megadetector 5.0.10__py3-none-any.whl → 5.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
- {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
- megadetector-5.0.11.dist-info/RECORD +5 -0
- megadetector-5.0.11.dist-info/top_level.txt +1 -0
- api/__init__.py +0 -0
- api/batch_processing/__init__.py +0 -0
- api/batch_processing/api_core/__init__.py +0 -0
- api/batch_processing/api_core/batch_service/__init__.py +0 -0
- api/batch_processing/api_core/batch_service/score.py +0 -439
- api/batch_processing/api_core/server.py +0 -294
- api/batch_processing/api_core/server_api_config.py +0 -98
- api/batch_processing/api_core/server_app_config.py +0 -55
- api/batch_processing/api_core/server_batch_job_manager.py +0 -220
- api/batch_processing/api_core/server_job_status_table.py +0 -152
- api/batch_processing/api_core/server_orchestration.py +0 -360
- api/batch_processing/api_core/server_utils.py +0 -92
- api/batch_processing/api_core_support/__init__.py +0 -0
- api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
- api/batch_processing/api_support/__init__.py +0 -0
- api/batch_processing/api_support/summarize_daily_activity.py +0 -152
- api/batch_processing/data_preparation/__init__.py +0 -0
- api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
- api/batch_processing/data_preparation/manage_video_batch.py +0 -327
- api/batch_processing/integration/digiKam/setup.py +0 -6
- api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
- api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
- api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
- api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
- api/batch_processing/postprocessing/__init__.py +0 -0
- api/batch_processing/postprocessing/add_max_conf.py +0 -64
- api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
- api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
- api/batch_processing/postprocessing/compare_batch_results.py +0 -958
- api/batch_processing/postprocessing/convert_output_format.py +0 -397
- api/batch_processing/postprocessing/load_api_results.py +0 -195
- api/batch_processing/postprocessing/md_to_coco.py +0 -310
- api/batch_processing/postprocessing/md_to_labelme.py +0 -330
- api/batch_processing/postprocessing/merge_detections.py +0 -401
- api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
- api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
- api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
- api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
- api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
- api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
- api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
- api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
- api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
- api/synchronous/__init__.py +0 -0
- api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
- api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
- api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
- api/synchronous/api_core/animal_detection_api/config.py +0 -35
- api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
- api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
- api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
- api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
- api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
- api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
- api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
- api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
- api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
- api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
- api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
- api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
- api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
- api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
- api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
- api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
- api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
- api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
- api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
- api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
- api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
- api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
- api/synchronous/api_core/tests/__init__.py +0 -0
- api/synchronous/api_core/tests/load_test.py +0 -110
- classification/__init__.py +0 -0
- classification/aggregate_classifier_probs.py +0 -108
- classification/analyze_failed_images.py +0 -227
- classification/cache_batchapi_outputs.py +0 -198
- classification/create_classification_dataset.py +0 -627
- classification/crop_detections.py +0 -516
- classification/csv_to_json.py +0 -226
- classification/detect_and_crop.py +0 -855
- classification/efficientnet/__init__.py +0 -9
- classification/efficientnet/model.py +0 -415
- classification/efficientnet/utils.py +0 -610
- classification/evaluate_model.py +0 -520
- classification/identify_mislabeled_candidates.py +0 -152
- classification/json_to_azcopy_list.py +0 -63
- classification/json_validator.py +0 -695
- classification/map_classification_categories.py +0 -276
- classification/merge_classification_detection_output.py +0 -506
- classification/prepare_classification_script.py +0 -194
- classification/prepare_classification_script_mc.py +0 -228
- classification/run_classifier.py +0 -286
- classification/save_mislabeled.py +0 -110
- classification/train_classifier.py +0 -825
- classification/train_classifier_tf.py +0 -724
- classification/train_utils.py +0 -322
- data_management/__init__.py +0 -0
- data_management/annotations/__init__.py +0 -0
- data_management/annotations/annotation_constants.py +0 -34
- data_management/camtrap_dp_to_coco.py +0 -238
- data_management/cct_json_utils.py +0 -395
- data_management/cct_to_md.py +0 -176
- data_management/cct_to_wi.py +0 -289
- data_management/coco_to_labelme.py +0 -272
- data_management/coco_to_yolo.py +0 -662
- data_management/databases/__init__.py +0 -0
- data_management/databases/add_width_and_height_to_db.py +0 -33
- data_management/databases/combine_coco_camera_traps_files.py +0 -206
- data_management/databases/integrity_check_json_db.py +0 -477
- data_management/databases/subset_json_db.py +0 -115
- data_management/generate_crops_from_cct.py +0 -149
- data_management/get_image_sizes.py +0 -188
- data_management/importers/add_nacti_sizes.py +0 -52
- data_management/importers/add_timestamps_to_icct.py +0 -79
- data_management/importers/animl_results_to_md_results.py +0 -158
- data_management/importers/auckland_doc_test_to_json.py +0 -372
- data_management/importers/auckland_doc_to_json.py +0 -200
- data_management/importers/awc_to_json.py +0 -189
- data_management/importers/bellevue_to_json.py +0 -273
- data_management/importers/cacophony-thermal-importer.py +0 -796
- data_management/importers/carrizo_shrubfree_2018.py +0 -268
- data_management/importers/carrizo_trail_cam_2017.py +0 -287
- data_management/importers/cct_field_adjustments.py +0 -57
- data_management/importers/channel_islands_to_cct.py +0 -913
- data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
- data_management/importers/eMammal/eMammal_helpers.py +0 -249
- data_management/importers/eMammal/make_eMammal_json.py +0 -223
- data_management/importers/ena24_to_json.py +0 -275
- data_management/importers/filenames_to_json.py +0 -385
- data_management/importers/helena_to_cct.py +0 -282
- data_management/importers/idaho-camera-traps.py +0 -1407
- data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
- data_management/importers/jb_csv_to_json.py +0 -150
- data_management/importers/mcgill_to_json.py +0 -250
- data_management/importers/missouri_to_json.py +0 -489
- data_management/importers/nacti_fieldname_adjustments.py +0 -79
- data_management/importers/noaa_seals_2019.py +0 -181
- data_management/importers/pc_to_json.py +0 -365
- data_management/importers/plot_wni_giraffes.py +0 -123
- data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
- data_management/importers/prepare_zsl_imerit.py +0 -131
- data_management/importers/rspb_to_json.py +0 -356
- data_management/importers/save_the_elephants_survey_A.py +0 -320
- data_management/importers/save_the_elephants_survey_B.py +0 -332
- data_management/importers/snapshot_safari_importer.py +0 -758
- data_management/importers/snapshot_safari_importer_reprise.py +0 -665
- data_management/importers/snapshot_serengeti_lila.py +0 -1067
- data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
- data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
- data_management/importers/sulross_get_exif.py +0 -65
- data_management/importers/timelapse_csv_set_to_json.py +0 -490
- data_management/importers/ubc_to_json.py +0 -399
- data_management/importers/umn_to_json.py +0 -507
- data_management/importers/wellington_to_json.py +0 -263
- data_management/importers/wi_to_json.py +0 -441
- data_management/importers/zamba_results_to_md_results.py +0 -181
- data_management/labelme_to_coco.py +0 -548
- data_management/labelme_to_yolo.py +0 -272
- data_management/lila/__init__.py +0 -0
- data_management/lila/add_locations_to_island_camera_traps.py +0 -97
- data_management/lila/add_locations_to_nacti.py +0 -147
- data_management/lila/create_lila_blank_set.py +0 -557
- data_management/lila/create_lila_test_set.py +0 -151
- data_management/lila/create_links_to_md_results_files.py +0 -106
- data_management/lila/download_lila_subset.py +0 -177
- data_management/lila/generate_lila_per_image_labels.py +0 -515
- data_management/lila/get_lila_annotation_counts.py +0 -170
- data_management/lila/get_lila_image_counts.py +0 -111
- data_management/lila/lila_common.py +0 -300
- data_management/lila/test_lila_metadata_urls.py +0 -132
- data_management/ocr_tools.py +0 -874
- data_management/read_exif.py +0 -681
- data_management/remap_coco_categories.py +0 -84
- data_management/remove_exif.py +0 -66
- data_management/resize_coco_dataset.py +0 -189
- data_management/wi_download_csv_to_coco.py +0 -246
- data_management/yolo_output_to_md_output.py +0 -441
- data_management/yolo_to_coco.py +0 -676
- detection/__init__.py +0 -0
- detection/detector_training/__init__.py +0 -0
- detection/detector_training/model_main_tf2.py +0 -114
- detection/process_video.py +0 -703
- detection/pytorch_detector.py +0 -337
- detection/run_detector.py +0 -779
- detection/run_detector_batch.py +0 -1219
- detection/run_inference_with_yolov5_val.py +0 -917
- detection/run_tiled_inference.py +0 -935
- detection/tf_detector.py +0 -188
- detection/video_utils.py +0 -606
- docs/source/conf.py +0 -43
- md_utils/__init__.py +0 -0
- md_utils/azure_utils.py +0 -174
- md_utils/ct_utils.py +0 -612
- md_utils/directory_listing.py +0 -246
- md_utils/md_tests.py +0 -968
- md_utils/path_utils.py +0 -1044
- md_utils/process_utils.py +0 -157
- md_utils/sas_blob_utils.py +0 -509
- md_utils/split_locations_into_train_val.py +0 -228
- md_utils/string_utils.py +0 -92
- md_utils/url_utils.py +0 -323
- md_utils/write_html_image_list.py +0 -225
- md_visualization/__init__.py +0 -0
- md_visualization/plot_utils.py +0 -293
- md_visualization/render_images_with_thumbnails.py +0 -275
- md_visualization/visualization_utils.py +0 -1537
- md_visualization/visualize_db.py +0 -551
- md_visualization/visualize_detector_output.py +0 -406
- megadetector-5.0.10.dist-info/RECORD +0 -224
- megadetector-5.0.10.dist-info/top_level.txt +0 -8
- taxonomy_mapping/__init__.py +0 -0
- taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
- taxonomy_mapping/map_new_lila_datasets.py +0 -154
- taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
- taxonomy_mapping/preview_lila_taxonomy.py +0 -591
- taxonomy_mapping/retrieve_sample_image.py +0 -71
- taxonomy_mapping/simple_image_download.py +0 -218
- taxonomy_mapping/species_lookup.py +0 -834
- taxonomy_mapping/taxonomy_csv_checker.py +0 -159
- taxonomy_mapping/taxonomy_graph.py +0 -346
- taxonomy_mapping/validate_lila_category_mappings.py +0 -83
- {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
|
@@ -1,758 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
|
|
3
|
-
Import a Snapshot Safari project (one project, one season)
|
|
4
|
-
|
|
5
|
-
Before running this script:
|
|
6
|
-
|
|
7
|
-
* Mount the blob container where the images live, or copy the
|
|
8
|
-
images to local storage
|
|
9
|
-
|
|
10
|
-
What this script does:
|
|
11
|
-
|
|
12
|
-
* Creates a .json file
|
|
13
|
-
* Creates zip archives of the season without humans.
|
|
14
|
-
* Copies animals and humans to separate folders
|
|
15
|
-
|
|
16
|
-
After running this script:
|
|
17
|
-
|
|
18
|
-
* Create or update LILA page
|
|
19
|
-
* Push zipfile and unzipped images to LILA
|
|
20
|
-
* Push unzipped humans to wildlifeblobssc
|
|
21
|
-
* Delete images from UMN upload storage
|
|
22
|
-
|
|
23
|
-
Snapshot Serengeti is handled specially, because we're dealing with bounding
|
|
24
|
-
boxes too. See snapshot_serengeti_lila.py.
|
|
25
|
-
|
|
26
|
-
"""
|
|
27
|
-
|
|
28
|
-
#%% Imports
|
|
29
|
-
|
|
30
|
-
import pandas as pd
|
|
31
|
-
import json
|
|
32
|
-
import os
|
|
33
|
-
import uuid
|
|
34
|
-
import humanfriendly
|
|
35
|
-
import time
|
|
36
|
-
import pprint
|
|
37
|
-
import numpy as np
|
|
38
|
-
import shutil
|
|
39
|
-
|
|
40
|
-
from PIL import Image
|
|
41
|
-
from multiprocessing.pool import ThreadPool
|
|
42
|
-
from tqdm import tqdm
|
|
43
|
-
from zipfile import ZipFile
|
|
44
|
-
import zipfile
|
|
45
|
-
|
|
46
|
-
from md_utils import path_utils
|
|
47
|
-
from md_visualization import visualize_db
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
#%% Constants
|
|
51
|
-
|
|
52
|
-
# project_name = 'XXX'; season_name = 'S1'; project_friendly_name = 'Snapshot Unknown'
|
|
53
|
-
# project_name = 'SER'; season_name = 'S1-11'; project_friendly_name = 'Snapshot Serengeti'
|
|
54
|
-
# project_name = 'KRU'; season_name = 'S1'; project_friendly_name = 'Snapshot Kruger'
|
|
55
|
-
# project_name = 'CDB'; season_name = 'S1'; project_friendly_name = 'Snapshot Camdeboo'
|
|
56
|
-
# project_name = 'MTZ'; season_name = 'S1'; project_friendly_name = 'Snapshot Mountain Zebra'
|
|
57
|
-
# project_name = 'ENO'; season_name = 'S1'; project_friendly_name = 'Snapshot Enonkishu'
|
|
58
|
-
# project_name = 'KAR'; season_name = 'S1'; project_friendly_name = 'Snapshot Karoo'
|
|
59
|
-
# project_name = 'KGA'; season_name = 'S1'; project_friendly_name = 'Snapshot Kgalagadi'
|
|
60
|
-
project_name = 'SER'; season_name = 'S1'; project_friendly_name = 'APN'
|
|
61
|
-
|
|
62
|
-
json_version = '2.1'
|
|
63
|
-
|
|
64
|
-
snapshot_safari_input_base = 'f:\\'
|
|
65
|
-
snapshot_safari_output_base = r'g:\temp\snapshot-safari-out'
|
|
66
|
-
|
|
67
|
-
category_mappings = {'blank':'empty'}
|
|
68
|
-
|
|
69
|
-
process_images_n_threads = 20
|
|
70
|
-
|
|
71
|
-
max_files_per_archive = None
|
|
72
|
-
|
|
73
|
-
#%% Folder/file creation
|
|
74
|
-
|
|
75
|
-
# E.g. KRU_S1
|
|
76
|
-
project_season_name = project_name + '_' + season_name
|
|
77
|
-
|
|
78
|
-
# E.g. Z:\KRU
|
|
79
|
-
project_base = os.path.join(snapshot_safari_input_base,project_name)
|
|
80
|
-
assert(os.path.isdir(project_base))
|
|
81
|
-
|
|
82
|
-
# E.g. Z:\KRU\KRU_S1
|
|
83
|
-
season_base = os.path.join(project_base,project_season_name)
|
|
84
|
-
assert(os.path.isdir(season_base))
|
|
85
|
-
|
|
86
|
-
# Contains annotations for each capture event (sequence)
|
|
87
|
-
annotation_file = os.path.join(project_base,project_season_name + '_report_lila.csv')
|
|
88
|
-
|
|
89
|
-
# Maps image IDs to filenames; each line looks like:
|
|
90
|
-
#
|
|
91
|
-
# KRU_S1#1#1#2,3,KRU_S1/1/1_R1/KRU_S1_1_R1_IMAG0004.JPG
|
|
92
|
-
image_inventory_file = os.path.join(project_base,project_season_name + '_report_lila_image_inventory.csv')
|
|
93
|
-
|
|
94
|
-
# Total number of each answer to each question, e.g. total number of times each species was identified
|
|
95
|
-
#
|
|
96
|
-
# Not used here
|
|
97
|
-
response_overview_file = os.path.join(project_base,project_season_name + '_report_lila_overview.csv')
|
|
98
|
-
|
|
99
|
-
assert(os.path.isfile(annotation_file))
|
|
100
|
-
assert(os.path.isfile(image_inventory_file))
|
|
101
|
-
assert(os.path.isfile(response_overview_file))
|
|
102
|
-
|
|
103
|
-
# Create output folders
|
|
104
|
-
assert(os.path.isdir(snapshot_safari_output_base))
|
|
105
|
-
|
|
106
|
-
output_base = os.path.join(snapshot_safari_output_base,project_name)
|
|
107
|
-
|
|
108
|
-
json_filename = os.path.join(output_base,project_friendly_name.replace(' ','') + '_' + season_name \
|
|
109
|
-
+ '_v' + json_version + '.json')
|
|
110
|
-
species_list_filename = os.path.join(output_base,project_friendly_name.replace(' ','') + '_' + season_name \
|
|
111
|
-
+ '_v' + json_version + '.species_list.csv')
|
|
112
|
-
summary_info_filename = os.path.join(output_base,project_friendly_name.replace(' ','') + '_' + season_name \
|
|
113
|
-
+ '_v' + json_version + '.summary_info.txt')
|
|
114
|
-
|
|
115
|
-
# Images will be placed in a season-specific folder inside this (the source data includes
|
|
116
|
-
# this in path names)
|
|
117
|
-
output_public_folder = os.path.join(output_base,project_name + '_public')
|
|
118
|
-
|
|
119
|
-
output_public_zipfile = os.path.join(output_base,project_season_name + '.lila.zip')
|
|
120
|
-
output_private_folder = os.path.join(output_base,project_season_name + '_private')
|
|
121
|
-
output_preview_folder = os.path.join(output_base,project_season_name + '_preview')
|
|
122
|
-
|
|
123
|
-
os.makedirs(output_base,exist_ok=True)
|
|
124
|
-
os.makedirs(output_public_folder,exist_ok=True)
|
|
125
|
-
os.makedirs(output_private_folder,exist_ok=True)
|
|
126
|
-
os.makedirs(output_preview_folder,exist_ok=True)
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
#%% Load metadata files
|
|
130
|
-
|
|
131
|
-
image_table = pd.read_csv(image_inventory_file)
|
|
132
|
-
annotation_table = pd.read_csv(annotation_file)
|
|
133
|
-
|
|
134
|
-
print('Finished loading {} image mappings and {} annotations'.format(len(image_table),len(annotation_table)))
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
#%% Convert to dictionaries (prep)
|
|
138
|
-
|
|
139
|
-
im_id_to_image = {}
|
|
140
|
-
images = []
|
|
141
|
-
seq_id_to_images = {}
|
|
142
|
-
seq_id_to_annotations = {}
|
|
143
|
-
|
|
144
|
-
annotations = []
|
|
145
|
-
categories = []
|
|
146
|
-
|
|
147
|
-
species_to_category = {}
|
|
148
|
-
|
|
149
|
-
empty_category_id = 0
|
|
150
|
-
empty_category_name = 'empty'
|
|
151
|
-
|
|
152
|
-
empty_cat = {}
|
|
153
|
-
empty_cat['id'] = empty_category_id
|
|
154
|
-
empty_cat['name'] = empty_category_name
|
|
155
|
-
empty_cat['count'] = 0
|
|
156
|
-
species_to_category['empty'] = empty_cat
|
|
157
|
-
categories.append(empty_cat)
|
|
158
|
-
|
|
159
|
-
next_category_id = empty_category_id + 1
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
#%% Convert to dictionaries (loops)
|
|
163
|
-
|
|
164
|
-
# iterrows() is a terrible way to do this, but this is one of those days
|
|
165
|
-
# where I want to get this done, not get better at Python.
|
|
166
|
-
|
|
167
|
-
print('Processing image table')
|
|
168
|
-
|
|
169
|
-
start_time = time.time()
|
|
170
|
-
|
|
171
|
-
# irow = 0; row = image_table.iloc[0]
|
|
172
|
-
for iRow,row in tqdm(image_table.iterrows(),total=len(image_table)):
|
|
173
|
-
|
|
174
|
-
# Loaded as an int64, converting to int here
|
|
175
|
-
frame_num = int(row['image_rank_in_capture'])
|
|
176
|
-
assert frame_num > 0
|
|
177
|
-
sequence_id = row['capture_id']
|
|
178
|
-
frame_num = int(frame_num)
|
|
179
|
-
filename = row['image_path_rel']
|
|
180
|
-
tokens = filename.split('.')
|
|
181
|
-
assert(len(tokens)==2)
|
|
182
|
-
assert(tokens[1] == 'JPG')
|
|
183
|
-
id = tokens[0]
|
|
184
|
-
im = {}
|
|
185
|
-
im['id'] = id
|
|
186
|
-
im['file_name'] = filename
|
|
187
|
-
im['frame_num'] = frame_num
|
|
188
|
-
im['seq_id'] = sequence_id
|
|
189
|
-
|
|
190
|
-
assert id not in im_id_to_image
|
|
191
|
-
im_id_to_image[id] = im
|
|
192
|
-
seq_id_to_images.setdefault(sequence_id,[]).append(im)
|
|
193
|
-
|
|
194
|
-
images.append(im)
|
|
195
|
-
|
|
196
|
-
# ...for each row in the image table
|
|
197
|
-
|
|
198
|
-
# Make sure image IDs are what we think they are
|
|
199
|
-
for im in tqdm(images):
|
|
200
|
-
assert im['id'] == im['file_name'].replace('.JPG','')
|
|
201
|
-
|
|
202
|
-
print('Processing annotation table')
|
|
203
|
-
|
|
204
|
-
def is_float_and_nan(x):
|
|
205
|
-
return isinstance(x,float) and np.isnan(x)
|
|
206
|
-
|
|
207
|
-
n_invalid_dates = 0
|
|
208
|
-
|
|
209
|
-
for iRow,row in tqdm(annotation_table.iterrows(),total=len(annotation_table)):
|
|
210
|
-
|
|
211
|
-
sequence_id = row['capture_id']
|
|
212
|
-
|
|
213
|
-
species = row['question__species'].lower()
|
|
214
|
-
if species in category_mappings:
|
|
215
|
-
species = category_mappings[species]
|
|
216
|
-
|
|
217
|
-
category = None
|
|
218
|
-
|
|
219
|
-
if species not in species_to_category:
|
|
220
|
-
category = {}
|
|
221
|
-
category['id'] = next_category_id
|
|
222
|
-
next_category_id = next_category_id + 1
|
|
223
|
-
category['name'] = species
|
|
224
|
-
category['count'] = 1
|
|
225
|
-
categories.append(category)
|
|
226
|
-
species_to_category[species] = category
|
|
227
|
-
else:
|
|
228
|
-
category = species_to_category[species]
|
|
229
|
-
category['count'] += 1
|
|
230
|
-
|
|
231
|
-
ann = {}
|
|
232
|
-
ann['sequence_level_annotation'] = True
|
|
233
|
-
ann['id'] = str(uuid.uuid1())
|
|
234
|
-
ann['category_id'] = category['id']
|
|
235
|
-
ann['seq_id'] = sequence_id
|
|
236
|
-
|
|
237
|
-
ann['season'] = row['season']
|
|
238
|
-
ann['site'] = row['site']
|
|
239
|
-
if is_float_and_nan(row['capture_date_local']) or is_float_and_nan(row['capture_time_local']):
|
|
240
|
-
ann['datetime'] = ''
|
|
241
|
-
n_invalid_dates += 1
|
|
242
|
-
else:
|
|
243
|
-
ann['datetime'] = row['capture_date_local'] + ' ' + row['capture_time_local']
|
|
244
|
-
ann['subject_id'] = row['subject_id']
|
|
245
|
-
ann['count'] = row['question__count_median']
|
|
246
|
-
ann['standing'] = row['question__standing']
|
|
247
|
-
ann['resting'] = row['question__resting']
|
|
248
|
-
ann['moving'] = row['question__moving']
|
|
249
|
-
ann['interacting'] = row['question__interacting']
|
|
250
|
-
ann['young_present'] = row['question__young_present']
|
|
251
|
-
|
|
252
|
-
seq_id_to_annotations.setdefault(sequence_id,[]).append(ann)
|
|
253
|
-
|
|
254
|
-
annotations.append(ann)
|
|
255
|
-
|
|
256
|
-
# ...for each row in the annotation table
|
|
257
|
-
|
|
258
|
-
elapsed = time.time() - start_time
|
|
259
|
-
print('Done converting tables to dictionaries in {}'.format(humanfriendly.format_timespan(elapsed)))
|
|
260
|
-
|
|
261
|
-
print('Converted {} annotations, {} images, {} categories ({} invalid dates)'.format(
|
|
262
|
-
len(annotations),len(images),len(categories),n_invalid_dates))
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
#%% Take a look at categories
|
|
266
|
-
|
|
267
|
-
assert(len(im_id_to_image)==len(images))
|
|
268
|
-
print('Loaded metadata about {} images and {} sequences'.format(len(images),len(seq_id_to_annotations)))
|
|
269
|
-
|
|
270
|
-
categories_by_species = sorted(categories, key = lambda i: i['name'])
|
|
271
|
-
categories_by_count = sorted(categories, key = lambda i: i['count'])
|
|
272
|
-
|
|
273
|
-
pp = pprint.PrettyPrinter(depth=6)
|
|
274
|
-
|
|
275
|
-
# print('\nCategories by species:')
|
|
276
|
-
# pp.pprint(categories_by_species)
|
|
277
|
-
print('\nCategories by count:')
|
|
278
|
-
pp.pprint(categories_by_count)
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
#%% Fill in some image fields we didn't have when we created the image table
|
|
282
|
-
|
|
283
|
-
# width, height, corrupt, seq_num_frames, location, datetime
|
|
284
|
-
|
|
285
|
-
def process_image(im):
|
|
286
|
-
|
|
287
|
-
im['width'] = -1
|
|
288
|
-
im['height'] = -1
|
|
289
|
-
im['corrupt'] = False
|
|
290
|
-
im['location'] = 'unknown'
|
|
291
|
-
im['seq_num_frames'] = -1
|
|
292
|
-
im['datetime'] = 'unknown'
|
|
293
|
-
im['status'] = ''
|
|
294
|
-
|
|
295
|
-
if im['seq_id'] not in seq_id_to_annotations:
|
|
296
|
-
im['status'] = 'no_annotation'
|
|
297
|
-
return im
|
|
298
|
-
|
|
299
|
-
seq_annotations = seq_id_to_annotations[im['seq_id']]
|
|
300
|
-
|
|
301
|
-
# Every annotation in this list should have the same sequence ID
|
|
302
|
-
assert all(ann['seq_id'] == im['seq_id'] for ann in seq_annotations) , 'Error on image {}'.format(im['id'])
|
|
303
|
-
|
|
304
|
-
# Figure out "seq_num_frames", which really should be done in a separate lopp;
|
|
305
|
-
# there's no reason to do this redundantly for every image
|
|
306
|
-
images_in_sequence = seq_id_to_images[im['seq_id']]
|
|
307
|
-
|
|
308
|
-
# Every image in this sequence should point back to the same equence
|
|
309
|
-
assert all(seqim['seq_id'] == im['seq_id'] for seqim in images_in_sequence), 'Error on image {}'.format(im['id'])
|
|
310
|
-
|
|
311
|
-
frame_nums = [seqim['frame_num'] for seqim in images_in_sequence]
|
|
312
|
-
seq_num_frames = max(frame_nums)
|
|
313
|
-
im['seq_num_frames'] = seq_num_frames
|
|
314
|
-
|
|
315
|
-
im['location'] = str(seq_annotations[0]['site'])
|
|
316
|
-
|
|
317
|
-
# Every annotation in this list should have the same location
|
|
318
|
-
assert all(str(ann['site']) == im['location'] for ann in seq_annotations), 'Error on image {}'.format(im['id'])
|
|
319
|
-
|
|
320
|
-
im['datetime'] = seq_annotations[0]['datetime']
|
|
321
|
-
|
|
322
|
-
# Every annotation in this list should have the same datetime
|
|
323
|
-
assert all(ann['datetime'] == im['datetime'] for ann in seq_annotations), 'Error on image {}'.format(im['id'])
|
|
324
|
-
|
|
325
|
-
# Is this image on disk?
|
|
326
|
-
fullpath = os.path.join(project_base,im['file_name'])
|
|
327
|
-
if not os.path.isfile(fullpath):
|
|
328
|
-
im['status'] = 'not_on_disk'
|
|
329
|
-
return im
|
|
330
|
-
|
|
331
|
-
try:
|
|
332
|
-
|
|
333
|
-
pil_im = Image.open(fullpath)
|
|
334
|
-
im['height'] = pil_im.height
|
|
335
|
-
im['width'] = pil_im.width
|
|
336
|
-
|
|
337
|
-
except:
|
|
338
|
-
|
|
339
|
-
im['corrupt'] = True
|
|
340
|
-
|
|
341
|
-
return im
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
if process_images_n_threads <= 1:
|
|
345
|
-
|
|
346
|
-
# iImage = 0; im = images[0]
|
|
347
|
-
for iImage,im in tqdm(enumerate(images),total=len(images)):
|
|
348
|
-
process_image(im)
|
|
349
|
-
# ...for each image
|
|
350
|
-
|
|
351
|
-
else:
|
|
352
|
-
|
|
353
|
-
pool = ThreadPool(process_images_n_threads)
|
|
354
|
-
|
|
355
|
-
# images_processed = pool.map(process_image, images)
|
|
356
|
-
# images_processed = list(tqdm(pool.imap_unordered(process_image, images), total=len(images)))
|
|
357
|
-
images_processed = list(tqdm(pool.imap(process_image, images), total=len(images)))
|
|
358
|
-
|
|
359
|
-
print('Finished adding missing fields to {} images'.format(len(images_processed)))
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
#%% Count missing/corrupted images
|
|
363
|
-
|
|
364
|
-
n_missing = 0
|
|
365
|
-
n_corrupt = 0
|
|
366
|
-
n_no_annotation = 0
|
|
367
|
-
|
|
368
|
-
corrupted_images = []
|
|
369
|
-
missing_images = []
|
|
370
|
-
no_annotation_images = []
|
|
371
|
-
|
|
372
|
-
for im in tqdm(images):
|
|
373
|
-
|
|
374
|
-
if im['corrupt']:
|
|
375
|
-
n_corrupt += 1
|
|
376
|
-
corrupted_images.append(im['file_name'])
|
|
377
|
-
if im['status'] == '':
|
|
378
|
-
continue
|
|
379
|
-
elif im['status'] == 'not_on_disk':
|
|
380
|
-
n_missing += 1
|
|
381
|
-
missing_images.append(im['file_name'])
|
|
382
|
-
elif im['status'] == 'no_annotation':
|
|
383
|
-
n_no_annotation += 1
|
|
384
|
-
no_annotation_images.append(im['file_name'])
|
|
385
|
-
else:
|
|
386
|
-
raise ValueError('Unrecognized status {}'.format(im['status']))
|
|
387
|
-
|
|
388
|
-
print('\nOf {} images: {} missing, {} corrupt, {} no annotation'.format(len(images),
|
|
389
|
-
n_missing, n_corrupt, n_no_annotation))
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
#%% Print distribution of sequence lengths
|
|
393
|
-
|
|
394
|
-
seq_id_to_sequence_length = {}
|
|
395
|
-
|
|
396
|
-
for im in tqdm(images):
|
|
397
|
-
|
|
398
|
-
seq_id = im['seq_id']
|
|
399
|
-
seq_num_frames = im['seq_num_frames']
|
|
400
|
-
if seq_id not in seq_id_to_sequence_length:
|
|
401
|
-
seq_id_to_sequence_length[seq_id] = seq_num_frames
|
|
402
|
-
|
|
403
|
-
sequence_lengths = list(seq_id_to_sequence_length.values())
|
|
404
|
-
|
|
405
|
-
print('\nMean/min/max sequence length is {}/{}/{}'.format(np.mean(sequence_lengths),min(sequence_lengths),max(sequence_lengths)))
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
#%% Replicate annotations across images
|
|
409
|
-
|
|
410
|
-
annotations_replicated = []
|
|
411
|
-
|
|
412
|
-
# iAnn = 0; ann = annotations[iAnn]
|
|
413
|
-
for iAnn,ann in tqdm(enumerate(annotations), total=len(annotations)):
|
|
414
|
-
|
|
415
|
-
associated_images = seq_id_to_images[ann['seq_id']]
|
|
416
|
-
assert len(associated_images) > 0
|
|
417
|
-
for associated_image in associated_images:
|
|
418
|
-
new_ann = ann.copy()
|
|
419
|
-
new_ann['image_id'] = associated_image['id']
|
|
420
|
-
new_ann['id'] = str(uuid.uuid1())
|
|
421
|
-
annotations_replicated.append(new_ann)
|
|
422
|
-
|
|
423
|
-
print('\nCreated {} replicated annotations from {} original annotations'.format(len(annotations_replicated),
|
|
424
|
-
len(annotations)))
|
|
425
|
-
|
|
426
|
-
annotations = annotations_replicated
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
#%% See what files are on disk but not annotated
|
|
430
|
-
|
|
431
|
-
print('Listing images from disk...')
|
|
432
|
-
start_time = time.time()
|
|
433
|
-
image_files = path_utils.find_images(project_base,bRecursive=True)
|
|
434
|
-
elapsed = time.time() - start_time
|
|
435
|
-
print('Finished listing {} files in {}'.format(len(image_files),humanfriendly.format_timespan(elapsed)))
|
|
436
|
-
|
|
437
|
-
files_not_in_db = []
|
|
438
|
-
|
|
439
|
-
for fn in tqdm(image_files):
|
|
440
|
-
id = os.path.relpath(fn,project_base).replace('\\','/').replace('.JPG','')
|
|
441
|
-
if id not in im_id_to_image:
|
|
442
|
-
files_not_in_db.append(fn)
|
|
443
|
-
|
|
444
|
-
print('{} files not in the database (of {})'.format(len(files_not_in_db),len(image_files)))
|
|
445
|
-
del fn
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
#%% Validate image and annotation uniqueness
|
|
449
|
-
|
|
450
|
-
tmp_img_ids = set()
|
|
451
|
-
tmp_ann_ids = set()
|
|
452
|
-
|
|
453
|
-
for im in tqdm(images):
|
|
454
|
-
assert im['id'] not in tmp_img_ids
|
|
455
|
-
tmp_img_ids.add(im['id'])
|
|
456
|
-
|
|
457
|
-
for ann in tqdm(annotations):
|
|
458
|
-
assert ann['id'] not in tmp_ann_ids
|
|
459
|
-
tmp_ann_ids.add(ann['id'])
|
|
460
|
-
|
|
461
|
-
print('Finished uniqueness check')
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
#%% Minor updates to fields
|
|
465
|
-
|
|
466
|
-
for ann in tqdm(annotations):
|
|
467
|
-
ann['location'] = ann['site']
|
|
468
|
-
del ann['site']
|
|
469
|
-
try:
|
|
470
|
-
icount = ann['count']
|
|
471
|
-
except:
|
|
472
|
-
icount = -1
|
|
473
|
-
ann['count'] = icount
|
|
474
|
-
|
|
475
|
-
for im in tqdm(images):
|
|
476
|
-
del im['status']
|
|
477
|
-
|
|
478
|
-
for c in categories:
|
|
479
|
-
del c['count']
|
|
480
|
-
|
|
481
|
-
|
|
482
|
-
#%% Write .json file
|
|
483
|
-
|
|
484
|
-
info = {}
|
|
485
|
-
info['version'] = json_version
|
|
486
|
-
info['description'] = 'Camera trap data from the {} program'.format(project_friendly_name)
|
|
487
|
-
info['date_created'] = '2019'
|
|
488
|
-
info['contributor'] = 'Snapshot Safari'
|
|
489
|
-
|
|
490
|
-
data = {}
|
|
491
|
-
data['info'] = info
|
|
492
|
-
data['categories'] = categories
|
|
493
|
-
data['annotations'] = annotations
|
|
494
|
-
data['images'] = images
|
|
495
|
-
|
|
496
|
-
print('Writing data to {}'.format(json_filename))
|
|
497
|
-
|
|
498
|
-
s = json.dumps(data,indent=1)
|
|
499
|
-
with open(json_filename, "w+") as f:
|
|
500
|
-
f.write(s)
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
#%% Create a list of human files
|
|
504
|
-
|
|
505
|
-
human_image_ids = set()
|
|
506
|
-
human_id = species_to_category['human']['id']
|
|
507
|
-
|
|
508
|
-
# ann = annotations[0]
|
|
509
|
-
for ann in tqdm(annotations):
|
|
510
|
-
if ann['category_id'] == human_id:
|
|
511
|
-
human_image_ids.add(ann['image_id'])
|
|
512
|
-
|
|
513
|
-
print('Found {} images with humans'.format(len(human_image_ids)))
|
|
514
|
-
|
|
515
|
-
|
|
516
|
-
#%% Create public archive and public/private folders
|
|
517
|
-
|
|
518
|
-
debug_max_files = -1
|
|
519
|
-
n_dot = 1000
|
|
520
|
-
n_print = 10000
|
|
521
|
-
|
|
522
|
-
n_images_added = 0
|
|
523
|
-
zipfilename = output_public_zipfile
|
|
524
|
-
zip = ZipFile(zipfilename,'w')
|
|
525
|
-
|
|
526
|
-
print('Creating archive {}'.format(output_public_zipfile))
|
|
527
|
-
|
|
528
|
-
# im = images[0]
|
|
529
|
-
for iImage,im in tqdm(enumerate(images),total=len(images)):
|
|
530
|
-
|
|
531
|
-
# E.g. KRU_S1/1/1_R1/KRU_S1_1_R1_IMAG0001.JPG
|
|
532
|
-
im_relative_path = im['file_name']
|
|
533
|
-
im_absolute_path = os.path.join(project_base,im_relative_path)
|
|
534
|
-
assert(os.path.isfile(im_absolute_path))
|
|
535
|
-
|
|
536
|
-
image_is_private = (im['id'] in human_image_ids)
|
|
537
|
-
|
|
538
|
-
if image_is_private:
|
|
539
|
-
|
|
540
|
-
# Copy to private output folder
|
|
541
|
-
output_file = os.path.join(output_private_folder,im_relative_path)
|
|
542
|
-
os.makedirs(os.path.dirname(output_file),exist_ok=True)
|
|
543
|
-
shutil.copyfile(src=im_absolute_path,dst=output_file)
|
|
544
|
-
continue
|
|
545
|
-
|
|
546
|
-
# Add to zipfile
|
|
547
|
-
n_images_added += 1
|
|
548
|
-
|
|
549
|
-
# Possibly start a new archive
|
|
550
|
-
if (max_files_per_archive is not None) and (n_images_added >= max_files_per_archive):
|
|
551
|
-
zip.close()
|
|
552
|
-
zipfilename = zipfilename.replace('.zip','.{}.zip'.format(n_images_added))
|
|
553
|
-
print('Starting new archive: {}'.format(zipfilename))
|
|
554
|
-
zip = ZipFile(zipfilename,'w')
|
|
555
|
-
n_images_added = 0
|
|
556
|
-
|
|
557
|
-
if (n_images_added % n_dot)==0:
|
|
558
|
-
print('.',end='')
|
|
559
|
-
if (n_images_added % n_print)==0:
|
|
560
|
-
print('{} images added to {}'.format(n_images_added,zipfilename))
|
|
561
|
-
if debug_max_files > 0 and n_images_added > debug_max_files:
|
|
562
|
-
break
|
|
563
|
-
|
|
564
|
-
source_file = os.path.join(project_base,im_relative_path)
|
|
565
|
-
dest_file = im['file_name']
|
|
566
|
-
zip.write(source_file,dest_file,zipfile.ZIP_STORED)
|
|
567
|
-
|
|
568
|
-
# Copy to public output folder
|
|
569
|
-
output_file = os.path.join(output_public_folder,im_relative_path)
|
|
570
|
-
os.makedirs(os.path.dirname(output_file),exist_ok=True)
|
|
571
|
-
shutil.copyfile(src=im_absolute_path,dst=output_file)
|
|
572
|
-
|
|
573
|
-
# ...for each image
|
|
574
|
-
|
|
575
|
-
zip.close()
|
|
576
|
-
|
|
577
|
-
print('\nFinished writing {}, added {} files'.format(zipfilename,n_images_added))
|
|
578
|
-
|
|
579
|
-
|
|
580
|
-
#%% Consistency-check-check .json file
|
|
581
|
-
|
|
582
|
-
from data_management.databases import integrity_check_json_db
|
|
583
|
-
|
|
584
|
-
options = integrity_check_json_db.IntegrityCheckOptions()
|
|
585
|
-
options.baseDir = output_public_folder
|
|
586
|
-
options.bCheckImageSizes = False
|
|
587
|
-
options.bCheckImageExistence = True
|
|
588
|
-
options.bFindUnusedImages = False
|
|
589
|
-
|
|
590
|
-
sortedCategories, data, errorInfo = integrity_check_json_db.integrity_check_json_db(json_filename,options)
|
|
591
|
-
|
|
592
|
-
# This will produce some validation errors, because this zipfile doesn't include humans
|
|
593
|
-
assert(len(errorInfo['validationErrors']) == len(human_image_ids))
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
#%% Zip up .json and .csv files
|
|
597
|
-
|
|
598
|
-
def zip_single_file(fn,zipfilename=None):
|
|
599
|
-
'''
|
|
600
|
-
Zips a single file fn, by default to fn.zip
|
|
601
|
-
|
|
602
|
-
Discards path information, only uses fn's base name.
|
|
603
|
-
'''
|
|
604
|
-
if zipfilename is None:
|
|
605
|
-
zipfilename = fn + '.zip'
|
|
606
|
-
|
|
607
|
-
print('Zipping {} to {}'.format(fn,zipfilename))
|
|
608
|
-
with ZipFile(zipfilename,'w') as zip:
|
|
609
|
-
source_file = fn
|
|
610
|
-
dest_file = os.path.basename(fn)
|
|
611
|
-
zip.write(source_file,dest_file,zipfile.ZIP_DEFLATED)
|
|
612
|
-
return zipfilename
|
|
613
|
-
|
|
614
|
-
def zip_files_to_flat(filenames,zipfilename):
|
|
615
|
-
'''
|
|
616
|
-
Remove path information from everything in [filenames] and
|
|
617
|
-
zip to a flat file. Does not check uniqueness.
|
|
618
|
-
'''
|
|
619
|
-
with ZipFile(zipfilename,'w') as zip:
|
|
620
|
-
for fn in filenames:
|
|
621
|
-
source_file = fn
|
|
622
|
-
dest_file = os.path.basename(fn)
|
|
623
|
-
zip.write(source_file,dest_file,zipfile.ZIP_DEFLATED)
|
|
624
|
-
|
|
625
|
-
zip_single_file(json_filename)
|
|
626
|
-
zip_files_to_flat([annotation_file,image_inventory_file],os.path.join(output_base,project_season_name + '.csv.zip'))
|
|
627
|
-
|
|
628
|
-
print('Finished zipping .csv and .json files')
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
#%% When I skip to this part (using a pre-rendered .json file)
|
|
632
|
-
|
|
633
|
-
if False:
|
|
634
|
-
|
|
635
|
-
#%%
|
|
636
|
-
|
|
637
|
-
species_to_category = {}
|
|
638
|
-
for cat in categories:
|
|
639
|
-
species_to_category[cat['name']] = cat
|
|
640
|
-
|
|
641
|
-
#%%
|
|
642
|
-
|
|
643
|
-
human_image_ids = set()
|
|
644
|
-
human_id = species_to_category['human']['id']
|
|
645
|
-
|
|
646
|
-
# ann = annotations[0]
|
|
647
|
-
for ann in tqdm(annotations):
|
|
648
|
-
if ann['category_id'] == human_id:
|
|
649
|
-
human_image_ids.add(ann['image_id'])
|
|
650
|
-
|
|
651
|
-
print('Found {} images with humans'.format(len(human_image_ids)))
|
|
652
|
-
|
|
653
|
-
|
|
654
|
-
#%% Summary prep for LILA
|
|
655
|
-
|
|
656
|
-
with open(json_filename,'r') as f:
|
|
657
|
-
data = json.load(f)
|
|
658
|
-
|
|
659
|
-
categories = data['categories']
|
|
660
|
-
annotations = data['annotations']
|
|
661
|
-
images = data['images']
|
|
662
|
-
|
|
663
|
-
n_empty = 0
|
|
664
|
-
n_species = len(categories)
|
|
665
|
-
n_images = len(images)
|
|
666
|
-
|
|
667
|
-
sequences = set()
|
|
668
|
-
for im in tqdm(images):
|
|
669
|
-
sequences.add(im['seq_id'])
|
|
670
|
-
|
|
671
|
-
category_id_to_count = {}
|
|
672
|
-
for ann in tqdm(annotations):
|
|
673
|
-
if ann['category_id'] == 0:
|
|
674
|
-
n_empty += 1
|
|
675
|
-
if ann['category_id'] in category_id_to_count:
|
|
676
|
-
category_id_to_count[ann['category_id']] += 1
|
|
677
|
-
else:
|
|
678
|
-
category_id_to_count[ann['category_id']] = 1
|
|
679
|
-
|
|
680
|
-
empty_categories = []
|
|
681
|
-
for c in categories:
|
|
682
|
-
if c['id'] in category_id_to_count:
|
|
683
|
-
c['count'] = category_id_to_count[c['id']]
|
|
684
|
-
else:
|
|
685
|
-
empty_categories.append(c)
|
|
686
|
-
c['count'] = 0
|
|
687
|
-
|
|
688
|
-
categories = [c for c in categories if c['count'] > 0]
|
|
689
|
-
sorted_categories = sorted(categories, key=lambda k: k['count'], reverse=True)
|
|
690
|
-
|
|
691
|
-
with open(species_list_filename,'w') as f:
|
|
692
|
-
for c in sorted_categories:
|
|
693
|
-
f.write(c['name'] + ',' + str(c['count']) + '\n')
|
|
694
|
-
|
|
695
|
-
n_images = len(images) - len(human_image_ids)
|
|
696
|
-
n_sequences = len(sequences)
|
|
697
|
-
percent_empty = (100*n_empty)/len(images)
|
|
698
|
-
n_categories = len(categories)
|
|
699
|
-
top_categories = []
|
|
700
|
-
|
|
701
|
-
for i_category in range(0,len(sorted_categories)):
|
|
702
|
-
c = sorted_categories[i_category]
|
|
703
|
-
cat_name = c['name']
|
|
704
|
-
if cat_name != 'human' and cat_name != 'empty':
|
|
705
|
-
top_categories.append(cat_name)
|
|
706
|
-
if len(top_categories) == 3:
|
|
707
|
-
break
|
|
708
|
-
|
|
709
|
-
s = 'This data set contains {} sequences of camera trap images, totaling {} images, from the {} project. Labels are provided for {} categories, primarily at the species level (for example, the most common labels are {}, {}, and {}). Approximately {:.2f}% of images are labeled as empty. A full list of species and associated image counts is available <a href="{}">here</a>.'.format(
|
|
710
|
-
n_sequences,n_images,project_friendly_name,n_categories,
|
|
711
|
-
top_categories[0],top_categories[1],top_categories[2],
|
|
712
|
-
percent_empty,
|
|
713
|
-
'https://lilablobssc.blob.core.windows.net/snapshot-safari/{}/{}_{}_v{}.species_list.csv'.format(
|
|
714
|
-
project_name,project_friendly_name.replace(' ',''),season_name,json_version))
|
|
715
|
-
print(s)
|
|
716
|
-
|
|
717
|
-
with open(summary_info_filename,'w') as f:
|
|
718
|
-
f.write(s)
|
|
719
|
-
|
|
720
|
-
|
|
721
|
-
#%% Generate preview, integrity-check labels
|
|
722
|
-
|
|
723
|
-
viz_options = visualize_db.DbVizOptions()
|
|
724
|
-
viz_options.num_to_visualize = 5000
|
|
725
|
-
viz_options.trim_to_images_with_bboxes = False
|
|
726
|
-
viz_options.add_search_links = True
|
|
727
|
-
viz_options.sort_by_filename = False
|
|
728
|
-
viz_options.parallelize_rendering = True
|
|
729
|
-
viz_options.classes_to_exclude = ['test','empty']
|
|
730
|
-
# viz_options.classes_to_include = ['jackalblackbacked','bustardkori']
|
|
731
|
-
html_output_file, image_db = visualize_db.visualize_db(db_path=json_filename,
|
|
732
|
-
output_dir=output_preview_folder,
|
|
733
|
-
image_base_dir=output_public_folder,
|
|
734
|
-
options=viz_options)
|
|
735
|
-
os.startfile(html_output_file)
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
#%% Scrap
|
|
739
|
-
|
|
740
|
-
if False:
|
|
741
|
-
|
|
742
|
-
pass
|
|
743
|
-
|
|
744
|
-
#%% Find annotations for a particular image
|
|
745
|
-
|
|
746
|
-
fn = missing_images[1000]
|
|
747
|
-
id = fn.replace('.JPG','')
|
|
748
|
-
im = im_id_to_image[id]
|
|
749
|
-
seq_id = im['seq_id']
|
|
750
|
-
matching_annotations = [ann for ann in annotations if ann['seq_id'] == seq_id]
|
|
751
|
-
print(matching_annotations)
|
|
752
|
-
|
|
753
|
-
#%% Write a list of missing images
|
|
754
|
-
|
|
755
|
-
with open(os.path.join(output_base,project_name + '_' + season_name + '_missing_images.txt'), 'w') as f:
|
|
756
|
-
for fn in missing_images:
|
|
757
|
-
f.write('{}\n'.format(fn))
|
|
758
|
-
|