unknown",
254
- "classifier": "unknown",
255
- "classification_completion_time": "unknown"
256
- }
257
-
258
- classification_categories = {}
259
- detection_categories = annotation_constants.detector_bbox_categories
260
-
261
- images = []
262
-
263
- # iFile = 0; row = df.iloc[iFile]
264
- for iFile,row in df.iterrows():
265
-
266
- image = {}
267
- image['file'] = row['image_path']
268
- image['max_detection_conf'] = round(row['max_confidence'], CONF_DIGITS)
269
- src_detections = row['detections']
270
- out_detections = []
271
-
272
- for iDetection,detection in enumerate(src_detections):
273
-
274
- # Our .csv format was ymin/xmin/ymax/xmax
275
- #
276
- # Our .json format is xmin/ymin/w/h
277
- ymin = detection[0]
278
- xmin = detection[1]
279
- ymax = detection[2]
280
- xmax = detection[3]
281
- bbox = [xmin, ymin, xmax-xmin, ymax-ymin]
282
- conf = detection[4]
283
- iClass = detection[5]
284
- out_detection = {}
285
- out_detection['category'] = str(iClass)
286
- out_detection['conf'] = conf
287
- out_detection['bbox'] = bbox
288
- out_detections.append(out_detection)
289
-
290
- # ...for each detection
291
-
292
- image['detections'] = out_detections
293
- images.append(image)
294
-
295
- # ...for each image
296
- json_out = {}
297
- json_out['info'] = info
298
- json_out['detection_categories'] = detection_categories
299
- json_out['classification_categories'] = classification_categories
300
- json_out['images'] = images
301
-
302
- json.dump(json_out,open(output_path,'w'),indent=1)
303
-
304
- # ...def convert_csv_to_json(...)
305
-
306
-
307
- #%% Interactive driver
308
-
309
- if False:
310
-
311
- #%%
312
-
313
- input_path = r'c:\temp\test.json'
314
- min_confidence = None
315
- output_path = input_path + '.csv'
316
- convert_json_to_csv(input_path,output_path,min_confidence=min_confidence,
317
- omit_bounding_boxes=False)
318
-
319
- #%%
320
-
321
- base_path = r'c:\temp\json'
322
- input_paths = os.listdir(base_path)
323
- input_paths = [os.path.join(base_path,s) for s in input_paths]
324
-
325
- min_confidence = None
326
- for input_path in input_paths:
327
- output_path = input_path + '.csv'
328
- convert_json_to_csv(input_path,output_path,min_confidence=min_confidence,
329
- omit_bounding_boxes=True)
330
-
331
- #%% Concatenate .csv files from a folder
332
-
333
- import glob
334
- csv_files = glob.glob(os.path.join(base_path,'*.json.csv' ))
335
- master_csv = os.path.join(base_path,'all.csv')
336
-
337
- print('Concatenating {} files to {}'.format(len(csv_files),master_csv))
338
-
339
- header = None
340
- with open(master_csv, 'w') as fout:
341
-
342
- for filename in tqdm(csv_files):
343
-
344
- with open(filename) as fin:
345
-
346
- lines = fin.readlines()
347
-
348
- if header is not None:
349
- assert lines[0] == header
350
- else:
351
- header = lines[0]
352
- fout.write(header)
353
-
354
- for line in lines[1:]:
355
- if len(line.strip()) == 0:
356
- continue
357
- fout.write(line)
358
-
359
- # ...for each .csv file
360
-
361
- # with open(master_csv)
362
-
363
-
364
- #%% Command-line driver
365
-
366
- def main():
367
-
368
- parser = argparse.ArgumentParser()
369
- parser.add_argument('input_path',type=str,
370
- help='Input filename ending in .json or .csv')
371
- parser.add_argument('--output_path',type=str,default=None,
372
- help='Output filename ending in .json or .csv (defaults to ' + \
373
- 'input file, with .json/.csv replaced by .csv/.json)')
374
-
375
- if len(sys.argv[1:]) == 0:
376
- parser.print_help()
377
- parser.exit()
378
-
379
- args = parser.parse_args()
380
-
381
- if args.output_path is None:
382
- if args.input_path.endswith('.csv'):
383
- args.output_path = args.input_path[:-4] + '.json'
384
- elif args.input_path.endswith('.json'):
385
- args.output_path = args.input_path[:-5] + '.csv'
386
- else:
387
- raise ValueError('Illegal input file extension')
388
-
389
- if args.input_path.endswith('.csv') and args.output_path.endswith('.json'):
390
- convert_csv_to_json(args.input_path,args.output_path)
391
- elif args.input_path.endswith('.json') and args.output_path.endswith('.csv'):
392
- convert_json_to_csv(args.input_path,args.output_path)
393
- else:
394
- raise ValueError('Illegal format combination')
395
-
396
- if __name__ == '__main__':
397
- main()
@@ -1,195 +0,0 @@
1
- """
2
-
3
- load_api_results.py
4
-
5
- DEPRECATED
6
-
7
- As of 2023.12, this module is used in postprocessing and RDE. Not recommended
8
- for new code.
9
-
10
- Loads the output of the batch processing API (json) into a Pandas dataframe.
11
-
12
- Includes functions to read/write the (very very old) .csv results format.
13
-
14
- """
15
-
16
- #%% Imports
17
-
18
- import json
19
- import os
20
-
21
- from typing import Dict, Mapping, Optional, Tuple
22
-
23
- import pandas as pd
24
-
25
- from md_utils import ct_utils
26
-
27
-
28
- #%% Functions for loading .json results into a Pandas DataFrame, and writing back to .json
29
-
30
- def load_api_results(api_output_path: str, normalize_paths: bool = True,
31
- filename_replacements: Optional[Mapping[str, str]] = None,
32
- force_forward_slashes: bool = True
33
- ) -> Tuple[pd.DataFrame, Dict]:
34
- r"""
35
- Loads json-formatted MegaDetector results to a Pandas DataFrame.
36
-
37
- Args:
38
- api_output_path: path to the output json file
39
- normalize_paths: whether to apply os.path.normpath to the 'file' field
40
- in each image entry in the output file
41
- filename_replacements: replace some path tokens to match local paths to
42
- the original blob structure
43
- force_forward_slashes: whether to convert backslashes to forward slashes
44
- in filenames
45
-
46
- Returns:
47
- detection_results: pd.DataFrame, contains at least the columns ['file', 'detections','failure']
48
- other_fields: a dict containing fields in the results other than 'images'
49
- """
50
-
51
- print('Loading results from {}'.format(api_output_path))
52
-
53
- with open(api_output_path) as f:
54
- detection_results = json.load(f)
55
-
56
- # Validate that this is really a detector output file
57
- for s in ['info', 'detection_categories', 'images']:
58
- assert s in detection_results, 'Missing field {} in detection results'.format(s)
59
-
60
- # Fields in the output json other than 'images'
61
- other_fields = {}
62
- for k, v in detection_results.items():
63
- if k != 'images':
64
- other_fields[k] = v
65
-
66
- if normalize_paths:
67
- for image in detection_results['images']:
68
- image['file'] = os.path.normpath(image['file'])
69
-
70
- if force_forward_slashes:
71
- for image in detection_results['images']:
72
- image['file'] = image['file'].replace('\\','/')
73
-
74
- # Replace some path tokens to match local paths to original blob structure
75
- if filename_replacements is not None:
76
- for string_to_replace in filename_replacements.keys():
77
- replacement_string = filename_replacements[string_to_replace]
78
- for im in detection_results['images']:
79
- im['file'] = im['file'].replace(string_to_replace,replacement_string)
80
-
81
- print('Converting results to dataframe')
82
-
83
- # If this is a newer file that doesn't include maximum detection confidence values,
84
- # add them, because our unofficial internal dataframe format includes this.
85
- for im in detection_results['images']:
86
- if 'max_detection_conf' not in im:
87
- im['max_detection_conf'] = ct_utils.get_max_conf(im)
88
-
89
- # Pack the json output into a Pandas DataFrame
90
- detection_results = pd.DataFrame(detection_results['images'])
91
-
92
- print('Finished loading MegaDetector results for {} images from {}'.format(
93
- len(detection_results),api_output_path))
94
-
95
- return detection_results, other_fields
96
-
97
-
98
- def write_api_results(detection_results_table, other_fields, out_path):
99
- """
100
- Writes a Pandas DataFrame to the MegaDetector .json format.
101
- """
102
-
103
- print('Writing detection results to {}'.format(out_path))
104
-
105
- fields = other_fields
106
-
107
- images = detection_results_table.to_json(orient='records',
108
- double_precision=3)
109
- images = json.loads(images)
110
- fields['images'] = images
111
-
112
- # Convert the 'version' field back to a string as per format convention
113
- try:
114
- version = other_fields['info']['format_version']
115
- if not isinstance(version,str):
116
- other_fields['info']['format_version'] = str(version)
117
- except Exception:
118
- print('Warning: error determining format version')
119
- pass
120
-
121
- # Remove 'max_detection_conf' as per newer file convention (format >= v1.3)
122
- try:
123
- version = other_fields['info']['format_version']
124
- version = float(version)
125
- if version >= 1.3:
126
- for im in images:
127
- if 'max_detection_conf' in im:
128
- del im['max_detection_conf']
129
- except Exception:
130
- print('Warning: error removing max_detection_conf from output')
131
- pass
132
-
133
- with open(out_path, 'w') as f:
134
- json.dump(fields, f, indent=1)
135
-
136
- print('Finished writing detection results to {}'.format(out_path))
137
-
138
-
139
- def load_api_results_csv(filename, normalize_paths=True, filename_replacements={}, nrows=None):
140
- """
141
- [DEPRECATED]
142
-
143
- Loads .csv-formatted MegaDetector results to a pandas table
144
- """
145
-
146
- print('Loading MegaDetector results from {}'.format(filename))
147
-
148
- detection_results = pd.read_csv(filename,nrows=nrows)
149
-
150
- print('De-serializing MegaDetector results from {}'.format(filename))
151
-
152
- # Confirm that this is really a detector output file
153
- for s in ['image_path','max_confidence','detections']:
154
- assert s in detection_results.columns
155
-
156
- # Normalize paths to simplify comparisons later
157
- if normalize_paths:
158
- detection_results['image_path'] = detection_results['image_path'].apply(os.path.normpath)
159
-
160
- # De-serialize detections
161
- detection_results['detections'] = detection_results['detections'].apply(json.loads)
162
-
163
- # Optionally replace some path tokens to match local paths to the original blob structure
164
- # string_to_replace = list(options.detector_output_filename_replacements.keys())[0]
165
- for string_to_replace in filename_replacements:
166
-
167
- replacement_string = filename_replacements[string_to_replace]
168
-
169
- # iRow = 0
170
- for iRow in range(0,len(detection_results)):
171
- row = detection_results.iloc[iRow]
172
- fn = row['image_path']
173
- fn = fn.replace(string_to_replace,replacement_string)
174
- detection_results.at[iRow,'image_path'] = fn
175
-
176
- print('Finished loading and de-serializing MD results for {} images from {}'.format(
177
- len(detection_results),filename))
178
-
179
- return detection_results
180
-
181
-
182
- def write_api_results_csv(detection_results, filename):
183
- """
184
- [DEPRECATED]
185
-
186
- Writes a Pandas table to csv in a way that's compatible with the .csv output
187
- format. Currently just a wrapper around to_csv that forces output writing
188
- to go through a common code path.
189
- """
190
-
191
- print('Writing detection results to {}'.format(filename))
192
-
193
- detection_results.to_csv(filename, index=False)
194
-
195
- print('Finished writing detection results to {}'.format(filename))