liger-kernel-nightly 0.4.0.dev20241107052928__py3-none-any.whl → 0.6.3.dev20251121010306__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +350 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +304 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +21 -4
- liger_kernel/ops/cross_entropy.py +235 -84
- liger_kernel/ops/dyt.py +157 -0
- liger_kernel/ops/experimental/embedding.py +1 -3
- liger_kernel/ops/experimental/mm_int8int2.py +3 -9
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +197 -75
- liger_kernel/ops/fused_linear_jsd.py +17 -34
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +7 -18
- liger_kernel/ops/group_norm.py +305 -0
- liger_kernel/ops/grpo_loss.py +310 -0
- liger_kernel/ops/jsd.py +46 -21
- liger_kernel/ops/kl_div.py +23 -19
- liger_kernel/ops/layer_norm.py +150 -86
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +314 -84
- liger_kernel/ops/rope.py +32 -34
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +5 -9
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +8 -4
- liger_kernel/transformers/__init__.py +199 -24
- liger_kernel/transformers/auto_model.py +6 -13
- liger_kernel/transformers/cross_entropy.py +33 -20
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -3
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +291 -13
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +43 -14
- liger_kernel/transformers/fused_linear_jsd.py +1 -4
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +1 -4
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +98 -0
- liger_kernel/transformers/jsd.py +2 -7
- liger_kernel/transformers/kl_div.py +1 -3
- liger_kernel/transformers/layer_norm.py +3 -9
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +77 -77
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +331 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +128 -79
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +68 -64
- liger_kernel/transformers/model/mixtral.py +75 -91
- liger_kernel/transformers/model/mllama.py +63 -68
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +432 -0
- liger_kernel/transformers/model/phi3.py +59 -213
- liger_kernel/transformers/model/qwen2.py +75 -72
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +78 -98
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2106 -289
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +57 -6
- liger_kernel/transformers/rope.py +45 -2
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +23 -8
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -3
- liger_kernel/utils.py +71 -0
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/METADATA +150 -137
- liger_kernel_nightly-0.6.3.dev20251121010306.dist-info/RECORD +116 -0
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.4.0.dev20241107052928.dist-info/RECORD +0 -48
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,141 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
16
|
+
def lce_forward(
|
|
17
|
+
self,
|
|
18
|
+
input_ids: torch.LongTensor = None,
|
|
19
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
20
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
21
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
22
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
23
|
+
labels: Optional[torch.LongTensor] = None,
|
|
24
|
+
use_cache: Optional[bool] = None,
|
|
25
|
+
output_attentions: Optional[bool] = None,
|
|
26
|
+
output_hidden_states: Optional[bool] = None,
|
|
27
|
+
return_dict: Optional[bool] = None,
|
|
28
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
29
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
30
|
+
skip_logits: Optional[bool] = None,
|
|
31
|
+
**kwargs,
|
|
32
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
33
|
+
r"""
|
|
34
|
+
Args:
|
|
35
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
36
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
37
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
38
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
39
|
+
|
|
40
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
41
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
42
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
43
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
44
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
45
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
|
|
49
|
+
Example:
|
|
50
|
+
|
|
51
|
+
```python
|
|
52
|
+
>>> from transformers import AutoTokenizer, Olmo2ForCausalLM
|
|
53
|
+
|
|
54
|
+
>>> model = Olmo2ForCausalLM.from_pretrained("allenai/Olmo2-1B-hf")
|
|
55
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo2-1B-hf")
|
|
56
|
+
|
|
57
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
58
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
59
|
+
|
|
60
|
+
>>> # Generate
|
|
61
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
62
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
63
|
+
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
|
|
64
|
+
```
|
|
65
|
+
"""
|
|
66
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
67
|
+
output_hidden_states = (
|
|
68
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
69
|
+
)
|
|
70
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
71
|
+
|
|
72
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
73
|
+
outputs = self.model(
|
|
74
|
+
input_ids=input_ids,
|
|
75
|
+
attention_mask=attention_mask,
|
|
76
|
+
position_ids=position_ids,
|
|
77
|
+
past_key_values=past_key_values,
|
|
78
|
+
inputs_embeds=inputs_embeds,
|
|
79
|
+
use_cache=use_cache,
|
|
80
|
+
output_attentions=output_attentions,
|
|
81
|
+
output_hidden_states=output_hidden_states,
|
|
82
|
+
return_dict=return_dict,
|
|
83
|
+
cache_position=cache_position,
|
|
84
|
+
**kwargs,
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
hidden_states = outputs[0]
|
|
88
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
89
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
90
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
91
|
+
|
|
92
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
93
|
+
logits = None
|
|
94
|
+
loss = None
|
|
95
|
+
token_accuracy = None
|
|
96
|
+
|
|
97
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
98
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
99
|
+
|
|
100
|
+
if skip_logits is None:
|
|
101
|
+
# By default, if in training mode, don't materialize logits
|
|
102
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
103
|
+
|
|
104
|
+
# Compute loss
|
|
105
|
+
if skip_logits:
|
|
106
|
+
result = LigerForCausalLMLoss(
|
|
107
|
+
hidden_states=kept_hidden_states,
|
|
108
|
+
lm_head_weight=self.lm_head.weight,
|
|
109
|
+
labels=labels,
|
|
110
|
+
shift_labels=shift_labels,
|
|
111
|
+
hidden_size=self.config.hidden_size,
|
|
112
|
+
**kwargs,
|
|
113
|
+
)
|
|
114
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
115
|
+
|
|
116
|
+
else:
|
|
117
|
+
logits = self.lm_head(kept_hidden_states)
|
|
118
|
+
if labels is not None or shift_labels is not None:
|
|
119
|
+
loss = self.loss_function(
|
|
120
|
+
logits=logits,
|
|
121
|
+
labels=labels,
|
|
122
|
+
shift_labels=shift_labels,
|
|
123
|
+
vocab_size=self.config.vocab_size,
|
|
124
|
+
**kwargs,
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
if not return_dict:
|
|
128
|
+
output = (logits,) + outputs[1:]
|
|
129
|
+
output = ((loss,) + output) if loss is not None else output
|
|
130
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
131
|
+
return output
|
|
132
|
+
|
|
133
|
+
# Return custom output class with token_accuracy field
|
|
134
|
+
return LigerCausalLMOutputWithPast(
|
|
135
|
+
loss=loss,
|
|
136
|
+
logits=logits,
|
|
137
|
+
past_key_values=outputs.past_key_values,
|
|
138
|
+
hidden_states=outputs.hidden_states,
|
|
139
|
+
attentions=outputs.attentions,
|
|
140
|
+
token_accuracy=token_accuracy,
|
|
141
|
+
)
|
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Custom output classes for Liger-Kernel that extend transformers' ModelOutput classes
|
|
3
|
+
with optional token accuracy field.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from dataclasses import dataclass
|
|
7
|
+
from typing import Optional
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
12
|
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
# The following model-specific outputs are optional and depend on the installed
|
|
15
|
+
# transformers version. Guard their imports so our module remains importable
|
|
16
|
+
# even when those models are not available in the environment.
|
|
17
|
+
try:
|
|
18
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast as _Gemma3CausalLMOutputWithPast
|
|
19
|
+
except Exception:
|
|
20
|
+
_Gemma3CausalLMOutputWithPast = None
|
|
21
|
+
|
|
22
|
+
try:
|
|
23
|
+
from transformers.models.glm4v_moe.modeling_glm4v_moe import (
|
|
24
|
+
Glm4vMoeCausalLMOutputWithPast as _Glm4vMoeCausalLMOutputWithPast,
|
|
25
|
+
)
|
|
26
|
+
except Exception:
|
|
27
|
+
_Glm4vMoeCausalLMOutputWithPast = None
|
|
28
|
+
|
|
29
|
+
try:
|
|
30
|
+
from transformers.models.internvl.modeling_internvl import (
|
|
31
|
+
InternVLCausalLMOutputWithPast as _InternVLCausalLMOutputWithPast,
|
|
32
|
+
)
|
|
33
|
+
except Exception:
|
|
34
|
+
_InternVLCausalLMOutputWithPast = None
|
|
35
|
+
|
|
36
|
+
try:
|
|
37
|
+
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast as _LlavaCausalLMOutputWithPast
|
|
38
|
+
except Exception:
|
|
39
|
+
_LlavaCausalLMOutputWithPast = None
|
|
40
|
+
|
|
41
|
+
try:
|
|
42
|
+
from transformers.models.paligemma.modeling_paligemma import (
|
|
43
|
+
PaliGemmaCausalLMOutputWithPast as _PaliGemmaCausalLMOutputWithPast,
|
|
44
|
+
)
|
|
45
|
+
except Exception:
|
|
46
|
+
_PaliGemmaCausalLMOutputWithPast = None
|
|
47
|
+
|
|
48
|
+
try:
|
|
49
|
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
|
|
50
|
+
Qwen2_5_VLCausalLMOutputWithPast as _Qwen2_5_VLCausalLMOutputWithPast,
|
|
51
|
+
)
|
|
52
|
+
except Exception:
|
|
53
|
+
_Qwen2_5_VLCausalLMOutputWithPast = None
|
|
54
|
+
|
|
55
|
+
try:
|
|
56
|
+
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
|
|
57
|
+
Qwen2VLCausalLMOutputWithPast as _Qwen2VLCausalLMOutputWithPast,
|
|
58
|
+
)
|
|
59
|
+
except Exception:
|
|
60
|
+
_Qwen2VLCausalLMOutputWithPast = None
|
|
61
|
+
|
|
62
|
+
try:
|
|
63
|
+
from transformers.models.qwen3_vl.modeling_qwen3_vl import (
|
|
64
|
+
Qwen3VLCausalLMOutputWithPast as _Qwen3VLCausalLMOutputWithPast,
|
|
65
|
+
)
|
|
66
|
+
except Exception:
|
|
67
|
+
_Qwen3VLCausalLMOutputWithPast = None
|
|
68
|
+
|
|
69
|
+
try:
|
|
70
|
+
from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import (
|
|
71
|
+
Qwen3VLMoeCausalLMOutputWithPast as _Qwen3VLMoeCausalLMOutputWithPast,
|
|
72
|
+
)
|
|
73
|
+
except Exception:
|
|
74
|
+
_Qwen3VLMoeCausalLMOutputWithPast = None
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@dataclass
|
|
78
|
+
class LigerCausalLMOutputWithPast(CausalLMOutputWithPast):
|
|
79
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
@dataclass
|
|
83
|
+
class LigerMoeCausalLMOutputWithPast(MoeCausalLMOutputWithPast):
|
|
84
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
if _Gemma3CausalLMOutputWithPast is not None:
|
|
88
|
+
|
|
89
|
+
@dataclass
|
|
90
|
+
class LigerGemma3CausalLMOutputWithPast(_Gemma3CausalLMOutputWithPast):
|
|
91
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
if _Glm4vMoeCausalLMOutputWithPast is not None:
|
|
95
|
+
|
|
96
|
+
@dataclass
|
|
97
|
+
class LigerGlm4vMoeCausalLMOutputWithPast(_Glm4vMoeCausalLMOutputWithPast):
|
|
98
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
if _LlavaCausalLMOutputWithPast is not None:
|
|
102
|
+
|
|
103
|
+
@dataclass
|
|
104
|
+
class LigerLlavaCausalLMOutputWithPast(_LlavaCausalLMOutputWithPast):
|
|
105
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
if _InternVLCausalLMOutputWithPast is not None:
|
|
109
|
+
|
|
110
|
+
@dataclass
|
|
111
|
+
class LigerInternVLCausalLMOutputWithPast(_InternVLCausalLMOutputWithPast):
|
|
112
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
if _PaliGemmaCausalLMOutputWithPast is not None:
|
|
116
|
+
|
|
117
|
+
@dataclass
|
|
118
|
+
class LigerPaliGemmaCausalLMOutputWithPast(_PaliGemmaCausalLMOutputWithPast):
|
|
119
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
if _Qwen2_5_VLCausalLMOutputWithPast is not None:
|
|
123
|
+
|
|
124
|
+
@dataclass
|
|
125
|
+
class LigerQwen2_5_VLCausalLMOutputWithPast(_Qwen2_5_VLCausalLMOutputWithPast):
|
|
126
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
if _Qwen2VLCausalLMOutputWithPast is not None:
|
|
130
|
+
|
|
131
|
+
@dataclass
|
|
132
|
+
class LigerQwen2VLCausalLMOutputWithPast(_Qwen2VLCausalLMOutputWithPast):
|
|
133
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
if _Qwen3VLCausalLMOutputWithPast is not None:
|
|
137
|
+
|
|
138
|
+
@dataclass
|
|
139
|
+
class LigerQwen3VLCausalLMOutputWithPast(_Qwen3VLCausalLMOutputWithPast):
|
|
140
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
if _Qwen3VLMoeCausalLMOutputWithPast is not None:
|
|
144
|
+
|
|
145
|
+
@dataclass
|
|
146
|
+
class LigerQwen3VLMoeCausalLMOutputWithPast(_Qwen3VLMoeCausalLMOutputWithPast):
|
|
147
|
+
token_accuracy: Optional[torch.FloatTensor] = None
|