megadetector 5.0.10__py3-none-any.whl → 5.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (226) hide show
  1. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
  2. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
  3. megadetector-5.0.11.dist-info/RECORD +5 -0
  4. megadetector-5.0.11.dist-info/top_level.txt +1 -0
  5. api/__init__.py +0 -0
  6. api/batch_processing/__init__.py +0 -0
  7. api/batch_processing/api_core/__init__.py +0 -0
  8. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  9. api/batch_processing/api_core/batch_service/score.py +0 -439
  10. api/batch_processing/api_core/server.py +0 -294
  11. api/batch_processing/api_core/server_api_config.py +0 -98
  12. api/batch_processing/api_core/server_app_config.py +0 -55
  13. api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  14. api/batch_processing/api_core/server_job_status_table.py +0 -152
  15. api/batch_processing/api_core/server_orchestration.py +0 -360
  16. api/batch_processing/api_core/server_utils.py +0 -92
  17. api/batch_processing/api_core_support/__init__.py +0 -0
  18. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  19. api/batch_processing/api_support/__init__.py +0 -0
  20. api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  21. api/batch_processing/data_preparation/__init__.py +0 -0
  22. api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
  23. api/batch_processing/data_preparation/manage_video_batch.py +0 -327
  24. api/batch_processing/integration/digiKam/setup.py +0 -6
  25. api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
  26. api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
  27. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
  28. api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
  29. api/batch_processing/postprocessing/__init__.py +0 -0
  30. api/batch_processing/postprocessing/add_max_conf.py +0 -64
  31. api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
  32. api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
  33. api/batch_processing/postprocessing/compare_batch_results.py +0 -958
  34. api/batch_processing/postprocessing/convert_output_format.py +0 -397
  35. api/batch_processing/postprocessing/load_api_results.py +0 -195
  36. api/batch_processing/postprocessing/md_to_coco.py +0 -310
  37. api/batch_processing/postprocessing/md_to_labelme.py +0 -330
  38. api/batch_processing/postprocessing/merge_detections.py +0 -401
  39. api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
  40. api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
  41. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
  42. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
  43. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
  44. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
  45. api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
  46. api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
  47. api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
  48. api/synchronous/__init__.py +0 -0
  49. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  50. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
  51. api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
  52. api/synchronous/api_core/animal_detection_api/config.py +0 -35
  53. api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
  54. api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
  55. api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
  56. api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
  57. api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
  58. api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
  59. api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
  60. api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
  61. api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
  62. api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
  63. api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
  64. api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
  65. api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
  66. api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
  67. api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
  68. api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
  69. api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
  70. api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
  71. api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
  72. api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
  73. api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
  74. api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
  75. api/synchronous/api_core/tests/__init__.py +0 -0
  76. api/synchronous/api_core/tests/load_test.py +0 -110
  77. classification/__init__.py +0 -0
  78. classification/aggregate_classifier_probs.py +0 -108
  79. classification/analyze_failed_images.py +0 -227
  80. classification/cache_batchapi_outputs.py +0 -198
  81. classification/create_classification_dataset.py +0 -627
  82. classification/crop_detections.py +0 -516
  83. classification/csv_to_json.py +0 -226
  84. classification/detect_and_crop.py +0 -855
  85. classification/efficientnet/__init__.py +0 -9
  86. classification/efficientnet/model.py +0 -415
  87. classification/efficientnet/utils.py +0 -610
  88. classification/evaluate_model.py +0 -520
  89. classification/identify_mislabeled_candidates.py +0 -152
  90. classification/json_to_azcopy_list.py +0 -63
  91. classification/json_validator.py +0 -695
  92. classification/map_classification_categories.py +0 -276
  93. classification/merge_classification_detection_output.py +0 -506
  94. classification/prepare_classification_script.py +0 -194
  95. classification/prepare_classification_script_mc.py +0 -228
  96. classification/run_classifier.py +0 -286
  97. classification/save_mislabeled.py +0 -110
  98. classification/train_classifier.py +0 -825
  99. classification/train_classifier_tf.py +0 -724
  100. classification/train_utils.py +0 -322
  101. data_management/__init__.py +0 -0
  102. data_management/annotations/__init__.py +0 -0
  103. data_management/annotations/annotation_constants.py +0 -34
  104. data_management/camtrap_dp_to_coco.py +0 -238
  105. data_management/cct_json_utils.py +0 -395
  106. data_management/cct_to_md.py +0 -176
  107. data_management/cct_to_wi.py +0 -289
  108. data_management/coco_to_labelme.py +0 -272
  109. data_management/coco_to_yolo.py +0 -662
  110. data_management/databases/__init__.py +0 -0
  111. data_management/databases/add_width_and_height_to_db.py +0 -33
  112. data_management/databases/combine_coco_camera_traps_files.py +0 -206
  113. data_management/databases/integrity_check_json_db.py +0 -477
  114. data_management/databases/subset_json_db.py +0 -115
  115. data_management/generate_crops_from_cct.py +0 -149
  116. data_management/get_image_sizes.py +0 -188
  117. data_management/importers/add_nacti_sizes.py +0 -52
  118. data_management/importers/add_timestamps_to_icct.py +0 -79
  119. data_management/importers/animl_results_to_md_results.py +0 -158
  120. data_management/importers/auckland_doc_test_to_json.py +0 -372
  121. data_management/importers/auckland_doc_to_json.py +0 -200
  122. data_management/importers/awc_to_json.py +0 -189
  123. data_management/importers/bellevue_to_json.py +0 -273
  124. data_management/importers/cacophony-thermal-importer.py +0 -796
  125. data_management/importers/carrizo_shrubfree_2018.py +0 -268
  126. data_management/importers/carrizo_trail_cam_2017.py +0 -287
  127. data_management/importers/cct_field_adjustments.py +0 -57
  128. data_management/importers/channel_islands_to_cct.py +0 -913
  129. data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  130. data_management/importers/eMammal/eMammal_helpers.py +0 -249
  131. data_management/importers/eMammal/make_eMammal_json.py +0 -223
  132. data_management/importers/ena24_to_json.py +0 -275
  133. data_management/importers/filenames_to_json.py +0 -385
  134. data_management/importers/helena_to_cct.py +0 -282
  135. data_management/importers/idaho-camera-traps.py +0 -1407
  136. data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  137. data_management/importers/jb_csv_to_json.py +0 -150
  138. data_management/importers/mcgill_to_json.py +0 -250
  139. data_management/importers/missouri_to_json.py +0 -489
  140. data_management/importers/nacti_fieldname_adjustments.py +0 -79
  141. data_management/importers/noaa_seals_2019.py +0 -181
  142. data_management/importers/pc_to_json.py +0 -365
  143. data_management/importers/plot_wni_giraffes.py +0 -123
  144. data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
  145. data_management/importers/prepare_zsl_imerit.py +0 -131
  146. data_management/importers/rspb_to_json.py +0 -356
  147. data_management/importers/save_the_elephants_survey_A.py +0 -320
  148. data_management/importers/save_the_elephants_survey_B.py +0 -332
  149. data_management/importers/snapshot_safari_importer.py +0 -758
  150. data_management/importers/snapshot_safari_importer_reprise.py +0 -665
  151. data_management/importers/snapshot_serengeti_lila.py +0 -1067
  152. data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  153. data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  154. data_management/importers/sulross_get_exif.py +0 -65
  155. data_management/importers/timelapse_csv_set_to_json.py +0 -490
  156. data_management/importers/ubc_to_json.py +0 -399
  157. data_management/importers/umn_to_json.py +0 -507
  158. data_management/importers/wellington_to_json.py +0 -263
  159. data_management/importers/wi_to_json.py +0 -441
  160. data_management/importers/zamba_results_to_md_results.py +0 -181
  161. data_management/labelme_to_coco.py +0 -548
  162. data_management/labelme_to_yolo.py +0 -272
  163. data_management/lila/__init__.py +0 -0
  164. data_management/lila/add_locations_to_island_camera_traps.py +0 -97
  165. data_management/lila/add_locations_to_nacti.py +0 -147
  166. data_management/lila/create_lila_blank_set.py +0 -557
  167. data_management/lila/create_lila_test_set.py +0 -151
  168. data_management/lila/create_links_to_md_results_files.py +0 -106
  169. data_management/lila/download_lila_subset.py +0 -177
  170. data_management/lila/generate_lila_per_image_labels.py +0 -515
  171. data_management/lila/get_lila_annotation_counts.py +0 -170
  172. data_management/lila/get_lila_image_counts.py +0 -111
  173. data_management/lila/lila_common.py +0 -300
  174. data_management/lila/test_lila_metadata_urls.py +0 -132
  175. data_management/ocr_tools.py +0 -874
  176. data_management/read_exif.py +0 -681
  177. data_management/remap_coco_categories.py +0 -84
  178. data_management/remove_exif.py +0 -66
  179. data_management/resize_coco_dataset.py +0 -189
  180. data_management/wi_download_csv_to_coco.py +0 -246
  181. data_management/yolo_output_to_md_output.py +0 -441
  182. data_management/yolo_to_coco.py +0 -676
  183. detection/__init__.py +0 -0
  184. detection/detector_training/__init__.py +0 -0
  185. detection/detector_training/model_main_tf2.py +0 -114
  186. detection/process_video.py +0 -703
  187. detection/pytorch_detector.py +0 -337
  188. detection/run_detector.py +0 -779
  189. detection/run_detector_batch.py +0 -1219
  190. detection/run_inference_with_yolov5_val.py +0 -917
  191. detection/run_tiled_inference.py +0 -935
  192. detection/tf_detector.py +0 -188
  193. detection/video_utils.py +0 -606
  194. docs/source/conf.py +0 -43
  195. md_utils/__init__.py +0 -0
  196. md_utils/azure_utils.py +0 -174
  197. md_utils/ct_utils.py +0 -612
  198. md_utils/directory_listing.py +0 -246
  199. md_utils/md_tests.py +0 -968
  200. md_utils/path_utils.py +0 -1044
  201. md_utils/process_utils.py +0 -157
  202. md_utils/sas_blob_utils.py +0 -509
  203. md_utils/split_locations_into_train_val.py +0 -228
  204. md_utils/string_utils.py +0 -92
  205. md_utils/url_utils.py +0 -323
  206. md_utils/write_html_image_list.py +0 -225
  207. md_visualization/__init__.py +0 -0
  208. md_visualization/plot_utils.py +0 -293
  209. md_visualization/render_images_with_thumbnails.py +0 -275
  210. md_visualization/visualization_utils.py +0 -1537
  211. md_visualization/visualize_db.py +0 -551
  212. md_visualization/visualize_detector_output.py +0 -406
  213. megadetector-5.0.10.dist-info/RECORD +0 -224
  214. megadetector-5.0.10.dist-info/top_level.txt +0 -8
  215. taxonomy_mapping/__init__.py +0 -0
  216. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
  217. taxonomy_mapping/map_new_lila_datasets.py +0 -154
  218. taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
  219. taxonomy_mapping/preview_lila_taxonomy.py +0 -591
  220. taxonomy_mapping/retrieve_sample_image.py +0 -71
  221. taxonomy_mapping/simple_image_download.py +0 -218
  222. taxonomy_mapping/species_lookup.py +0 -834
  223. taxonomy_mapping/taxonomy_csv_checker.py +0 -159
  224. taxonomy_mapping/taxonomy_graph.py +0 -346
  225. taxonomy_mapping/validate_lila_category_mappings.py +0 -83
  226. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
@@ -1,165 +0,0 @@
1
- ########
2
- #
3
- # tf_detector.py
4
- #
5
- # Module containing the class TFDetector for loading a TensorFlow detection model and
6
- # running inference.
7
- #
8
- ########
9
-
10
- import numpy as np
11
-
12
- from detection.run_detector import CONF_DIGITS, COORD_DIGITS, FAILURE_INFER
13
- from md_utils.ct_utils import truncate_float
14
-
15
- import tensorflow.compat.v1 as tf
16
-
17
- print('TensorFlow version:', tf.__version__)
18
- print('Is GPU available? tf.test.is_gpu_available:', tf.test.is_gpu_available())
19
-
20
-
21
- class TFDetector:
22
- """
23
- A detector model loaded at the time of initialization. It is intended to be used with
24
- the MegaDetector (TF). The inference batch size is set to 1; code needs to be modified
25
- to support larger batch sizes, including resizing appropriately.
26
- """
27
-
28
- # MegaDetector was trained with batch size of 1, and the resizing function is a part
29
- # of the inference graph
30
- BATCH_SIZE = 1
31
-
32
-
33
- def __init__(self, model_path):
34
- """
35
- Loads model from model_path and starts a tf.Session with this graph. Obtains
36
- input and output tensor handles.
37
- """
38
-
39
- detection_graph = TFDetector.__load_model(model_path)
40
- self.tf_session = tf.Session(graph=detection_graph)
41
-
42
- self.image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
43
- self.box_tensor = detection_graph.get_tensor_by_name('detection_boxes:0')
44
- self.score_tensor = detection_graph.get_tensor_by_name('detection_scores:0')
45
- self.class_tensor = detection_graph.get_tensor_by_name('detection_classes:0')
46
-
47
- @staticmethod
48
- def round_and_make_float(d, precision=4):
49
- return truncate_float(float(d), precision=precision)
50
-
51
- @staticmethod
52
- def __convert_coords(tf_coords):
53
- """
54
- Converts coordinates from the model's output format [y1, x1, y2, x2] to the
55
- format used by our API and MegaDB: [x1, y1, width, height]. All coordinates
56
- (including model outputs) are normalized in the range [0, 1].
57
-
58
- Args:
59
- tf_coords: np.array of predicted bounding box coordinates from the TF detector,
60
- has format [y1, x1, y2, x2]
61
-
62
- Returns: list of Python float, predicted bounding box coordinates [x1, y1, width, height]
63
- """
64
-
65
- # change from [y1, x1, y2, x2] to [x1, y1, width, height]
66
- width = tf_coords[3] - tf_coords[1]
67
- height = tf_coords[2] - tf_coords[0]
68
-
69
- new = [tf_coords[1], tf_coords[0], width, height] # must be a list instead of np.array
70
-
71
- # convert numpy floats to Python floats
72
- for i, d in enumerate(new):
73
- new[i] = TFDetector.round_and_make_float(d, precision=COORD_DIGITS)
74
- return new
75
-
76
- @staticmethod
77
- def __load_model(model_path):
78
- """
79
- Loads a detection model (i.e., create a graph) from a .pb file.
80
-
81
- Args:
82
- model_path: .pb file of the model.
83
-
84
- Returns: the loaded graph.
85
- """
86
-
87
- print('TFDetector: Loading graph...')
88
- detection_graph = tf.Graph()
89
- with detection_graph.as_default():
90
- od_graph_def = tf.GraphDef()
91
- with tf.gfile.GFile(model_path, 'rb') as fid:
92
- serialized_graph = fid.read()
93
- od_graph_def.ParseFromString(serialized_graph)
94
- tf.import_graph_def(od_graph_def, name='')
95
- print('TFDetector: Detection graph loaded.')
96
-
97
- return detection_graph
98
-
99
- def _generate_detections_one_image(self, image):
100
- np_im = np.asarray(image, np.uint8)
101
- im_w_batch_dim = np.expand_dims(np_im, axis=0)
102
-
103
- # need to change the above line to the following if supporting a batch size > 1 and resizing to the same size
104
- # np_images = [np.asarray(image, np.uint8) for image in images]
105
- # images_stacked = np.stack(np_images, axis=0) if len(images) > 1 else np.expand_dims(np_images[0], axis=0)
106
-
107
- # performs inference
108
- (box_tensor_out, score_tensor_out, class_tensor_out) = self.tf_session.run(
109
- [self.box_tensor, self.score_tensor, self.class_tensor],
110
- feed_dict={self.image_tensor: im_w_batch_dim})
111
-
112
- return box_tensor_out, score_tensor_out, class_tensor_out
113
-
114
- def generate_detections_one_image(self, image, image_id, detection_threshold, image_size=None,
115
- skip_image_resizing=False):
116
- """
117
- Apply the detector to an image.
118
-
119
- Args:
120
- image: the PIL Image object
121
- image_id: a path to identify the image; will be in the "file" field of the output object
122
- detection_threshold: confidence above which to include the detection proposal
123
-
124
- Returns:
125
- A dict with the following fields, see the 'images' key in https://github.com/agentmorris/MegaDetector/tree/master/api/batch_processing#batch-processing-api-output-format
126
- - 'file' (always present)
127
- - 'max_detection_conf'
128
- - 'detections', which is a list of detection objects containing keys 'category', 'conf' and 'bbox'
129
- - 'failure'
130
- """
131
-
132
- assert image_size is None, 'Image sizing not supported for TF detectors'
133
- assert not skip_image_resizing, 'Image sizing not supported for TF detectors'
134
- result = {
135
- 'file': image_id
136
- }
137
- try:
138
- b_box, b_score, b_class = self._generate_detections_one_image(image)
139
-
140
- # our batch size is 1; need to loop the batch dim if supporting batch size > 1
141
- boxes, scores, classes = b_box[0], b_score[0], b_class[0]
142
-
143
- detections_cur_image = [] # will be empty for an image with no confident detections
144
- max_detection_conf = 0.0
145
- for b, s, c in zip(boxes, scores, classes):
146
- if s > detection_threshold:
147
- detection_entry = {
148
- 'category': str(int(c)), # use string type for the numerical class label, not int
149
- 'conf': truncate_float(float(s), # cast to float for json serialization
150
- precision=CONF_DIGITS),
151
- 'bbox': TFDetector.__convert_coords(b)
152
- }
153
- detections_cur_image.append(detection_entry)
154
- if s > max_detection_conf:
155
- max_detection_conf = s
156
-
157
- result['max_detection_conf'] = truncate_float(float(max_detection_conf),
158
- precision=CONF_DIGITS)
159
- result['detections'] = detections_cur_image
160
-
161
- except Exception as e:
162
- result['failure'] = FAILURE_INFER
163
- print('TFDetector: image {} failed during inference: {}'.format(image_id, str(e)))
164
-
165
- return result
@@ -1,495 +0,0 @@
1
- ########
2
- #
3
- # video_utils.py
4
- #
5
- # Utilities for splitting, rendering, and assembling videos.
6
- #
7
- ########
8
-
9
- #%% Constants, imports, environment
10
-
11
- import os
12
- import cv2
13
- import glob
14
- import json
15
-
16
- from collections import defaultdict
17
- from multiprocessing.pool import ThreadPool
18
- from multiprocessing.pool import Pool
19
- from tqdm import tqdm
20
- from typing import Container,Iterable,List
21
- from functools import partial
22
-
23
- from md_utils import path_utils
24
-
25
- from md_visualization import visualization_utils as vis_utils
26
-
27
-
28
- #%% Path utilities
29
-
30
- VIDEO_EXTENSIONS = ('.mp4','.avi','.mpeg','.mpg')
31
-
32
- def is_video_file(s: str, video_extensions: Container[str] = VIDEO_EXTENSIONS
33
- ) -> bool:
34
- """
35
- Checks a file's extension against a hard-coded set of video file
36
- extensions.
37
- """
38
-
39
- ext = os.path.splitext(s)[1]
40
- return ext.lower() in video_extensions
41
-
42
-
43
- def find_video_strings(strings: Iterable[str]) -> List[str]:
44
- """
45
- Given a list of strings that are potentially video file names, looks for
46
- strings that actually look like video file names (based on extension).
47
- """
48
-
49
- return [s for s in strings if is_video_file(s.lower())]
50
-
51
-
52
- def find_videos(dirname: str, recursive: bool = False) -> List[str]:
53
- """
54
- Finds all files in a directory that look like video file names. Returns
55
- absolute paths.
56
- """
57
-
58
- if recursive:
59
- strings = glob.glob(os.path.join(dirname, '**', '*.*'), recursive=True)
60
- else:
61
- strings = glob.glob(os.path.join(dirname, '*.*'))
62
- return find_video_strings(strings)
63
-
64
-
65
- #%% Function for rendering frames to video and vice-versa
66
-
67
- # http://tsaith.github.io/combine-images-into-a-video-with-python-3-and-opencv-3.html
68
-
69
- def frames_to_video(images, Fs, output_file_name, codec_spec='h264'):
70
- """
71
- Given a list of image files and a sample rate, concatenate those images into
72
- a video and write to [output_file_name].
73
-
74
- Note to self: h264 is a sensible default and generally works on Windows, but when this
75
- fails (which is around 50% of the time on Linux), I fall back to mp4v.
76
- """
77
-
78
- if codec_spec is None:
79
- codec_spec = 'h264'
80
-
81
- if len(images) == 0:
82
- return
83
-
84
- # Determine the width and height from the first image
85
- frame = cv2.imread(images[0])
86
- cv2.imshow('video',frame)
87
- height, width, channels = frame.shape
88
-
89
- # Define the codec and create VideoWriter object
90
- fourcc = cv2.VideoWriter_fourcc(*codec_spec)
91
- out = cv2.VideoWriter(output_file_name, fourcc, Fs, (width, height))
92
-
93
- for image in images:
94
- frame = cv2.imread(image)
95
- out.write(frame)
96
-
97
- out.release()
98
- cv2.destroyAllWindows()
99
-
100
-
101
- def get_video_fs(input_video_file):
102
- """
103
- Get the frame rate of [input_video_file]
104
- """
105
-
106
- assert os.path.isfile(input_video_file), 'File {} not found'.format(input_video_file)
107
- vidcap = cv2.VideoCapture(input_video_file)
108
- Fs = vidcap.get(cv2.CAP_PROP_FPS)
109
- vidcap.release()
110
- return Fs
111
-
112
-
113
- def frame_number_to_filename(frame_number):
114
- return 'frame{:06d}.jpg'.format(frame_number)
115
-
116
-
117
- def video_to_frames(input_video_file, output_folder, overwrite=True,
118
- every_n_frames=None, verbose=False):
119
- """
120
- Render every frame of [input_video_file] to a .jpg in [output_folder]
121
-
122
- With help from:
123
-
124
- https://stackoverflow.com/questions/33311153/python-extracting-and-saving-video-frames
125
- """
126
-
127
- assert os.path.isfile(input_video_file), 'File {} not found'.format(input_video_file)
128
-
129
- vidcap = cv2.VideoCapture(input_video_file)
130
- n_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
131
- Fs = vidcap.get(cv2.CAP_PROP_FPS)
132
-
133
- # If we're not over-writing, check whether all frame images already exist
134
- if overwrite == False:
135
-
136
- missing_frame_number = None
137
- frame_filenames = []
138
-
139
- for frame_number in range(0,n_frames):
140
-
141
- if every_n_frames is not None:
142
- if frame_number % every_n_frames != 0:
143
- continue
144
-
145
- frame_filename = frame_number_to_filename(frame_number)
146
- frame_filename = os.path.join(output_folder,frame_filename)
147
- frame_filenames.append(frame_filename)
148
- if os.path.isfile(frame_filename):
149
- continue
150
- else:
151
- missing_frame_number = frame_number
152
- break
153
-
154
- # OpenCV seems to over-report the number of frames by 1 in some cases, or fails
155
- # to read the last frame; either way, I'm allowing one missing frame.
156
- allow_last_frame_missing = True
157
-
158
- if missing_frame_number is None or \
159
- (allow_last_frame_missing and (missing_frame_number == n_frames-1)):
160
- if verbose:
161
- print('Skipping video {}, all output frames exist'.format(input_video_file))
162
- return frame_filenames,Fs
163
- else:
164
- pass
165
- # print("Rendering video {}, couldn't find frame {}".format(
166
- # input_video_file,missing_frame_number))
167
-
168
- # ...if we need to check whether to skip this video entirely
169
-
170
- if verbose:
171
- print('Reading {} frames at {} Hz from {}'.format(n_frames,Fs,input_video_file))
172
-
173
- frame_filenames = []
174
-
175
- # for frame_number in tqdm(range(0,n_frames)):
176
- for frame_number in range(0,n_frames):
177
-
178
- success,image = vidcap.read()
179
- if not success:
180
- assert image is None
181
- if verbose:
182
- print('Read terminating at frame {} of {}'.format(frame_number,n_frames))
183
- break
184
-
185
- if every_n_frames is not None:
186
- if frame_number % every_n_frames != 0:
187
- continue
188
-
189
- frame_filename = frame_number_to_filename(frame_number)
190
- frame_filename = os.path.join(output_folder,frame_filename)
191
- frame_filenames.append(frame_filename)
192
-
193
- if overwrite == False and os.path.isfile(frame_filename):
194
- # print('Skipping frame {}'.format(frame_filename))
195
- pass
196
- else:
197
- try:
198
- if frame_filename.isascii():
199
- cv2.imwrite(os.path.normpath(frame_filename),image)
200
- else:
201
- is_success, im_buf_arr = cv2.imencode('.jpg', image)
202
- im_buf_arr.tofile(frame_filename)
203
- assert os.path.isfile(frame_filename), \
204
- 'Output frame {} unavailable'.format(frame_filename)
205
- except KeyboardInterrupt:
206
- vidcap.release()
207
- raise
208
- except Exception as e:
209
- print('Error on frame {} of {}: {}'.format(frame_number,n_frames,str(e)))
210
-
211
- if verbose:
212
- print('\nExtracted {} of {} frames'.format(len(frame_filenames),n_frames))
213
-
214
- vidcap.release()
215
- return frame_filenames,Fs
216
-
217
-
218
- def _video_to_frames_for_folder(relative_fn,input_folder,output_folder_base,every_n_frames,overwrite,verbose):
219
- """
220
- Internal function to call video_to_frames in the context of video_folder_to_frames;
221
- makes sure the right output folder exists, then calls video_to_frames.
222
- """
223
-
224
- input_fn_absolute = os.path.join(input_folder,relative_fn)
225
- assert os.path.isfile(input_fn_absolute)
226
-
227
- # Create the target output folder
228
- output_folder_video = os.path.join(output_folder_base,relative_fn)
229
- os.makedirs(output_folder_video,exist_ok=True)
230
-
231
- # Render frames
232
- # input_video_file = input_fn_absolute; output_folder = output_folder_video
233
- frame_filenames,fs = video_to_frames(input_fn_absolute,output_folder_video,
234
- overwrite=overwrite,every_n_frames=every_n_frames,
235
- verbose=verbose)
236
-
237
- return frame_filenames,fs
238
-
239
-
240
- def video_folder_to_frames(input_folder:str, output_folder_base:str,
241
- recursive:bool=True, overwrite:bool=True,
242
- n_threads:int=1, every_n_frames:int=None,
243
- verbose=False, parallelization_uses_threads=True):
244
- """
245
- For every video file in input_folder, create a folder within output_folder_base, and
246
- render every frame of the video to .jpg in that folder.
247
- """
248
-
249
- # Recursively enumerate video files
250
- input_files_full_paths = find_videos(input_folder,recursive=recursive)
251
- print('Found {} videos in folder {}'.format(len(input_files_full_paths),input_folder))
252
- if len(input_files_full_paths) == 0:
253
- return [],[],[]
254
-
255
- input_files_relative_paths = [os.path.relpath(s,input_folder) for s in input_files_full_paths]
256
- input_files_relative_paths = [s.replace('\\','/') for s in input_files_relative_paths]
257
-
258
- os.makedirs(output_folder_base,exist_ok=True)
259
-
260
- frame_filenames_by_video = []
261
- fs_by_video = []
262
-
263
- if n_threads == 1:
264
- # For each video
265
- #
266
- # input_fn_relative = input_files_relative_paths[0]
267
- for input_fn_relative in tqdm(input_files_relative_paths):
268
-
269
- frame_filenames,fs = \
270
- _video_to_frames_for_folder(input_fn_relative,input_folder,output_folder_base,
271
- every_n_frames,overwrite,verbose)
272
- frame_filenames_by_video.append(frame_filenames)
273
- fs_by_video.append(fs)
274
- else:
275
- if parallelization_uses_threads:
276
- print('Starting a worker pool with {} threads'.format(n_threads))
277
- pool = ThreadPool(n_threads)
278
- else:
279
- print('Starting a worker pool with {} processes'.format(n_threads))
280
- pool = Pool(n_threads)
281
- process_video_with_options = partial(_video_to_frames_for_folder,
282
- input_folder=input_folder,
283
- output_folder_base=output_folder_base,
284
- every_n_frames=every_n_frames,
285
- overwrite=overwrite,
286
- verbose=verbose)
287
- results = list(tqdm(pool.imap(
288
- partial(process_video_with_options),input_files_relative_paths),
289
- total=len(input_files_relative_paths)))
290
- frame_filenames_by_video = [x[0] for x in results]
291
- fs_by_video = [x[1] for x in results]
292
-
293
- return frame_filenames_by_video,fs_by_video,input_files_full_paths
294
-
295
-
296
- class FrameToVideoOptions:
297
-
298
- # zero-indexed
299
- nth_highest_confidence = 1
300
-
301
-
302
- def frame_results_to_video_results(input_file,output_file,options:FrameToVideoOptions = None):
303
- """
304
- Given an API output file produced at the *frame* level, corresponding to a directory
305
- created with video_folder_to_frames, map those frame-level results back to the
306
- video level for use in Timelapse.
307
-
308
- Preserves everything in the input .json file other than the images.
309
- """
310
-
311
- if options is None:
312
- options = FrameToVideoOptions()
313
-
314
- # Load results
315
- with open(input_file,'r') as f:
316
- input_data = json.load(f)
317
-
318
- images = input_data['images']
319
- detection_categories = input_data['detection_categories']
320
-
321
- ## Break into videos
322
-
323
- video_to_frames = defaultdict(list)
324
-
325
- # im = images[0]
326
- for im in tqdm(images):
327
-
328
- fn = im['file']
329
- video_name = os.path.dirname(fn)
330
- assert is_video_file(video_name)
331
- video_to_frames[video_name].append(im)
332
-
333
- print('Found {} unique videos in {} frame-level results'.format(
334
- len(video_to_frames),len(images)))
335
-
336
- output_images = []
337
-
338
- ## For each video...
339
-
340
- # video_name = list(video_to_frames.keys())[0]
341
- for video_name in tqdm(video_to_frames):
342
-
343
- frames = video_to_frames[video_name]
344
-
345
- all_detections_this_video = []
346
-
347
- # frame = frames[0]
348
- for frame in frames:
349
- if frame['detections'] is not None:
350
- all_detections_this_video.extend(frame['detections'])
351
-
352
- # At most one detection for each category for the whole video
353
- canonical_detections = []
354
-
355
- # category_id = list(detection_categories.keys())[0]
356
- for category_id in detection_categories:
357
-
358
- category_detections = [det for det in all_detections_this_video if \
359
- det['category'] == category_id]
360
-
361
- # Find the nth-highest-confidence video to choose a confidence value
362
- if len(category_detections) >= options.nth_highest_confidence:
363
-
364
- category_detections_by_confidence = sorted(category_detections,
365
- key = lambda i: i['conf'],reverse=True)
366
- canonical_detection = category_detections_by_confidence[options.nth_highest_confidence-1]
367
- canonical_detections.append(canonical_detection)
368
-
369
- # Prepare the output representation for this video
370
- im_out = {}
371
- im_out['file'] = video_name
372
- im_out['detections'] = canonical_detections
373
-
374
- # 'max_detection_conf' is no longer included in output files by default
375
- if False:
376
- im_out['max_detection_conf'] = 0
377
- if len(canonical_detections) > 0:
378
- confidences = [d['conf'] for d in canonical_detections]
379
- im_out['max_detection_conf'] = max(confidences)
380
-
381
- output_images.append(im_out)
382
-
383
- # ...for each video
384
-
385
- output_data = input_data
386
- output_data['images'] = output_images
387
- s = json.dumps(output_data,indent=1)
388
-
389
- # Write the output file
390
- with open(output_file,'w') as f:
391
- f.write(s)
392
-
393
-
394
- #%% Test driver
395
-
396
- if False:
397
-
398
- #%% Constants
399
-
400
- Fs = 30.01
401
- confidence_threshold = 0.75
402
- input_folder = 'z:\\'
403
- frame_folder_base = r'e:\video_test\frames'
404
- detected_frame_folder_base = r'e:\video_test\detected_frames'
405
- rendered_videos_folder_base = r'e:\video_test\rendered_videos'
406
-
407
- results_file = r'results.json'
408
- os.makedirs(detected_frame_folder_base,exist_ok=True)
409
- os.makedirs(rendered_videos_folder_base,exist_ok=True)
410
-
411
-
412
- #%% Split videos into frames
413
-
414
- frame_filenames_by_video,fs_by_video,video_filenames = \
415
- video_folder_to_frames(input_folder,frame_folder_base,recursive=True)
416
-
417
-
418
- #%% List image files, break into folders
419
-
420
- frame_files = path_utils.find_images(frame_folder_base,True)
421
- frame_files = [s.replace('\\','/') for s in frame_files]
422
- print('Enumerated {} total frames'.format(len(frame_files)))
423
-
424
- Fs = 30.01
425
- # Find unique folders
426
- folders = set()
427
- # fn = frame_files[0]
428
- for fn in frame_files:
429
- folders.add(os.path.dirname(fn))
430
- folders = [s.replace('\\','/') for s in folders]
431
- print('Found {} folders for {} files'.format(len(folders),len(frame_files)))
432
-
433
-
434
- #%% Load detector output
435
-
436
- with open(results_file,'r') as f:
437
- detection_results = json.load(f)
438
- detections = detection_results['images']
439
- detector_label_map = detection_results['detection_categories']
440
- for d in detections:
441
- d['file'] = d['file'].replace('\\','/').replace('video_frames/','')
442
-
443
-
444
- #%% Render detector frames
445
-
446
- # folder = list(folders)[0]
447
- for folder in folders:
448
-
449
- frame_files_this_folder = [fn for fn in frame_files if folder in fn]
450
- folder_relative = folder.replace((frame_folder_base + '/').replace('\\','/'),'')
451
- detection_results_this_folder = [d for d in detections if folder_relative in d['file']]
452
- print('Found {} detections in folder {}'.format(len(detection_results_this_folder),folder))
453
- assert len(frame_files_this_folder) == len(detection_results_this_folder)
454
-
455
- rendered_frame_output_folder = os.path.join(detected_frame_folder_base,folder_relative)
456
- os.makedirs(rendered_frame_output_folder,exist_ok=True)
457
-
458
- # d = detection_results_this_folder[0]
459
- for d in tqdm(detection_results_this_folder):
460
-
461
- input_file = os.path.join(frame_folder_base,d['file'])
462
- output_file = os.path.join(detected_frame_folder_base,d['file'])
463
- os.makedirs(os.path.dirname(output_file),exist_ok=True)
464
- vis_utils.draw_bounding_boxes_on_file(input_file,output_file,d['detections'],
465
- confidence_threshold)
466
-
467
- # ...for each file in this folder
468
-
469
- # ...for each folder
470
-
471
-
472
- #%% Render output videos
473
-
474
- # folder = list(folders)[0]
475
- for folder in tqdm(folders):
476
-
477
- folder_relative = folder.replace((frame_folder_base + '/').replace('\\','/'),'')
478
- rendered_detector_output_folder = os.path.join(detected_frame_folder_base,folder_relative)
479
- assert os.path.isdir(rendered_detector_output_folder)
480
-
481
- frame_files_relative = os.listdir(rendered_detector_output_folder)
482
- frame_files_absolute = [os.path.join(rendered_detector_output_folder,s) \
483
- for s in frame_files_relative]
484
-
485
- output_video_filename = os.path.join(rendered_videos_folder_base,folder_relative)
486
- os.makedirs(os.path.dirname(output_video_filename),exist_ok=True)
487
-
488
- original_video_filename = output_video_filename.replace(
489
- rendered_videos_folder_base,input_folder)
490
- assert os.path.isfile(original_video_filename)
491
- Fs = get_video_fs(original_video_filename)
492
-
493
- frames_to_video(frame_files_absolute, Fs, output_video_filename)
494
-
495
- # ...for each video