liger-kernel-nightly 0.4.0.dev20241107052928__py3-none-any.whl → 0.6.3.dev20251121010306__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (114) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +350 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +304 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +21 -4
  18. liger_kernel/ops/cross_entropy.py +235 -84
  19. liger_kernel/ops/dyt.py +157 -0
  20. liger_kernel/ops/experimental/embedding.py +1 -3
  21. liger_kernel/ops/experimental/mm_int8int2.py +3 -9
  22. liger_kernel/ops/fused_add_rms_norm.py +412 -0
  23. liger_kernel/ops/fused_linear_cross_entropy.py +197 -75
  24. liger_kernel/ops/fused_linear_jsd.py +17 -34
  25. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  26. liger_kernel/ops/geglu.py +7 -18
  27. liger_kernel/ops/group_norm.py +305 -0
  28. liger_kernel/ops/grpo_loss.py +310 -0
  29. liger_kernel/ops/jsd.py +46 -21
  30. liger_kernel/ops/kl_div.py +23 -19
  31. liger_kernel/ops/layer_norm.py +150 -86
  32. liger_kernel/ops/llama4_rope.py +225 -0
  33. liger_kernel/ops/multi_token_attention.py +207 -0
  34. liger_kernel/ops/poly_norm.py +386 -0
  35. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  36. liger_kernel/ops/rms_norm.py +314 -84
  37. liger_kernel/ops/rope.py +32 -34
  38. liger_kernel/ops/softmax.py +201 -0
  39. liger_kernel/ops/sparsemax.py +179 -0
  40. liger_kernel/ops/swiglu.py +5 -9
  41. liger_kernel/ops/tiled_mlp.py +136 -0
  42. liger_kernel/ops/tvd.py +207 -0
  43. liger_kernel/ops/utils.py +8 -4
  44. liger_kernel/transformers/__init__.py +199 -24
  45. liger_kernel/transformers/auto_model.py +6 -13
  46. liger_kernel/transformers/cross_entropy.py +33 -20
  47. liger_kernel/transformers/dyt.py +22 -0
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -3
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +291 -13
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +43 -14
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -4
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -4
  57. liger_kernel/transformers/group_norm.py +50 -0
  58. liger_kernel/transformers/grpo_loss.py +98 -0
  59. liger_kernel/transformers/jsd.py +2 -7
  60. liger_kernel/transformers/kl_div.py +1 -3
  61. liger_kernel/transformers/layer_norm.py +3 -9
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/falcon_h1.py +122 -0
  64. liger_kernel/transformers/model/gemma.py +77 -77
  65. liger_kernel/transformers/model/gemma2.py +283 -0
  66. liger_kernel/transformers/model/gemma3.py +331 -0
  67. liger_kernel/transformers/model/glm4.py +141 -0
  68. liger_kernel/transformers/model/glm4v.py +163 -0
  69. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  70. liger_kernel/transformers/model/internvl.py +157 -0
  71. liger_kernel/transformers/model/llama.py +128 -79
  72. liger_kernel/transformers/model/llama4.py +121 -0
  73. liger_kernel/transformers/model/llava.py +344 -0
  74. liger_kernel/transformers/model/loss_utils.py +95 -0
  75. liger_kernel/transformers/model/mistral.py +68 -64
  76. liger_kernel/transformers/model/mixtral.py +75 -91
  77. liger_kernel/transformers/model/mllama.py +63 -68
  78. liger_kernel/transformers/model/olmo2.py +141 -0
  79. liger_kernel/transformers/model/output_classes.py +147 -0
  80. liger_kernel/transformers/model/paligemma.py +432 -0
  81. liger_kernel/transformers/model/phi3.py +59 -213
  82. liger_kernel/transformers/model/qwen2.py +75 -72
  83. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  84. liger_kernel/transformers/model/qwen2_vl.py +78 -98
  85. liger_kernel/transformers/model/qwen3.py +136 -0
  86. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  87. liger_kernel/transformers/model/qwen3_next.py +146 -0
  88. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  89. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  90. liger_kernel/transformers/model/smollm3.py +199 -0
  91. liger_kernel/transformers/model/smolvlm.py +158 -0
  92. liger_kernel/transformers/monkey_patch.py +2106 -289
  93. liger_kernel/transformers/multi_token_attention.py +64 -0
  94. liger_kernel/transformers/poly_norm.py +42 -0
  95. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  96. liger_kernel/transformers/rms_norm.py +57 -6
  97. liger_kernel/transformers/rope.py +45 -2
  98. liger_kernel/transformers/softmax.py +12 -0
  99. liger_kernel/transformers/sparsemax.py +16 -0
  100. liger_kernel/transformers/swiglu.py +23 -8
  101. liger_kernel/transformers/tiled_mlp.py +133 -0
  102. liger_kernel/transformers/trainer/__init__.py +4 -0
  103. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  104. liger_kernel/transformers/tvd.py +13 -0
  105. liger_kernel/triton/__init__.py +1 -3
  106. liger_kernel/triton/monkey_patch.py +1 -3
  107. liger_kernel/utils.py +71 -0
  108. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/METADATA +150 -137
  109. liger_kernel_nightly-0.6.3.dev20251121010306.dist-info/RECORD +116 -0
  110. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/WHEEL +1 -1
  111. liger_kernel_nightly-0.4.0.dev20241107052928.dist-info/RECORD +0 -48
  112. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/top_level.txt +0 -0
@@ -1,27 +1,21 @@
1
- from typing import List, Optional, Tuple, Union
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
2
5
 
3
6
  import torch
7
+
4
8
  from torch.nn import CrossEntropyLoss
5
9
  from transformers.cache_utils import Cache
6
10
  from transformers.modeling_outputs import CausalLMOutputWithPast
7
- from transformers.models.gemma.modeling_gemma import (
8
- _CONFIG_FOR_DOC,
9
- GEMMA_INPUTS_DOCSTRING,
10
- )
11
- from transformers.utils import (
12
- add_start_docstrings_to_model_forward,
13
- replace_return_docstrings,
14
- )
15
-
16
- from liger_kernel.transformers.fused_linear_cross_entropy import (
17
- LigerFusedLinearCrossEntropyLoss,
18
- )
19
-
20
-
21
- @add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
22
- @replace_return_docstrings(
23
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
24
- )
11
+ from transformers.utils.deprecation import deprecate_kwarg
12
+
13
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
14
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
15
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
16
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
17
+
18
+
25
19
  def lce_forward_deprecated(
26
20
  self,
27
21
  input_ids: torch.LongTensor = None,
@@ -35,6 +29,7 @@ def lce_forward_deprecated(
35
29
  output_hidden_states: Optional[bool] = None,
36
30
  return_dict: Optional[bool] = None,
37
31
  cache_position: Optional[torch.LongTensor] = None,
32
+ skip_logits: Optional[bool] = None,
38
33
  ) -> Union[Tuple, CausalLMOutputWithPast]:
39
34
  r"""
40
35
 
@@ -64,19 +59,11 @@ def lce_forward_deprecated(
64
59
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
65
60
  "What is your favorite condiment?"
66
61
  ```"""
67
- output_attentions = (
68
- output_attentions
69
- if output_attentions is not None
70
- else self.config.output_attentions
71
- )
62
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
72
63
  output_hidden_states = (
73
- output_hidden_states
74
- if output_hidden_states is not None
75
- else self.config.output_hidden_states
76
- )
77
- return_dict = (
78
- return_dict if return_dict is not None else self.config.use_return_dict
64
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
79
65
  )
66
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
80
67
 
81
68
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
82
69
  outputs = self.model(
@@ -97,7 +84,14 @@ def lce_forward_deprecated(
97
84
  loss = None
98
85
  logits = None
99
86
 
100
- if self.training and (labels is not None):
87
+ if skip_logits and labels is None:
88
+ raise ValueError("skip_logits is True, but labels is None")
89
+
90
+ if skip_logits is None:
91
+ # By default, if in training mode, don't materialize logits
92
+ skip_logits = self.training and labels is not None
93
+
94
+ if skip_logits:
101
95
  shift_hidden_states = hidden_states[..., :-1, :].contiguous()
102
96
  shift_labels = labels[..., 1:].contiguous()
103
97
 
@@ -138,10 +132,7 @@ def lce_forward_deprecated(
138
132
  )
139
133
 
140
134
 
141
- @add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
142
- @replace_return_docstrings(
143
- output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
144
- )
135
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
145
136
  def lce_forward(
146
137
  self,
147
138
  input_ids: torch.LongTensor = None,
@@ -155,9 +146,10 @@ def lce_forward(
155
146
  output_hidden_states: Optional[bool] = None,
156
147
  return_dict: Optional[bool] = None,
157
148
  cache_position: Optional[torch.LongTensor] = None,
158
- num_logits_to_keep: int = 0,
159
- **loss_kwargs,
160
- ) -> Union[Tuple, CausalLMOutputWithPast]:
149
+ logits_to_keep: Union[int, torch.Tensor] = 0,
150
+ skip_logits: Optional[bool] = None,
151
+ **kwargs,
152
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
161
153
  r"""
162
154
  Args:
163
155
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -165,10 +157,12 @@ def lce_forward(
165
157
  config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
166
158
  (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
167
159
 
168
- num_logits_to_keep (`int`, *optional*):
169
- Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
160
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
161
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
170
162
  `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
171
163
  token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
164
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
165
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
172
166
 
173
167
  Returns:
174
168
 
@@ -188,19 +182,11 @@ def lce_forward(
188
182
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
189
183
  "What is your favorite condiment?"
190
184
  ```"""
191
- output_attentions = (
192
- output_attentions
193
- if output_attentions is not None
194
- else self.config.output_attentions
195
- )
185
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
196
186
  output_hidden_states = (
197
- output_hidden_states
198
- if output_hidden_states is not None
199
- else self.config.output_hidden_states
200
- )
201
- return_dict = (
202
- return_dict if return_dict is not None else self.config.use_return_dict
187
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
203
188
  )
189
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
204
190
 
205
191
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
206
192
  outputs = self.model(
@@ -214,48 +200,62 @@ def lce_forward(
214
200
  output_hidden_states=output_hidden_states,
215
201
  return_dict=return_dict,
216
202
  cache_position=cache_position,
203
+ **kwargs,
217
204
  )
218
205
 
219
206
  hidden_states = outputs[0]
207
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
208
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
209
+ kept_hidden_states = hidden_states[:, slice_indices, :]
220
210
 
211
+ shift_labels = kwargs.pop("shift_labels", None)
221
212
  logits = None
222
213
  loss = None
223
- # if in training mode, don't materialize logits
224
- if self.training and (labels is not None):
225
- # We do the same thing as ForCausalLMLoss but using Liger FLCE
226
-
227
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
228
- shift_labels = labels[..., 1:].contiguous()
229
-
230
- # flatten tokens
231
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
232
- shift_labels = shift_labels.view(-1)
233
-
234
- reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
235
- lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
236
-
237
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
238
- if reduction == "sum":
239
- loss /= loss_kwargs["num_items_in_batch"]
240
-
241
- else: # if in inference mode materialize logits
242
- logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
243
- if labels is not None:
214
+ token_accuracy = None
215
+
216
+ if skip_logits and labels is None and shift_labels is None:
217
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
218
+
219
+ if skip_logits is None:
220
+ # By default, if in training mode, don't materialize logits
221
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
222
+
223
+ # Compute loss
224
+ if skip_logits:
225
+ result = LigerForCausalLMLoss(
226
+ hidden_states=kept_hidden_states,
227
+ lm_head_weight=self.lm_head.weight,
228
+ labels=labels,
229
+ shift_labels=shift_labels,
230
+ hidden_size=self.config.hidden_size,
231
+ **kwargs,
232
+ )
233
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
234
+ else:
235
+ logits = self.lm_head(kept_hidden_states)
236
+ if labels is not None or shift_labels is not None:
244
237
  loss = self.loss_function(
245
238
  logits=logits,
246
239
  labels=labels,
240
+ shift_labels=shift_labels,
247
241
  vocab_size=self.config.vocab_size,
248
- **loss_kwargs,
242
+ **kwargs,
249
243
  )
250
244
 
251
245
  if not return_dict:
252
- output = (logits,) + outputs[1:]
253
- return (loss,) + output if loss is not None else output
254
-
255
- return CausalLMOutputWithPast(
246
+ output_tuple = (logits,) + outputs[1:]
247
+ if loss is not None:
248
+ output_tuple = (loss,) + output_tuple
249
+ if token_accuracy is not None:
250
+ output_tuple = output_tuple + (token_accuracy,)
251
+ return output_tuple
252
+
253
+ # Return custom output class with token_accuracy field
254
+ return LigerCausalLMOutputWithPast(
256
255
  loss=loss,
257
256
  logits=logits,
258
257
  past_key_values=outputs.past_key_values,
259
258
  hidden_states=outputs.hidden_states,
260
259
  attentions=outputs.attentions,
260
+ token_accuracy=token_accuracy,
261
261
  )
@@ -0,0 +1,283 @@
1
+ import logging
2
+
3
+ from typing import Optional
4
+ from typing import Tuple
5
+ from typing import Union
6
+
7
+ import torch
8
+
9
+ from torch.nn import CrossEntropyLoss
10
+ from transformers.cache_utils import HybridCache
11
+ from transformers.modeling_outputs import CausalLMOutputWithPast
12
+ from transformers.utils.deprecation import deprecate_kwarg
13
+
14
+ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
15
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
16
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
17
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
18
+
19
+ logger = logging.getLogger(__name__)
20
+
21
+
22
+ def lce_forward_deprecated(
23
+ self,
24
+ input_ids: torch.LongTensor = None,
25
+ attention_mask: Optional[torch.Tensor] = None,
26
+ position_ids: Optional[torch.LongTensor] = None,
27
+ past_key_values: Optional[HybridCache] = None,
28
+ inputs_embeds: Optional[torch.FloatTensor] = None,
29
+ labels: Optional[torch.LongTensor] = None,
30
+ use_cache: Optional[bool] = None,
31
+ output_attentions: Optional[bool] = None,
32
+ output_hidden_states: Optional[bool] = None,
33
+ return_dict: Optional[bool] = None,
34
+ cache_position: Optional[torch.LongTensor] = None,
35
+ skip_logits: Optional[bool] = None,
36
+ **kwargs,
37
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
38
+ r"""
39
+ Args:
40
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
41
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
42
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
43
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
44
+
45
+ Returns:
46
+
47
+ Example:
48
+
49
+ ```python
50
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
51
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
52
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
53
+ >>> prompt = "What is your favorite condiment?"
54
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
55
+ >>> # Generate
56
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
57
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
58
+ "What is your favorite condiment?"
59
+ ```"""
60
+
61
+ if self.training and self.config._attn_implementation != "eager":
62
+ logger.warning_once(
63
+ "It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
64
+ f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
65
+ )
66
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
67
+ output_hidden_states = (
68
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
69
+ )
70
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
71
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
72
+ outputs = self.model(
73
+ input_ids=input_ids,
74
+ attention_mask=attention_mask,
75
+ position_ids=position_ids,
76
+ past_key_values=past_key_values,
77
+ inputs_embeds=inputs_embeds,
78
+ use_cache=use_cache,
79
+ output_attentions=output_attentions,
80
+ output_hidden_states=output_hidden_states,
81
+ return_dict=return_dict,
82
+ cache_position=cache_position,
83
+ **kwargs,
84
+ )
85
+
86
+ hidden_states = outputs[0]
87
+
88
+ loss = None
89
+ logits = None
90
+
91
+ if skip_logits and labels is None:
92
+ raise ValueError("skip_logits is True, but labels is None")
93
+
94
+ if skip_logits is None:
95
+ # By default, if in training mode, don't materialize logits
96
+ skip_logits = self.training and labels is not None
97
+
98
+ if skip_logits:
99
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
100
+ shift_labels = labels[..., 1:].contiguous()
101
+
102
+ # flatten
103
+
104
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
105
+ shift_labels = shift_labels.view(-1)
106
+
107
+ lce = LigerFusedLinearCrossEntropyLoss(softcap=self.config.final_logit_softcapping)
108
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
109
+
110
+ else:
111
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
112
+ logits = self.lm_head(hidden_states)
113
+ if self.config.final_logit_softcapping is not None:
114
+ logits = logits / self.config.final_logit_softcapping
115
+ logits = torch.tanh(logits)
116
+ logits = logits * self.config.final_logit_softcapping
117
+
118
+ loss = None
119
+ if labels is not None:
120
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
121
+ logits = logits.float()
122
+ # Shift so that tokens < n predict n
123
+ shift_logits = logits[..., :-1, :].contiguous()
124
+ shift_labels = labels[..., 1:].contiguous()
125
+ # Flatten the tokens
126
+ loss_fct = CrossEntropyLoss()
127
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
128
+ shift_labels = shift_labels.view(-1)
129
+ # Enable model parallelism
130
+ shift_labels = shift_labels.to(shift_logits.device)
131
+ loss = loss_fct(shift_logits, shift_labels)
132
+
133
+ if not return_dict:
134
+ output = (logits,) + outputs[1:]
135
+ return (loss,) + output if loss is not None else output
136
+
137
+ return CausalLMOutputWithPast(
138
+ loss=loss,
139
+ logits=logits,
140
+ past_key_values=outputs.past_key_values,
141
+ hidden_states=outputs.hidden_states,
142
+ attentions=outputs.attentions,
143
+ )
144
+
145
+
146
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
147
+ def lce_forward(
148
+ self,
149
+ input_ids: torch.LongTensor = None,
150
+ attention_mask: Optional[torch.Tensor] = None,
151
+ position_ids: Optional[torch.LongTensor] = None,
152
+ past_key_values: Optional[HybridCache] = None,
153
+ inputs_embeds: Optional[torch.FloatTensor] = None,
154
+ labels: Optional[torch.LongTensor] = None,
155
+ use_cache: Optional[bool] = None,
156
+ output_attentions: Optional[bool] = None,
157
+ output_hidden_states: Optional[bool] = None,
158
+ return_dict: Optional[bool] = None,
159
+ cache_position: Optional[torch.LongTensor] = None,
160
+ logits_to_keep: Union[int, torch.Tensor] = 0,
161
+ skip_logits: Optional[bool] = None,
162
+ **kwargs,
163
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
164
+ r"""
165
+ Args:
166
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
167
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
168
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
169
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
170
+
171
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
172
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
173
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
174
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
175
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
176
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
177
+
178
+ Returns:
179
+
180
+ Example:
181
+
182
+ ```python
183
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
184
+
185
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
186
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
187
+
188
+ >>> prompt = "What is your favorite condiment?"
189
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
190
+
191
+ >>> # Generate
192
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
193
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
194
+ "What is your favorite condiment?"
195
+ ```"""
196
+
197
+ if self.training and self.config._attn_implementation != "eager":
198
+ logger.warning_once(
199
+ "It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
200
+ f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
201
+ )
202
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
203
+ output_hidden_states = (
204
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
205
+ )
206
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
207
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
208
+ outputs = self.model(
209
+ input_ids=input_ids,
210
+ attention_mask=attention_mask,
211
+ position_ids=position_ids,
212
+ past_key_values=past_key_values,
213
+ inputs_embeds=inputs_embeds,
214
+ use_cache=use_cache,
215
+ output_attentions=output_attentions,
216
+ output_hidden_states=output_hidden_states,
217
+ return_dict=return_dict,
218
+ cache_position=cache_position,
219
+ **kwargs,
220
+ )
221
+
222
+ hidden_states = outputs[0]
223
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
224
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
225
+ kept_hidden_states = hidden_states[:, slice_indices, :]
226
+
227
+ shift_labels = kwargs.pop("shift_labels", None)
228
+ logits = None
229
+ loss = None
230
+ token_accuracy = None
231
+
232
+ if skip_logits and labels is None and shift_labels is None:
233
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
234
+
235
+ if skip_logits is None:
236
+ # By default, if in training mode, don't materialize logits
237
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
238
+
239
+ # Compute loss
240
+ if skip_logits:
241
+ result = LigerForCausalLMLoss(
242
+ hidden_states=kept_hidden_states,
243
+ lm_head_weight=self.lm_head.weight,
244
+ labels=labels,
245
+ shift_labels=shift_labels,
246
+ hidden_size=self.config.hidden_size,
247
+ final_logit_softcapping=self.config.final_logit_softcapping,
248
+ **kwargs,
249
+ )
250
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
251
+
252
+ else:
253
+ logits = self.lm_head(kept_hidden_states)
254
+ if self.config.final_logit_softcapping is not None:
255
+ logits = logits / self.config.final_logit_softcapping
256
+ logits = torch.tanh(logits)
257
+ logits = logits * self.config.final_logit_softcapping
258
+
259
+ loss = None
260
+ if labels is not None or shift_labels is not None:
261
+ loss = self.loss_function(
262
+ logits=logits,
263
+ labels=labels,
264
+ shift_labels=shift_labels,
265
+ vocab_size=self.vocab_size,
266
+ **kwargs,
267
+ )
268
+
269
+ if not return_dict:
270
+ output_tuple = (logits,) + outputs[1:]
271
+ output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
272
+ output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
273
+ return output_tuple
274
+
275
+ # Return custom output class with token_accuracy field
276
+ return LigerCausalLMOutputWithPast(
277
+ loss=loss,
278
+ logits=logits,
279
+ past_key_values=outputs.past_key_values,
280
+ hidden_states=outputs.hidden_states,
281
+ attentions=outputs.attentions,
282
+ token_accuracy=token_accuracy,
283
+ )