megadetector 5.0.10__py3-none-any.whl → 5.0.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (226) hide show
  1. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/LICENSE +0 -0
  2. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/METADATA +12 -11
  3. megadetector-5.0.11.dist-info/RECORD +5 -0
  4. megadetector-5.0.11.dist-info/top_level.txt +1 -0
  5. api/__init__.py +0 -0
  6. api/batch_processing/__init__.py +0 -0
  7. api/batch_processing/api_core/__init__.py +0 -0
  8. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  9. api/batch_processing/api_core/batch_service/score.py +0 -439
  10. api/batch_processing/api_core/server.py +0 -294
  11. api/batch_processing/api_core/server_api_config.py +0 -98
  12. api/batch_processing/api_core/server_app_config.py +0 -55
  13. api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  14. api/batch_processing/api_core/server_job_status_table.py +0 -152
  15. api/batch_processing/api_core/server_orchestration.py +0 -360
  16. api/batch_processing/api_core/server_utils.py +0 -92
  17. api/batch_processing/api_core_support/__init__.py +0 -0
  18. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  19. api/batch_processing/api_support/__init__.py +0 -0
  20. api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  21. api/batch_processing/data_preparation/__init__.py +0 -0
  22. api/batch_processing/data_preparation/manage_local_batch.py +0 -2391
  23. api/batch_processing/data_preparation/manage_video_batch.py +0 -327
  24. api/batch_processing/integration/digiKam/setup.py +0 -6
  25. api/batch_processing/integration/digiKam/xmp_integration.py +0 -465
  26. api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -5
  27. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -126
  28. api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -55
  29. api/batch_processing/postprocessing/__init__.py +0 -0
  30. api/batch_processing/postprocessing/add_max_conf.py +0 -64
  31. api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -163
  32. api/batch_processing/postprocessing/combine_api_outputs.py +0 -249
  33. api/batch_processing/postprocessing/compare_batch_results.py +0 -958
  34. api/batch_processing/postprocessing/convert_output_format.py +0 -397
  35. api/batch_processing/postprocessing/load_api_results.py +0 -195
  36. api/batch_processing/postprocessing/md_to_coco.py +0 -310
  37. api/batch_processing/postprocessing/md_to_labelme.py +0 -330
  38. api/batch_processing/postprocessing/merge_detections.py +0 -401
  39. api/batch_processing/postprocessing/postprocess_batch_results.py +0 -1904
  40. api/batch_processing/postprocessing/remap_detection_categories.py +0 -170
  41. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +0 -661
  42. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -211
  43. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -82
  44. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +0 -1631
  45. api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -731
  46. api/batch_processing/postprocessing/subset_json_detector_output.py +0 -696
  47. api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -223
  48. api/synchronous/__init__.py +0 -0
  49. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  50. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -152
  51. api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -266
  52. api/synchronous/api_core/animal_detection_api/config.py +0 -35
  53. api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -47
  54. api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -43
  55. api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -114
  56. api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -543
  57. api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -304
  58. api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -627
  59. api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -1029
  60. api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -581
  61. api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -754
  62. api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -165
  63. api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -495
  64. api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -174
  65. api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -262
  66. api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -251
  67. api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -97
  68. api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -416
  69. api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -110
  70. api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -509
  71. api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -59
  72. api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -144
  73. api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -226
  74. api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -841
  75. api/synchronous/api_core/tests/__init__.py +0 -0
  76. api/synchronous/api_core/tests/load_test.py +0 -110
  77. classification/__init__.py +0 -0
  78. classification/aggregate_classifier_probs.py +0 -108
  79. classification/analyze_failed_images.py +0 -227
  80. classification/cache_batchapi_outputs.py +0 -198
  81. classification/create_classification_dataset.py +0 -627
  82. classification/crop_detections.py +0 -516
  83. classification/csv_to_json.py +0 -226
  84. classification/detect_and_crop.py +0 -855
  85. classification/efficientnet/__init__.py +0 -9
  86. classification/efficientnet/model.py +0 -415
  87. classification/efficientnet/utils.py +0 -610
  88. classification/evaluate_model.py +0 -520
  89. classification/identify_mislabeled_candidates.py +0 -152
  90. classification/json_to_azcopy_list.py +0 -63
  91. classification/json_validator.py +0 -695
  92. classification/map_classification_categories.py +0 -276
  93. classification/merge_classification_detection_output.py +0 -506
  94. classification/prepare_classification_script.py +0 -194
  95. classification/prepare_classification_script_mc.py +0 -228
  96. classification/run_classifier.py +0 -286
  97. classification/save_mislabeled.py +0 -110
  98. classification/train_classifier.py +0 -825
  99. classification/train_classifier_tf.py +0 -724
  100. classification/train_utils.py +0 -322
  101. data_management/__init__.py +0 -0
  102. data_management/annotations/__init__.py +0 -0
  103. data_management/annotations/annotation_constants.py +0 -34
  104. data_management/camtrap_dp_to_coco.py +0 -238
  105. data_management/cct_json_utils.py +0 -395
  106. data_management/cct_to_md.py +0 -176
  107. data_management/cct_to_wi.py +0 -289
  108. data_management/coco_to_labelme.py +0 -272
  109. data_management/coco_to_yolo.py +0 -662
  110. data_management/databases/__init__.py +0 -0
  111. data_management/databases/add_width_and_height_to_db.py +0 -33
  112. data_management/databases/combine_coco_camera_traps_files.py +0 -206
  113. data_management/databases/integrity_check_json_db.py +0 -477
  114. data_management/databases/subset_json_db.py +0 -115
  115. data_management/generate_crops_from_cct.py +0 -149
  116. data_management/get_image_sizes.py +0 -188
  117. data_management/importers/add_nacti_sizes.py +0 -52
  118. data_management/importers/add_timestamps_to_icct.py +0 -79
  119. data_management/importers/animl_results_to_md_results.py +0 -158
  120. data_management/importers/auckland_doc_test_to_json.py +0 -372
  121. data_management/importers/auckland_doc_to_json.py +0 -200
  122. data_management/importers/awc_to_json.py +0 -189
  123. data_management/importers/bellevue_to_json.py +0 -273
  124. data_management/importers/cacophony-thermal-importer.py +0 -796
  125. data_management/importers/carrizo_shrubfree_2018.py +0 -268
  126. data_management/importers/carrizo_trail_cam_2017.py +0 -287
  127. data_management/importers/cct_field_adjustments.py +0 -57
  128. data_management/importers/channel_islands_to_cct.py +0 -913
  129. data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  130. data_management/importers/eMammal/eMammal_helpers.py +0 -249
  131. data_management/importers/eMammal/make_eMammal_json.py +0 -223
  132. data_management/importers/ena24_to_json.py +0 -275
  133. data_management/importers/filenames_to_json.py +0 -385
  134. data_management/importers/helena_to_cct.py +0 -282
  135. data_management/importers/idaho-camera-traps.py +0 -1407
  136. data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  137. data_management/importers/jb_csv_to_json.py +0 -150
  138. data_management/importers/mcgill_to_json.py +0 -250
  139. data_management/importers/missouri_to_json.py +0 -489
  140. data_management/importers/nacti_fieldname_adjustments.py +0 -79
  141. data_management/importers/noaa_seals_2019.py +0 -181
  142. data_management/importers/pc_to_json.py +0 -365
  143. data_management/importers/plot_wni_giraffes.py +0 -123
  144. data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -359
  145. data_management/importers/prepare_zsl_imerit.py +0 -131
  146. data_management/importers/rspb_to_json.py +0 -356
  147. data_management/importers/save_the_elephants_survey_A.py +0 -320
  148. data_management/importers/save_the_elephants_survey_B.py +0 -332
  149. data_management/importers/snapshot_safari_importer.py +0 -758
  150. data_management/importers/snapshot_safari_importer_reprise.py +0 -665
  151. data_management/importers/snapshot_serengeti_lila.py +0 -1067
  152. data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  153. data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  154. data_management/importers/sulross_get_exif.py +0 -65
  155. data_management/importers/timelapse_csv_set_to_json.py +0 -490
  156. data_management/importers/ubc_to_json.py +0 -399
  157. data_management/importers/umn_to_json.py +0 -507
  158. data_management/importers/wellington_to_json.py +0 -263
  159. data_management/importers/wi_to_json.py +0 -441
  160. data_management/importers/zamba_results_to_md_results.py +0 -181
  161. data_management/labelme_to_coco.py +0 -548
  162. data_management/labelme_to_yolo.py +0 -272
  163. data_management/lila/__init__.py +0 -0
  164. data_management/lila/add_locations_to_island_camera_traps.py +0 -97
  165. data_management/lila/add_locations_to_nacti.py +0 -147
  166. data_management/lila/create_lila_blank_set.py +0 -557
  167. data_management/lila/create_lila_test_set.py +0 -151
  168. data_management/lila/create_links_to_md_results_files.py +0 -106
  169. data_management/lila/download_lila_subset.py +0 -177
  170. data_management/lila/generate_lila_per_image_labels.py +0 -515
  171. data_management/lila/get_lila_annotation_counts.py +0 -170
  172. data_management/lila/get_lila_image_counts.py +0 -111
  173. data_management/lila/lila_common.py +0 -300
  174. data_management/lila/test_lila_metadata_urls.py +0 -132
  175. data_management/ocr_tools.py +0 -874
  176. data_management/read_exif.py +0 -681
  177. data_management/remap_coco_categories.py +0 -84
  178. data_management/remove_exif.py +0 -66
  179. data_management/resize_coco_dataset.py +0 -189
  180. data_management/wi_download_csv_to_coco.py +0 -246
  181. data_management/yolo_output_to_md_output.py +0 -441
  182. data_management/yolo_to_coco.py +0 -676
  183. detection/__init__.py +0 -0
  184. detection/detector_training/__init__.py +0 -0
  185. detection/detector_training/model_main_tf2.py +0 -114
  186. detection/process_video.py +0 -703
  187. detection/pytorch_detector.py +0 -337
  188. detection/run_detector.py +0 -779
  189. detection/run_detector_batch.py +0 -1219
  190. detection/run_inference_with_yolov5_val.py +0 -917
  191. detection/run_tiled_inference.py +0 -935
  192. detection/tf_detector.py +0 -188
  193. detection/video_utils.py +0 -606
  194. docs/source/conf.py +0 -43
  195. md_utils/__init__.py +0 -0
  196. md_utils/azure_utils.py +0 -174
  197. md_utils/ct_utils.py +0 -612
  198. md_utils/directory_listing.py +0 -246
  199. md_utils/md_tests.py +0 -968
  200. md_utils/path_utils.py +0 -1044
  201. md_utils/process_utils.py +0 -157
  202. md_utils/sas_blob_utils.py +0 -509
  203. md_utils/split_locations_into_train_val.py +0 -228
  204. md_utils/string_utils.py +0 -92
  205. md_utils/url_utils.py +0 -323
  206. md_utils/write_html_image_list.py +0 -225
  207. md_visualization/__init__.py +0 -0
  208. md_visualization/plot_utils.py +0 -293
  209. md_visualization/render_images_with_thumbnails.py +0 -275
  210. md_visualization/visualization_utils.py +0 -1537
  211. md_visualization/visualize_db.py +0 -551
  212. md_visualization/visualize_detector_output.py +0 -406
  213. megadetector-5.0.10.dist-info/RECORD +0 -224
  214. megadetector-5.0.10.dist-info/top_level.txt +0 -8
  215. taxonomy_mapping/__init__.py +0 -0
  216. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -491
  217. taxonomy_mapping/map_new_lila_datasets.py +0 -154
  218. taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -142
  219. taxonomy_mapping/preview_lila_taxonomy.py +0 -591
  220. taxonomy_mapping/retrieve_sample_image.py +0 -71
  221. taxonomy_mapping/simple_image_download.py +0 -218
  222. taxonomy_mapping/species_lookup.py +0 -834
  223. taxonomy_mapping/taxonomy_csv_checker.py +0 -159
  224. taxonomy_mapping/taxonomy_graph.py +0 -346
  225. taxonomy_mapping/validate_lila_category_mappings.py +0 -83
  226. {megadetector-5.0.10.dist-info → megadetector-5.0.11.dist-info}/WHEEL +0 -0
@@ -1,294 +0,0 @@
1
- """
2
-
3
- idfg_iwildcam_lila_prep.py
4
-
5
- Adding class labels (from the private test .csv) to the iWildCam 2019 IDFG
6
- test set, in preparation for release on LILA.
7
-
8
- This version works with the public iWildCam release images.
9
-
10
- """
11
-
12
- #%% ############ Take one, from iWildCam .json files ############
13
-
14
- #%% Imports and constants
15
-
16
- import uuid
17
- import json
18
- import os
19
- from tqdm import tqdm
20
-
21
- base_folder = r'h:\iWildCam_2019_IDFG'
22
- input_json = os.path.join(base_folder,'iWildCam_2019_IDFG_info.json')
23
- input_csv = os.path.join(base_folder,'IDFG_eval_public_v_private.csv')
24
- output_json = os.path.join(base_folder,'idaho_camera_traps.json')
25
-
26
- assert os.path.isfile(input_json)
27
- assert os.path.isfile(input_csv)
28
-
29
-
30
- #%% Read input files
31
-
32
- with open(input_json,'r') as f:
33
- input_data = json.load(f)
34
-
35
- with open(input_csv,'r') as f:
36
- private_csv_lines = f.readlines()
37
-
38
- private_csv_lines = [s.strip() for s in private_csv_lines]
39
-
40
- # Remove the header line
41
- assert private_csv_lines[0] == 'Id,Category,Usage'
42
- private_csv_lines = private_csv_lines[1:]
43
-
44
- print('Read {} annotations for {} images'.format(len(private_csv_lines),len(input_data['images'])))
45
-
46
- assert len(private_csv_lines) == len(input_data['images'])
47
- n_images = len(input_data['images'])
48
-
49
-
50
- #%% Parse annotations
51
-
52
- image_id_to_category_ids = {}
53
- for line in tqdm(private_csv_lines):
54
-
55
- # Lines look like:
56
- #
57
- # b005e5b2-2c0b-11e9-bcad-06f1011196c4,1,Private
58
-
59
- tokens = line.split(',')
60
- assert len(tokens) == 3
61
- assert tokens[2] in ['Private','Public']
62
- image_id_to_category_ids[tokens[0]] = int(tokens[1])
63
-
64
- assert len(image_id_to_category_ids) == n_images
65
-
66
-
67
- #%% Minor cleanup re: images
68
-
69
- for im in tqdm(input_data['images']):
70
- image_id = im['id']
71
- im['file_name'] = im['file_name'].replace('iWildCam_IDFG_images/','')
72
- assert isinstance(im['location'],int)
73
- im['location'] = str(im['location'])
74
-
75
-
76
- #%% Create annotations
77
-
78
- annotations = []
79
-
80
- for image_id in tqdm(image_id_to_category_ids):
81
- category_id = image_id_to_category_ids[image_id]
82
- ann = {}
83
- ann['id'] = str(uuid.uuid1())
84
- ann['image_id'] = image_id
85
- ann['category_id'] = category_id
86
- annotations.append(ann)
87
-
88
-
89
- #%% Prepare info
90
-
91
- info = input_data['info']
92
- info['contributor'] = 'Images acquired by the Idaho Department of Fish and Game, dataset curated by Sara Beery'
93
- info['description'] = 'Idaho Camera traps'
94
- info['version'] = '2021.07.19'
95
-
96
-
97
- #%% Minor adjustments to categories
98
-
99
- input_categories = input_data['categories']
100
-
101
- category_id_to_name = {cat['id']:cat['name'] for cat in input_categories}
102
- category_name_to_id = {cat['name']:cat['id'] for cat in input_categories}
103
- assert category_id_to_name[0] == 'empty'
104
-
105
- category_names_to_counts = {}
106
- for category in input_categories:
107
- category_names_to_counts[category['name']] = 0
108
-
109
- for ann in annotations:
110
- category_id = ann['category_id']
111
- category_name = category_id_to_name[category_id]
112
- category_names_to_counts[category_name] = category_names_to_counts[category_name] + 1
113
-
114
- categories = []
115
-
116
- for category_name in category_names_to_counts:
117
- count = category_names_to_counts[category_name]
118
-
119
- # Remove unused categories
120
- if count == 0:
121
- continue
122
-
123
- category_id = category_name_to_id[category_name]
124
-
125
- # Name adjustments
126
- if category_name == 'prongs':
127
- category_name = 'pronghorn'
128
-
129
- categories.append({'id':category_id,'name':category_name})
130
-
131
-
132
- #%% Create output
133
-
134
- output_data = {}
135
- output_data['images'] = input_data['images']
136
- output_data['annotations'] = annotations
137
- output_data['categories'] = categories
138
- output_data['info'] = info
139
-
140
-
141
- #%% Write output
142
-
143
- with open(output_json,'w') as f:
144
- json.dump(output_data,f,indent=2)
145
-
146
-
147
- #%% Validate .json file
148
-
149
- from data_management.databases import integrity_check_json_db
150
-
151
- options = integrity_check_json_db.IntegrityCheckOptions()
152
- options.baseDir = os.path.join(base_folder,'images'); assert os.path.isdir(options.baseDir)
153
- options.bCheckImageSizes = False
154
- options.bCheckImageExistence = False
155
- options.bFindUnusedImages = False
156
-
157
- _, _, _ = integrity_check_json_db.integrity_check_json_db(output_json, options)
158
-
159
-
160
- #%% Preview labels
161
-
162
- from md_visualization import visualize_db
163
-
164
- viz_options = visualize_db.DbVizOptions()
165
- viz_options.num_to_visualize = 100
166
- viz_options.trim_to_images_with_bboxes = False
167
- viz_options.add_search_links = False
168
- viz_options.sort_by_filename = False
169
- viz_options.parallelize_rendering = True
170
- viz_options.include_filename_links = True
171
-
172
- # viz_options.classes_to_exclude = ['test']
173
- html_output_file, _ = visualize_db.visualize_db(db_path=output_json,
174
- output_dir=os.path.join(
175
- base_folder,'preview'),
176
- image_base_dir=os.path.join(base_folder,'images'),
177
- options=viz_options)
178
- os.startfile(html_output_file)
179
-
180
-
181
- #%% ############ Take two, from pre-iWildCam .json files created from IDFG .csv files ############
182
-
183
- #%% Imports and constants
184
-
185
- import json
186
- import os
187
-
188
- base_folder = r'h:\idaho-camera-traps'
189
- input_json_sl = os.path.join(base_folder,'iWildCam_IDFG.json')
190
- input_json = os.path.join(base_folder,'iWildCam_IDFG_ml.json')
191
- output_json = os.path.join(base_folder,'idaho_camera_traps.json')
192
- remote_image_base_dir = r'z:\idfg'
193
-
194
- assert os.path.isfile(input_json)
195
-
196
-
197
- #%% One-time line break addition
198
-
199
- if not os.path.isfile(input_json):
200
-
201
- sl_json = input_json_sl
202
- ml_json = input_json
203
-
204
- with open(sl_json,'r') as f:
205
- d = json.load(f)
206
- with open(ml_json,'w') as f:
207
- json.dump(d,f,indent=2)
208
-
209
-
210
- #%% Read input files
211
-
212
- with open(input_json,'r') as f:
213
- input_data = json.load(f)
214
-
215
- print('Read {} annotations for {} images'.format(len(input_data['annotations']),len(input_data['images'])))
216
-
217
- n_images = len(input_data['images'])
218
-
219
-
220
- #%% Prepare info
221
-
222
- info = {}
223
- info['contributor'] = 'Images acquired by the Idaho Department of Fish and Game, dataset curated by Sara Beery'
224
- info['description'] = 'Idaho Camera traps'
225
- info['version'] = '2021.07.19'
226
-
227
-
228
- #%% Minor adjustments to categories
229
-
230
- input_categories = input_data['categories']
231
- output_categories = []
232
-
233
- for c in input_categories:
234
- category_name = c['name']
235
- category_id = c['id']
236
- if category_name == 'prong':
237
- category_name = 'pronghorn'
238
- category_name = category_name.lower()
239
- output_categories.append({'name':category_name,'id':category_id})
240
-
241
-
242
- #%% Minor adjustments to annotations
243
-
244
- for ann in input_data['annotations']:
245
- ann['id'] = str(ann['id'])
246
-
247
-
248
- #%% Create output
249
-
250
- output_data = {}
251
- output_data['images'] = input_data['images']
252
- output_data['annotations'] = input_data['annotations']
253
- output_data['categories'] = output_categories
254
- output_data['info'] = info
255
-
256
-
257
- #%% Write output
258
-
259
- with open(output_json,'w') as f:
260
- json.dump(output_data,f,indent=2)
261
-
262
-
263
- #%% Validate .json file
264
-
265
- from data_management.databases import integrity_check_json_db
266
-
267
- options = integrity_check_json_db.IntegrityCheckOptions()
268
- options.baseDir = remote_image_base_dir
269
- options.bCheckImageSizes = False
270
- options.bCheckImageExistence = False
271
- options.bFindUnusedImages = False
272
-
273
- _, _, _ = integrity_check_json_db.integrity_check_json_db(output_json, options)
274
-
275
-
276
- #%% Preview labels
277
-
278
- from md_visualization import visualize_db
279
-
280
- viz_options = visualize_db.DbVizOptions()
281
- viz_options.num_to_visualize = 100
282
- viz_options.trim_to_images_with_bboxes = False
283
- viz_options.add_search_links = False
284
- viz_options.sort_by_filename = False
285
- viz_options.parallelize_rendering = True
286
- viz_options.include_filename_links = True
287
-
288
- # viz_options.classes_to_exclude = ['test']
289
- html_output_file, _ = visualize_db.visualize_db(db_path=output_json,
290
- output_dir=os.path.join(
291
- base_folder,'preview'),
292
- image_base_dir=remote_image_base_dir,
293
- options=viz_options)
294
- os.startfile(html_output_file)
@@ -1,150 +0,0 @@
1
- """
2
-
3
- jb_csv_to_json.py
4
-
5
- Convert a particular .csv file to CCT format. Images were not available at
6
- the time I wrote this script, so this is much shorter than other scripts
7
- in this folder.
8
-
9
- """
10
-
11
- #%% Constants and environment
12
-
13
- import pandas as pd
14
- import uuid
15
- import json
16
-
17
- input_metadata_file = r'd:\temp\pre_bounding_box.csv'
18
- output_file = r'd:\temp\pre_bounding_box.json'
19
- filename_col = 'filename'
20
- label_col = 'category'
21
-
22
-
23
- #%% Read source data
24
-
25
- input_metadata = pd.read_csv(input_metadata_file)
26
-
27
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
28
- len(input_metadata)))
29
-
30
-
31
- #%% Confirm filename uniqueness (this data set has one label per image)
32
-
33
- imageFilenames = input_metadata[filename_col]
34
-
35
- duplicateRows = []
36
- filenamesToRows = {}
37
-
38
- # Build up a map from filenames to a list of rows, checking image existence as we go
39
- for iFile,fn in enumerate(imageFilenames):
40
-
41
- if (fn in filenamesToRows):
42
- duplicateRows.append(iFile)
43
- filenamesToRows[fn].append(iFile)
44
- else:
45
- filenamesToRows[fn] = [iFile]
46
-
47
- assert(len(duplicateRows) == 0)
48
-
49
-
50
- #%% Create CCT dictionaries
51
-
52
- images = []
53
- annotations = []
54
-
55
- # Map categories to integer IDs (that's what COCO likes)
56
- nextCategoryID = 1
57
- categories = []
58
- categoryNamesToCategories = {}
59
-
60
- cat = {}
61
- cat['name'] = 'empty'
62
- cat['id'] = 0
63
- categories.append(cat)
64
- categoryNamesToCategories['empty'] = cat
65
-
66
- # For each image
67
- #
68
- # Because in practice images are 1:1 with annotations in this data set,
69
- # this is also a loop over annotations.
70
-
71
- # imageName = imageFilenames[0]
72
- for imageName in imageFilenames:
73
-
74
- rows = filenamesToRows[imageName]
75
-
76
- # As per above, this is convenient and appears to be true; asserting to be safe
77
- assert(len(rows) == 1)
78
- iRow = rows[0]
79
-
80
- row = input_metadata.iloc[iRow]
81
-
82
- im = {}
83
- # Filenames look like "290716114012001a1116.jpg"
84
- im['id'] = imageName.split('.')[0]
85
- im['file_name'] = imageName
86
- im['seq_id'] = '-1'
87
-
88
- images.append(im)
89
-
90
- categoryName = row[label_col].lower()
91
-
92
- # Have we seen this category before?
93
- if categoryName in categoryNamesToCategories:
94
- categoryID = categoryNamesToCategories[categoryName]['id']
95
- else:
96
- cat = {}
97
- categoryID = nextCategoryID
98
- cat['name'] = categoryName
99
- cat['id'] = nextCategoryID
100
- categories.append(cat)
101
- categoryNamesToCategories[categoryName] = cat
102
- nextCategoryID += 1
103
-
104
- # Create an annotation
105
- ann = {}
106
-
107
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
108
- # beyond the sheer improbability of collisions.
109
- ann['id'] = str(uuid.uuid1())
110
- ann['image_id'] = im['id']
111
- ann['category_id'] = categoryID
112
-
113
- annotations.append(ann)
114
-
115
- # ...for each image
116
-
117
- print('Finished creating dictionaries')
118
-
119
-
120
- #%% Create info struct
121
-
122
- info = {}
123
- info['year'] = 2019
124
- info['version'] = 1
125
- info['description'] = 'COCO style database'
126
- info['secondary_contributor'] = 'Converted to COCO .json by Dan Morris'
127
- info['contributor'] = ''
128
-
129
-
130
- #%% Write output
131
-
132
- json_data = {}
133
- json_data['images'] = images
134
- json_data['annotations'] = annotations
135
- json_data['categories'] = categories
136
- json_data['info'] = info
137
- json.dump(json_data, open(output_file,'w'), indent=4)
138
-
139
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
140
- len(images),len(annotations),len(categories)))
141
-
142
-
143
- #%% Validate
144
-
145
- from data_management.databases import integrity_check_json_db
146
-
147
- options = integrity_check_json_db.IntegrityCheckOptions()
148
- sortedCategories,data = integrity_check_json_db.integrity_check_json_db(output_file, options)
149
-
150
-
@@ -1,250 +0,0 @@
1
- """
2
-
3
- mcgill_to_json.py
4
-
5
- Convert the .csv file provided for the McGill test data set to a
6
- COCO-camera-traps .json file
7
-
8
- """
9
-
10
- #%% Constants and environment
11
-
12
- import pandas as pd
13
- import os
14
- import glob
15
- import json
16
- import uuid
17
- import time
18
- import ntpath
19
- import humanfriendly
20
- import PIL
21
- import math
22
-
23
- baseDir = r'D:\wildlife_data\mcgill_test'
24
- input_metadata_file = os.path.join(baseDir, 'dan_500_photos_metadata.csv')
25
- output_file = os.path.join(baseDir, 'mcgill_test.json')
26
- image_directory = baseDir
27
-
28
- assert(os.path.isdir(image_directory))
29
- assert(os.path.isfile(input_metadata_file))
30
-
31
-
32
- #%% Read source data
33
-
34
- input_metadata = pd.read_csv(input_metadata_file)
35
-
36
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
37
- len(input_metadata)))
38
-
39
-
40
- #%% Map filenames to rows, verify image existence
41
-
42
- # Create an additional column for concatenated filenames
43
- input_metadata['relative_path'] = ''
44
- input_metadata['full_path'] = ''
45
-
46
- startTime = time.time()
47
-
48
- # Maps relative filenames to rows
49
- filenamesToRows = {}
50
-
51
- duplicateRows = []
52
-
53
- # Build up a map from filenames to a list of rows, checking image existence as we go
54
- # row = input_metadata.iloc[0]
55
- for iFile,row in input_metadata.iterrows():
56
-
57
- relativePath = os.path.join(row['site'],row['date_range'],str(row['camera']),
58
- str(row['folder']),row['filename'])
59
- fullPath = os.path.join(baseDir,relativePath)
60
-
61
- if (relativePath in filenamesToRows):
62
- duplicateRows.append(iFile)
63
- filenamesToRows[relativePath].append(iFile)
64
- else:
65
- filenamesToRows[relativePath] = [iFile]
66
- assert(os.path.isfile(fullPath))
67
-
68
- row['relative_path'] = relativePath
69
- row['full_path'] = fullPath
70
-
71
- input_metadata.iloc[iFile] = row
72
-
73
- elapsed = time.time() - startTime
74
- print('Finished verifying image existence in {}, found {} filenames with multiple labels'.format(
75
- humanfriendly.format_timespan(elapsed),len(duplicateRows)))
76
-
77
- # I didn't expect this to be true a priori, but it appears to be true, and
78
- # it saves us the trouble of checking consistency across multiple occurrences
79
- # of an image.
80
- assert(len(duplicateRows) == 0)
81
-
82
-
83
- #%% Check for images that aren't included in the metadata file
84
-
85
- # Enumerate all images
86
- imageFullPaths = glob.glob(os.path.join(image_directory,'**/*.JPG'), recursive=True)
87
-
88
- for iImage,imagePath in enumerate(imageFullPaths):
89
-
90
- imageRelPath = ntpath.relpath(imagePath, image_directory)
91
- assert(imageRelPath in filenamesToRows)
92
-
93
- print('Finished checking {} images to make sure they\'re in the metadata'.format(
94
- len(imageFullPaths)))
95
-
96
-
97
- #%% Create CCT dictionaries
98
-
99
- # Also gets image sizes, so this takes ~6 minutes
100
- #
101
- # Implicitly checks images for overt corruptness, i.e. by not crashing.
102
-
103
- images = []
104
- annotations = []
105
- categories = []
106
-
107
- emptyCategory = {}
108
- emptyCategory['id'] = 0
109
- emptyCategory['name'] = 'empty'
110
- emptyCategory['latin'] = 'empty'
111
- emptyCategory['count'] = 0
112
- categories.append(emptyCategory)
113
-
114
- # Map categories to integer IDs (that's what COCO likes)
115
- nextCategoryID = 1
116
- labelToCategory = {'empty':emptyCategory}
117
-
118
- # For each image
119
- #
120
- # Because in practice images are 1:1 with annotations in this data set,
121
- # this is also a loop over annotations.
122
-
123
- startTime = time.time()
124
-
125
- # row = input_metadata.iloc[0]
126
- for iFile,row in input_metadata.iterrows():
127
-
128
- relPath = row['relative_path'].replace('\\','/')
129
- im = {}
130
- # Filenames look like "290716114012001a1116.jpg"
131
- im['id'] = relPath.replace('/','_').replace(' ','_')
132
-
133
- im['file_name'] = relPath
134
-
135
- im['seq_id'] = -1
136
- im['frame_num'] = -1
137
-
138
- # In the form "001a"
139
- im['site']= row['site']
140
-
141
- # Can be in the form '111' or 's46'
142
- im['camera'] = row['camera']
143
-
144
- # In the form "7/29/2016 11:40"
145
- im['datetime'] = row['timestamp']
146
-
147
- otherFields = ['motion','temp_F','n_present','n_waterhole','n_contact','notes']
148
-
149
- for s in otherFields:
150
- im[s] = row[s]
151
-
152
- # Check image height and width
153
- fullPath = row['full_path']
154
- assert(os.path.isfile(fullPath))
155
- pilImage = PIL.Image.open(fullPath)
156
- width, height = pilImage.size
157
- im['width'] = width
158
- im['height'] = height
159
-
160
- images.append(im)
161
-
162
- label = row['species']
163
- if not isinstance(label,str):
164
- # NaN is the only thing we should see that's not a string
165
- assert math.isnan(label)
166
- label = 'empty'
167
- else:
168
- label = label.lower()
169
-
170
- latin = row['binomial']
171
- if not isinstance(latin,str):
172
- # NaN is the only thing we should see that's not a string
173
- assert math.isnan(latin)
174
- latin = 'empty'
175
- else:
176
- latin = latin.lower()
177
-
178
- if label == 'empty':
179
- if latin != 'empty':
180
- latin = 'empty'
181
-
182
- if label == 'unknown':
183
- if latin != 'unknown':
184
- latin = 'unknown'
185
-
186
- if label not in labelToCategory:
187
- print('Adding category {} ({})'.format(label,latin))
188
- category = {}
189
- categoryID = nextCategoryID
190
- category['id'] = categoryID
191
- nextCategoryID += 1
192
- category['name'] = label
193
- category['latin'] = latin
194
- category['count'] = 1
195
- labelToCategory[label] = category
196
- categories.append(category)
197
- else:
198
- category = labelToCategory[label]
199
- category['count'] = category['count'] + 1
200
- categoryID = category['id']
201
-
202
- # Create an annotation
203
- ann = {}
204
-
205
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
206
- # beyond the sheer improbability of collisions.
207
- ann['id'] = str(uuid.uuid1())
208
- ann['image_id'] = im['id']
209
- ann['category_id'] = categoryID
210
-
211
- annotations.append(ann)
212
-
213
- # ...for each image
214
-
215
- # Convert categories to a CCT-style dictionary
216
-
217
-
218
- for category in categories:
219
- print('Category {}, count {}'.format(category['name'],category['count']))
220
-
221
- elapsed = time.time() - startTime
222
- print('Finished creating CCT dictionaries in {}'.format(
223
- humanfriendly.format_timespan(elapsed)))
224
-
225
-
226
- #%% Create info struct
227
-
228
- info = {}
229
- info['year'] = 2019
230
- info['version'] = 1
231
- info['description'] = 'COCO style database'
232
- info['secondary_contributor'] = 'Converted to COCO .json by Dan Morris'
233
- info['contributor'] = 'McGill University'
234
-
235
-
236
- #%% Write output
237
-
238
- json_data = {}
239
- json_data['images'] = images
240
- json_data['annotations'] = annotations
241
- json_data['categories'] = categories
242
- json_data['info'] = info
243
- json.dump(json_data, open(output_file,'w'), indent=4)
244
-
245
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
246
- len(images),len(annotations),len(categories)))
247
-
248
-
249
-
250
-