evalscope 0.10.0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (606) hide show
  1. evalscope/__init__.py +4 -1
  2. evalscope/api/benchmark/__init__.py +11 -0
  3. evalscope/api/benchmark/adapters/__init__.py +7 -0
  4. evalscope/api/benchmark/adapters/agent_adapter.py +8 -0
  5. evalscope/api/benchmark/adapters/default_data_adapter.py +754 -0
  6. evalscope/api/benchmark/adapters/image_edit_adapter.py +82 -0
  7. evalscope/api/benchmark/adapters/multi_choice_adapter.py +86 -0
  8. evalscope/api/benchmark/adapters/ner_adapter.py +212 -0
  9. evalscope/api/benchmark/adapters/text2image_adapter.py +157 -0
  10. evalscope/api/benchmark/adapters/vision_language_adapter.py +8 -0
  11. evalscope/api/benchmark/benchmark.py +404 -0
  12. evalscope/api/benchmark/meta.py +124 -0
  13. evalscope/api/dataset/__init__.py +2 -0
  14. evalscope/api/dataset/dataset.py +370 -0
  15. evalscope/api/dataset/loader.py +266 -0
  16. evalscope/api/dataset/utils.py +143 -0
  17. evalscope/api/evaluator/__init__.py +3 -0
  18. evalscope/api/evaluator/cache.py +382 -0
  19. evalscope/api/evaluator/evaluator.py +61 -0
  20. evalscope/api/evaluator/state.py +280 -0
  21. evalscope/api/filter/__init__.py +1 -0
  22. evalscope/api/filter/filter.py +72 -0
  23. evalscope/api/messages/__init__.py +12 -0
  24. evalscope/api/messages/chat_message.py +248 -0
  25. evalscope/api/messages/content.py +102 -0
  26. evalscope/api/messages/utils.py +35 -0
  27. evalscope/api/metric/__init__.py +2 -0
  28. evalscope/api/metric/metric.py +60 -0
  29. evalscope/api/metric/scorer.py +113 -0
  30. evalscope/api/mixin/__init__.py +2 -0
  31. evalscope/api/mixin/llm_judge_mixin.py +170 -0
  32. evalscope/api/mixin/sandbox_mixin.py +182 -0
  33. evalscope/api/model/__init__.py +12 -0
  34. evalscope/api/model/generate_config.py +161 -0
  35. evalscope/api/model/model.py +386 -0
  36. evalscope/api/model/model_output.py +285 -0
  37. evalscope/api/registry.py +182 -0
  38. evalscope/api/tool/__init__.py +3 -0
  39. evalscope/api/tool/tool_call.py +101 -0
  40. evalscope/api/tool/tool_info.py +173 -0
  41. evalscope/api/tool/utils.py +64 -0
  42. evalscope/app/__init__.py +28 -0
  43. evalscope/app/app.py +38 -0
  44. evalscope/app/arguments.py +11 -0
  45. evalscope/app/constants.py +22 -0
  46. evalscope/app/ui/__init__.py +20 -0
  47. evalscope/app/ui/app_ui.py +53 -0
  48. evalscope/app/ui/multi_model.py +353 -0
  49. evalscope/app/ui/sidebar.py +42 -0
  50. evalscope/app/ui/single_model.py +220 -0
  51. evalscope/app/ui/visualization.py +36 -0
  52. evalscope/app/utils/data_utils.py +195 -0
  53. evalscope/app/utils/env_utils.py +12 -0
  54. evalscope/app/utils/localization.py +221 -0
  55. evalscope/app/utils/text_utils.py +119 -0
  56. evalscope/app/utils/visualization.py +96 -0
  57. evalscope/arguments.py +32 -9
  58. evalscope/backend/opencompass/api_meta_template.py +2 -1
  59. evalscope/backend/opencompass/backend_manager.py +10 -7
  60. evalscope/backend/rag_eval/__init__.py +1 -1
  61. evalscope/backend/rag_eval/backend_manager.py +23 -6
  62. evalscope/backend/rag_eval/clip_benchmark/dataset_builder.py +33 -21
  63. evalscope/backend/rag_eval/clip_benchmark/task_template.py +8 -4
  64. evalscope/backend/rag_eval/cmteb/arguments.py +14 -1
  65. evalscope/backend/rag_eval/cmteb/task_template.py +19 -3
  66. evalscope/backend/rag_eval/cmteb/tasks/CustomTask.py +1 -1
  67. evalscope/backend/rag_eval/ragas/arguments.py +0 -1
  68. evalscope/backend/rag_eval/ragas/task_template.py +2 -1
  69. evalscope/backend/rag_eval/ragas/tasks/build_distribution.py +2 -1
  70. evalscope/backend/rag_eval/ragas/tasks/build_transform.py +7 -4
  71. evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +9 -3
  72. evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +2 -6
  73. evalscope/backend/rag_eval/utils/embedding.py +125 -32
  74. evalscope/backend/rag_eval/utils/llm.py +16 -16
  75. evalscope/backend/vlm_eval_kit/backend_manager.py +8 -3
  76. evalscope/benchmarks/__init__.py +17 -5
  77. evalscope/benchmarks/aa_lcr/__init__.py +0 -0
  78. evalscope/benchmarks/aa_lcr/aa_lcr_adapter.py +205 -0
  79. evalscope/benchmarks/ai2d/__init__.py +0 -0
  80. evalscope/benchmarks/ai2d/ai2d_adapter.py +54 -0
  81. evalscope/benchmarks/aime/__init__.py +0 -0
  82. evalscope/benchmarks/aime/aime24_adapter.py +55 -0
  83. evalscope/benchmarks/aime/aime25_adapter.py +181 -0
  84. evalscope/benchmarks/aime/grader.py +307 -0
  85. evalscope/{metrics/math_accuracy.py → benchmarks/aime/math_normalize.py} +61 -72
  86. evalscope/benchmarks/alpaca_eval/__init__.py +0 -0
  87. evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +133 -0
  88. evalscope/benchmarks/amc/__init__.py +0 -0
  89. evalscope/benchmarks/amc/amc_adapter.py +51 -0
  90. evalscope/benchmarks/arc/arc_adapter.py +34 -149
  91. evalscope/benchmarks/arena_hard/__init__.py +0 -0
  92. evalscope/benchmarks/arena_hard/arena_hard_adapter.py +149 -0
  93. evalscope/benchmarks/arena_hard/utils.py +186 -0
  94. evalscope/benchmarks/bbh/bbh_adapter.py +117 -157
  95. evalscope/benchmarks/bfcl/__init__.py +0 -0
  96. evalscope/benchmarks/bfcl/v3/__init__.py +0 -0
  97. evalscope/benchmarks/bfcl/v3/bfcl_v3_adapter.py +370 -0
  98. evalscope/benchmarks/bfcl/v3/generation.py +222 -0
  99. evalscope/benchmarks/bfcl/v3/utils.py +23 -0
  100. evalscope/benchmarks/bfcl/v4/__init__.py +0 -0
  101. evalscope/benchmarks/bfcl/v4/bfcl_v4_adapter.py +229 -0
  102. evalscope/benchmarks/bfcl/v4/utils.py +410 -0
  103. evalscope/benchmarks/biomix_qa/__init__.py +0 -0
  104. evalscope/benchmarks/biomix_qa/biomix_qa_adapter.py +36 -0
  105. evalscope/benchmarks/blink/__init__.py +0 -0
  106. evalscope/benchmarks/blink/blink_adapter.py +61 -0
  107. evalscope/benchmarks/ceval/ceval_adapter.py +93 -174
  108. evalscope/benchmarks/chartqa/__init__.py +0 -0
  109. evalscope/benchmarks/chartqa/chartqa_adapter.py +80 -0
  110. evalscope/benchmarks/chartqa/utils.py +38 -0
  111. evalscope/benchmarks/chinese_simple_qa/__init__.py +0 -0
  112. evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +170 -0
  113. evalscope/benchmarks/cmmlu/cmmlu_adapter.py +34 -140
  114. evalscope/benchmarks/coin_flip/__init__.py +0 -0
  115. evalscope/benchmarks/coin_flip/coin_flip_adapter.py +128 -0
  116. evalscope/benchmarks/commonsense_qa/__init__.py +0 -0
  117. evalscope/benchmarks/commonsense_qa/commonsense_qa_adapter.py +32 -0
  118. evalscope/benchmarks/competition_math/competition_math_adapter.py +64 -112
  119. evalscope/benchmarks/data_collection/__init__.py +0 -0
  120. evalscope/benchmarks/data_collection/data_collection_adapter.py +215 -0
  121. evalscope/benchmarks/docmath/__init__.py +0 -0
  122. evalscope/benchmarks/docmath/docmath_adapter.py +143 -0
  123. evalscope/benchmarks/docmath/utils.py +219 -0
  124. evalscope/benchmarks/docvqa/__init__.py +0 -0
  125. evalscope/benchmarks/docvqa/docvqa_adapter.py +67 -0
  126. evalscope/benchmarks/drivelology/__init__.py +0 -0
  127. evalscope/benchmarks/drivelology/drivelology_binary_adapter.py +170 -0
  128. evalscope/benchmarks/drivelology/drivelology_multilabel_adapter.py +254 -0
  129. evalscope/benchmarks/drivelology/drivelology_selection_adapter.py +49 -0
  130. evalscope/benchmarks/drivelology/drivelology_writing_adapter.py +218 -0
  131. evalscope/benchmarks/drop/__init__.py +0 -0
  132. evalscope/benchmarks/drop/drop_adapter.py +155 -0
  133. evalscope/benchmarks/drop/utils.py +156 -0
  134. evalscope/benchmarks/frames/__init__.py +0 -0
  135. evalscope/benchmarks/frames/frames_adapter.py +175 -0
  136. evalscope/benchmarks/frames/utils.py +37 -0
  137. evalscope/benchmarks/general_arena/__init__.py +0 -0
  138. evalscope/benchmarks/general_arena/general_arena_adapter.py +454 -0
  139. evalscope/benchmarks/general_arena/utils.py +223 -0
  140. evalscope/benchmarks/general_mcq/__init__.py +0 -0
  141. evalscope/benchmarks/general_mcq/general_mcq_adapter.py +58 -0
  142. evalscope/benchmarks/general_qa/general_qa_adapter.py +75 -107
  143. evalscope/benchmarks/gpqa/__init__.py +0 -0
  144. evalscope/benchmarks/gpqa/gpqa_adapter.py +90 -0
  145. evalscope/benchmarks/gpqa/prompt.py +88 -0
  146. evalscope/benchmarks/gsm8k/gsm8k_adapter.py +77 -144
  147. evalscope/benchmarks/hallusion_bench/__init__.py +0 -0
  148. evalscope/benchmarks/hallusion_bench/hallusion_bench_adapter.py +159 -0
  149. evalscope/benchmarks/halu_eval/__init__.py +0 -0
  150. evalscope/benchmarks/halu_eval/halu_eval_adapter.py +128 -0
  151. evalscope/benchmarks/halu_eval/halu_eval_instructions.py +84 -0
  152. evalscope/benchmarks/healthbench/__init__.py +0 -0
  153. evalscope/benchmarks/healthbench/healthbench_adapter.py +282 -0
  154. evalscope/benchmarks/healthbench/utils.py +102 -0
  155. evalscope/benchmarks/hellaswag/hellaswag_adapter.py +36 -134
  156. evalscope/benchmarks/hle/__init__.py +0 -0
  157. evalscope/benchmarks/hle/hle_adapter.py +153 -0
  158. evalscope/benchmarks/humaneval/humaneval_adapter.py +80 -88
  159. evalscope/benchmarks/humaneval/utils.py +235 -0
  160. evalscope/benchmarks/ifeval/ifeval_adapter.py +71 -45
  161. evalscope/benchmarks/ifeval/instructions.py +112 -68
  162. evalscope/benchmarks/ifeval/instructions_registry.py +1 -1
  163. evalscope/benchmarks/ifeval/instructions_util.py +2 -3
  164. evalscope/benchmarks/ifeval/utils.py +6 -7
  165. evalscope/benchmarks/image_edit/__init__.py +0 -0
  166. evalscope/benchmarks/image_edit/gedit/__init__.py +0 -0
  167. evalscope/benchmarks/image_edit/gedit/gedit_adapter.py +138 -0
  168. evalscope/benchmarks/image_edit/gedit/utils.py +372 -0
  169. evalscope/benchmarks/image_edit/gedit/vie_prompts.py +406 -0
  170. evalscope/benchmarks/infovqa/__init__.py +0 -0
  171. evalscope/benchmarks/infovqa/infovqa_adapter.py +66 -0
  172. evalscope/benchmarks/iquiz/iquiz_adapter.py +30 -58
  173. evalscope/benchmarks/live_code_bench/__init__.py +0 -0
  174. evalscope/benchmarks/live_code_bench/evaluate_utils.py +195 -0
  175. evalscope/benchmarks/live_code_bench/extract_utils.py +70 -0
  176. evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +150 -0
  177. evalscope/benchmarks/live_code_bench/load_utils.py +63 -0
  178. evalscope/benchmarks/live_code_bench/pass_k_utils.py +56 -0
  179. evalscope/benchmarks/live_code_bench/prompts.py +207 -0
  180. evalscope/benchmarks/live_code_bench/sandbox_evaluate_utils.py +220 -0
  181. evalscope/benchmarks/live_code_bench/testing_util.py +544 -0
  182. evalscope/benchmarks/logi_qa/__int__.py +0 -0
  183. evalscope/benchmarks/logi_qa/logi_qa_adapter.py +41 -0
  184. evalscope/benchmarks/maritime_bench/__init__.py +0 -0
  185. evalscope/benchmarks/maritime_bench/maritime_bench_adapter.py +56 -0
  186. evalscope/benchmarks/math_500/__init__.py +0 -0
  187. evalscope/benchmarks/math_500/math_500_adapter.py +55 -0
  188. evalscope/benchmarks/math_qa/__init__.py +0 -0
  189. evalscope/benchmarks/math_qa/math_qa_adapter.py +35 -0
  190. evalscope/benchmarks/math_verse/__init__.py +0 -0
  191. evalscope/benchmarks/math_verse/math_verse_adapter.py +105 -0
  192. evalscope/benchmarks/math_vision/__init__.py +0 -0
  193. evalscope/benchmarks/math_vision/math_vision_adapter.py +116 -0
  194. evalscope/benchmarks/math_vista/__init__.py +0 -0
  195. evalscope/benchmarks/math_vista/math_vista_adapter.py +114 -0
  196. evalscope/benchmarks/med_mcqa/__init__.py +0 -0
  197. evalscope/benchmarks/med_mcqa/med_mcqa_adapter.py +32 -0
  198. evalscope/benchmarks/minerva_math/__init__.py +0 -0
  199. evalscope/benchmarks/minerva_math/minerva_math_adapter.py +53 -0
  200. evalscope/benchmarks/mm_bench/__init__.py +0 -0
  201. evalscope/benchmarks/mm_bench/mm_bench_adapter.py +99 -0
  202. evalscope/benchmarks/mm_star/__init__.py +0 -0
  203. evalscope/benchmarks/mm_star/mm_star_adapter.py +73 -0
  204. evalscope/benchmarks/mmlu/mmlu_adapter.py +32 -210
  205. evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +87 -103
  206. evalscope/benchmarks/mmlu_redux/__init__.py +0 -0
  207. evalscope/benchmarks/mmlu_redux/mmlu_redux_adapter.py +139 -0
  208. evalscope/benchmarks/mmmu/__init__.py +0 -0
  209. evalscope/benchmarks/mmmu/mmmu_adapter.py +159 -0
  210. evalscope/benchmarks/mmmu_pro/__init__.py +0 -0
  211. evalscope/benchmarks/mmmu_pro/mmmu_pro_adapter.py +124 -0
  212. evalscope/benchmarks/mri_mcqa/__init__.py +0 -0
  213. evalscope/benchmarks/mri_mcqa/mri_mcqa_adapter.py +34 -0
  214. evalscope/benchmarks/multi_if/__init__.py +0 -0
  215. evalscope/benchmarks/multi_if/ifeval.py +3354 -0
  216. evalscope/benchmarks/multi_if/metrics.py +120 -0
  217. evalscope/benchmarks/multi_if/multi_if_adapter.py +161 -0
  218. evalscope/benchmarks/music_trivia/__init__.py +0 -0
  219. evalscope/benchmarks/music_trivia/music_trivia_adapter.py +36 -0
  220. evalscope/benchmarks/musr/__init__.py +0 -0
  221. evalscope/benchmarks/musr/musr_adapter.py +43 -0
  222. evalscope/benchmarks/needle_haystack/__init__.py +0 -0
  223. evalscope/benchmarks/needle_haystack/needle_haystack_adapter.py +389 -0
  224. evalscope/benchmarks/needle_haystack/utils.py +79 -0
  225. evalscope/benchmarks/ner/__init__.py +0 -0
  226. evalscope/benchmarks/ner/broad_twitter_corpus_adapter.py +52 -0
  227. evalscope/benchmarks/ner/conll2003_adapter.py +48 -0
  228. evalscope/benchmarks/ner/copious_adapter.py +85 -0
  229. evalscope/benchmarks/ner/cross_ner_adapter.py +120 -0
  230. evalscope/benchmarks/ner/cross_ner_entities/__init__.py +0 -0
  231. evalscope/benchmarks/ner/cross_ner_entities/ai.py +54 -0
  232. evalscope/benchmarks/ner/cross_ner_entities/literature.py +36 -0
  233. evalscope/benchmarks/ner/cross_ner_entities/music.py +39 -0
  234. evalscope/benchmarks/ner/cross_ner_entities/politics.py +37 -0
  235. evalscope/benchmarks/ner/cross_ner_entities/science.py +58 -0
  236. evalscope/benchmarks/ner/genia_ner_adapter.py +66 -0
  237. evalscope/benchmarks/ner/harvey_ner_adapter.py +58 -0
  238. evalscope/benchmarks/ner/mit_movie_trivia_adapter.py +74 -0
  239. evalscope/benchmarks/ner/mit_restaurant_adapter.py +66 -0
  240. evalscope/benchmarks/ner/ontonotes5_adapter.py +87 -0
  241. evalscope/benchmarks/ner/wnut2017_adapter.py +61 -0
  242. evalscope/benchmarks/ocr_bench/__init__.py +0 -0
  243. evalscope/benchmarks/ocr_bench/ocr_bench/__init__.py +0 -0
  244. evalscope/benchmarks/ocr_bench/ocr_bench/ocr_bench_adapter.py +101 -0
  245. evalscope/benchmarks/ocr_bench/ocr_bench_v2/IoUscore_metric.py +87 -0
  246. evalscope/benchmarks/ocr_bench/ocr_bench_v2/TEDS_metric.py +963 -0
  247. evalscope/benchmarks/ocr_bench/ocr_bench_v2/__init__.py +0 -0
  248. evalscope/benchmarks/ocr_bench/ocr_bench_v2/ocr_bench_v2_adapter.py +161 -0
  249. evalscope/benchmarks/ocr_bench/ocr_bench_v2/page_ocr_metric.py +50 -0
  250. evalscope/benchmarks/ocr_bench/ocr_bench_v2/parallel.py +46 -0
  251. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/__init__.py +0 -0
  252. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/readme.txt +26 -0
  253. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/rrc_evaluation_funcs_1_1.py +537 -0
  254. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/script.py +481 -0
  255. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_metric.py +179 -0
  256. evalscope/benchmarks/ocr_bench/ocr_bench_v2/utils.py +433 -0
  257. evalscope/benchmarks/ocr_bench/ocr_bench_v2/vqa_metric.py +254 -0
  258. evalscope/benchmarks/olympiad_bench/__init__.py +0 -0
  259. evalscope/benchmarks/olympiad_bench/olympiad_bench_adapter.py +163 -0
  260. evalscope/benchmarks/olympiad_bench/utils.py +565 -0
  261. evalscope/benchmarks/omni_bench/__init__.py +0 -0
  262. evalscope/benchmarks/omni_bench/omni_bench_adapter.py +86 -0
  263. evalscope/benchmarks/omnidoc_bench/__init__.py +0 -0
  264. evalscope/benchmarks/omnidoc_bench/end2end_eval.py +349 -0
  265. evalscope/benchmarks/omnidoc_bench/metrics.py +547 -0
  266. evalscope/benchmarks/omnidoc_bench/omnidoc_bench_adapter.py +135 -0
  267. evalscope/benchmarks/omnidoc_bench/utils.py +1937 -0
  268. evalscope/benchmarks/piqa/__init__.py +0 -0
  269. evalscope/benchmarks/piqa/piqa_adapter.py +32 -0
  270. evalscope/benchmarks/poly_math/__init__.py +0 -0
  271. evalscope/benchmarks/poly_math/poly_math_adapter.py +132 -0
  272. evalscope/benchmarks/poly_math/utils/instruction.py +105 -0
  273. evalscope/benchmarks/pope/__init__.py +0 -0
  274. evalscope/benchmarks/pope/pope_adapter.py +112 -0
  275. evalscope/benchmarks/process_bench/__init__.py +0 -0
  276. evalscope/benchmarks/process_bench/process_bench_adapter.py +171 -0
  277. evalscope/benchmarks/pumed_qa/__init__.py +0 -0
  278. evalscope/benchmarks/pumed_qa/pubmed_qa_adapter.py +175 -0
  279. evalscope/benchmarks/qasc/__init__.py +0 -0
  280. evalscope/benchmarks/qasc/qasc_adapter.py +35 -0
  281. evalscope/benchmarks/race/race_adapter.py +33 -120
  282. evalscope/benchmarks/real_world_qa/__init__.py +0 -0
  283. evalscope/benchmarks/real_world_qa/real_world_qa_adapter.py +64 -0
  284. evalscope/benchmarks/sciq/__init__.py +0 -0
  285. evalscope/benchmarks/sciq/sciq_adapter.py +36 -0
  286. evalscope/benchmarks/seed_bench_2_plus/__init__.py +0 -0
  287. evalscope/benchmarks/seed_bench_2_plus/seed_bench_2_plus_adapter.py +72 -0
  288. evalscope/benchmarks/simple_qa/__init__.py +0 -0
  289. evalscope/benchmarks/simple_qa/simple_qa_adapter.py +169 -0
  290. evalscope/benchmarks/simple_vqa/__init__.py +0 -0
  291. evalscope/benchmarks/simple_vqa/simple_vqa_adapter.py +169 -0
  292. evalscope/benchmarks/siqa/__init__.py +0 -0
  293. evalscope/benchmarks/siqa/siqa_adapter.py +39 -0
  294. evalscope/benchmarks/super_gpqa/__init__.py +0 -0
  295. evalscope/benchmarks/super_gpqa/prompt.py +88 -0
  296. evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +165 -0
  297. evalscope/benchmarks/super_gpqa/utils.py +86 -0
  298. evalscope/benchmarks/tau_bench/__init__.py +0 -0
  299. evalscope/benchmarks/tau_bench/tau2_bench/__init__.py +0 -0
  300. evalscope/benchmarks/tau_bench/tau2_bench/generation.py +158 -0
  301. evalscope/benchmarks/tau_bench/tau2_bench/tau2_bench_adapter.py +146 -0
  302. evalscope/benchmarks/tau_bench/tau_bench/__init__.py +0 -0
  303. evalscope/benchmarks/tau_bench/tau_bench/generation.py +147 -0
  304. evalscope/benchmarks/tau_bench/tau_bench/tau_bench_adapter.py +168 -0
  305. evalscope/benchmarks/text2image/__init__.py +0 -0
  306. evalscope/benchmarks/text2image/evalmuse_adapter.py +78 -0
  307. evalscope/benchmarks/text2image/genai_bench_adapter.py +53 -0
  308. evalscope/benchmarks/text2image/general_t2i_adapter.py +42 -0
  309. evalscope/benchmarks/text2image/hpdv2_adapter.py +52 -0
  310. evalscope/benchmarks/text2image/tifa_adapter.py +27 -0
  311. evalscope/benchmarks/tool_bench/__init__.py +0 -0
  312. evalscope/benchmarks/tool_bench/tool_bench_adapter.py +102 -0
  313. evalscope/benchmarks/tool_bench/utils.py +203 -0
  314. evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +56 -118
  315. evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +70 -270
  316. evalscope/benchmarks/visu_logic/__init__.py +0 -0
  317. evalscope/benchmarks/visu_logic/visu_logic_adapter.py +75 -0
  318. evalscope/benchmarks/winogrande/__init__.py +0 -0
  319. evalscope/benchmarks/winogrande/winogrande_adapter.py +34 -0
  320. evalscope/benchmarks/wmt/__init__.py +0 -0
  321. evalscope/benchmarks/wmt/wmt24_adapter.py +294 -0
  322. evalscope/benchmarks/zerobench/__init__.py +0 -0
  323. evalscope/benchmarks/zerobench/zerobench_adapter.py +64 -0
  324. evalscope/cli/cli.py +2 -0
  325. evalscope/cli/start_app.py +12 -2
  326. evalscope/cli/start_eval.py +4 -3
  327. evalscope/cli/start_perf.py +10 -2
  328. evalscope/cli/start_server.py +6 -3
  329. evalscope/collections/__init__.py +27 -3
  330. evalscope/collections/sampler.py +12 -11
  331. evalscope/collections/schema.py +13 -12
  332. evalscope/config.py +218 -147
  333. evalscope/constants.py +78 -82
  334. evalscope/evaluator/__init__.py +1 -1
  335. evalscope/evaluator/evaluator.py +334 -318
  336. evalscope/filters/__init__.py +2 -0
  337. evalscope/filters/extraction.py +126 -0
  338. evalscope/filters/selection.py +57 -0
  339. evalscope/metrics/__init__.py +59 -3
  340. evalscope/metrics/bert_score/__init__.py +0 -0
  341. evalscope/metrics/bert_score/scorer.py +338 -0
  342. evalscope/metrics/bert_score/utils.py +697 -0
  343. evalscope/metrics/bundled_rouge_score/rouge_scorer.py +20 -15
  344. evalscope/metrics/llm_judge.py +211 -0
  345. evalscope/metrics/math_parser.py +545 -0
  346. evalscope/metrics/metric.py +611 -0
  347. evalscope/metrics/metrics.py +112 -23
  348. evalscope/metrics/rouge_metric.py +11 -13
  349. evalscope/metrics/t2v_metrics/__init__.py +0 -0
  350. evalscope/metrics/t2v_metrics/clipscore.py +14 -0
  351. evalscope/metrics/t2v_metrics/constants.py +12 -0
  352. evalscope/metrics/t2v_metrics/itmscore.py +14 -0
  353. evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
  354. evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
  355. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
  356. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
  357. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +134 -0
  358. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +282 -0
  359. evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +115 -0
  360. evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +87 -0
  361. evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +86 -0
  362. evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
  363. evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
  364. evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +85 -0
  365. evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +99 -0
  366. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +176 -0
  367. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
  368. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +82 -0
  369. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +74 -0
  370. evalscope/metrics/t2v_metrics/models/model.py +45 -0
  371. evalscope/metrics/t2v_metrics/models/utils.py +25 -0
  372. evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
  373. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
  374. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
  375. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +306 -0
  376. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
  377. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +84 -0
  378. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
  379. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +223 -0
  380. evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +153 -0
  381. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
  382. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
  383. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
  384. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +24 -0
  385. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +190 -0
  386. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +100 -0
  387. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +313 -0
  388. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
  389. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
  390. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +192 -0
  391. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +320 -0
  392. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
  393. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
  394. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
  395. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
  396. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
  397. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
  398. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
  399. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
  400. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
  401. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
  402. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
  403. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
  404. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
  405. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
  406. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
  407. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
  408. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
  409. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
  410. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
  411. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
  412. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
  413. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
  414. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
  415. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +212 -0
  416. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
  417. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1111 -0
  418. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
  419. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
  420. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
  421. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +457 -0
  422. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +370 -0
  423. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +765 -0
  424. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +274 -0
  425. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +896 -0
  426. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1876 -0
  427. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +83 -0
  428. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +58 -0
  429. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
  430. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
  431. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
  432. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +187 -0
  433. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +179 -0
  434. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +115 -0
  435. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
  436. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +348 -0
  437. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +870 -0
  438. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +273 -0
  439. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +514 -0
  440. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1291 -0
  441. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +476 -0
  442. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +35 -0
  443. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
  444. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
  445. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +393 -0
  446. evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +129 -0
  447. evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +18 -0
  448. evalscope/metrics/t2v_metrics/score.py +78 -0
  449. evalscope/metrics/t2v_metrics/vqascore.py +14 -0
  450. evalscope/models/__init__.py +23 -13
  451. evalscope/models/image_edit_model.py +125 -0
  452. evalscope/models/mockllm.py +65 -0
  453. evalscope/models/model_apis.py +69 -0
  454. evalscope/models/modelscope.py +455 -0
  455. evalscope/models/openai_compatible.py +144 -0
  456. evalscope/models/text2image_model.py +124 -0
  457. evalscope/models/utils/openai.py +708 -0
  458. evalscope/perf/__init__.py +0 -1
  459. evalscope/perf/arguments.py +103 -69
  460. evalscope/perf/benchmark.py +114 -163
  461. evalscope/perf/http_client.py +59 -89
  462. evalscope/perf/main.py +91 -18
  463. evalscope/perf/plugin/__init__.py +3 -2
  464. evalscope/perf/plugin/api/__init__.py +4 -3
  465. evalscope/perf/plugin/api/base.py +27 -7
  466. evalscope/perf/plugin/api/custom_api.py +170 -57
  467. evalscope/perf/plugin/api/dashscope_api.py +4 -10
  468. evalscope/perf/plugin/api/default_api.py +214 -0
  469. evalscope/perf/plugin/api/openai_api.py +120 -41
  470. evalscope/perf/plugin/datasets/__init__.py +10 -6
  471. evalscope/perf/plugin/datasets/base.py +43 -1
  472. evalscope/perf/plugin/datasets/custom.py +22 -3
  473. evalscope/perf/plugin/datasets/flickr8k.py +5 -27
  474. evalscope/perf/plugin/datasets/kontext_bench.py +28 -0
  475. evalscope/perf/plugin/datasets/line_by_line.py +7 -3
  476. evalscope/perf/plugin/datasets/longalpaca.py +7 -3
  477. evalscope/perf/plugin/datasets/openqa.py +13 -14
  478. evalscope/perf/plugin/datasets/random_dataset.py +67 -0
  479. evalscope/perf/plugin/datasets/random_vl_dataset.py +80 -0
  480. evalscope/perf/plugin/datasets/speed_benchmark.py +11 -0
  481. evalscope/perf/plugin/registry.py +36 -16
  482. evalscope/perf/utils/analysis_result.py +24 -23
  483. evalscope/perf/utils/benchmark_util.py +95 -55
  484. evalscope/perf/utils/db_util.py +115 -78
  485. evalscope/perf/utils/local_server.py +12 -47
  486. evalscope/perf/utils/log_utils.py +63 -0
  487. evalscope/perf/utils/rich_display.py +192 -0
  488. evalscope/report/__init__.py +46 -3
  489. evalscope/report/combinator.py +143 -32
  490. evalscope/report/generator.py +74 -34
  491. evalscope/report/report.py +238 -0
  492. evalscope/run.py +71 -46
  493. evalscope/summarizer.py +5 -5
  494. evalscope/third_party/longbench_write/infer.py +1 -1
  495. evalscope/third_party/thinkbench/__init__.py +3 -0
  496. evalscope/third_party/thinkbench/eval.py +441 -0
  497. evalscope/third_party/thinkbench/infer.py +130 -0
  498. evalscope/third_party/thinkbench/resources/critique_template.txt +17 -0
  499. evalscope/third_party/thinkbench/resources/reformat_template.txt +31 -0
  500. evalscope/third_party/thinkbench/tools/__init__.py +0 -0
  501. evalscope/third_party/thinkbench/tools/llm.py +48 -0
  502. evalscope/third_party/thinkbench/tools/utils.py +13 -0
  503. evalscope/third_party/toolbench_static/llm/swift_infer.py +46 -20
  504. evalscope/third_party/toolbench_static/toolbench_static.py +2 -1
  505. evalscope/utils/__init__.py +82 -2
  506. evalscope/utils/argument_utils.py +64 -0
  507. evalscope/utils/chat_service.py +8 -6
  508. evalscope/utils/deprecation_utils.py +53 -0
  509. evalscope/utils/function_utils.py +266 -0
  510. evalscope/utils/import_utils.py +154 -0
  511. evalscope/utils/io_utils.py +336 -8
  512. evalscope/utils/json_schema.py +231 -0
  513. evalscope/utils/logger.py +121 -31
  514. evalscope/utils/model_utils.py +57 -1
  515. evalscope/utils/multi_choices.py +303 -0
  516. evalscope/utils/ner.py +377 -0
  517. evalscope/utils/url_utils.py +65 -0
  518. evalscope/version.py +2 -2
  519. evalscope-1.2.0.dist-info/METADATA +553 -0
  520. evalscope-1.2.0.dist-info/RECORD +628 -0
  521. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/WHEEL +1 -1
  522. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/top_level.txt +0 -1
  523. evalscope/backend/vlm_eval_kit/custom_dataset.py +0 -46
  524. evalscope/benchmarks/arc/ai2_arc.py +0 -151
  525. evalscope/benchmarks/benchmark.py +0 -76
  526. evalscope/benchmarks/ceval/ceval_exam.py +0 -146
  527. evalscope/benchmarks/ceval/samples.jsonl +0 -1
  528. evalscope/benchmarks/cmmlu/cmmlu.py +0 -161
  529. evalscope/benchmarks/cmmlu/samples.jsonl +0 -5
  530. evalscope/benchmarks/competition_math/competition_math.py +0 -79
  531. evalscope/benchmarks/data_adapter.py +0 -291
  532. evalscope/benchmarks/gsm8k/gsm8k.py +0 -121
  533. evalscope/benchmarks/hellaswag/hellaswag.py +0 -112
  534. evalscope/benchmarks/humaneval/humaneval.py +0 -79
  535. evalscope/benchmarks/mmlu/mmlu.py +0 -160
  536. evalscope/benchmarks/mmlu/samples.jsonl +0 -5
  537. evalscope/benchmarks/race/race.py +0 -104
  538. evalscope/benchmarks/race/samples.jsonl +0 -5
  539. evalscope/benchmarks/trivia_qa/trivia_qa.py +0 -89
  540. evalscope/benchmarks/truthful_qa/truthful_qa.py +0 -163
  541. evalscope/collections/evaluator.py +0 -198
  542. evalscope/evaluator/rating_eval.py +0 -157
  543. evalscope/evaluator/reviewer/__init__.py +0 -1
  544. evalscope/evaluator/reviewer/auto_reviewer.py +0 -391
  545. evalscope/metrics/code_metric.py +0 -98
  546. evalscope/metrics/named_metrics.py +0 -17
  547. evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
  548. evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
  549. evalscope/models/base_adapter.py +0 -52
  550. evalscope/models/chat_adapter.py +0 -138
  551. evalscope/models/choice_adapter.py +0 -211
  552. evalscope/models/custom/__init__.py +0 -3
  553. evalscope/models/custom/custom_model.py +0 -53
  554. evalscope/models/custom/dummy_model.py +0 -63
  555. evalscope/models/custom_adapter.py +0 -67
  556. evalscope/models/local_model.py +0 -74
  557. evalscope/models/model.py +0 -229
  558. evalscope/models/server_adapter.py +0 -111
  559. evalscope/registry/__init__.py +0 -1
  560. evalscope/registry/config/cfg_arena.yaml +0 -77
  561. evalscope/registry/config/cfg_arena_zhihu.yaml +0 -63
  562. evalscope/registry/config/cfg_pairwise_baseline.yaml +0 -83
  563. evalscope/registry/config/cfg_single.yaml +0 -78
  564. evalscope/registry/data/prompt_template/lmsys_v2.jsonl +0 -8
  565. evalscope/registry/data/prompt_template/prompt_templates.jsonl +0 -8
  566. evalscope/registry/data/qa_browser/battle.jsonl +0 -634
  567. evalscope/registry/data/qa_browser/category_mapping.yaml +0 -10
  568. evalscope/registry/data/question.jsonl +0 -80
  569. evalscope/registry/tasks/arc.yaml +0 -28
  570. evalscope/registry/tasks/bbh.yaml +0 -26
  571. evalscope/registry/tasks/bbh_mini.yaml +0 -26
  572. evalscope/registry/tasks/ceval.yaml +0 -27
  573. evalscope/registry/tasks/ceval_mini.yaml +0 -26
  574. evalscope/registry/tasks/cmmlu.yaml +0 -27
  575. evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +0 -28
  576. evalscope/registry/tasks/general_qa.yaml +0 -27
  577. evalscope/registry/tasks/gsm8k.yaml +0 -29
  578. evalscope/registry/tasks/mmlu.yaml +0 -29
  579. evalscope/registry/tasks/mmlu_mini.yaml +0 -27
  580. evalscope/report/app.py +0 -506
  581. evalscope/report/utils.py +0 -133
  582. evalscope/run_arena.py +0 -202
  583. evalscope/utils/arena_utils.py +0 -217
  584. evalscope/utils/completion_parsers.py +0 -82
  585. evalscope/utils/utils.py +0 -301
  586. evalscope-0.10.0.dist-info/METADATA +0 -565
  587. evalscope-0.10.0.dist-info/RECORD +0 -286
  588. tests/__init__.py +0 -1
  589. tests/cli/__init__.py +0 -1
  590. tests/cli/test_collection.py +0 -57
  591. tests/cli/test_run.py +0 -165
  592. tests/perf/__init__.py +0 -1
  593. tests/perf/test_perf.py +0 -101
  594. tests/rag/test_clip_benchmark.py +0 -85
  595. tests/rag/test_mteb.py +0 -138
  596. tests/rag/test_ragas.py +0 -120
  597. tests/swift/__init__.py +0 -1
  598. tests/swift/test_run_swift_eval.py +0 -145
  599. tests/swift/test_run_swift_vlm_eval.py +0 -127
  600. tests/swift/test_run_swift_vlm_jugde_eval.py +0 -156
  601. tests/test_run_all.py +0 -12
  602. tests/vlm/__init__.py +0 -1
  603. tests/vlm/test_vlmeval.py +0 -60
  604. {tests/rag → evalscope/api}/__init__.py +0 -0
  605. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/entry_points.txt +0 -0
  606. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info/licenses}/LICENSE +0 -0
@@ -0,0 +1,870 @@
1
+ """
2
+ Copyright (c) 2022, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+
8
+ import math
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ from torch import Tensor, device, nn
12
+ from transformers.activations import ACT2FN
13
+ from transformers.modeling_outputs import (
14
+ BaseModelOutputWithPastAndCrossAttentions,
15
+ BaseModelOutputWithPoolingAndCrossAttentions,
16
+ )
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.models.bert.configuration_bert import BertConfig
19
+ from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
20
+ from transformers.utils import logging
21
+ from typing import Tuple
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class BertEmbeddings(nn.Module):
27
+ """Construct the embeddings from word and position embeddings."""
28
+
29
+ def __init__(self, config):
30
+ super().__init__()
31
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
32
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
33
+
34
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
35
+ # any TensorFlow checkpoint file
36
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
37
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
38
+
39
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
40
+ self.register_buffer('position_ids', torch.arange(config.max_position_embeddings).expand((1, -1)))
41
+ self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute')
42
+
43
+ self.config = config
44
+
45
+ def forward(
46
+ self,
47
+ input_ids=None,
48
+ position_ids=None,
49
+ inputs_embeds=None,
50
+ past_key_values_length=0,
51
+ ):
52
+ if input_ids is not None:
53
+ input_shape = input_ids.size()
54
+ else:
55
+ input_shape = inputs_embeds.size()[:-1]
56
+
57
+ seq_length = input_shape[1]
58
+
59
+ if position_ids is None:
60
+ position_ids = self.position_ids[:, past_key_values_length:seq_length + past_key_values_length]
61
+
62
+ if inputs_embeds is None:
63
+ inputs_embeds = self.word_embeddings(input_ids)
64
+
65
+ embeddings = inputs_embeds
66
+
67
+ if self.position_embedding_type == 'absolute':
68
+ position_embeddings = self.position_embeddings(position_ids)
69
+ embeddings += position_embeddings
70
+ embeddings = self.LayerNorm(embeddings)
71
+ embeddings = self.dropout(embeddings)
72
+ return embeddings
73
+
74
+
75
+ class BertSelfAttention(nn.Module):
76
+
77
+ def __init__(self, config, is_cross_attention):
78
+ super().__init__()
79
+ self.config = config
80
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size'):
81
+ raise ValueError(
82
+ 'The hidden size (%d) is not a multiple of the number of attention '
83
+ 'heads (%d)' % (config.hidden_size, config.num_attention_heads)
84
+ )
85
+
86
+ self.num_attention_heads = config.num_attention_heads
87
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
88
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
89
+
90
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
91
+ if is_cross_attention:
92
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
93
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
94
+ else:
95
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
96
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
97
+
98
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
99
+ self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute')
100
+ if (self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query'):
101
+ self.max_position_embeddings = config.max_position_embeddings
102
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
103
+ self.save_attention = False
104
+
105
+ def save_attn_gradients(self, attn_gradients):
106
+ self.attn_gradients = attn_gradients
107
+
108
+ def get_attn_gradients(self):
109
+ return self.attn_gradients
110
+
111
+ def save_attention_map(self, attention_map):
112
+ self.attention_map = attention_map
113
+
114
+ def get_attention_map(self):
115
+ return self.attention_map
116
+
117
+ def transpose_for_scores(self, x):
118
+ new_x_shape = x.size()[:-1] + (
119
+ self.num_attention_heads,
120
+ self.attention_head_size,
121
+ )
122
+ x = x.view(*new_x_shape)
123
+ return x.permute(0, 2, 1, 3)
124
+
125
+ def forward(
126
+ self,
127
+ hidden_states,
128
+ attention_mask=None,
129
+ head_mask=None,
130
+ encoder_hidden_states=None,
131
+ encoder_attention_mask=None,
132
+ past_key_value=None,
133
+ output_attentions=False,
134
+ ):
135
+ mixed_query_layer = self.query(hidden_states)
136
+
137
+ # If this is instantiated as a cross-attention module, the keys
138
+ # and values come from an encoder; the attention mask needs to be
139
+ # such that the encoder's padding tokens are not attended to.
140
+ is_cross_attention = encoder_hidden_states is not None
141
+
142
+ if is_cross_attention:
143
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
144
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
145
+ attention_mask = encoder_attention_mask
146
+ elif past_key_value is not None:
147
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
148
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
149
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
150
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
151
+ else:
152
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
153
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
154
+
155
+ query_layer = self.transpose_for_scores(mixed_query_layer)
156
+
157
+ past_key_value = (key_layer, value_layer)
158
+
159
+ # Take the dot product between "query" and "key" to get the raw attention scores.
160
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
161
+
162
+ if (self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query'):
163
+ seq_length = hidden_states.size()[1]
164
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
165
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
166
+ distance = position_ids_l - position_ids_r
167
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
168
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
169
+
170
+ if self.position_embedding_type == 'relative_key':
171
+ relative_position_scores = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding)
172
+ attention_scores = attention_scores + relative_position_scores
173
+ elif self.position_embedding_type == 'relative_key_query':
174
+ relative_position_scores_query = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding)
175
+ relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr', key_layer, positional_embedding)
176
+ attention_scores = (attention_scores + relative_position_scores_query + relative_position_scores_key)
177
+
178
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
179
+ if attention_mask is not None:
180
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
181
+ attention_scores = attention_scores + attention_mask
182
+
183
+ # Normalize the attention scores to probabilities.
184
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
185
+
186
+ if is_cross_attention and self.save_attention:
187
+ self.save_attention_map(attention_probs)
188
+ attention_probs.register_hook(self.save_attn_gradients)
189
+
190
+ # This is actually dropping out entire tokens to attend to, which might
191
+ # seem a bit unusual, but is taken from the original Transformer paper.
192
+ attention_probs_dropped = self.dropout(attention_probs)
193
+
194
+ # Mask heads if we want to
195
+ if head_mask is not None:
196
+ attention_probs_dropped = attention_probs_dropped * head_mask
197
+
198
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
199
+
200
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
201
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
202
+ context_layer = context_layer.view(*new_context_layer_shape)
203
+
204
+ outputs = ((context_layer, attention_probs) if output_attentions else (context_layer, ))
205
+
206
+ outputs = outputs + (past_key_value, )
207
+ return outputs
208
+
209
+
210
+ class BertSelfOutput(nn.Module):
211
+
212
+ def __init__(self, config, twin=False, merge=False):
213
+ super().__init__()
214
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
215
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
216
+ if twin:
217
+ self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
218
+ self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
219
+ else:
220
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
221
+ if merge:
222
+ self.act = ACT2FN[config.hidden_act]
223
+ self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
224
+ self.merge = True
225
+ else:
226
+ self.merge = False
227
+
228
+ def forward(self, hidden_states, input_tensor):
229
+ if type(hidden_states) == list:
230
+ hidden_states0 = self.dense0(hidden_states[0])
231
+ hidden_states1 = self.dense1(hidden_states[1])
232
+ if self.merge:
233
+ # hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
234
+ hidden_states = self.merge_layer(torch.cat([hidden_states0, hidden_states1], dim=-1))
235
+ else:
236
+ hidden_states = (hidden_states0 + hidden_states1) / 2
237
+ else:
238
+ hidden_states = self.dense(hidden_states)
239
+ hidden_states = self.dropout(hidden_states)
240
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
241
+ return hidden_states
242
+
243
+
244
+ class BertAttention(nn.Module):
245
+
246
+ def __init__(self, config, is_cross_attention=False, layer_num=-1):
247
+ super().__init__()
248
+ if is_cross_attention:
249
+ self.self0 = BertSelfAttention(config, is_cross_attention)
250
+ self.self1 = BertSelfAttention(config, is_cross_attention)
251
+ else:
252
+ self.self = BertSelfAttention(config, is_cross_attention)
253
+ self.output = BertSelfOutput(
254
+ config,
255
+ twin=is_cross_attention,
256
+ merge=(is_cross_attention and layer_num >= 6),
257
+ )
258
+ self.pruned_heads = set()
259
+
260
+ def prune_heads(self, heads):
261
+ if len(heads) == 0:
262
+ return
263
+ heads, index = find_pruneable_heads_and_indices(
264
+ heads,
265
+ self.self.num_attention_heads,
266
+ self.self.attention_head_size,
267
+ self.pruned_heads,
268
+ )
269
+
270
+ # Prune linear layers
271
+ self.self.query = prune_linear_layer(self.self.query, index)
272
+ self.self.key = prune_linear_layer(self.self.key, index)
273
+ self.self.value = prune_linear_layer(self.self.value, index)
274
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
275
+
276
+ # Update hyper params and store pruned heads
277
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
278
+ self.self.all_head_size = (self.self.attention_head_size * self.self.num_attention_heads)
279
+ self.pruned_heads = self.pruned_heads.union(heads)
280
+
281
+ def forward(
282
+ self,
283
+ hidden_states,
284
+ attention_mask=None,
285
+ head_mask=None,
286
+ encoder_hidden_states=None,
287
+ encoder_attention_mask=None,
288
+ past_key_value=None,
289
+ output_attentions=False,
290
+ ):
291
+ if type(encoder_hidden_states) == list:
292
+ self_outputs0 = self.self0(
293
+ hidden_states,
294
+ attention_mask,
295
+ head_mask,
296
+ encoder_hidden_states[0],
297
+ encoder_attention_mask[0],
298
+ past_key_value,
299
+ output_attentions,
300
+ )
301
+ self_outputs1 = self.self1(
302
+ hidden_states,
303
+ attention_mask,
304
+ head_mask,
305
+ encoder_hidden_states[1],
306
+ encoder_attention_mask[1],
307
+ past_key_value,
308
+ output_attentions,
309
+ )
310
+ attention_output = self.output([self_outputs0[0], self_outputs1[0]], hidden_states)
311
+
312
+ outputs = (attention_output, ) + self_outputs0[1:] # add attentions if we output them
313
+ else:
314
+ self_outputs = self.self(
315
+ hidden_states,
316
+ attention_mask,
317
+ head_mask,
318
+ encoder_hidden_states,
319
+ encoder_attention_mask,
320
+ past_key_value,
321
+ output_attentions,
322
+ )
323
+ attention_output = self.output(self_outputs[0], hidden_states)
324
+ outputs = (attention_output, ) + self_outputs[1:] # add attentions if we output them
325
+ return outputs
326
+
327
+
328
+ class BertIntermediate(nn.Module):
329
+
330
+ def __init__(self, config):
331
+ super().__init__()
332
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
333
+ if isinstance(config.hidden_act, str):
334
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
335
+ else:
336
+ self.intermediate_act_fn = config.hidden_act
337
+
338
+ def forward(self, hidden_states):
339
+ hidden_states = self.dense(hidden_states)
340
+ hidden_states = self.intermediate_act_fn(hidden_states)
341
+ return hidden_states
342
+
343
+
344
+ class BertOutput(nn.Module):
345
+
346
+ def __init__(self, config):
347
+ super().__init__()
348
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
349
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
350
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
351
+
352
+ def forward(self, hidden_states, input_tensor):
353
+ hidden_states = self.dense(hidden_states)
354
+ hidden_states = self.dropout(hidden_states)
355
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
356
+ return hidden_states
357
+
358
+
359
+ class BertLayer(nn.Module):
360
+
361
+ def __init__(self, config, layer_num):
362
+ super().__init__()
363
+ self.config = config
364
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
365
+ self.seq_len_dim = 1
366
+ self.attention = BertAttention(config)
367
+ self.layer_num = layer_num
368
+ if self.config.add_cross_attention:
369
+ self.crossattention = BertAttention(
370
+ config,
371
+ is_cross_attention=self.config.add_cross_attention,
372
+ layer_num=layer_num,
373
+ )
374
+ self.intermediate = BertIntermediate(config)
375
+ self.output = BertOutput(config)
376
+
377
+ def forward(
378
+ self,
379
+ hidden_states,
380
+ attention_mask=None,
381
+ head_mask=None,
382
+ encoder_hidden_states=None,
383
+ encoder_attention_mask=None,
384
+ past_key_value=None,
385
+ output_attentions=False,
386
+ mode=None,
387
+ ):
388
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
389
+ self_attn_past_key_value = (past_key_value[:2] if past_key_value is not None else None)
390
+ self_attention_outputs = self.attention(
391
+ hidden_states,
392
+ attention_mask,
393
+ head_mask,
394
+ output_attentions=output_attentions,
395
+ past_key_value=self_attn_past_key_value,
396
+ )
397
+ attention_output = self_attention_outputs[0]
398
+
399
+ outputs = self_attention_outputs[1:-1]
400
+ present_key_value = self_attention_outputs[-1]
401
+
402
+ if mode == 'multimodal':
403
+ assert (encoder_hidden_states is not None), 'encoder_hidden_states must be given for cross-attention layers'
404
+ cross_attention_outputs = self.crossattention(
405
+ attention_output,
406
+ attention_mask,
407
+ head_mask,
408
+ encoder_hidden_states,
409
+ encoder_attention_mask,
410
+ output_attentions=output_attentions,
411
+ )
412
+ attention_output = cross_attention_outputs[0]
413
+ outputs = (outputs + cross_attention_outputs[1:-1]) # add cross attentions if we output attention weights
414
+ layer_output = apply_chunking_to_forward(
415
+ self.feed_forward_chunk,
416
+ self.chunk_size_feed_forward,
417
+ self.seq_len_dim,
418
+ attention_output,
419
+ )
420
+ outputs = (layer_output, ) + outputs
421
+
422
+ outputs = outputs + (present_key_value, )
423
+
424
+ return outputs
425
+
426
+ def feed_forward_chunk(self, attention_output):
427
+ intermediate_output = self.intermediate(attention_output)
428
+ layer_output = self.output(intermediate_output, attention_output)
429
+ return layer_output
430
+
431
+
432
+ class BertEncoder(nn.Module):
433
+
434
+ def __init__(self, config):
435
+ super().__init__()
436
+ self.config = config
437
+ self.layer = nn.ModuleList([BertLayer(config, i) for i in range(config.num_hidden_layers)])
438
+ self.gradient_checkpointing = False
439
+
440
+ def forward(
441
+ self,
442
+ hidden_states,
443
+ attention_mask=None,
444
+ head_mask=None,
445
+ encoder_hidden_states=None,
446
+ encoder_attention_mask=None,
447
+ past_key_values=None,
448
+ use_cache=None,
449
+ output_attentions=False,
450
+ output_hidden_states=False,
451
+ return_dict=True,
452
+ mode='multimodal',
453
+ ):
454
+ all_hidden_states = () if output_hidden_states else None
455
+ all_self_attentions = () if output_attentions else None
456
+ all_cross_attentions = (() if output_attentions and self.config.add_cross_attention else None)
457
+
458
+ next_decoder_cache = () if use_cache else None
459
+
460
+ for i in range(self.config.num_hidden_layers):
461
+ layer_module = self.layer[i]
462
+ if output_hidden_states:
463
+ all_hidden_states = all_hidden_states + (hidden_states, )
464
+
465
+ layer_head_mask = head_mask[i] if head_mask is not None else None
466
+ past_key_value = past_key_values[i] if past_key_values is not None else None
467
+
468
+ if self.gradient_checkpointing and self.training:
469
+
470
+ if use_cache:
471
+ logger.warn(
472
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
473
+ )
474
+ use_cache = False
475
+
476
+ def create_custom_forward(module):
477
+
478
+ def custom_forward(*inputs):
479
+ return module(*inputs, past_key_value, output_attentions)
480
+
481
+ return custom_forward
482
+
483
+ layer_outputs = torch.utils.checkpoint.checkpoint(
484
+ create_custom_forward(layer_module),
485
+ hidden_states,
486
+ attention_mask,
487
+ layer_head_mask,
488
+ encoder_hidden_states,
489
+ encoder_attention_mask,
490
+ mode=mode,
491
+ )
492
+ else:
493
+ layer_outputs = layer_module(
494
+ hidden_states,
495
+ attention_mask,
496
+ layer_head_mask,
497
+ encoder_hidden_states,
498
+ encoder_attention_mask,
499
+ past_key_value,
500
+ output_attentions,
501
+ mode=mode,
502
+ )
503
+
504
+ hidden_states = layer_outputs[0]
505
+ if use_cache:
506
+ next_decoder_cache += (layer_outputs[-1], )
507
+ if output_attentions:
508
+ all_self_attentions = all_self_attentions + (layer_outputs[1], )
509
+
510
+ if output_hidden_states:
511
+ all_hidden_states = all_hidden_states + (hidden_states, )
512
+
513
+ if not return_dict:
514
+ return tuple(
515
+ v for v in [
516
+ hidden_states,
517
+ next_decoder_cache,
518
+ all_hidden_states,
519
+ all_self_attentions,
520
+ all_cross_attentions,
521
+ ] if v is not None
522
+ )
523
+ return BaseModelOutputWithPastAndCrossAttentions(
524
+ last_hidden_state=hidden_states,
525
+ past_key_values=next_decoder_cache,
526
+ hidden_states=all_hidden_states,
527
+ attentions=all_self_attentions,
528
+ cross_attentions=all_cross_attentions,
529
+ )
530
+
531
+
532
+ class BertPooler(nn.Module):
533
+
534
+ def __init__(self, config):
535
+ super().__init__()
536
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
537
+ self.activation = nn.Tanh()
538
+
539
+ def forward(self, hidden_states):
540
+ # We "pool" the model by simply taking the hidden state corresponding
541
+ # to the first token.
542
+ first_token_tensor = hidden_states[:, 0]
543
+ pooled_output = self.dense(first_token_tensor)
544
+ pooled_output = self.activation(pooled_output)
545
+ return pooled_output
546
+
547
+
548
+ class BertPredictionHeadTransform(nn.Module):
549
+
550
+ def __init__(self, config):
551
+ super().__init__()
552
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
553
+ if isinstance(config.hidden_act, str):
554
+ self.transform_act_fn = ACT2FN[config.hidden_act]
555
+ else:
556
+ self.transform_act_fn = config.hidden_act
557
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
558
+
559
+ def forward(self, hidden_states):
560
+ hidden_states = self.dense(hidden_states)
561
+ hidden_states = self.transform_act_fn(hidden_states)
562
+ hidden_states = self.LayerNorm(hidden_states)
563
+ return hidden_states
564
+
565
+
566
+ class BertLMPredictionHead(nn.Module):
567
+
568
+ def __init__(self, config):
569
+ super().__init__()
570
+ self.transform = BertPredictionHeadTransform(config)
571
+
572
+ # The output weights are the same as the input embeddings, but there is
573
+ # an output-only bias for each token.
574
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
575
+
576
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
577
+
578
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
579
+ self.decoder.bias = self.bias
580
+
581
+ def forward(self, hidden_states):
582
+ hidden_states = self.transform(hidden_states)
583
+ hidden_states = self.decoder(hidden_states)
584
+ return hidden_states
585
+
586
+
587
+ class BertOnlyMLMHead(nn.Module):
588
+
589
+ def __init__(self, config):
590
+ super().__init__()
591
+ self.predictions = BertLMPredictionHead(config)
592
+
593
+ def forward(self, sequence_output):
594
+ prediction_scores = self.predictions(sequence_output)
595
+ return prediction_scores
596
+
597
+
598
+ class BertPreTrainedModel(PreTrainedModel):
599
+ """
600
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
601
+ models.
602
+ """
603
+
604
+ config_class = BertConfig
605
+ base_model_prefix = 'bert'
606
+ _keys_to_ignore_on_load_missing = [r'position_ids']
607
+
608
+ def _init_weights(self, module):
609
+ """Initialize the weights"""
610
+ if isinstance(module, (nn.Linear, nn.Embedding)):
611
+ # Slightly different from the TF version which uses truncated_normal for initialization
612
+ # cf https://github.com/pytorch/pytorch/pull/5617
613
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
614
+ elif isinstance(module, nn.LayerNorm):
615
+ module.bias.data.zero_()
616
+ module.weight.data.fill_(1.0)
617
+ if isinstance(module, nn.Linear) and module.bias is not None:
618
+ module.bias.data.zero_()
619
+
620
+
621
+ class BertModel(BertPreTrainedModel):
622
+ """
623
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
624
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
625
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
626
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
627
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
628
+ input to the forward pass.
629
+ """
630
+
631
+ def __init__(self, config, add_pooling_layer=True):
632
+ super().__init__(config)
633
+ self.config = config
634
+
635
+ self.embeddings = BertEmbeddings(config)
636
+
637
+ self.encoder = BertEncoder(config)
638
+
639
+ self.pooler = BertPooler(config) if add_pooling_layer else None
640
+
641
+ self.init_weights()
642
+
643
+ def get_input_embeddings(self):
644
+ return self.embeddings.word_embeddings
645
+
646
+ def set_input_embeddings(self, value):
647
+ self.embeddings.word_embeddings = value
648
+
649
+ def _prune_heads(self, heads_to_prune):
650
+ """
651
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
652
+ class PreTrainedModel
653
+ """
654
+ for layer, heads in heads_to_prune.items():
655
+ self.encoder.layer[layer].attention.prune_heads(heads)
656
+
657
+ def get_extended_attention_mask(
658
+ self,
659
+ attention_mask: Tensor,
660
+ input_shape: Tuple[int],
661
+ device: device,
662
+ is_decoder: bool,
663
+ ) -> Tensor:
664
+ """
665
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
666
+
667
+ Arguments:
668
+ attention_mask (:obj:`torch.Tensor`):
669
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
670
+ input_shape (:obj:`Tuple[int]`):
671
+ The shape of the input to the model.
672
+ device: (:obj:`torch.device`):
673
+ The device of the input to the model.
674
+
675
+ Returns:
676
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
677
+ """
678
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
679
+ # ourselves in which case we just need to make it broadcastable to all heads.
680
+ if attention_mask.dim() == 3:
681
+ extended_attention_mask = attention_mask[:, None, :, :]
682
+ elif attention_mask.dim() == 2:
683
+ # Provided a padding mask of dimensions [batch_size, seq_length]
684
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
685
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
686
+ if is_decoder:
687
+ batch_size, seq_length = input_shape
688
+
689
+ seq_ids = torch.arange(seq_length, device=device)
690
+ causal_mask = (seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None])
691
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
692
+ # causal and attention masks must have same type with pytorch version < 1.3
693
+ causal_mask = causal_mask.to(attention_mask.dtype)
694
+
695
+ if causal_mask.shape[1] < attention_mask.shape[1]:
696
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
697
+ causal_mask = torch.cat(
698
+ [
699
+ torch.ones(
700
+ (batch_size, seq_length, prefix_seq_len),
701
+ device=device,
702
+ dtype=causal_mask.dtype,
703
+ ),
704
+ causal_mask,
705
+ ],
706
+ axis=-1,
707
+ )
708
+
709
+ extended_attention_mask = (causal_mask[:, None, :, :] * attention_mask[:, None, None, :])
710
+ else:
711
+ extended_attention_mask = attention_mask[:, None, None, :]
712
+ else:
713
+ raise ValueError(
714
+ 'Wrong shape for input_ids (shape {}) or attention_mask (shape {})'.format(
715
+ input_shape, attention_mask.shape
716
+ )
717
+ )
718
+
719
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
720
+ # masked positions, this operation will create a tensor which is 0.0 for
721
+ # positions we want to attend and -10000.0 for masked positions.
722
+ # Since we are adding it to the raw scores before the softmax, this is
723
+ # effectively the same as removing these entirely.
724
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
725
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
726
+ return extended_attention_mask
727
+
728
+ def forward(
729
+ self,
730
+ input_ids=None,
731
+ attention_mask=None,
732
+ position_ids=None,
733
+ head_mask=None,
734
+ inputs_embeds=None,
735
+ encoder_embeds=None,
736
+ encoder_hidden_states=None,
737
+ encoder_attention_mask=None,
738
+ past_key_values=None,
739
+ use_cache=None,
740
+ output_attentions=None,
741
+ output_hidden_states=None,
742
+ return_dict=None,
743
+ is_decoder=False,
744
+ mode='multimodal',
745
+ ):
746
+ r"""
747
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
748
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
749
+ the model is configured as a decoder.
750
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
751
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
752
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
753
+ - 1 for tokens that are **not masked**,
754
+ - 0 for tokens that are **masked**.
755
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
756
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
757
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
758
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
759
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
760
+ use_cache (:obj:`bool`, `optional`):
761
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
762
+ decoding (see :obj:`past_key_values`).
763
+ """
764
+ output_attentions = (output_attentions if output_attentions is not None else self.config.output_attentions)
765
+ output_hidden_states = (
766
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
767
+ )
768
+ return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
769
+
770
+ if is_decoder:
771
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
772
+ else:
773
+ use_cache = False
774
+
775
+ if input_ids is not None and inputs_embeds is not None:
776
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
777
+ elif input_ids is not None:
778
+ input_shape = input_ids.size()
779
+ batch_size, seq_length = input_shape
780
+ device = input_ids.device
781
+ elif inputs_embeds is not None:
782
+ input_shape = inputs_embeds.size()[:-1]
783
+ batch_size, seq_length = input_shape
784
+ device = inputs_embeds.device
785
+ elif encoder_embeds is not None:
786
+ input_shape = encoder_embeds.size()[:-1]
787
+ batch_size, seq_length = input_shape
788
+ device = encoder_embeds.device
789
+ else:
790
+ raise ValueError('You have to specify either input_ids or inputs_embeds or encoder_embeds')
791
+
792
+ # past_key_values_length
793
+ past_key_values_length = (past_key_values[0][0].shape[2] if past_key_values is not None else 0)
794
+
795
+ if attention_mask is None:
796
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
797
+
798
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
799
+ # ourselves in which case we just need to make it broadcastable to all heads.
800
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
801
+ attention_mask, input_shape, device, is_decoder
802
+ )
803
+
804
+ # If a 2D or 3D attention mask is provided for the cross-attention
805
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
806
+ if encoder_hidden_states is not None:
807
+ if type(encoder_hidden_states) == list:
808
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
809
+ else:
810
+ (
811
+ encoder_batch_size,
812
+ encoder_sequence_length,
813
+ _,
814
+ ) = encoder_hidden_states.size()
815
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
816
+
817
+ if type(encoder_attention_mask) == list:
818
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
819
+ elif encoder_attention_mask is None:
820
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
821
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
822
+ else:
823
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
824
+ else:
825
+ encoder_extended_attention_mask = None
826
+
827
+ # Prepare head mask if needed
828
+ # 1.0 in head_mask indicate we keep the head
829
+ # attention_probs has shape bsz x n_heads x N x N
830
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
831
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
832
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
833
+
834
+ if encoder_embeds is None:
835
+ embedding_output = self.embeddings(
836
+ input_ids=input_ids,
837
+ position_ids=position_ids,
838
+ inputs_embeds=inputs_embeds,
839
+ past_key_values_length=past_key_values_length,
840
+ )
841
+ else:
842
+ embedding_output = encoder_embeds
843
+
844
+ encoder_outputs = self.encoder(
845
+ embedding_output,
846
+ attention_mask=extended_attention_mask,
847
+ head_mask=head_mask,
848
+ encoder_hidden_states=encoder_hidden_states,
849
+ encoder_attention_mask=encoder_extended_attention_mask,
850
+ past_key_values=past_key_values,
851
+ use_cache=use_cache,
852
+ output_attentions=output_attentions,
853
+ output_hidden_states=output_hidden_states,
854
+ return_dict=return_dict,
855
+ mode=mode,
856
+ )
857
+ sequence_output = encoder_outputs[0]
858
+ pooled_output = (self.pooler(sequence_output) if self.pooler is not None else None)
859
+
860
+ if not return_dict:
861
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
862
+
863
+ return BaseModelOutputWithPoolingAndCrossAttentions(
864
+ last_hidden_state=sequence_output,
865
+ pooler_output=pooled_output,
866
+ past_key_values=encoder_outputs.past_key_values,
867
+ hidden_states=encoder_outputs.hidden_states,
868
+ attentions=encoder_outputs.attentions,
869
+ cross_attentions=encoder_outputs.cross_attentions,
870
+ )