liger-kernel-nightly 0.4.0.dev20241107052928__py3-none-any.whl → 0.6.3.dev20251121010306__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (114) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +350 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +304 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +21 -4
  18. liger_kernel/ops/cross_entropy.py +235 -84
  19. liger_kernel/ops/dyt.py +157 -0
  20. liger_kernel/ops/experimental/embedding.py +1 -3
  21. liger_kernel/ops/experimental/mm_int8int2.py +3 -9
  22. liger_kernel/ops/fused_add_rms_norm.py +412 -0
  23. liger_kernel/ops/fused_linear_cross_entropy.py +197 -75
  24. liger_kernel/ops/fused_linear_jsd.py +17 -34
  25. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  26. liger_kernel/ops/geglu.py +7 -18
  27. liger_kernel/ops/group_norm.py +305 -0
  28. liger_kernel/ops/grpo_loss.py +310 -0
  29. liger_kernel/ops/jsd.py +46 -21
  30. liger_kernel/ops/kl_div.py +23 -19
  31. liger_kernel/ops/layer_norm.py +150 -86
  32. liger_kernel/ops/llama4_rope.py +225 -0
  33. liger_kernel/ops/multi_token_attention.py +207 -0
  34. liger_kernel/ops/poly_norm.py +386 -0
  35. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  36. liger_kernel/ops/rms_norm.py +314 -84
  37. liger_kernel/ops/rope.py +32 -34
  38. liger_kernel/ops/softmax.py +201 -0
  39. liger_kernel/ops/sparsemax.py +179 -0
  40. liger_kernel/ops/swiglu.py +5 -9
  41. liger_kernel/ops/tiled_mlp.py +136 -0
  42. liger_kernel/ops/tvd.py +207 -0
  43. liger_kernel/ops/utils.py +8 -4
  44. liger_kernel/transformers/__init__.py +199 -24
  45. liger_kernel/transformers/auto_model.py +6 -13
  46. liger_kernel/transformers/cross_entropy.py +33 -20
  47. liger_kernel/transformers/dyt.py +22 -0
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -3
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +291 -13
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +43 -14
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -4
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -4
  57. liger_kernel/transformers/group_norm.py +50 -0
  58. liger_kernel/transformers/grpo_loss.py +98 -0
  59. liger_kernel/transformers/jsd.py +2 -7
  60. liger_kernel/transformers/kl_div.py +1 -3
  61. liger_kernel/transformers/layer_norm.py +3 -9
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/falcon_h1.py +122 -0
  64. liger_kernel/transformers/model/gemma.py +77 -77
  65. liger_kernel/transformers/model/gemma2.py +283 -0
  66. liger_kernel/transformers/model/gemma3.py +331 -0
  67. liger_kernel/transformers/model/glm4.py +141 -0
  68. liger_kernel/transformers/model/glm4v.py +163 -0
  69. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  70. liger_kernel/transformers/model/internvl.py +157 -0
  71. liger_kernel/transformers/model/llama.py +128 -79
  72. liger_kernel/transformers/model/llama4.py +121 -0
  73. liger_kernel/transformers/model/llava.py +344 -0
  74. liger_kernel/transformers/model/loss_utils.py +95 -0
  75. liger_kernel/transformers/model/mistral.py +68 -64
  76. liger_kernel/transformers/model/mixtral.py +75 -91
  77. liger_kernel/transformers/model/mllama.py +63 -68
  78. liger_kernel/transformers/model/olmo2.py +141 -0
  79. liger_kernel/transformers/model/output_classes.py +147 -0
  80. liger_kernel/transformers/model/paligemma.py +432 -0
  81. liger_kernel/transformers/model/phi3.py +59 -213
  82. liger_kernel/transformers/model/qwen2.py +75 -72
  83. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  84. liger_kernel/transformers/model/qwen2_vl.py +78 -98
  85. liger_kernel/transformers/model/qwen3.py +136 -0
  86. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  87. liger_kernel/transformers/model/qwen3_next.py +146 -0
  88. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  89. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  90. liger_kernel/transformers/model/smollm3.py +199 -0
  91. liger_kernel/transformers/model/smolvlm.py +158 -0
  92. liger_kernel/transformers/monkey_patch.py +2106 -289
  93. liger_kernel/transformers/multi_token_attention.py +64 -0
  94. liger_kernel/transformers/poly_norm.py +42 -0
  95. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  96. liger_kernel/transformers/rms_norm.py +57 -6
  97. liger_kernel/transformers/rope.py +45 -2
  98. liger_kernel/transformers/softmax.py +12 -0
  99. liger_kernel/transformers/sparsemax.py +16 -0
  100. liger_kernel/transformers/swiglu.py +23 -8
  101. liger_kernel/transformers/tiled_mlp.py +133 -0
  102. liger_kernel/transformers/trainer/__init__.py +4 -0
  103. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  104. liger_kernel/transformers/tvd.py +13 -0
  105. liger_kernel/triton/__init__.py +1 -3
  106. liger_kernel/triton/monkey_patch.py +1 -3
  107. liger_kernel/utils.py +71 -0
  108. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/METADATA +150 -137
  109. liger_kernel_nightly-0.6.3.dev20251121010306.dist-info/RECORD +116 -0
  110. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/WHEEL +1 -1
  111. liger_kernel_nightly-0.4.0.dev20241107052928.dist-info/RECORD +0 -48
  112. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,163 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils import can_return_tuple
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerQwen2_5_VLCausalLMOutputWithPast
13
+
14
+
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ pixel_values: Optional[torch.Tensor] = None,
29
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
30
+ image_grid_thw: Optional[torch.LongTensor] = None,
31
+ video_grid_thw: Optional[torch.LongTensor] = None,
32
+ rope_deltas: Optional[torch.LongTensor] = None,
33
+ cache_position: Optional[torch.LongTensor] = None,
34
+ second_per_grid_ts: Optional[torch.Tensor] = None,
35
+ skip_logits: Optional[bool] = None,
36
+ **kwargs,
37
+ ) -> Union[Tuple, LigerQwen2_5_VLCausalLMOutputWithPast]:
38
+ r"""
39
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
40
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
41
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
42
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
43
+ pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
44
+ The tensors corresponding to the input videos. Pixel values can be obtained using
45
+ [`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
46
+ [`Qwen2_5_VLImageProcessor`] for processing videos.
47
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
48
+ The temporal, height and width of feature shape of each image in LLM.
49
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
50
+ The temporal, height and width of feature shape of each video in LLM.
51
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
52
+ The rope index difference between sequence length and multimodal rope.
53
+ second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
54
+ The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
55
+
56
+ Example:
57
+
58
+ ```python
59
+ >>> from PIL import Image
60
+ >>> import requests
61
+ >>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
62
+
63
+ >>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
64
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
65
+
66
+ >>> messages = [
67
+ {
68
+ "role": "user",
69
+ "content": [
70
+ {"type": "image"},
71
+ {"type": "text", "text": "What is shown in this image?"},
72
+ ],
73
+ },
74
+ ]
75
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
76
+ >>> image = Image.open(requests.get(url, stream=True).raw)
77
+
78
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
79
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
80
+
81
+ >>> # Generate
82
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
83
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
84
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
85
+ ```"""
86
+
87
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
88
+ output_hidden_states = (
89
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
90
+ )
91
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
92
+
93
+ outputs = self.model(
94
+ input_ids=input_ids,
95
+ pixel_values=pixel_values,
96
+ pixel_values_videos=pixel_values_videos,
97
+ image_grid_thw=image_grid_thw,
98
+ video_grid_thw=video_grid_thw,
99
+ second_per_grid_ts=second_per_grid_ts,
100
+ position_ids=position_ids,
101
+ attention_mask=attention_mask,
102
+ past_key_values=past_key_values,
103
+ inputs_embeds=inputs_embeds,
104
+ use_cache=use_cache,
105
+ output_attentions=output_attentions,
106
+ output_hidden_states=output_hidden_states,
107
+ return_dict=return_dict,
108
+ cache_position=cache_position,
109
+ **kwargs,
110
+ )
111
+
112
+ hidden_states = outputs[0]
113
+
114
+ shift_labels = kwargs.pop("shift_labels", None)
115
+ loss = None
116
+ logits = None
117
+ token_accuracy = None
118
+
119
+ if skip_logits and labels is None and shift_labels is None:
120
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
121
+
122
+ if skip_logits is None:
123
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
124
+
125
+ # Compute loss
126
+ if skip_logits:
127
+ result = LigerForCausalLMLoss(
128
+ hidden_states=hidden_states,
129
+ lm_head_weight=self.lm_head.weight,
130
+ labels=labels,
131
+ shift_labels=shift_labels,
132
+ hidden_size=self.config.hidden_size,
133
+ **kwargs,
134
+ )
135
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
136
+ else:
137
+ logits = self.lm_head(hidden_states)
138
+
139
+ loss = None
140
+ if labels is not None or shift_labels is not None:
141
+ loss = self.loss_function(
142
+ logits=logits,
143
+ labels=labels,
144
+ shift_labels=shift_labels,
145
+ vocab_size=self.config.vocab_size,
146
+ )
147
+
148
+ if not return_dict:
149
+ output_tuple = (logits,) + outputs[1:]
150
+ output = (loss,) + output_tuple if loss is not None else output_tuple
151
+ output = output + (token_accuracy,) if token_accuracy is not None else output
152
+ return output
153
+
154
+ # Return Qwen2.5-VL output with token accuracy
155
+ return LigerQwen2_5_VLCausalLMOutputWithPast(
156
+ loss=loss,
157
+ logits=logits,
158
+ past_key_values=outputs.past_key_values,
159
+ hidden_states=outputs.hidden_states,
160
+ attentions=outputs.attentions,
161
+ rope_deltas=outputs.rope_deltas,
162
+ token_accuracy=token_accuracy,
163
+ )
@@ -1,26 +1,18 @@
1
- from typing import List, Optional, Tuple, Union
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
2
5
 
3
6
  import torch
4
- from torch.nn import CrossEntropyLoss
5
- from transformers.models.qwen2_vl.modeling_qwen2_vl import (
6
- _CONFIG_FOR_DOC,
7
- QWEN2_VL_INPUTS_DOCSTRING,
8
- Qwen2VLCausalLMOutputWithPast,
9
- )
10
- from transformers.utils import (
11
- add_start_docstrings_to_model_forward,
12
- replace_return_docstrings,
13
- )
14
-
15
- from liger_kernel.transformers.fused_linear_cross_entropy import (
16
- LigerFusedLinearCrossEntropyLoss,
17
- )
18
-
19
-
20
- @add_start_docstrings_to_model_forward(QWEN2_VL_INPUTS_DOCSTRING)
21
- @replace_return_docstrings(
22
- output_type=Qwen2VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
23
- )
7
+
8
+ from transformers.utils import can_return_tuple
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerQwen2VLCausalLMOutputWithPast
13
+
14
+
15
+ @can_return_tuple
24
16
  def lce_forward(
25
17
  self,
26
18
  input_ids: torch.LongTensor = None,
@@ -38,17 +30,25 @@ def lce_forward(
38
30
  image_grid_thw: Optional[torch.LongTensor] = None,
39
31
  video_grid_thw: Optional[torch.LongTensor] = None,
40
32
  rope_deltas: Optional[torch.LongTensor] = None,
41
- ) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
33
+ cache_position: Optional[torch.LongTensor] = None,
34
+ skip_logits: Optional[bool] = None,
35
+ **kwargs,
36
+ ) -> Union[Tuple, LigerQwen2VLCausalLMOutputWithPast]:
42
37
  r"""
43
- Copy paste Qwen2VL's forward but replace torch cross entropy with liger fused linear cross entropy
44
-
45
- Args:
46
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
47
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
48
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
49
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
50
-
51
- Returns:
38
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
39
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
40
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
41
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
42
+ pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
43
+ The tensors corresponding to the input videos. Pixel values can be obtained using
44
+ [`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses
45
+ [`Qwen2VLImageProcessor`] for processing videos.
46
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
47
+ The temporal, height and width of feature shape of each image in LLM.
48
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
49
+ The temporal, height and width of feature shape of each video in LLM.
50
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
51
+ The rope index difference between sequence length and multimodal rope.
52
52
 
53
53
  Example:
54
54
 
@@ -80,50 +80,19 @@ def lce_forward(
80
80
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
81
81
  "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
82
82
  ```"""
83
- # FIXME: The code is outdated and not compatible with transformer >= 4.46.1
84
83
 
85
- output_attentions = (
86
- output_attentions
87
- if output_attentions is not None
88
- else self.config.output_attentions
89
- )
84
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
90
85
  output_hidden_states = (
91
- output_hidden_states
92
- if output_hidden_states is not None
93
- else self.config.output_hidden_states
86
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
94
87
  )
95
- return_dict = (
96
- return_dict if return_dict is not None else self.config.use_return_dict
97
- )
98
-
99
- if inputs_embeds is None:
100
- inputs_embeds = self.model.embed_tokens(input_ids)
101
- if pixel_values is not None:
102
- pixel_values = pixel_values.type(self.visual.get_dtype())
103
- image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw).to(
104
- inputs_embeds.device
105
- )
106
- image_mask = input_ids == self.config.image_token_id
107
- if self.training:
108
- inputs_embeds = inputs_embeds.clone()
109
- inputs_embeds[image_mask] = image_embeds
110
- if pixel_values_videos is not None:
111
- pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
112
- video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw).to(
113
- inputs_embeds.device
114
- )
115
- video_mask = input_ids == self.config.video_token_id
116
- inputs_embeds[video_mask] = video_embeds
117
- if attention_mask is not None:
118
- attention_mask = attention_mask.to(inputs_embeds.device)
119
- # The code is copied from https://github.com/huggingface/transformers/pull/33487
120
- if position_ids is None and input_ids is not None:
121
- position_ids, _ = self.get_rope_index(
122
- input_ids, image_grid_thw, video_grid_thw, attention_mask
123
- )
88
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
124
89
 
125
90
  outputs = self.model(
126
- input_ids=None,
91
+ input_ids=input_ids,
92
+ pixel_values=pixel_values,
93
+ pixel_values_videos=pixel_values_videos,
94
+ image_grid_thw=image_grid_thw,
95
+ video_grid_thw=video_grid_thw,
127
96
  position_ids=position_ids,
128
97
  attention_mask=attention_mask,
129
98
  past_key_values=past_key_values,
@@ -132,48 +101,59 @@ def lce_forward(
132
101
  output_attentions=output_attentions,
133
102
  output_hidden_states=output_hidden_states,
134
103
  return_dict=return_dict,
104
+ cache_position=cache_position,
105
+ **kwargs,
135
106
  )
136
107
 
137
108
  hidden_states = outputs[0]
138
109
 
110
+ shift_labels = kwargs.pop("shift_labels", None)
139
111
  loss = None
140
112
  logits = None
141
-
142
- if self.training and (labels is not None):
143
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
144
- shift_labels = labels[..., 1:].contiguous()
145
-
146
- # Flatten tokens
147
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
148
- shift_labels = shift_labels.view(-1)
149
-
150
- lce = LigerFusedLinearCrossEntropyLoss()
151
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
113
+ token_accuracy = None
114
+
115
+ if skip_logits and labels is None and shift_labels is None:
116
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
117
+
118
+ if skip_logits is None:
119
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
120
+
121
+ # Compute loss
122
+ if skip_logits:
123
+ result = LigerForCausalLMLoss(
124
+ hidden_states=hidden_states,
125
+ lm_head_weight=self.lm_head.weight,
126
+ labels=labels,
127
+ shift_labels=shift_labels,
128
+ hidden_size=self.config.hidden_size,
129
+ **kwargs,
130
+ )
131
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
152
132
  else:
153
133
  logits = self.lm_head(hidden_states)
154
- if labels is not None:
155
- # Upcast to float if we need to compute the loss to avoid potential precision issues
156
- logits = logits.float()
157
- # Shift so that tokens < n predict n
158
- shift_logits = logits[..., :-1, :].contiguous()
159
- shift_labels = labels[..., 1:].contiguous()
160
- # Flatten the tokens
161
- loss_fct = CrossEntropyLoss()
162
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
163
- shift_labels = shift_labels.view(-1)
164
- # Enable model parallelism
165
- shift_labels = shift_labels.to(shift_logits.device)
166
- loss = loss_fct(shift_logits, shift_labels)
134
+
135
+ loss = None
136
+ if labels is not None or shift_labels is not None:
137
+ loss = self.loss_function(
138
+ logits=logits,
139
+ labels=labels,
140
+ shift_labels=shift_labels,
141
+ vocab_size=self.config.vocab_size,
142
+ )
167
143
 
168
144
  if not return_dict:
169
- output = (logits,) + outputs[1:]
170
- return (loss,) + output if loss is not None else output
145
+ output_tuple = (logits,) + outputs[1:]
146
+ output = (loss,) + output_tuple if loss is not None else output_tuple
147
+ output = output + (token_accuracy,) if token_accuracy is not None else output
148
+ return output
171
149
 
172
- return Qwen2VLCausalLMOutputWithPast(
150
+ # Return Qwen2VL output with token accuracy
151
+ return LigerQwen2VLCausalLMOutputWithPast(
173
152
  loss=loss,
174
153
  logits=logits,
175
154
  past_key_values=outputs.past_key_values,
176
155
  hidden_states=outputs.hidden_states,
177
156
  attentions=outputs.attentions,
178
- rope_deltas=rope_deltas,
157
+ rope_deltas=outputs.rope_deltas,
158
+ token_accuracy=token_accuracy,
179
159
  )
@@ -0,0 +1,136 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
8
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
9
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
10
+
11
+
12
+ def lce_forward(
13
+ self,
14
+ input_ids: Optional[torch.LongTensor] = None,
15
+ attention_mask: Optional[torch.Tensor] = None,
16
+ position_ids: Optional[torch.LongTensor] = None,
17
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
18
+ inputs_embeds: Optional[torch.FloatTensor] = None,
19
+ labels: Optional[torch.LongTensor] = None,
20
+ use_cache: Optional[bool] = None,
21
+ output_attentions: Optional[bool] = None,
22
+ output_hidden_states: Optional[bool] = None,
23
+ cache_position: Optional[torch.LongTensor] = None,
24
+ logits_to_keep: Union[int, torch.Tensor] = 0,
25
+ skip_logits: Optional[bool] = None,
26
+ return_dict: Optional[bool] = None,
27
+ **kwargs,
28
+ ) -> LigerCausalLMOutputWithPast:
29
+ r"""
30
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
31
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
32
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
33
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
34
+
35
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
36
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
37
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
38
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
39
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
40
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
41
+
42
+ Returns:
43
+
44
+ Example:
45
+
46
+ ```python
47
+ >>> from transformers import AutoTokenizer, Qwen3ForCausalLM
48
+
49
+ >>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
50
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
51
+
52
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
53
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
54
+
55
+ >>> # Generate
56
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
57
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
58
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
59
+ ```"""
60
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
61
+ output_hidden_states = (
62
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
63
+ )
64
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
65
+
66
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
67
+ outputs = self.model(
68
+ input_ids=input_ids,
69
+ attention_mask=attention_mask,
70
+ position_ids=position_ids,
71
+ past_key_values=past_key_values,
72
+ inputs_embeds=inputs_embeds,
73
+ use_cache=use_cache,
74
+ output_attentions=output_attentions,
75
+ output_hidden_states=output_hidden_states,
76
+ cache_position=cache_position,
77
+ **kwargs,
78
+ )
79
+
80
+ hidden_states = outputs[0]
81
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
82
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
83
+ kept_hidden_states = hidden_states[:, slice_indices, :]
84
+
85
+ shift_labels = kwargs.pop("shift_labels", None)
86
+ # Remove output-control parameters that shouldn't be passed to loss functions
87
+ kwargs.pop("return_dict", None)
88
+ logits = None
89
+ loss = None
90
+ token_accuracy = None
91
+
92
+ if skip_logits and labels is None and shift_labels is None:
93
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
94
+
95
+ if skip_logits is None:
96
+ # By default, if in training mode, don't materialize logits
97
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
98
+
99
+ # Compute loss
100
+ if skip_logits:
101
+ result = LigerForCausalLMLoss(
102
+ hidden_states=kept_hidden_states,
103
+ lm_head_weight=self.lm_head.weight,
104
+ labels=labels,
105
+ shift_labels=shift_labels,
106
+ hidden_size=self.config.hidden_size,
107
+ **kwargs,
108
+ )
109
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
110
+
111
+ else:
112
+ logits = self.lm_head(kept_hidden_states)
113
+ if labels is not None or shift_labels is not None:
114
+ loss = self.loss_function(
115
+ logits=logits,
116
+ labels=labels,
117
+ shift_labels=shift_labels,
118
+ vocab_size=self.config.vocab_size,
119
+ **kwargs,
120
+ )
121
+
122
+ if not return_dict:
123
+ output = (logits,) + outputs[1:]
124
+ output = ((loss,) + output) if loss is not None else output
125
+ output = output + (token_accuracy,) if token_accuracy is not None else output
126
+ return output
127
+
128
+ # Return custom output class with accuracy field
129
+ return LigerCausalLMOutputWithPast(
130
+ loss=loss,
131
+ logits=logits,
132
+ past_key_values=outputs.past_key_values,
133
+ hidden_states=outputs.hidden_states,
134
+ attentions=outputs.attentions,
135
+ token_accuracy=token_accuracy,
136
+ )
@@ -0,0 +1,152 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.modeling_outputs import MoeModelOutputWithPast
8
+ from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: Optional[torch.LongTensor] = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ output_router_logits: Optional[bool] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
31
+ **kwargs,
32
+ ) -> LigerMoeCausalLMOutputWithPast:
33
+ r"""
34
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
35
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
36
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
+
39
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
40
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
41
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
42
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
43
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
44
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
45
+
46
+ Returns:
47
+
48
+ Example:
49
+
50
+ ```python
51
+ >>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM
52
+
53
+ >>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
54
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
55
+
56
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
57
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
58
+
59
+ >>> # Generate
60
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
61
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
62
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
63
+ ```"""
64
+
65
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
66
+ output_router_logits = (
67
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
68
+ )
69
+ output_hidden_states = (
70
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
71
+ )
72
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
73
+
74
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
75
+ outputs: MoeModelOutputWithPast = self.model(
76
+ input_ids=input_ids,
77
+ attention_mask=attention_mask,
78
+ position_ids=position_ids,
79
+ past_key_values=past_key_values,
80
+ inputs_embeds=inputs_embeds,
81
+ use_cache=use_cache,
82
+ output_attentions=output_attentions,
83
+ output_hidden_states=output_hidden_states,
84
+ output_router_logits=output_router_logits,
85
+ cache_position=cache_position,
86
+ **kwargs,
87
+ )
88
+
89
+ hidden_states = outputs.last_hidden_state
90
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
91
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
92
+ kept_hidden_states = hidden_states[:, slice_indices, :]
93
+
94
+ shift_labels = kwargs.pop("shift_labels", None)
95
+ logits = None
96
+ loss = None
97
+ token_accuracy = None
98
+
99
+ if skip_logits is None:
100
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
101
+
102
+ # Compute loss
103
+ if skip_logits:
104
+ result = LigerForCausalLMLoss(
105
+ hidden_states=kept_hidden_states,
106
+ lm_head_weight=self.lm_head.weight,
107
+ labels=labels,
108
+ shift_labels=shift_labels,
109
+ hidden_size=self.config.hidden_size,
110
+ **kwargs,
111
+ )
112
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
113
+ else: # if in inference model materialize logits
114
+ logits = self.lm_head(kept_hidden_states)
115
+ if labels is not None or shift_labels is not None:
116
+ loss = self.loss_function(
117
+ logits=logits,
118
+ labels=labels,
119
+ shift_labels=shift_labels,
120
+ vocab_size=self.vocab_size,
121
+ **kwargs,
122
+ )
123
+
124
+ aux_loss = None
125
+ if output_router_logits:
126
+ aux_loss = load_balancing_loss_func(
127
+ outputs.router_logits,
128
+ self.num_experts,
129
+ self.num_experts_per_tok,
130
+ attention_mask,
131
+ )
132
+ if labels is not None:
133
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
134
+
135
+ if not return_dict:
136
+ output = (logits,) + outputs[1:]
137
+ output = ((aux_loss,) + output) if aux_loss is not None else output
138
+ output = ((loss,) + output) if loss is not None else output
139
+ output = output + (token_accuracy,) if token_accuracy is not None else output
140
+ return output
141
+
142
+ # Return custom output class with accuracy field
143
+ return LigerMoeCausalLMOutputWithPast(
144
+ loss=loss,
145
+ aux_loss=aux_loss,
146
+ logits=logits,
147
+ past_key_values=outputs.past_key_values,
148
+ hidden_states=outputs.hidden_states,
149
+ attentions=outputs.attentions,
150
+ router_logits=outputs.router_logits,
151
+ token_accuracy=token_accuracy,
152
+ )