liger-kernel-nightly 0.4.0.dev20241107052928__py3-none-any.whl → 0.6.3.dev20251121010306__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (114) hide show
  1. liger_kernel/__init__.py +0 -0
  2. liger_kernel/chunked_loss/README.md +25 -0
  3. liger_kernel/chunked_loss/__init__.py +8 -0
  4. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  5. liger_kernel/chunked_loss/cpo_loss.py +157 -0
  6. liger_kernel/chunked_loss/dpo_loss.py +229 -0
  7. liger_kernel/chunked_loss/functional.py +17 -0
  8. liger_kernel/chunked_loss/fused_linear_distillation.py +292 -0
  9. liger_kernel/chunked_loss/fused_linear_ppo.py +350 -0
  10. liger_kernel/chunked_loss/fused_linear_preference.py +433 -0
  11. liger_kernel/chunked_loss/fused_linear_unpaired_preference.py +341 -0
  12. liger_kernel/chunked_loss/grpo_loss.py +304 -0
  13. liger_kernel/chunked_loss/jsd_loss.py +200 -0
  14. liger_kernel/chunked_loss/kto_loss.py +210 -0
  15. liger_kernel/chunked_loss/orpo_loss.py +144 -0
  16. liger_kernel/chunked_loss/simpo_loss.py +165 -0
  17. liger_kernel/env_report.py +21 -4
  18. liger_kernel/ops/cross_entropy.py +235 -84
  19. liger_kernel/ops/dyt.py +157 -0
  20. liger_kernel/ops/experimental/embedding.py +1 -3
  21. liger_kernel/ops/experimental/mm_int8int2.py +3 -9
  22. liger_kernel/ops/fused_add_rms_norm.py +412 -0
  23. liger_kernel/ops/fused_linear_cross_entropy.py +197 -75
  24. liger_kernel/ops/fused_linear_jsd.py +17 -34
  25. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  26. liger_kernel/ops/geglu.py +7 -18
  27. liger_kernel/ops/group_norm.py +305 -0
  28. liger_kernel/ops/grpo_loss.py +310 -0
  29. liger_kernel/ops/jsd.py +46 -21
  30. liger_kernel/ops/kl_div.py +23 -19
  31. liger_kernel/ops/layer_norm.py +150 -86
  32. liger_kernel/ops/llama4_rope.py +225 -0
  33. liger_kernel/ops/multi_token_attention.py +207 -0
  34. liger_kernel/ops/poly_norm.py +386 -0
  35. liger_kernel/ops/qwen2vl_mrope.py +222 -0
  36. liger_kernel/ops/rms_norm.py +314 -84
  37. liger_kernel/ops/rope.py +32 -34
  38. liger_kernel/ops/softmax.py +201 -0
  39. liger_kernel/ops/sparsemax.py +179 -0
  40. liger_kernel/ops/swiglu.py +5 -9
  41. liger_kernel/ops/tiled_mlp.py +136 -0
  42. liger_kernel/ops/tvd.py +207 -0
  43. liger_kernel/ops/utils.py +8 -4
  44. liger_kernel/transformers/__init__.py +199 -24
  45. liger_kernel/transformers/auto_model.py +6 -13
  46. liger_kernel/transformers/cross_entropy.py +33 -20
  47. liger_kernel/transformers/dyt.py +22 -0
  48. liger_kernel/transformers/experimental/__init__.py +5 -0
  49. liger_kernel/transformers/experimental/embedding.py +1 -3
  50. liger_kernel/transformers/fsdp.py +55 -0
  51. liger_kernel/transformers/functional.py +291 -13
  52. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  53. liger_kernel/transformers/fused_linear_cross_entropy.py +43 -14
  54. liger_kernel/transformers/fused_linear_jsd.py +1 -4
  55. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  56. liger_kernel/transformers/geglu.py +1 -4
  57. liger_kernel/transformers/group_norm.py +50 -0
  58. liger_kernel/transformers/grpo_loss.py +98 -0
  59. liger_kernel/transformers/jsd.py +2 -7
  60. liger_kernel/transformers/kl_div.py +1 -3
  61. liger_kernel/transformers/layer_norm.py +3 -9
  62. liger_kernel/transformers/llama4_rope.py +93 -0
  63. liger_kernel/transformers/model/falcon_h1.py +122 -0
  64. liger_kernel/transformers/model/gemma.py +77 -77
  65. liger_kernel/transformers/model/gemma2.py +283 -0
  66. liger_kernel/transformers/model/gemma3.py +331 -0
  67. liger_kernel/transformers/model/glm4.py +141 -0
  68. liger_kernel/transformers/model/glm4v.py +163 -0
  69. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  70. liger_kernel/transformers/model/internvl.py +157 -0
  71. liger_kernel/transformers/model/llama.py +128 -79
  72. liger_kernel/transformers/model/llama4.py +121 -0
  73. liger_kernel/transformers/model/llava.py +344 -0
  74. liger_kernel/transformers/model/loss_utils.py +95 -0
  75. liger_kernel/transformers/model/mistral.py +68 -64
  76. liger_kernel/transformers/model/mixtral.py +75 -91
  77. liger_kernel/transformers/model/mllama.py +63 -68
  78. liger_kernel/transformers/model/olmo2.py +141 -0
  79. liger_kernel/transformers/model/output_classes.py +147 -0
  80. liger_kernel/transformers/model/paligemma.py +432 -0
  81. liger_kernel/transformers/model/phi3.py +59 -213
  82. liger_kernel/transformers/model/qwen2.py +75 -72
  83. liger_kernel/transformers/model/qwen2_5_vl.py +163 -0
  84. liger_kernel/transformers/model/qwen2_vl.py +78 -98
  85. liger_kernel/transformers/model/qwen3.py +136 -0
  86. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  87. liger_kernel/transformers/model/qwen3_next.py +146 -0
  88. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  89. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  90. liger_kernel/transformers/model/smollm3.py +199 -0
  91. liger_kernel/transformers/model/smolvlm.py +158 -0
  92. liger_kernel/transformers/monkey_patch.py +2106 -289
  93. liger_kernel/transformers/multi_token_attention.py +64 -0
  94. liger_kernel/transformers/poly_norm.py +42 -0
  95. liger_kernel/transformers/qwen2vl_mrope.py +20 -0
  96. liger_kernel/transformers/rms_norm.py +57 -6
  97. liger_kernel/transformers/rope.py +45 -2
  98. liger_kernel/transformers/softmax.py +12 -0
  99. liger_kernel/transformers/sparsemax.py +16 -0
  100. liger_kernel/transformers/swiglu.py +23 -8
  101. liger_kernel/transformers/tiled_mlp.py +133 -0
  102. liger_kernel/transformers/trainer/__init__.py +4 -0
  103. liger_kernel/transformers/trainer/orpo_trainer.py +130 -0
  104. liger_kernel/transformers/tvd.py +13 -0
  105. liger_kernel/triton/__init__.py +1 -3
  106. liger_kernel/triton/monkey_patch.py +1 -3
  107. liger_kernel/utils.py +71 -0
  108. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/METADATA +150 -137
  109. liger_kernel_nightly-0.6.3.dev20251121010306.dist-info/RECORD +116 -0
  110. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/WHEEL +1 -1
  111. liger_kernel_nightly-0.4.0.dev20241107052928.dist-info/RECORD +0 -48
  112. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/LICENSE +0 -0
  113. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/NOTICE +0 -0
  114. {liger_kernel_nightly-0.4.0.dev20241107052928.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,386 @@
1
+ import operator
2
+
3
+ import torch
4
+ import triton
5
+ import triton.language as tl
6
+
7
+ from liger_kernel.ops.utils import calculate_settings
8
+ from liger_kernel.ops.utils import compare_version
9
+ from liger_kernel.ops.utils import ensure_contiguous
10
+
11
+ if compare_version("triton", operator.ge, "3.0.0"):
12
+ try:
13
+ from triton.language.extra.libdevice import rsqrt
14
+ except ModuleNotFoundError:
15
+ from triton.language.extra.cuda.libdevice import rsqrt
16
+ else:
17
+ from triton.language.math import rsqrt
18
+
19
+
20
+ @triton.jit
21
+ def _poly_norm_forward_kernel(
22
+ Y_ptr,
23
+ Y_row_stride,
24
+ X_ptr,
25
+ X_row_stride,
26
+ W_ptr, # weight: [3] for [w0, w1, w2]
27
+ B_ptr, # bias: scalar
28
+ RSTD_ptr, # cache rstd for backward: shape (n_rows, 3)
29
+ RSTD_row_stride,
30
+ n_cols,
31
+ eps,
32
+ BLOCK_SIZE: tl.constexpr,
33
+ ):
34
+ """
35
+ PolyNorm formula:
36
+ y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
37
+ where norm(u) = u / sqrt(mean(u²) + ε)
38
+
39
+ Reference:
40
+ 1. https://github.com/BryceZhuo/PolyCom/
41
+ 2. https://arxiv.org/pdf/2411.03884
42
+
43
+ Cache rstd values for backward pass
44
+ """
45
+ row_idx = tl.program_id(0).to(tl.int64)
46
+ col_offsets = tl.arange(0, BLOCK_SIZE)
47
+ mask = col_offsets < n_cols
48
+
49
+ # Load pointers
50
+ Y_ptr += row_idx * Y_row_stride
51
+ X_ptr += row_idx * X_row_stride
52
+ RSTD_ptr += row_idx * RSTD_row_stride
53
+
54
+ # Load input row
55
+ X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
56
+
57
+ # Load weights and bias
58
+ w0 = tl.load(W_ptr + 0)
59
+ w1 = tl.load(W_ptr + 1)
60
+ w2 = tl.load(W_ptr + 2)
61
+ b = tl.load(B_ptr)
62
+
63
+ # Compute x³, x², x
64
+ X_pow3 = X_row * X_row * X_row
65
+ X_pow2 = X_row * X_row
66
+ X_pow1 = X_row
67
+
68
+ # Compute norm(x³): norm(u) = u * rsqrt(mean(u²) + eps)
69
+ mean_square_3 = tl.sum(X_pow3 * X_pow3, axis=0) / n_cols
70
+ rstd_3 = rsqrt(mean_square_3 + eps)
71
+ norm_x3 = X_pow3 * rstd_3
72
+
73
+ # Compute norm(x²)
74
+ mean_square_2 = tl.sum(X_pow2 * X_pow2, axis=0) / n_cols
75
+ rstd_2 = rsqrt(mean_square_2 + eps)
76
+ norm_x2 = X_pow2 * rstd_2
77
+
78
+ # Compute norm(x)
79
+ mean_square_1 = tl.sum(X_pow1 * X_pow1, axis=0) / n_cols
80
+ rstd_1 = rsqrt(mean_square_1 + eps)
81
+ norm_x1 = X_pow1 * rstd_1
82
+
83
+ # Cache rstd values for backward
84
+ tl.store(RSTD_ptr + 0, rstd_3)
85
+ tl.store(RSTD_ptr + 1, rstd_2)
86
+ tl.store(RSTD_ptr + 2, rstd_1)
87
+
88
+ # Compute output: y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
89
+ Y_row = w0 * norm_x3 + w1 * norm_x2 + w2 * norm_x1 + b
90
+
91
+ # Store output
92
+ tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
93
+
94
+
95
+ @triton.jit
96
+ def _poly_norm_backward_kernel(
97
+ dY_ptr,
98
+ dY_row_stride,
99
+ dX_ptr,
100
+ dX_row_stride,
101
+ X_ptr,
102
+ X_row_stride,
103
+ W_ptr,
104
+ RSTD_ptr,
105
+ RSTD_row_stride,
106
+ dW_ptr, # shape: (n_programs, 3)
107
+ dW_row_stride,
108
+ dB_ptr, # shape: (n_programs,)
109
+ n_rows,
110
+ n_cols,
111
+ rows_per_program: tl.constexpr,
112
+ BLOCK_SIZE: tl.constexpr,
113
+ ):
114
+ """
115
+ PolyNorm Backward Kernel Gradient:
116
+ ∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
117
+
118
+ where:
119
+ - D_p = RMS(x^p) = 1/rstd_p
120
+ - S_p = sum(grad * x^p) over the row
121
+ - d = n_cols
122
+ - p ∈ {3, 2, 1}
123
+ """
124
+ row_block_id = tl.program_id(0).to(tl.int64)
125
+ row_start = row_block_id * rows_per_program
126
+ row_end = min((row_block_id + 1) * rows_per_program, n_rows)
127
+ col_offsets = tl.arange(0, BLOCK_SIZE)
128
+ mask = col_offsets < n_cols
129
+
130
+ # Initialize accumulators for weight and bias gradients (scalars)
131
+ dW0_acc = 0.0
132
+ dW1_acc = 0.0
133
+ dW2_acc = 0.0
134
+ dB_acc = 0.0
135
+
136
+ # Load weights
137
+ w0 = tl.load(W_ptr + 0).to(tl.float32)
138
+ w1 = tl.load(W_ptr + 1).to(tl.float32)
139
+ w2 = tl.load(W_ptr + 2).to(tl.float32)
140
+
141
+ dY_ptr += row_start * dY_row_stride
142
+ dX_ptr += row_start * dX_row_stride
143
+ X_ptr += row_start * X_row_stride
144
+ RSTD_ptr += row_start * RSTD_row_stride
145
+
146
+ for _ in range(row_start, row_end):
147
+ # Load input and gradient
148
+ dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
149
+ X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
150
+
151
+ # Load cached rstd values
152
+ rstd_3 = tl.load(RSTD_ptr + 0).to(tl.float32)
153
+ rstd_2 = tl.load(RSTD_ptr + 1).to(tl.float32)
154
+ rstd_1 = tl.load(RSTD_ptr + 2).to(tl.float32)
155
+
156
+ # Compute powers
157
+ X_pow3 = X_row * X_row * X_row
158
+ X_pow2 = X_row * X_row
159
+ X_pow1 = X_row
160
+
161
+ # Accumulate bias gradient: dB = sum(dY)
162
+ dB_acc += tl.sum(dY_row, axis=0)
163
+
164
+ # Compute gradient w.r.t. input using closed-form formula
165
+ # For p=3: ∂L/∂x from w0 * norm(x³)
166
+ S_3 = tl.sum(dY_row * X_pow3, axis=0) # scalar
167
+ grad_x_3 = w0 * (
168
+ 3.0 * X_pow2 * rstd_3 * dY_row
169
+ - (3.0 / n_cols) * X_row * X_row * X_row * X_row * X_row * (rstd_3 * rstd_3 * rstd_3) * S_3
170
+ )
171
+
172
+ # For p=2: ∂L/∂x from w1 * norm(x²)
173
+ S_2 = tl.sum(dY_row * X_pow2, axis=0) # scalar
174
+ grad_x_2 = w1 * (
175
+ 2.0 * X_row * rstd_2 * dY_row - (2.0 / n_cols) * X_row * X_row * X_row * (rstd_2 * rstd_2 * rstd_2) * S_2
176
+ )
177
+
178
+ # For p=1: ∂L/∂x from w2 * norm(x)
179
+ S_1 = tl.sum(dY_row * X_pow1, axis=0) # scalar
180
+ grad_x_1 = w2 * (1.0 * rstd_1 * dY_row - (1.0 / n_cols) * X_row * (rstd_1 * rstd_1 * rstd_1) * S_1)
181
+
182
+ # Accumulate weight gradients using closed-form: dW_p = rstd_p * S_p
183
+ dW0_acc += rstd_3 * S_3
184
+ dW1_acc += rstd_2 * S_2
185
+ dW2_acc += rstd_1 * S_1
186
+
187
+ # Total gradient
188
+ dX_row = grad_x_3 + grad_x_2 + grad_x_1
189
+
190
+ # Store gradient
191
+ tl.store(dX_ptr + col_offsets, dX_row, mask=mask)
192
+
193
+ # Update pointers
194
+ dY_ptr += dY_row_stride
195
+ dX_ptr += dX_row_stride
196
+ X_ptr += X_row_stride
197
+ RSTD_ptr += RSTD_row_stride
198
+
199
+ # Store accumulated gradients (scalars)
200
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 0, dW0_acc)
201
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 1, dW1_acc)
202
+ tl.store(dW_ptr + row_block_id * dW_row_stride + 2, dW2_acc)
203
+ tl.store(dB_ptr + row_block_id, dB_acc)
204
+
205
+
206
+ def poly_norm_forward(X, W, B, eps=1e-6):
207
+ """
208
+ PolyNorm Forward Pass
209
+
210
+ Args:
211
+ X: input tensor of shape (*, H) where H is hidden dimension
212
+ W: weight tensor of shape (3,) for [w0, w1, w2]
213
+ B: bias scalar tensor
214
+ eps: epsilon for numerical stability
215
+
216
+ Returns:
217
+ Y: output tensor of same shape as X
218
+ X: reshaped input (for backward)
219
+ RSTD: cached rstd values (for backward)
220
+ BLOCK_SIZE: block size used
221
+ num_warps: number of warps used
222
+ """
223
+ shape = X.shape
224
+ dim = shape[-1]
225
+ X = X.view(-1, dim)
226
+ n_rows, n_cols = X.shape
227
+ BLOCK_SIZE, num_warps = calculate_settings(n_cols)
228
+
229
+ # RSTD is to cache rstd for each row
230
+ Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
231
+ RSTD = torch.empty((n_rows, 3), dtype=torch.float32, device=X.device)
232
+
233
+ # Check constraints
234
+ assert W.shape[0] == 3, "Weight tensor must have shape (3,)"
235
+ assert B.numel() == 1, "Bias must be a scalar"
236
+
237
+ # XPU-specific optimization
238
+ kernel_args = {}
239
+ if X.device.type == "xpu":
240
+ kernel_args["grf_mode"] = "large"
241
+
242
+ # Launch kernel
243
+ _poly_norm_forward_kernel[(n_rows,)](
244
+ Y,
245
+ Y.stride(0),
246
+ X,
247
+ X.stride(0),
248
+ W,
249
+ B,
250
+ RSTD,
251
+ RSTD.stride(0),
252
+ n_cols,
253
+ eps,
254
+ BLOCK_SIZE=BLOCK_SIZE,
255
+ num_warps=num_warps,
256
+ **kernel_args,
257
+ )
258
+
259
+ return Y.view(*shape), X, RSTD, BLOCK_SIZE, num_warps
260
+
261
+
262
+ def poly_norm_backward(dY, X, W, RSTD, BLOCK_SIZE, num_warps, in_place):
263
+ """
264
+ PolyNorm Backward Pass
265
+
266
+ Args:
267
+ dY: gradient of output
268
+ X: input tensor (already reshaped to 2D)
269
+ W: weight tensor
270
+ RSTD: cached rstd values from forward
271
+ BLOCK_SIZE: block size from forward
272
+ num_warps: number of warps from forward
273
+ in_place: whether to in-place modify dY to store dX (saves memory)
274
+
275
+ Returns:
276
+ dX: gradient w.r.t. input
277
+ dW: gradient w.r.t. weight
278
+ dB: gradient w.r.t. bias
279
+ """
280
+ shape = dY.shape
281
+ dim = shape[-1]
282
+ dY = dY.view(-1, dim)
283
+ n_rows, n_cols = dY.shape
284
+
285
+ # Get number of SMs for parallelization
286
+ import math
287
+
288
+ sm_count = 1
289
+ if X.device.type == "cuda":
290
+ sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
291
+ elif X.device.type == "xpu":
292
+ sm_count = torch.xpu.get_device_properties(X.device).gpu_eu_count
293
+
294
+ # Allocate or reuse gradients
295
+ if in_place is True:
296
+ dX = dY
297
+ else:
298
+ dX = torch.zeros_like(dY)
299
+
300
+ _dW = torch.empty((sm_count, 3), dtype=torch.float32, device=W.device)
301
+ _dB = torch.empty((sm_count,), dtype=torch.float32, device=W.device)
302
+
303
+ rows_per_program = math.ceil(n_rows / sm_count)
304
+ grid = (sm_count,)
305
+
306
+ # XPU-specific optimization
307
+ kernel_args = {}
308
+ if X.device.type == "xpu":
309
+ kernel_args["grf_mode"] = "large"
310
+
311
+ # Launch backward kernel
312
+ _poly_norm_backward_kernel[grid](
313
+ dY,
314
+ dY.stride(0),
315
+ dX,
316
+ dX.stride(0),
317
+ X,
318
+ X.stride(0),
319
+ W,
320
+ RSTD,
321
+ RSTD.stride(0),
322
+ _dW,
323
+ _dW.stride(0),
324
+ _dB,
325
+ n_rows,
326
+ n_cols,
327
+ rows_per_program,
328
+ BLOCK_SIZE=BLOCK_SIZE,
329
+ num_warps=num_warps,
330
+ **kernel_args,
331
+ )
332
+
333
+ # Reduce gradients across SMs
334
+ dX = dX.view(*shape)
335
+ dW = _dW.sum(dim=0).to(W.dtype)
336
+ dB = _dB.sum().to(W.dtype)
337
+
338
+ return dX, dW, dB
339
+
340
+
341
+ class LigerPolyNormFunction(torch.autograd.Function):
342
+ """
343
+ PolyNorm Function with forward and backward pass
344
+
345
+ PolyNorm formula:
346
+ y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
347
+ where norm(u) = u / sqrt(mean(u²) + ε)
348
+
349
+ Backward uses closed-form gradient:
350
+ ∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
351
+ """
352
+
353
+ @staticmethod
354
+ @ensure_contiguous
355
+ def forward(ctx, X, W, B, eps=1e-6, in_place=True):
356
+ """
357
+ Args:
358
+ X: input tensor of shape (B, T, H) or (BxT, H)
359
+ W: weight tensor of shape (3,) for [w0, w1, w2]
360
+ B: bias scalar
361
+ eps: epsilon for numerical stability
362
+ in_place: whether to in-place modify grad_output in backward (saves memory)
363
+
364
+ Returns:
365
+ Y: output tensor of same shape as X
366
+ """
367
+ Y, X, RSTD, BLOCK_SIZE, num_warps = poly_norm_forward(X, W, B, eps)
368
+ ctx.BLOCK_SIZE = BLOCK_SIZE
369
+ ctx.num_warps = num_warps
370
+ ctx.in_place = in_place
371
+ ctx.save_for_backward(X, W, RSTD)
372
+ return Y
373
+
374
+ @staticmethod
375
+ @ensure_contiguous
376
+ def backward(ctx, grad_output):
377
+ """
378
+ Args:
379
+ grad_output: gradient of output
380
+
381
+ Returns:
382
+ dX, dW, dB: gradients w.r.t. X, W, B
383
+ """
384
+ X, W, RSTD = ctx.saved_tensors
385
+ dX, dW, dB = poly_norm_backward(grad_output, X, W, RSTD, ctx.BLOCK_SIZE, ctx.num_warps, ctx.in_place)
386
+ return dX, dW, dB, None, None
@@ -0,0 +1,222 @@
1
+ import torch
2
+ import triton
3
+ import triton.language as tl
4
+
5
+
6
+ @triton.jit
7
+ def _triton_qwen2vl_mrope(
8
+ q_ptr,
9
+ k_ptr,
10
+ cos,
11
+ sin,
12
+ sl,
13
+ bs: tl.constexpr,
14
+ n_qh: tl.constexpr,
15
+ n_kh: tl.constexpr,
16
+ hd: tl.constexpr,
17
+ pad_n_qh: tl.constexpr,
18
+ pad_n_kh: tl.constexpr,
19
+ pad_hd: tl.constexpr,
20
+ mrope_section_t: tl.constexpr,
21
+ mrope_section_h: tl.constexpr,
22
+ BLOCK_SIZE: tl.constexpr,
23
+ BACKWARD_PASS: tl.constexpr = False,
24
+ ):
25
+ pid = tl.program_id(0)
26
+
27
+ # locate start address
28
+ q_ptr = q_ptr + pid * (n_qh * hd)
29
+ k_ptr = k_ptr + pid * (n_kh * hd)
30
+
31
+ # ####################################################################
32
+ # get the cos(mθ_{i...d/2}) and sin(mθ_{i...d/2}) for token position
33
+ # m of this program instance
34
+ # ####################################################################
35
+
36
+ # 1. program instances are laid out in a 1D vector of size bsz * seq_len, which
37
+ # effectively represents a 2D grid of size [bsz, seq_len] with seq_len dimension
38
+ # being the fastest changing dimension. Thus we can simply do pid // sl to get the batch index
39
+ # and pid % sl to get the sequence index.
40
+ # 2. We only need the left half of cos and sin matrix because the right half is just
41
+ # a clone of the left half.
42
+ t_end = mrope_section_t
43
+ h_end = t_end + mrope_section_h
44
+
45
+ t_cos = cos + pid * hd
46
+ h_cos = t_cos + bs * sl * hd
47
+ w_cos = h_cos + bs * sl * hd
48
+ t_sin = sin + pid * hd
49
+ h_sin = t_sin + bs * sl * hd
50
+ w_sin = h_sin + bs * sl * hd
51
+
52
+ cos_offsets = tl.arange(0, pad_hd // 2)
53
+ t_mask = cos_offsets < t_end
54
+ h_mask = (t_end <= cos_offsets) & (cos_offsets < h_end)
55
+ w_mask = (h_end <= cos_offsets) & (cos_offsets < hd // 2)
56
+ t_cos_row = tl.load(t_cos + cos_offsets, mask=t_mask, other=0)
57
+ h_cos_row = tl.load(h_cos + cos_offsets, mask=h_mask, other=0)
58
+ w_cos_row = tl.load(w_cos + cos_offsets, mask=w_mask, other=0)
59
+ t_sin_row = tl.load(t_sin + cos_offsets, mask=t_mask, other=0)
60
+ h_sin_row = tl.load(h_sin + cos_offsets, mask=h_mask, other=0)
61
+ w_sin_row = tl.load(w_sin + cos_offsets, mask=w_mask, other=0)
62
+ cos_row = t_cos_row + h_cos_row + w_cos_row
63
+ sin_row = t_sin_row + h_sin_row + w_sin_row
64
+
65
+ # ####################################################################
66
+ # Load the left and right half of q and k for the current
67
+ # program instance (i.e. for the current token) separately
68
+ # ####################################################################
69
+ # left half of the head
70
+ first_half_q_offsets = tl.arange(0, pad_n_qh)[:, None] * hd + tl.arange(0, pad_hd // 2)[None, :]
71
+ first_half_k_offsets = tl.arange(0, pad_n_kh)[:, None] * hd + tl.arange(0, pad_hd // 2)[None, :]
72
+ first_q_mask = (tl.arange(0, pad_n_qh)[:, None] < n_qh) & (tl.arange(0, pad_hd // 2)[None, :] < hd // 2)
73
+ first_k_mask = (tl.arange(0, pad_n_kh)[:, None] < n_kh) & (tl.arange(0, pad_hd // 2)[None, :] < hd // 2)
74
+ q_tile_1 = tl.load(q_ptr + first_half_q_offsets, mask=first_q_mask, other=0).to(sin_row.dtype)
75
+ k_tile_1 = tl.load(k_ptr + first_half_k_offsets, mask=first_k_mask, other=0).to(sin_row.dtype)
76
+
77
+ # right half of the head
78
+ second_half_q_offsets = first_half_q_offsets + (hd // 2)
79
+ second_half_k_offsets = first_half_k_offsets + (hd // 2)
80
+ second_q_mask = first_q_mask
81
+ second_k_mask = first_k_mask
82
+ q_tile_2 = tl.load(q_ptr + second_half_q_offsets, mask=second_q_mask, other=0).to(sin_row.dtype)
83
+ k_tile_2 = tl.load(k_ptr + second_half_k_offsets, mask=second_k_mask, other=0).to(sin_row.dtype)
84
+
85
+ if not BACKWARD_PASS:
86
+ # y = [x1, x2] * [cos, cos] + [-x2, x1] * [sin, sin]
87
+ new_q_tile_1 = q_tile_1 * cos_row - q_tile_2 * sin_row
88
+ tl.store(q_ptr + first_half_q_offsets, new_q_tile_1, mask=first_q_mask)
89
+ new_q_tile_2 = q_tile_2 * cos_row + q_tile_1 * sin_row
90
+ tl.store(q_ptr + second_half_q_offsets, new_q_tile_2, mask=second_q_mask)
91
+
92
+ new_k_tile_1 = k_tile_1 * cos_row - k_tile_2 * sin_row
93
+ tl.store(k_ptr + first_half_k_offsets, new_k_tile_1, mask=first_k_mask)
94
+ new_k_tile_2 = k_tile_2 * cos_row + k_tile_1 * sin_row
95
+ tl.store(k_ptr + second_half_k_offsets, new_k_tile_2, mask=second_k_mask)
96
+ else:
97
+ # with some math, we can get:
98
+ # dy = [dx1, dx2] * [cos, cos] + [-dx2, dx1] * [-sin, -sin]
99
+ new_q_tile_1 = q_tile_1 * cos_row + q_tile_2 * sin_row
100
+ tl.store(q_ptr + first_half_q_offsets, new_q_tile_1, mask=first_q_mask)
101
+ new_q_tile_2 = q_tile_2 * cos_row - q_tile_1 * sin_row
102
+ tl.store(q_ptr + second_half_q_offsets, new_q_tile_2, mask=second_q_mask)
103
+
104
+ new_k_tile_1 = k_tile_1 * cos_row + k_tile_2 * sin_row
105
+ tl.store(k_ptr + first_half_k_offsets, new_k_tile_1, mask=first_k_mask)
106
+ new_k_tile_2 = k_tile_2 * cos_row - k_tile_1 * sin_row
107
+ tl.store(k_ptr + second_half_k_offsets, new_k_tile_2, mask=second_k_mask)
108
+
109
+
110
+ def qwen2vl_mrope_forward(q, k, cos, sin, mrope_section):
111
+ # transpose it back to the physical shape because Triton looks at the physical storage
112
+ # note: q and k are incontiguous before the transformation and will become contiguous after transpose
113
+ q = q.transpose(1, 2)
114
+ k = k.transpose(1, 2)
115
+
116
+ batch_size, seq_len, n_q_head, head_dim = q.shape
117
+ n_kv_head = k.shape[2]
118
+ pad_hd = triton.next_power_of_2(head_dim)
119
+ pad_n_q_head = triton.next_power_of_2(n_q_head)
120
+ pad_n_kv_head = triton.next_power_of_2(n_kv_head)
121
+ BLOCK_SIZE = max(pad_n_q_head, pad_n_kv_head)
122
+
123
+ n_row = batch_size * seq_len
124
+
125
+ # ensure tensors passed into the kernel are contiguous. It will be no-op if they are already contiguous
126
+ q = q.contiguous()
127
+ k = k.contiguous()
128
+ cos = cos.contiguous()
129
+ sin = sin.contiguous()
130
+
131
+ _triton_qwen2vl_mrope[(n_row,)](
132
+ q,
133
+ k,
134
+ cos,
135
+ sin,
136
+ seq_len,
137
+ batch_size,
138
+ n_q_head,
139
+ n_kv_head,
140
+ head_dim,
141
+ pad_n_q_head,
142
+ pad_n_kv_head,
143
+ pad_hd,
144
+ mrope_section[0],
145
+ mrope_section[1],
146
+ BLOCK_SIZE=BLOCK_SIZE,
147
+ BACKWARD_PASS=False,
148
+ )
149
+ return q.transpose(1, 2), k.transpose(1, 2), cos, sin
150
+
151
+
152
+ def qwen2vl_mrope_backward(dq, dk, cos, sin, mrope_section):
153
+ dq = dq.transpose(1, 2)
154
+ dk = dk.transpose(1, 2)
155
+
156
+ batch_size, seq_len, n_q_head, head_dim = dq.shape
157
+ n_kv_head = dk.shape[2]
158
+ pad_hd = triton.next_power_of_2(head_dim)
159
+ pad_n_q_head = triton.next_power_of_2(n_q_head)
160
+ pad_n_kv_head = triton.next_power_of_2(n_kv_head)
161
+ BLOCK_SIZE = max(pad_n_q_head, pad_n_kv_head)
162
+
163
+ n_row = batch_size * seq_len
164
+
165
+ # ensure dq and dk are contiguous
166
+ dq = dq.contiguous()
167
+ dk = dk.contiguous()
168
+
169
+ # backward is similar to forward except swapping few ops
170
+ _triton_qwen2vl_mrope[(n_row,)](
171
+ dq,
172
+ dk,
173
+ cos,
174
+ sin,
175
+ seq_len,
176
+ batch_size,
177
+ n_q_head,
178
+ n_kv_head,
179
+ head_dim,
180
+ pad_n_q_head,
181
+ pad_n_kv_head,
182
+ pad_hd,
183
+ mrope_section[0],
184
+ mrope_section[1],
185
+ BLOCK_SIZE=BLOCK_SIZE,
186
+ BACKWARD_PASS=True,
187
+ )
188
+ return dq.transpose(1, 2), dk.transpose(1, 2)
189
+
190
+
191
+ class LigerQwen2VLMRopeFunction(torch.autograd.Function):
192
+ """
193
+ Triton implementation of the Qwen2VL Multimodal Rotary Positional Embedding (M-RoPE) operation.
194
+
195
+ Please find the corresponding HuggingFace implementation here:
196
+ https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
197
+ """
198
+
199
+ @staticmethod
200
+ def forward(ctx, q, k, cos, sin, mrope_section, unsqueeze_dim=1):
201
+ """
202
+ q size: (bsz, n_q_head, seq_len, head_dim)
203
+ k size: (bsz, n_kv_head, seq_len, head_dim)
204
+ cos size: (3, bsz, seq_len, head_dim)
205
+ sin size: (3, bsz, seq_len, head_dim)
206
+ """
207
+ q, k, cos, sin = qwen2vl_mrope_forward(q, k, cos, sin, mrope_section)
208
+ ctx.save_for_backward(cos, sin)
209
+ ctx.mrope_section = mrope_section
210
+ return q, k
211
+
212
+ def backward(ctx, dq, dk):
213
+ """
214
+ dq size: (bsz, n_q_head, seq_len, head_dim)
215
+ dk size: (bsz, n_kv_head, seq_len, head_dim)
216
+ cos size: (3, bsz, seq_len, head_dim)
217
+ sin size: (3, bsz, seq_len, head_dim)
218
+ """
219
+ cos, sin = ctx.saved_tensors
220
+ mrope_section = ctx.mrope_section
221
+ dq, dk = qwen2vl_mrope_backward(dq, dk, cos, sin, mrope_section)
222
+ return dq, dk, None, None, None, None