liger-kernel-nightly 0.4.0.dev20241107052928__py3-none-any.whl → 0.6.3.dev20251121010306__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (114) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +350 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +304 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +21 -4
  18. liger_kernel/ops/cross_entropy.py +235 -84
  19. liger_kernel/ops/dyt.py +157 -0
  20. liger_kernel/ops/experimental/embedding.py +1 -3
  21. liger_kernel/ops/experimental/mm_int8int2.py +3 -9
  22. liger_kernel/ops/fused_add_rms_norm.py +412 -0
  23. liger_kernel/ops/fused_linear_cross_entropy.py +197 -75
  24. liger_kernel/ops/fused_linear_jsd.py +17 -34
  25. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  26. liger_kernel/ops/geglu.py +7 -18
  27. liger_kernel/ops/group_norm.py +305 -0
  28. liger_kernel/ops/grpo_loss.py +310 -0
  29. liger_kernel/ops/jsd.py +46 -21
  30. liger_kernel/ops/kl_div.py +23 -19
  31. liger_kernel/ops/layer_norm.py +150 -86
  32. liger_kernel/ops/llama4_rope.py +225 -0
  33. liger_kernel/ops/multi_token_attention.py +207 -0
  34. liger_kernel/ops/poly_norm.py +386 -0
  35. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  36. liger_kernel/ops/rms_norm.py +314 -84
  37. liger_kernel/ops/rope.py +32 -34
  38. liger_kernel/ops/softmax.py +201 -0
  39. liger_kernel/ops/sparsemax.py +179 -0
  40. liger_kernel/ops/swiglu.py +5 -9
  41. liger_kernel/ops/tiled_mlp.py +136 -0
  42. liger_kernel/ops/tvd.py +207 -0
  43. liger_kernel/ops/utils.py +8 -4
  44. liger_kernel/transformers/__init__.py +199 -24
  45. liger_kernel/transformers/auto_model.py +6 -13
  46. liger_kernel/transformers/cross_entropy.py +33 -20
  47. liger_kernel/transformers/dyt.py +22 -0
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -3
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +291 -13
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +43 -14
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -4
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -4
  57. liger_kernel/transformers/group_norm.py +50 -0
  58. liger_kernel/transformers/grpo_loss.py +98 -0
  59. liger_kernel/transformers/jsd.py +2 -7
  60. liger_kernel/transformers/kl_div.py +1 -3
  61. liger_kernel/transformers/layer_norm.py +3 -9
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/falcon_h1.py +122 -0
  64. liger_kernel/transformers/model/gemma.py +77 -77
  65. liger_kernel/transformers/model/gemma2.py +283 -0
  66. liger_kernel/transformers/model/gemma3.py +331 -0
  67. liger_kernel/transformers/model/glm4.py +141 -0
  68. liger_kernel/transformers/model/glm4v.py +163 -0
  69. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  70. liger_kernel/transformers/model/internvl.py +157 -0
  71. liger_kernel/transformers/model/llama.py +128 -79
  72. liger_kernel/transformers/model/llama4.py +121 -0
  73. liger_kernel/transformers/model/llava.py +344 -0
  74. liger_kernel/transformers/model/loss_utils.py +95 -0
  75. liger_kernel/transformers/model/mistral.py +68 -64
  76. liger_kernel/transformers/model/mixtral.py +75 -91
  77. liger_kernel/transformers/model/mllama.py +63 -68
  78. liger_kernel/transformers/model/olmo2.py +141 -0
  79. liger_kernel/transformers/model/output_classes.py +147 -0
  80. liger_kernel/transformers/model/paligemma.py +432 -0
  81. liger_kernel/transformers/model/phi3.py +59 -213
  82. liger_kernel/transformers/model/qwen2.py +75 -72
  83. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  84. liger_kernel/transformers/model/qwen2_vl.py +78 -98
  85. liger_kernel/transformers/model/qwen3.py +136 -0
  86. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  87. liger_kernel/transformers/model/qwen3_next.py +146 -0
  88. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  89. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  90. liger_kernel/transformers/model/smollm3.py +199 -0
  91. liger_kernel/transformers/model/smolvlm.py +158 -0
  92. liger_kernel/transformers/monkey_patch.py +2106 -289
  93. liger_kernel/transformers/multi_token_attention.py +64 -0
  94. liger_kernel/transformers/poly_norm.py +42 -0
  95. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  96. liger_kernel/transformers/rms_norm.py +57 -6
  97. liger_kernel/transformers/rope.py +45 -2
  98. liger_kernel/transformers/softmax.py +12 -0
  99. liger_kernel/transformers/sparsemax.py +16 -0
  100. liger_kernel/transformers/swiglu.py +23 -8
  101. liger_kernel/transformers/tiled_mlp.py +133 -0
  102. liger_kernel/transformers/trainer/__init__.py +4 -0
  103. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  104. liger_kernel/transformers/tvd.py +13 -0
  105. liger_kernel/triton/__init__.py +1 -3
  106. liger_kernel/triton/monkey_patch.py +1 -3
  107. liger_kernel/utils.py +71 -0
  108. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/METADATA +150 -137
  109. liger_kernel_nightly-0.6.3.dev20251121010306.dist-info/RECORD +116 -0
  110. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/WHEEL +1 -1
  111. liger_kernel_nightly-0.4.0.dev20241107052928.dist-info/RECORD +0 -48
  112. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,55 @@
1
+ from typing import Any
2
+ from typing import Callable
3
+
4
+ from torch.distributed.fsdp import FullyShardedDataParallel
5
+
6
+
7
+ class _FSDPForwardRedirection:
8
+ """
9
+ Modified based on
10
+ https://github.com/Lightning-AI/pytorch-lightning/blob/d3f9c83d6efa4f1def36aa6c199600946cdb9117/src/lightning/pytorch/strategies/strategy.py#L601-L648
11
+ Redirect a method call through FullyShardedDataParallel.forward so that the FSDP module's root pre-forward and
12
+ post-forward can be properly executed around the method call.
13
+ This is needed in cases where we call a submodule of a FSDP module. For instance, when we want to call only
14
+ the `LlamaModel` part out of a FSDP-wrapped `LlamaForCausalLM` to get the hidden states without involving
15
+ GPU-memory-heavy `lm_head` and cross entropy computation, doing this directly (i.e. `model.model.forward()`)
16
+ will not work because the first `nn.Embedding` layer is not independently wrapped as a FSDP module (because of
17
+ the transformer-based wrapping policy), and not calling it through FSDP root module forward will not all-gather
18
+ its parameter, thus resulting in "RuntimeError: 'weight' must be 2-D" error. Similarly, if we want to call just
19
+ the `lm_head` part of a model, we need this trick too to properly get its params all-gathered.
20
+ """
21
+
22
+ def __call__(
23
+ self,
24
+ wrapper_module: FullyShardedDataParallel,
25
+ method: Callable,
26
+ *args: Any,
27
+ **kwargs: Any,
28
+ ):
29
+ """Reroutes a method call through the `wrapper_module`'s `forward` method.
30
+ Args:
31
+ wrapper_module: The module that has `original_module` wrapped.
32
+ original_module: The module that was wrapped inside `wrapper_module`.
33
+ method_name: The name of the method that should be called on the `original_module` after inputs get
34
+ redirected through the `wrapper_module`'s `forward` method.
35
+ *args: The positional arguments to the method `method_name`. They will get passed to a patched
36
+ `forward` method instead.
37
+ **kwargs: The keyword arguments to the method `method_name`. They will get passed to a patched
38
+ `forward` method instead.
39
+ """
40
+ assert isinstance(wrapper_module, FullyShardedDataParallel)
41
+ original_module = wrapper_module._fsdp_wrapped_module
42
+ original_forward = original_module.forward
43
+
44
+ def wrapped_forward(*_args: Any, **_kwargs: Any) -> Any:
45
+ # Unpatch ourselves immediately before calling the method `method_name`
46
+ # because itself may want to call the real `forward`
47
+ original_module.forward = original_forward # type: ignore[method-assign]
48
+ # Call the actual method e.g. `.training_step(...)`
49
+ out = method(*_args, **_kwargs)
50
+ return out
51
+
52
+ # Patch the original_module's forward so we can redirect the arguments back to the real method
53
+ original_module.forward = wrapped_forward # type: ignore[method-assign]
54
+ wrapper_output = wrapper_module(*args, **kwargs)
55
+ return wrapper_output
@@ -1,23 +1,301 @@
1
+ from dataclasses import dataclass
2
+ from typing import Optional
3
+
4
+ import torch
5
+
1
6
  from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
2
- from liger_kernel.ops.fused_linear_cross_entropy import (
3
- LigerFusedLinearCrossEntropyFunction,
4
- )
7
+ from liger_kernel.ops.dyt import LigerDyTFunction
8
+ from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
9
+ from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
5
10
  from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
11
+ from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
6
12
  from liger_kernel.ops.geglu import LigerGELUMulFunction
13
+ from liger_kernel.ops.group_norm import LigerGroupNormFunction
7
14
  from liger_kernel.ops.jsd import LigerJSDFunction
8
15
  from liger_kernel.ops.kl_div import LigerKLDivLossFunction
9
16
  from liger_kernel.ops.layer_norm import LigerLayerNormFunction
17
+ from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
18
+ from liger_kernel.ops.poly_norm import LigerPolyNormFunction
19
+ from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
10
20
  from liger_kernel.ops.rms_norm import LigerRMSNormFunction
11
21
  from liger_kernel.ops.rope import LigerRopeFunction
22
+ from liger_kernel.ops.softmax import LigerSoftmaxFunction
23
+ from liger_kernel.ops.sparsemax import LigerSparsemaxFunction
12
24
  from liger_kernel.ops.swiglu import LigerSiLUMulFunction
25
+ from liger_kernel.ops.tvd import LigerTVDLossFunction
26
+
27
+
28
+ @dataclass
29
+ class CrossEntropyOutput:
30
+ loss: torch.Tensor
31
+ z_loss: Optional[torch.Tensor] = None
32
+ token_accuracy: Optional[torch.Tensor] = None
33
+
34
+
35
+ # conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
36
+ # `weight` and `size_average` are placeholders and not implemented yet
37
+ def liger_cross_entropy(
38
+ input,
39
+ target,
40
+ weight=None,
41
+ size_average=None,
42
+ ignore_index: int = -100,
43
+ reduce=None,
44
+ reduction: str = "mean",
45
+ label_smoothing: float = 0.0,
46
+ lse_square_scale: float = 0.0,
47
+ softcap: Optional[float] = None,
48
+ return_z_loss: bool = False,
49
+ return_token_accuracy: bool = False,
50
+ ):
51
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
52
+ input,
53
+ target,
54
+ weight,
55
+ ignore_index,
56
+ lse_square_scale,
57
+ label_smoothing,
58
+ reduction,
59
+ softcap,
60
+ return_z_loss,
61
+ return_token_accuracy,
62
+ )
63
+
64
+ if not return_z_loss and not return_token_accuracy:
65
+ return loss
66
+
67
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
68
+
69
+
70
+ def liger_fused_linear_cross_entropy(
71
+ input,
72
+ weight,
73
+ target,
74
+ bias=None,
75
+ ce_weight=None,
76
+ ignore_index: int = -100,
77
+ lse_square_scale: float = 0.0,
78
+ label_smoothing: float = 0.0,
79
+ reduction: str = "mean",
80
+ softcap: Optional[float] = None,
81
+ return_z_loss: bool = False,
82
+ accum_dtype=None,
83
+ use_token_scaling: bool = False,
84
+ return_token_accuracy: bool = False,
85
+ ):
86
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
87
+ input,
88
+ weight,
89
+ target,
90
+ bias,
91
+ ce_weight,
92
+ ignore_index,
93
+ lse_square_scale,
94
+ label_smoothing,
95
+ reduction,
96
+ softcap,
97
+ return_z_loss,
98
+ accum_dtype,
99
+ use_token_scaling,
100
+ return_token_accuracy,
101
+ )
102
+
103
+ if not return_z_loss and not return_token_accuracy:
104
+ return loss
105
+
106
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
107
+
108
+
109
+ def liger_fused_linear_jsd(
110
+ student_input,
111
+ student_weight,
112
+ teacher_input,
113
+ teacher_weight,
114
+ shift_labels=None,
115
+ jsd_beta: float = 0.5,
116
+ ignore_index: int = -100,
117
+ temperature: float = 1.0,
118
+ ):
119
+ return LigerFusedLinearJSDFunction.apply(
120
+ student_input,
121
+ student_weight,
122
+ teacher_input,
123
+ teacher_weight,
124
+ shift_labels,
125
+ jsd_beta,
126
+ ignore_index,
127
+ temperature,
128
+ )
129
+
130
+
131
+ def liger_geglu(a, b):
132
+ return LigerGELUMulFunction.apply(a, b)
133
+
134
+
135
+ def liger_group_norm(
136
+ X,
137
+ affine_scaling_weight,
138
+ affine_shifting_bias,
139
+ num_channels,
140
+ num_groups,
141
+ eps,
142
+ ):
143
+ return LigerGroupNormFunction.apply(
144
+ X,
145
+ affine_scaling_weight,
146
+ affine_shifting_bias,
147
+ num_channels,
148
+ num_groups,
149
+ eps,
150
+ )
151
+
152
+
153
+ def liger_jsd(
154
+ input,
155
+ target,
156
+ shift_labels=None,
157
+ beta: float = 0.5,
158
+ ignore_index: int = -100,
159
+ ):
160
+ return LigerJSDFunction.apply(
161
+ input,
162
+ target,
163
+ shift_labels,
164
+ beta,
165
+ ignore_index,
166
+ )
167
+
168
+
169
+ # conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.kl_div.html#torch.nn.functional.kl_div
170
+ # `size_average` and `mean` are being deprecated in torch API and are placeholders here
171
+ def liger_kl_div(
172
+ input,
173
+ target,
174
+ size_average: bool = True,
175
+ reduce: bool = True,
176
+ reduction: str = "mean",
177
+ log_target: bool = False,
178
+ eps: float = 1e-10,
179
+ ):
180
+ # Note: the default reduction in torch is `mean`, but being `batchmean` in Liger
181
+ return LigerKLDivLossFunction.apply(
182
+ input,
183
+ target,
184
+ reduction,
185
+ log_target,
186
+ eps,
187
+ )
188
+
189
+
190
+ def liger_sparsemax(
191
+ input,
192
+ dim: int = -1,
193
+ ):
194
+ return LigerSparsemaxFunction.apply(input, dim)
195
+
196
+
197
+ def liger_multi_token_attention(
198
+ scores,
199
+ weight,
200
+ bias=None,
201
+ stride: int = 1,
202
+ padding: int = 0,
203
+ dilation: int = 1,
204
+ groups: int = 1,
205
+ sparse: bool = False,
206
+ ):
207
+ """
208
+ Functional interface for multi-token attention.
209
+
210
+ Args:
211
+ scores: Input tensor of shape (B, C_in, L, L)
212
+ weight: Convolution weight tensor of shape (C_out, C_in // groups, K, K)
213
+ bias: Optional bias tensor of shape (C_out,)
214
+ stride: Stride for the convolution (default: 1)
215
+ padding: Padding for the convolution (default: 0)
216
+ dilation: Dilation factor for the convolution (default: 1)
217
+ groups: Number of groups for the convolution (default: 1)
218
+ sparse: Specifies if input tensors are expected to be sparse (default: False)
219
+ Returns:
220
+ Output tensor after applying multi-token attention.
221
+ """
222
+ return LigerMultiTokenAttentionFunction.apply(scores, weight, bias, stride, padding, dilation, groups, sparse)
223
+
224
+
225
+ def liger_fused_neighborhood_attention(
226
+ query,
227
+ key,
228
+ value,
229
+ kernel_size: int = 7,
230
+ dilation: int = 1,
231
+ scale: float = None,
232
+ ):
233
+ """
234
+ Liger fused neighborhood attention.
235
+
236
+ paper: https://arxiv.org/pdf/2504.16922
237
+
238
+ Args:
239
+ query: Query tensor of shape [batch_size, num_heads, seq_len, head_dim]
240
+ key: Key tensor of shape [batch_size, num_heads, seq_len, head_dim]
241
+ value: Value tensor of shape [batch_size, num_heads, seq_len, head_dim]
242
+ kernel_size: Size of the neighborhood window (default: 7)
243
+ dilation: Dilation factor for the neighborhood (default: 1)
244
+ scale: Scaling factor for attention scores (default: rsqrt(head_dim))
245
+
246
+ Returns:
247
+ Output tensor of shape [batch_size, num_heads, seq_len, head_dim]
248
+ """
249
+ return LigerFusedNeighborhoodAttentionFunction.apply(query, key, value, kernel_size, dilation, scale)
250
+
251
+
252
+ def liger_tvd(
253
+ input,
254
+ target,
255
+ shift_labels=None,
256
+ reduction: str = "mean",
257
+ ignore_index: int = -100,
258
+ ):
259
+ return LigerTVDLossFunction.apply(
260
+ input,
261
+ target,
262
+ shift_labels,
263
+ reduction,
264
+ ignore_index,
265
+ )
266
+
267
+
268
+ def liger_layer_norm(X, W, B, eps):
269
+ return LigerLayerNormFunction.apply(X, W, B, eps)
270
+
271
+
272
+ def liger_qwen2vl_mrope(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
273
+ return LigerQwen2VLMRopeFunction.apply(q, k, cos, sin, mrope_section, unsqueeze_dim)
274
+
275
+
276
+ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
277
+ return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
278
+
279
+
280
+ def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
281
+ return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
282
+
283
+
284
+ def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
285
+ return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
286
+
287
+
288
+ def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
289
+ return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
290
+
291
+
292
+ def liger_swiglu(a, b):
293
+ return LigerSiLUMulFunction.apply(a, b)
294
+
295
+
296
+ def liger_softmax(x):
297
+ return LigerSoftmaxFunction.apply(x)
298
+
13
299
 
14
- liger_swiglu = LigerSiLUMulFunction.apply
15
- liger_cross_entropy = LigerCrossEntropyFunction.apply
16
- liger_fused_linear_cross_entropy = LigerFusedLinearCrossEntropyFunction.apply
17
- liger_geglu = LigerGELUMulFunction.apply
18
- liger_rms_norm = LigerRMSNormFunction.apply
19
- liger_rope = LigerRopeFunction.apply
20
- liger_layer_norm = LigerLayerNormFunction.apply
21
- liger_kl_div = LigerKLDivLossFunction.apply
22
- liger_jsd = LigerJSDFunction.apply
23
- liger_fused_linear_jsd = LigerFusedLinearJSDFunction.apply
300
+ def liger_dyt(x, alpha, gamma, beta):
301
+ return LigerDyTFunction.apply(x, alpha, gamma, beta)
@@ -0,0 +1,39 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
5
+
6
+
7
+ class LigerFusedAddRMSNorm(nn.Module):
8
+ def __init__(
9
+ self,
10
+ hidden_size,
11
+ eps=1e-6,
12
+ offset=0.0,
13
+ casting_mode="llama",
14
+ init_fn="ones",
15
+ in_place=False,
16
+ ):
17
+ super().__init__()
18
+ assert init_fn in [
19
+ "ones",
20
+ "zeros",
21
+ ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
22
+ self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
23
+ self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
24
+
25
+ def forward(self, hidden_states, residual):
26
+ return LigerFusedAddRMSNormFunction.apply(
27
+ hidden_states,
28
+ residual,
29
+ self.weight,
30
+ self.variance_epsilon,
31
+ self.offset,
32
+ self.casting_mode,
33
+ self.in_place,
34
+ )
35
+
36
+ def extra_repr(self):
37
+ return (
38
+ f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
39
+ )
@@ -1,35 +1,64 @@
1
- import torch.nn as nn
1
+ from typing import Optional
2
2
 
3
- from liger_kernel.ops.fused_linear_cross_entropy import (
4
- LigerFusedLinearCrossEntropyFunction,
5
- )
3
+ import torch
6
4
 
5
+ from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
7
7
 
8
- class LigerFusedLinearCrossEntropyLoss(nn.Module):
8
+
9
+ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
9
10
  def __init__(
10
11
  self,
11
- ignore_index=-100,
12
- label_smoothing=0.0,
13
- reduction="mean",
14
- lse_square_scale=0.0,
12
+ ce_weight: Optional[torch.FloatTensor] = None,
13
+ ignore_index: int = -100,
14
+ lse_square_scale: float = 0.0,
15
+ label_smoothing: float = 0.0,
16
+ reduction: str = "mean",
17
+ softcap: Optional[float] = None,
18
+ return_z_loss: bool = False,
19
+ accum_dtype: Optional[torch.dtype] = None,
20
+ use_token_scaling: bool = False,
21
+ return_token_accuracy: bool = False,
15
22
  ):
16
23
  super().__init__()
24
+ assert (label_smoothing >= 0) and (label_smoothing <= 1), (
25
+ f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
26
+ )
27
+ assert reduction in {
28
+ "mean",
29
+ "sum",
30
+ "none",
31
+ }, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
32
+ assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
33
+ self.ce_weight = ce_weight
17
34
  self.ignore_index = ignore_index
35
+ self.lse_square_scale = lse_square_scale
18
36
  self.label_smoothing = label_smoothing
19
37
  self.reduction = reduction
20
- self.lse_square_scale = lse_square_scale
21
- assert (self.label_smoothing >= 0) and (
22
- self.label_smoothing <= 1
23
- ), f"label_smoothing must be between 0.0 and 1.0. Got: {self.label_smoothing}"
38
+ self.softcap = softcap
39
+ self.return_z_loss = return_z_loss
40
+ self.accum_dtype = accum_dtype
41
+ self.use_token_scaling = use_token_scaling
42
+ self.return_token_accuracy = return_token_accuracy
24
43
 
25
44
  def forward(self, lin_weight, _input, target, bias=None):
26
- return LigerFusedLinearCrossEntropyFunction.apply(
45
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
27
46
  _input,
28
47
  lin_weight,
29
48
  target,
30
49
  bias,
50
+ self.ce_weight,
31
51
  self.ignore_index,
32
52
  self.lse_square_scale,
33
53
  self.label_smoothing,
34
54
  self.reduction,
55
+ self.softcap,
56
+ self.return_z_loss,
57
+ self.accum_dtype,
58
+ self.use_token_scaling,
59
+ self.return_token_accuracy,
35
60
  )
61
+ if not self.return_z_loss and not self.return_token_accuracy:
62
+ return loss
63
+
64
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -12,7 +12,7 @@ class LigerFusedLinearJSD(torch.nn.Module):
12
12
  the materialization of the large logits tensor.
13
13
 
14
14
  Args:
15
- jsd_beta (float): coefficient beta of generalized JSD in the open interval (0, 1). Default: `0.5`
15
+ jsd_beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
16
16
  ignore_index (int): The index to ignore in the target. Default: `-100`
17
17
  temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
18
18
 
@@ -70,9 +70,6 @@ class LigerFusedLinearJSD(torch.nn.Module):
70
70
 
71
71
  def __init__(self, jsd_beta=0.5, ignore_index=-100, temperature=1.0):
72
72
  super().__init__()
73
- assert (
74
- jsd_beta > 0 and jsd_beta < 1
75
- ), f"beta must be greater than 0 and less than 1. Got: {jsd_beta}"
76
73
  assert temperature != 0, "temperature cannot be 0."
77
74
  self.jsd_beta = jsd_beta
78
75
  self.temperature = temperature