liger-kernel-nightly 0.4.0.dev20241107052928__py3-none-any.whl → 0.6.3.dev20251121010306__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/__init__.py +0 -0
- liger_kernel/chunked_loss/README.md +25 -0
- liger_kernel/chunked_loss/__init__.py +8 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/cpo_loss.py +157 -0
- liger_kernel/chunked_loss/dpo_loss.py +229 -0
- liger_kernel/chunked_loss/functional.py +17 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
- liger_kernel/chunked_loss/fused_linear_ppo.py +350 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
- liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
- liger_kernel/chunked_loss/grpo_loss.py +304 -0
- liger_kernel/chunked_loss/jsd_loss.py +200 -0
- liger_kernel/chunked_loss/kto_loss.py +210 -0
- liger_kernel/chunked_loss/orpo_loss.py +144 -0
- liger_kernel/chunked_loss/simpo_loss.py +165 -0
- liger_kernel/env_report.py +21 -4
- liger_kernel/ops/cross_entropy.py +235 -84
- liger_kernel/ops/dyt.py +157 -0
- liger_kernel/ops/experimental/embedding.py +1 -3
- liger_kernel/ops/experimental/mm_int8int2.py +3 -9
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +197 -75
- liger_kernel/ops/fused_linear_jsd.py +17 -34
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +7 -18
- liger_kernel/ops/group_norm.py +305 -0
- liger_kernel/ops/grpo_loss.py +310 -0
- liger_kernel/ops/jsd.py +46 -21
- liger_kernel/ops/kl_div.py +23 -19
- liger_kernel/ops/layer_norm.py +150 -86
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/ops/qwen2vl_mrope.py +222 -0
- liger_kernel/ops/rms_norm.py +314 -84
- liger_kernel/ops/rope.py +32 -34
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +5 -9
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/tvd.py +207 -0
- liger_kernel/ops/utils.py +8 -4
- liger_kernel/transformers/__init__.py +199 -24
- liger_kernel/transformers/auto_model.py +6 -13
- liger_kernel/transformers/cross_entropy.py +33 -20
- liger_kernel/transformers/dyt.py +22 -0
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -3
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +291 -13
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +43 -14
- liger_kernel/transformers/fused_linear_jsd.py +1 -4
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +1 -4
- liger_kernel/transformers/group_norm.py +50 -0
- liger_kernel/transformers/grpo_loss.py +98 -0
- liger_kernel/transformers/jsd.py +2 -7
- liger_kernel/transformers/kl_div.py +1 -3
- liger_kernel/transformers/layer_norm.py +3 -9
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +77 -77
- liger_kernel/transformers/model/gemma2.py +283 -0
- liger_kernel/transformers/model/gemma3.py +331 -0
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +128 -79
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +344 -0
- liger_kernel/transformers/model/loss_utils.py +95 -0
- liger_kernel/transformers/model/mistral.py +68 -64
- liger_kernel/transformers/model/mixtral.py +75 -91
- liger_kernel/transformers/model/mllama.py +63 -68
- liger_kernel/transformers/model/olmo2.py +141 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +432 -0
- liger_kernel/transformers/model/phi3.py +59 -213
- liger_kernel/transformers/model/qwen2.py +75 -72
- liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
- liger_kernel/transformers/model/qwen2_vl.py +78 -98
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +2106 -289
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +20 -0
- liger_kernel/transformers/rms_norm.py +57 -6
- liger_kernel/transformers/rope.py +45 -2
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +23 -8
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/__init__.py +4 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
- liger_kernel/transformers/tvd.py +13 -0
- liger_kernel/triton/__init__.py +1 -3
- liger_kernel/triton/monkey_patch.py +1 -3
- liger_kernel/utils.py +71 -0
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/METADATA +150 -137
- liger_kernel_nightly-0.6.3.dev20251121010306.dist-info/RECORD +116 -0
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/WHEEL +1 -1
- liger_kernel_nightly-0.4.0.dev20241107052928.dist-info/RECORD +0 -48
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/top_level.txt +0 -0
liger_kernel/ops/tvd.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
from typing import Literal
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import triton
|
|
6
|
+
import triton.language as tl
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
9
|
+
|
|
10
|
+
MAX_FUSED_SIZE = 65536 // 4
|
|
11
|
+
|
|
12
|
+
REDUCTION_LITERAL = Literal["none", "sum", "mean", "batchmean"]
|
|
13
|
+
|
|
14
|
+
_REDUCTION_MODE_NONE = tl.constexpr(0)
|
|
15
|
+
_REDUCTION_MODE_SUM = tl.constexpr(1)
|
|
16
|
+
_REDUCTION_MODE_MEAN = tl.constexpr(2)
|
|
17
|
+
_REDUCTION_MODE_BATCHMEAN = tl.constexpr(3)
|
|
18
|
+
|
|
19
|
+
_str_to_reduction_mode = {
|
|
20
|
+
"none": _REDUCTION_MODE_NONE.value,
|
|
21
|
+
"sum": _REDUCTION_MODE_SUM.value,
|
|
22
|
+
"mean": _REDUCTION_MODE_MEAN.value,
|
|
23
|
+
"batchmean": _REDUCTION_MODE_BATCHMEAN.value,
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def get_num_warps(BLOCK_SIZE):
|
|
28
|
+
num_warps = 4
|
|
29
|
+
if BLOCK_SIZE >= 32768:
|
|
30
|
+
num_warps = 32
|
|
31
|
+
elif BLOCK_SIZE >= 8192:
|
|
32
|
+
num_warps = 16
|
|
33
|
+
elif BLOCK_SIZE >= 2048:
|
|
34
|
+
num_warps = 8
|
|
35
|
+
|
|
36
|
+
return num_warps
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
@triton.jit
|
|
40
|
+
def _tv_distance_kernel(
|
|
41
|
+
p_ptr,
|
|
42
|
+
p_stride,
|
|
43
|
+
q_ptr,
|
|
44
|
+
q_stride,
|
|
45
|
+
loss_ptr,
|
|
46
|
+
loss_stride,
|
|
47
|
+
grads_ptr,
|
|
48
|
+
grads_stride,
|
|
49
|
+
label_ptr,
|
|
50
|
+
ignore_index: tl.constexpr,
|
|
51
|
+
n_cols,
|
|
52
|
+
BLOCK_SIZE: tl.constexpr,
|
|
53
|
+
HAS_LABEL: tl.constexpr,
|
|
54
|
+
reduction: tl.constexpr = _REDUCTION_MODE_BATCHMEAN,
|
|
55
|
+
):
|
|
56
|
+
pid = tl.program_id(0).to(tl.int64)
|
|
57
|
+
p_ptr += pid * p_stride
|
|
58
|
+
q_ptr += pid * q_stride
|
|
59
|
+
loss_ptr += pid * loss_stride
|
|
60
|
+
grads_ptr += pid * grads_stride
|
|
61
|
+
label_ptr += pid
|
|
62
|
+
|
|
63
|
+
base_offsets = tl.arange(0, BLOCK_SIZE)
|
|
64
|
+
|
|
65
|
+
if HAS_LABEL:
|
|
66
|
+
label = tl.load(label_ptr)
|
|
67
|
+
if label == ignore_index:
|
|
68
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
|
69
|
+
offsets = i + base_offsets
|
|
70
|
+
mask = offsets < n_cols
|
|
71
|
+
tl.store(grads_ptr + offsets, 0.0, mask=mask)
|
|
72
|
+
if reduction == _REDUCTION_MODE_NONE:
|
|
73
|
+
tl.store(loss_ptr + offsets, 0.0, mask=mask)
|
|
74
|
+
return
|
|
75
|
+
|
|
76
|
+
loss_sum = 0.0
|
|
77
|
+
for i in range(0, n_cols, BLOCK_SIZE):
|
|
78
|
+
offsets = i + base_offsets
|
|
79
|
+
mask = offsets < n_cols
|
|
80
|
+
|
|
81
|
+
p = tl.load(p_ptr + offsets, mask=mask, other=0.0)
|
|
82
|
+
q = tl.load(q_ptr + offsets, mask=mask, other=0.0)
|
|
83
|
+
|
|
84
|
+
# TVD(P || Q) = 0.5 * |P - Q|
|
|
85
|
+
tv_loss = 0.5 * tl.abs(p - q)
|
|
86
|
+
|
|
87
|
+
grad_res = tl.where(p > q, 0.5, -0.5)
|
|
88
|
+
|
|
89
|
+
tl.store(grads_ptr + offsets, grad_res, mask=mask)
|
|
90
|
+
|
|
91
|
+
if reduction == _REDUCTION_MODE_NONE:
|
|
92
|
+
tl.store(loss_ptr + offsets, tv_loss, mask=mask)
|
|
93
|
+
else:
|
|
94
|
+
loss_sum += tl.sum(tv_loss, axis=0)
|
|
95
|
+
|
|
96
|
+
if reduction != _REDUCTION_MODE_NONE:
|
|
97
|
+
tl.store(loss_ptr, loss_sum)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def tv_distance_forward_triton(p, q, shift_labels, reduction, ignore_index, has_label):
|
|
101
|
+
BT, V = p.shape
|
|
102
|
+
|
|
103
|
+
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
|
|
104
|
+
num_warps = get_num_warps(BLOCK_SIZE)
|
|
105
|
+
|
|
106
|
+
grid = (BT,)
|
|
107
|
+
|
|
108
|
+
reduction = _str_to_reduction_mode[reduction]
|
|
109
|
+
|
|
110
|
+
out_size = (BT, V) if reduction == _REDUCTION_MODE_NONE.value else (BT,)
|
|
111
|
+
output_tensor = torch.zeros(out_size, device=p.device, dtype=torch.float32)
|
|
112
|
+
grads = torch.empty_like(p)
|
|
113
|
+
|
|
114
|
+
n_non_ignore = (shift_labels != ignore_index).sum().item() if has_label else BT
|
|
115
|
+
|
|
116
|
+
_tv_distance_kernel[grid](
|
|
117
|
+
p,
|
|
118
|
+
p.stride(0),
|
|
119
|
+
q,
|
|
120
|
+
q.stride(0),
|
|
121
|
+
output_tensor,
|
|
122
|
+
output_tensor.stride(0),
|
|
123
|
+
grads,
|
|
124
|
+
grads.stride(0),
|
|
125
|
+
shift_labels if has_label else torch.empty(1, device=p.device),
|
|
126
|
+
ignore_index,
|
|
127
|
+
V,
|
|
128
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
129
|
+
HAS_LABEL=has_label,
|
|
130
|
+
num_warps=num_warps,
|
|
131
|
+
reduction=reduction,
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
if reduction == _REDUCTION_MODE_BATCHMEAN.value:
|
|
135
|
+
return output_tensor.sum() / n_non_ignore, grads / n_non_ignore
|
|
136
|
+
elif reduction == _REDUCTION_MODE_SUM.value:
|
|
137
|
+
return output_tensor.sum(dim=0), grads
|
|
138
|
+
elif reduction == _REDUCTION_MODE_MEAN.value:
|
|
139
|
+
return output_tensor.sum() / (n_non_ignore * V), grads / (n_non_ignore * V)
|
|
140
|
+
else:
|
|
141
|
+
return output_tensor, grads
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
def tvd_backward_triton(grad_output, grads):
|
|
145
|
+
# If cross entropy is the last layer, grad_output is 1.0. Skip the mul then.
|
|
146
|
+
if torch.equal(grad_output, torch.tensor(1.0, device=grad_output.device)):
|
|
147
|
+
return grads
|
|
148
|
+
|
|
149
|
+
return grads * grad_output
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
class LigerTVDLossFunction(torch.autograd.Function):
|
|
153
|
+
"""
|
|
154
|
+
Class implementing the forward and backward pass for the Total Variation Distance Loss using Triton.
|
|
155
|
+
"""
|
|
156
|
+
|
|
157
|
+
@staticmethod
|
|
158
|
+
@ensure_contiguous
|
|
159
|
+
def forward(
|
|
160
|
+
ctx,
|
|
161
|
+
p: torch.Tensor,
|
|
162
|
+
q: torch.Tensor,
|
|
163
|
+
shift_labels: Optional[torch.Tensor] = None,
|
|
164
|
+
reduction: REDUCTION_LITERAL = "batchmean",
|
|
165
|
+
ignore_index: int = -100,
|
|
166
|
+
) -> torch.Tensor:
|
|
167
|
+
"""A forward pass for the Total Variation Distance Loss.
|
|
168
|
+
|
|
169
|
+
Args:
|
|
170
|
+
ctx: Torch autograd context
|
|
171
|
+
p (torch.Tensor): A tensor of shape (BT, V) containing the first distribution.
|
|
172
|
+
q (torch.Tensor): A tensor of shape (BT, V) containing the second distribution.
|
|
173
|
+
shift_labels (Optional[torch.Tensor]): A tensor of shape (BT,) containing the labels.
|
|
174
|
+
reduction (REDUCTION_LITERAL, optional): The reduction method to be applied. Defaults to "batchmean".
|
|
175
|
+
ignore_index (int, optional): The index to ignore during loss calculation. Defaults to -100.
|
|
176
|
+
|
|
177
|
+
Returns:
|
|
178
|
+
torch.Tensor: The computed Total Variation Distance Loss.
|
|
179
|
+
"""
|
|
180
|
+
has_label = False
|
|
181
|
+
if shift_labels is not None:
|
|
182
|
+
assert shift_labels.shape == (p.shape[0],), (
|
|
183
|
+
f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
|
|
184
|
+
)
|
|
185
|
+
shift_labels = shift_labels.contiguous()
|
|
186
|
+
has_label = True
|
|
187
|
+
|
|
188
|
+
loss, grads = tv_distance_forward_triton(p, q, shift_labels, reduction, ignore_index, has_label)
|
|
189
|
+
ctx.save_for_backward(grads)
|
|
190
|
+
return loss
|
|
191
|
+
|
|
192
|
+
@staticmethod
|
|
193
|
+
@ensure_contiguous
|
|
194
|
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
|
195
|
+
"""A backward pass for the Total Variation Distance Loss.
|
|
196
|
+
|
|
197
|
+
Args:
|
|
198
|
+
ctx: Torch autograd context
|
|
199
|
+
grad_output (torch.Tensor): The gradient of the loss with respect to the output.
|
|
200
|
+
|
|
201
|
+
Returns:
|
|
202
|
+
tuple[torch.Tensor, None, None, None, None]: The gradient of the loss with respect to the inputs.
|
|
203
|
+
"""
|
|
204
|
+
(grads,) = ctx.saved_tensors
|
|
205
|
+
grads = tvd_backward_triton(grad_output, grads)
|
|
206
|
+
|
|
207
|
+
return grads, None, None, None, None
|
liger_kernel/ops/utils.py
CHANGED
|
@@ -13,13 +13,17 @@ Modifications made by Yanning Chen, 2024.
|
|
|
13
13
|
import functools
|
|
14
14
|
import importlib
|
|
15
15
|
import operator
|
|
16
|
+
|
|
16
17
|
from typing import Callable
|
|
17
18
|
|
|
18
19
|
import torch
|
|
19
20
|
import triton
|
|
20
21
|
import triton.language as tl
|
|
22
|
+
|
|
21
23
|
from packaging.version import Version
|
|
22
24
|
|
|
25
|
+
from liger_kernel.utils import infer_device
|
|
26
|
+
|
|
23
27
|
|
|
24
28
|
def is_hip() -> bool:
|
|
25
29
|
return torch.version.hip is not None
|
|
@@ -45,8 +49,7 @@ def calculate_settings(n):
|
|
|
45
49
|
BLOCK_SIZE = triton.next_power_of_2(n)
|
|
46
50
|
if BLOCK_SIZE > MAX_FUSED_SIZE:
|
|
47
51
|
raise RuntimeError(
|
|
48
|
-
f"Cannot launch Triton kernel since n = {n} exceeds "
|
|
49
|
-
f"the recommended Triton blocksize = {MAX_FUSED_SIZE}."
|
|
52
|
+
f"Cannot launch Triton kernel since n = {n} exceeds the recommended Triton blocksize = {MAX_FUSED_SIZE}."
|
|
50
53
|
)
|
|
51
54
|
|
|
52
55
|
num_warps = 4
|
|
@@ -69,10 +72,11 @@ def compare_version(package: str, operator: Callable, target: str):
|
|
|
69
72
|
|
|
70
73
|
|
|
71
74
|
def get_amp_custom_fwd_bwd() -> Callable:
|
|
75
|
+
device = infer_device()
|
|
72
76
|
if compare_version("torch", operator.ge, "2.4.0"):
|
|
73
77
|
return (
|
|
74
|
-
functools.partial(torch.amp.custom_fwd, device_type=
|
|
75
|
-
functools.partial(torch.amp.custom_bwd, device_type=
|
|
78
|
+
functools.partial(torch.amp.custom_fwd, device_type=device),
|
|
79
|
+
functools.partial(torch.amp.custom_bwd, device_type=device),
|
|
76
80
|
)
|
|
77
81
|
return torch.cuda.amp.custom_fwd, torch.cuda.amp.custom_bwd
|
|
78
82
|
|
|
@@ -1,31 +1,206 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
|
|
1
|
+
import importlib
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
5
|
+
# Always-safe imports (independent of 'transformers')
|
|
4
6
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
|
|
5
|
-
from liger_kernel.transformers.
|
|
6
|
-
|
|
7
|
-
|
|
7
|
+
from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
|
|
8
|
+
from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
|
|
9
|
+
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
|
|
8
10
|
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
9
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
10
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
13
|
+
from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
|
|
11
14
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
12
|
-
from liger_kernel.transformers.
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
apply_liger_kernel_to_gemma2,
|
|
17
|
-
apply_liger_kernel_to_llama,
|
|
18
|
-
apply_liger_kernel_to_mistral,
|
|
19
|
-
apply_liger_kernel_to_mixtral,
|
|
20
|
-
apply_liger_kernel_to_mllama,
|
|
21
|
-
apply_liger_kernel_to_phi3,
|
|
22
|
-
apply_liger_kernel_to_qwen2,
|
|
23
|
-
apply_liger_kernel_to_qwen2_vl,
|
|
24
|
-
)
|
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
|
+
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
25
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
26
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
27
|
-
from liger_kernel.transformers.
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
21
|
+
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
22
|
+
from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
|
|
23
|
+
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
|
24
|
+
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
25
|
+
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
26
|
+
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
27
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
|
|
28
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
|
|
29
|
+
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
30
|
+
|
|
31
|
+
# Static-only imports for IDEs and type checkers
|
|
32
|
+
if TYPE_CHECKING:
|
|
33
|
+
from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
|
|
34
|
+
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
|
|
35
|
+
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
|
36
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
|
|
37
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
|
38
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
|
39
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
40
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
41
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
42
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
43
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
44
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
47
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
48
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
49
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
|
|
50
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
51
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
52
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
53
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
54
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
55
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
56
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
|
57
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
58
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
59
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
60
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
61
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
|
|
62
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
|
|
63
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
64
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
# Check if 'transformers' is installed
|
|
68
|
+
try:
|
|
69
|
+
import transformers # noqa: F401
|
|
70
|
+
|
|
71
|
+
_TRANSFORMERS_AVAILABLE = True
|
|
72
|
+
except ImportError:
|
|
73
|
+
_TRANSFORMERS_AVAILABLE = False
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def is_transformers_available() -> bool:
|
|
77
|
+
"""
|
|
78
|
+
Returns True if the 'transformers' package is available.
|
|
79
|
+
Useful for conditional logic in downstream code.
|
|
80
|
+
"""
|
|
81
|
+
return _TRANSFORMERS_AVAILABLE
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def __getattr__(name: str):
|
|
85
|
+
"""
|
|
86
|
+
Handles lazy access to transformer-dependent attributes.
|
|
87
|
+
If 'transformers' is not installed, raises a user-friendly ImportError.
|
|
88
|
+
"""
|
|
89
|
+
if not _TRANSFORMERS_AVAILABLE:
|
|
90
|
+
raise ImportError(
|
|
91
|
+
f"The attribute '{name}' requires the 'transformers' library, which is not installed.\n"
|
|
92
|
+
f"Please install it with `pip install transformers` to use this functionality."
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
if name == "AutoLigerKernelForCausalLM":
|
|
96
|
+
module = importlib.import_module("liger_kernel.transformers.auto_model")
|
|
97
|
+
return getattr(module, name)
|
|
98
|
+
|
|
99
|
+
monkey_patch_symbols = {
|
|
100
|
+
"_apply_liger_kernel",
|
|
101
|
+
"_apply_liger_kernel_to_instance",
|
|
102
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
103
|
+
"apply_liger_kernel_to_gemma",
|
|
104
|
+
"apply_liger_kernel_to_gemma2",
|
|
105
|
+
"apply_liger_kernel_to_gemma3",
|
|
106
|
+
"apply_liger_kernel_to_gemma3_text",
|
|
107
|
+
"apply_liger_kernel_to_glm4",
|
|
108
|
+
"apply_liger_kernel_to_glm4v",
|
|
109
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
110
|
+
"apply_liger_kernel_to_granite",
|
|
111
|
+
"apply_liger_kernel_to_internvl",
|
|
112
|
+
"apply_liger_kernel_to_llama",
|
|
113
|
+
"apply_liger_kernel_to_llava",
|
|
114
|
+
"apply_liger_kernel_to_llama4",
|
|
115
|
+
"apply_liger_kernel_to_mistral",
|
|
116
|
+
"apply_liger_kernel_to_mixtral",
|
|
117
|
+
"apply_liger_kernel_to_mllama",
|
|
118
|
+
"apply_liger_kernel_to_olmo2",
|
|
119
|
+
"apply_liger_kernel_to_paligemma",
|
|
120
|
+
"apply_liger_kernel_to_phi3",
|
|
121
|
+
"apply_liger_kernel_to_qwen2",
|
|
122
|
+
"apply_liger_kernel_to_qwen2_5_vl",
|
|
123
|
+
"apply_liger_kernel_to_qwen2_vl",
|
|
124
|
+
"apply_liger_kernel_to_qwen3",
|
|
125
|
+
"apply_liger_kernel_to_qwen3_moe",
|
|
126
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
127
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
128
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
129
|
+
"apply_liger_kernel_to_smollm3",
|
|
130
|
+
"apply_liger_kernel_to_smolvlm",
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
if name in monkey_patch_symbols:
|
|
134
|
+
module = importlib.import_module("liger_kernel.transformers.monkey_patch")
|
|
135
|
+
return getattr(module, name)
|
|
136
|
+
|
|
137
|
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
# Shared symbols in all environments
|
|
141
|
+
__all__ = [
|
|
142
|
+
"is_transformers_available",
|
|
143
|
+
"LigerCrossEntropyLoss",
|
|
144
|
+
"LigerDyT",
|
|
145
|
+
"LigerFusedLinearCrossEntropyLoss",
|
|
146
|
+
"LigerFusedLinearJSD",
|
|
147
|
+
"LigerGEGLUMLP",
|
|
148
|
+
"LigerJSD",
|
|
149
|
+
"LigerLayerNorm",
|
|
150
|
+
"LigerFusedAddRMSNorm",
|
|
151
|
+
"LigerPolyNorm",
|
|
152
|
+
"LigerRMSNorm",
|
|
153
|
+
"liger_rotary_pos_emb",
|
|
154
|
+
"liger_llama4_text_rotary_pos_emb",
|
|
155
|
+
"liger_llama4_vision_rotary_pos_emb",
|
|
156
|
+
"LigerBlockSparseTop2MLP",
|
|
157
|
+
"LigerPhi3SwiGLUMLP",
|
|
158
|
+
"LigerQwen3MoeSwiGLUMLP",
|
|
159
|
+
"LigerSwiGLUMLP",
|
|
160
|
+
"LigerTiledGEGLUMLP",
|
|
161
|
+
"LigerTiledSwiGLUMLP",
|
|
162
|
+
"LigerTVDLoss",
|
|
163
|
+
"LigerKLDIVLoss",
|
|
164
|
+
"LigerMultiTokenAttention",
|
|
165
|
+
"LigerSoftmax",
|
|
166
|
+
"LigerSparsemax",
|
|
167
|
+
]
|
|
168
|
+
|
|
169
|
+
# Add transformer-dependent symbols only if available
|
|
170
|
+
if _TRANSFORMERS_AVAILABLE:
|
|
171
|
+
__all__.extend(
|
|
172
|
+
[
|
|
173
|
+
"AutoLigerKernelForCausalLM",
|
|
174
|
+
"_apply_liger_kernel",
|
|
175
|
+
"_apply_liger_kernel_to_instance",
|
|
176
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
177
|
+
"apply_liger_kernel_to_gemma",
|
|
178
|
+
"apply_liger_kernel_to_gemma2",
|
|
179
|
+
"apply_liger_kernel_to_gemma3",
|
|
180
|
+
"apply_liger_kernel_to_gemma3_text",
|
|
181
|
+
"apply_liger_kernel_to_glm4",
|
|
182
|
+
"apply_liger_kernel_to_glm4v",
|
|
183
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
184
|
+
"apply_liger_kernel_to_granite",
|
|
185
|
+
"apply_liger_kernel_to_internvl",
|
|
186
|
+
"apply_liger_kernel_to_llama",
|
|
187
|
+
"apply_liger_kernel_to_llava",
|
|
188
|
+
"apply_liger_kernel_to_llama4",
|
|
189
|
+
"apply_liger_kernel_to_mistral",
|
|
190
|
+
"apply_liger_kernel_to_mixtral",
|
|
191
|
+
"apply_liger_kernel_to_mllama",
|
|
192
|
+
"apply_liger_kernel_to_olmo2",
|
|
193
|
+
"apply_liger_kernel_to_paligemma",
|
|
194
|
+
"apply_liger_kernel_to_phi3",
|
|
195
|
+
"apply_liger_kernel_to_qwen2",
|
|
196
|
+
"apply_liger_kernel_to_qwen2_5_vl",
|
|
197
|
+
"apply_liger_kernel_to_qwen2_vl",
|
|
198
|
+
"apply_liger_kernel_to_qwen3",
|
|
199
|
+
"apply_liger_kernel_to_qwen3_moe",
|
|
200
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
201
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
202
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
203
|
+
"apply_liger_kernel_to_smollm3",
|
|
204
|
+
"apply_liger_kernel_to_smolvlm",
|
|
205
|
+
]
|
|
206
|
+
)
|
|
@@ -1,11 +1,10 @@
|
|
|
1
1
|
import inspect
|
|
2
2
|
|
|
3
|
-
from transformers import AutoConfig
|
|
3
|
+
from transformers import AutoConfig
|
|
4
|
+
from transformers import AutoModelForCausalLM
|
|
4
5
|
|
|
5
|
-
from liger_kernel.transformers.monkey_patch import
|
|
6
|
-
|
|
7
|
-
_apply_liger_kernel,
|
|
8
|
-
)
|
|
6
|
+
from liger_kernel.transformers.monkey_patch import MODEL_TYPE_TO_APPLY_LIGER_FN
|
|
7
|
+
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel
|
|
9
8
|
|
|
10
9
|
|
|
11
10
|
def _get_model_config(model_dir, **model_init_kwargs):
|
|
@@ -34,12 +33,6 @@ class AutoLigerKernelForCausalLM(AutoModelForCausalLM):
|
|
|
34
33
|
apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
|
|
35
34
|
apply_fn_signature = inspect.signature(apply_fn)
|
|
36
35
|
|
|
37
|
-
applicable_kwargs = {
|
|
38
|
-
key: value
|
|
39
|
-
for key, value in kwargs.items()
|
|
40
|
-
if key not in apply_fn_signature.parameters
|
|
41
|
-
}
|
|
36
|
+
applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
|
|
42
37
|
|
|
43
|
-
return super().from_pretrained(
|
|
44
|
-
pretrained_model_name_or_path, *model_args, **applicable_kwargs
|
|
45
|
-
)
|
|
38
|
+
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **applicable_kwargs)
|
|
@@ -1,43 +1,56 @@
|
|
|
1
|
-
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
import torch
|
|
2
4
|
|
|
3
5
|
from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
4
7
|
|
|
5
8
|
|
|
6
|
-
class LigerCrossEntropyLoss(nn.Module):
|
|
9
|
+
class LigerCrossEntropyLoss(torch.nn.Module):
|
|
7
10
|
def __init__(
|
|
8
11
|
self,
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
12
|
+
weight: Optional[torch.FloatTensor] = None,
|
|
13
|
+
ignore_index: int = -100,
|
|
14
|
+
lse_square_scale: float = 0.0,
|
|
15
|
+
label_smoothing: float = 0.0,
|
|
16
|
+
reduction: str = "mean",
|
|
17
|
+
softcap: Optional[float] = None,
|
|
18
|
+
return_z_loss: bool = False,
|
|
19
|
+
return_token_accuracy: bool = False,
|
|
14
20
|
):
|
|
15
21
|
super().__init__()
|
|
22
|
+
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
23
|
+
f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
|
|
24
|
+
)
|
|
25
|
+
assert reduction in {
|
|
26
|
+
"mean",
|
|
27
|
+
"sum",
|
|
28
|
+
"none",
|
|
29
|
+
}, f"reduction must be one of 'mean', 'sum', or 'none'. Got: {reduction}"
|
|
30
|
+
assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
|
|
31
|
+
self.weight = weight
|
|
16
32
|
self.ignore_index = ignore_index
|
|
17
33
|
self.lse_square_scale = lse_square_scale
|
|
18
34
|
self.label_smoothing = label_smoothing
|
|
19
35
|
self.reduction = reduction
|
|
36
|
+
self.softcap = softcap
|
|
20
37
|
self.return_z_loss = return_z_loss
|
|
38
|
+
self.return_token_accuracy = return_token_accuracy
|
|
21
39
|
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
), f"label_smoothing must be between 0.0 and 1.0. Got: {self.label_smoothing}"
|
|
25
|
-
assert self.reduction in {
|
|
26
|
-
"mean",
|
|
27
|
-
"sum",
|
|
28
|
-
"none",
|
|
29
|
-
}, f"reduction must be one of 'mean', 'sum', or 'none'. Got: {self.reduction}"
|
|
30
|
-
|
|
31
|
-
def forward(self, _input, target):
|
|
32
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
40
|
+
def forward(self, _input: torch.Tensor, target: torch.Tensor):
|
|
41
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
33
42
|
_input,
|
|
34
43
|
target,
|
|
44
|
+
self.weight,
|
|
35
45
|
self.ignore_index,
|
|
36
46
|
self.lse_square_scale,
|
|
37
47
|
self.label_smoothing,
|
|
38
48
|
self.reduction,
|
|
49
|
+
self.softcap,
|
|
39
50
|
self.return_z_loss,
|
|
51
|
+
self.return_token_accuracy,
|
|
40
52
|
)
|
|
41
|
-
if not self.return_z_loss:
|
|
53
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
42
54
|
return loss
|
|
43
|
-
|
|
55
|
+
|
|
56
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops.dyt import LigerDyTFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerDyT(nn.Module):
|
|
8
|
+
def __init__(self, hidden_size, beta=True, init_alpha=0.5):
|
|
9
|
+
super().__init__()
|
|
10
|
+
self.hidden_size = hidden_size
|
|
11
|
+
self.init_alpha = init_alpha
|
|
12
|
+
self.alpha = nn.Parameter(torch.ones(1) * init_alpha)
|
|
13
|
+
self.gamma = nn.Parameter(torch.ones(hidden_size))
|
|
14
|
+
self.beta = None
|
|
15
|
+
if beta:
|
|
16
|
+
self.beta = nn.Parameter(torch.zeros(hidden_size))
|
|
17
|
+
|
|
18
|
+
def forward(self, x):
|
|
19
|
+
return LigerDyTFunction.apply(x, self.alpha, self.gamma, self.beta)
|
|
20
|
+
|
|
21
|
+
def extra_repr(self):
|
|
22
|
+
return f"{self.hidden_size}, init_alpha={self.init_alpha}, beta={self.beta}"
|
|
@@ -7,9 +7,7 @@ from liger_kernel.ops.experimental.embedding import LigerEmbeddingFunction
|
|
|
7
7
|
|
|
8
8
|
|
|
9
9
|
class LigerEmbedding(nn.Module):
|
|
10
|
-
def __init__(
|
|
11
|
-
self, num_embeddings, embedding_dim, padding_idx: Optional[int] = None
|
|
12
|
-
):
|
|
10
|
+
def __init__(self, num_embeddings, embedding_dim, padding_idx: Optional[int] = None):
|
|
13
11
|
super().__init__()
|
|
14
12
|
self.num_embeddings = num_embeddings
|
|
15
13
|
self.embedding_dim = embedding_dim
|