evalscope 0.10.0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (606) hide show
  1. evalscope/__init__.py +4 -1
  2. evalscope/api/benchmark/__init__.py +11 -0
  3. evalscope/api/benchmark/adapters/__init__.py +7 -0
  4. evalscope/api/benchmark/adapters/agent_adapter.py +8 -0
  5. evalscope/api/benchmark/adapters/default_data_adapter.py +754 -0
  6. evalscope/api/benchmark/adapters/image_edit_adapter.py +82 -0
  7. evalscope/api/benchmark/adapters/multi_choice_adapter.py +86 -0
  8. evalscope/api/benchmark/adapters/ner_adapter.py +212 -0
  9. evalscope/api/benchmark/adapters/text2image_adapter.py +157 -0
  10. evalscope/api/benchmark/adapters/vision_language_adapter.py +8 -0
  11. evalscope/api/benchmark/benchmark.py +404 -0
  12. evalscope/api/benchmark/meta.py +124 -0
  13. evalscope/api/dataset/__init__.py +2 -0
  14. evalscope/api/dataset/dataset.py +370 -0
  15. evalscope/api/dataset/loader.py +266 -0
  16. evalscope/api/dataset/utils.py +143 -0
  17. evalscope/api/evaluator/__init__.py +3 -0
  18. evalscope/api/evaluator/cache.py +382 -0
  19. evalscope/api/evaluator/evaluator.py +61 -0
  20. evalscope/api/evaluator/state.py +280 -0
  21. evalscope/api/filter/__init__.py +1 -0
  22. evalscope/api/filter/filter.py +72 -0
  23. evalscope/api/messages/__init__.py +12 -0
  24. evalscope/api/messages/chat_message.py +248 -0
  25. evalscope/api/messages/content.py +102 -0
  26. evalscope/api/messages/utils.py +35 -0
  27. evalscope/api/metric/__init__.py +2 -0
  28. evalscope/api/metric/metric.py +60 -0
  29. evalscope/api/metric/scorer.py +113 -0
  30. evalscope/api/mixin/__init__.py +2 -0
  31. evalscope/api/mixin/llm_judge_mixin.py +170 -0
  32. evalscope/api/mixin/sandbox_mixin.py +182 -0
  33. evalscope/api/model/__init__.py +12 -0
  34. evalscope/api/model/generate_config.py +161 -0
  35. evalscope/api/model/model.py +386 -0
  36. evalscope/api/model/model_output.py +285 -0
  37. evalscope/api/registry.py +182 -0
  38. evalscope/api/tool/__init__.py +3 -0
  39. evalscope/api/tool/tool_call.py +101 -0
  40. evalscope/api/tool/tool_info.py +173 -0
  41. evalscope/api/tool/utils.py +64 -0
  42. evalscope/app/__init__.py +28 -0
  43. evalscope/app/app.py +38 -0
  44. evalscope/app/arguments.py +11 -0
  45. evalscope/app/constants.py +22 -0
  46. evalscope/app/ui/__init__.py +20 -0
  47. evalscope/app/ui/app_ui.py +53 -0
  48. evalscope/app/ui/multi_model.py +353 -0
  49. evalscope/app/ui/sidebar.py +42 -0
  50. evalscope/app/ui/single_model.py +220 -0
  51. evalscope/app/ui/visualization.py +36 -0
  52. evalscope/app/utils/data_utils.py +195 -0
  53. evalscope/app/utils/env_utils.py +12 -0
  54. evalscope/app/utils/localization.py +221 -0
  55. evalscope/app/utils/text_utils.py +119 -0
  56. evalscope/app/utils/visualization.py +96 -0
  57. evalscope/arguments.py +32 -9
  58. evalscope/backend/opencompass/api_meta_template.py +2 -1
  59. evalscope/backend/opencompass/backend_manager.py +10 -7
  60. evalscope/backend/rag_eval/__init__.py +1 -1
  61. evalscope/backend/rag_eval/backend_manager.py +23 -6
  62. evalscope/backend/rag_eval/clip_benchmark/dataset_builder.py +33 -21
  63. evalscope/backend/rag_eval/clip_benchmark/task_template.py +8 -4
  64. evalscope/backend/rag_eval/cmteb/arguments.py +14 -1
  65. evalscope/backend/rag_eval/cmteb/task_template.py +19 -3
  66. evalscope/backend/rag_eval/cmteb/tasks/CustomTask.py +1 -1
  67. evalscope/backend/rag_eval/ragas/arguments.py +0 -1
  68. evalscope/backend/rag_eval/ragas/task_template.py +2 -1
  69. evalscope/backend/rag_eval/ragas/tasks/build_distribution.py +2 -1
  70. evalscope/backend/rag_eval/ragas/tasks/build_transform.py +7 -4
  71. evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +9 -3
  72. evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +2 -6
  73. evalscope/backend/rag_eval/utils/embedding.py +125 -32
  74. evalscope/backend/rag_eval/utils/llm.py +16 -16
  75. evalscope/backend/vlm_eval_kit/backend_manager.py +8 -3
  76. evalscope/benchmarks/__init__.py +17 -5
  77. evalscope/benchmarks/aa_lcr/__init__.py +0 -0
  78. evalscope/benchmarks/aa_lcr/aa_lcr_adapter.py +205 -0
  79. evalscope/benchmarks/ai2d/__init__.py +0 -0
  80. evalscope/benchmarks/ai2d/ai2d_adapter.py +54 -0
  81. evalscope/benchmarks/aime/__init__.py +0 -0
  82. evalscope/benchmarks/aime/aime24_adapter.py +55 -0
  83. evalscope/benchmarks/aime/aime25_adapter.py +181 -0
  84. evalscope/benchmarks/aime/grader.py +307 -0
  85. evalscope/{metrics/math_accuracy.py → benchmarks/aime/math_normalize.py} +61 -72
  86. evalscope/benchmarks/alpaca_eval/__init__.py +0 -0
  87. evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +133 -0
  88. evalscope/benchmarks/amc/__init__.py +0 -0
  89. evalscope/benchmarks/amc/amc_adapter.py +51 -0
  90. evalscope/benchmarks/arc/arc_adapter.py +34 -149
  91. evalscope/benchmarks/arena_hard/__init__.py +0 -0
  92. evalscope/benchmarks/arena_hard/arena_hard_adapter.py +149 -0
  93. evalscope/benchmarks/arena_hard/utils.py +186 -0
  94. evalscope/benchmarks/bbh/bbh_adapter.py +117 -157
  95. evalscope/benchmarks/bfcl/__init__.py +0 -0
  96. evalscope/benchmarks/bfcl/v3/__init__.py +0 -0
  97. evalscope/benchmarks/bfcl/v3/bfcl_v3_adapter.py +370 -0
  98. evalscope/benchmarks/bfcl/v3/generation.py +222 -0
  99. evalscope/benchmarks/bfcl/v3/utils.py +23 -0
  100. evalscope/benchmarks/bfcl/v4/__init__.py +0 -0
  101. evalscope/benchmarks/bfcl/v4/bfcl_v4_adapter.py +229 -0
  102. evalscope/benchmarks/bfcl/v4/utils.py +410 -0
  103. evalscope/benchmarks/biomix_qa/__init__.py +0 -0
  104. evalscope/benchmarks/biomix_qa/biomix_qa_adapter.py +36 -0
  105. evalscope/benchmarks/blink/__init__.py +0 -0
  106. evalscope/benchmarks/blink/blink_adapter.py +61 -0
  107. evalscope/benchmarks/ceval/ceval_adapter.py +93 -174
  108. evalscope/benchmarks/chartqa/__init__.py +0 -0
  109. evalscope/benchmarks/chartqa/chartqa_adapter.py +80 -0
  110. evalscope/benchmarks/chartqa/utils.py +38 -0
  111. evalscope/benchmarks/chinese_simple_qa/__init__.py +0 -0
  112. evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +170 -0
  113. evalscope/benchmarks/cmmlu/cmmlu_adapter.py +34 -140
  114. evalscope/benchmarks/coin_flip/__init__.py +0 -0
  115. evalscope/benchmarks/coin_flip/coin_flip_adapter.py +128 -0
  116. evalscope/benchmarks/commonsense_qa/__init__.py +0 -0
  117. evalscope/benchmarks/commonsense_qa/commonsense_qa_adapter.py +32 -0
  118. evalscope/benchmarks/competition_math/competition_math_adapter.py +64 -112
  119. evalscope/benchmarks/data_collection/__init__.py +0 -0
  120. evalscope/benchmarks/data_collection/data_collection_adapter.py +215 -0
  121. evalscope/benchmarks/docmath/__init__.py +0 -0
  122. evalscope/benchmarks/docmath/docmath_adapter.py +143 -0
  123. evalscope/benchmarks/docmath/utils.py +219 -0
  124. evalscope/benchmarks/docvqa/__init__.py +0 -0
  125. evalscope/benchmarks/docvqa/docvqa_adapter.py +67 -0
  126. evalscope/benchmarks/drivelology/__init__.py +0 -0
  127. evalscope/benchmarks/drivelology/drivelology_binary_adapter.py +170 -0
  128. evalscope/benchmarks/drivelology/drivelology_multilabel_adapter.py +254 -0
  129. evalscope/benchmarks/drivelology/drivelology_selection_adapter.py +49 -0
  130. evalscope/benchmarks/drivelology/drivelology_writing_adapter.py +218 -0
  131. evalscope/benchmarks/drop/__init__.py +0 -0
  132. evalscope/benchmarks/drop/drop_adapter.py +155 -0
  133. evalscope/benchmarks/drop/utils.py +156 -0
  134. evalscope/benchmarks/frames/__init__.py +0 -0
  135. evalscope/benchmarks/frames/frames_adapter.py +175 -0
  136. evalscope/benchmarks/frames/utils.py +37 -0
  137. evalscope/benchmarks/general_arena/__init__.py +0 -0
  138. evalscope/benchmarks/general_arena/general_arena_adapter.py +454 -0
  139. evalscope/benchmarks/general_arena/utils.py +223 -0
  140. evalscope/benchmarks/general_mcq/__init__.py +0 -0
  141. evalscope/benchmarks/general_mcq/general_mcq_adapter.py +58 -0
  142. evalscope/benchmarks/general_qa/general_qa_adapter.py +75 -107
  143. evalscope/benchmarks/gpqa/__init__.py +0 -0
  144. evalscope/benchmarks/gpqa/gpqa_adapter.py +90 -0
  145. evalscope/benchmarks/gpqa/prompt.py +88 -0
  146. evalscope/benchmarks/gsm8k/gsm8k_adapter.py +77 -144
  147. evalscope/benchmarks/hallusion_bench/__init__.py +0 -0
  148. evalscope/benchmarks/hallusion_bench/hallusion_bench_adapter.py +159 -0
  149. evalscope/benchmarks/halu_eval/__init__.py +0 -0
  150. evalscope/benchmarks/halu_eval/halu_eval_adapter.py +128 -0
  151. evalscope/benchmarks/halu_eval/halu_eval_instructions.py +84 -0
  152. evalscope/benchmarks/healthbench/__init__.py +0 -0
  153. evalscope/benchmarks/healthbench/healthbench_adapter.py +282 -0
  154. evalscope/benchmarks/healthbench/utils.py +102 -0
  155. evalscope/benchmarks/hellaswag/hellaswag_adapter.py +36 -134
  156. evalscope/benchmarks/hle/__init__.py +0 -0
  157. evalscope/benchmarks/hle/hle_adapter.py +153 -0
  158. evalscope/benchmarks/humaneval/humaneval_adapter.py +80 -88
  159. evalscope/benchmarks/humaneval/utils.py +235 -0
  160. evalscope/benchmarks/ifeval/ifeval_adapter.py +71 -45
  161. evalscope/benchmarks/ifeval/instructions.py +112 -68
  162. evalscope/benchmarks/ifeval/instructions_registry.py +1 -1
  163. evalscope/benchmarks/ifeval/instructions_util.py +2 -3
  164. evalscope/benchmarks/ifeval/utils.py +6 -7
  165. evalscope/benchmarks/image_edit/__init__.py +0 -0
  166. evalscope/benchmarks/image_edit/gedit/__init__.py +0 -0
  167. evalscope/benchmarks/image_edit/gedit/gedit_adapter.py +138 -0
  168. evalscope/benchmarks/image_edit/gedit/utils.py +372 -0
  169. evalscope/benchmarks/image_edit/gedit/vie_prompts.py +406 -0
  170. evalscope/benchmarks/infovqa/__init__.py +0 -0
  171. evalscope/benchmarks/infovqa/infovqa_adapter.py +66 -0
  172. evalscope/benchmarks/iquiz/iquiz_adapter.py +30 -58
  173. evalscope/benchmarks/live_code_bench/__init__.py +0 -0
  174. evalscope/benchmarks/live_code_bench/evaluate_utils.py +195 -0
  175. evalscope/benchmarks/live_code_bench/extract_utils.py +70 -0
  176. evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +150 -0
  177. evalscope/benchmarks/live_code_bench/load_utils.py +63 -0
  178. evalscope/benchmarks/live_code_bench/pass_k_utils.py +56 -0
  179. evalscope/benchmarks/live_code_bench/prompts.py +207 -0
  180. evalscope/benchmarks/live_code_bench/sandbox_evaluate_utils.py +220 -0
  181. evalscope/benchmarks/live_code_bench/testing_util.py +544 -0
  182. evalscope/benchmarks/logi_qa/__int__.py +0 -0
  183. evalscope/benchmarks/logi_qa/logi_qa_adapter.py +41 -0
  184. evalscope/benchmarks/maritime_bench/__init__.py +0 -0
  185. evalscope/benchmarks/maritime_bench/maritime_bench_adapter.py +56 -0
  186. evalscope/benchmarks/math_500/__init__.py +0 -0
  187. evalscope/benchmarks/math_500/math_500_adapter.py +55 -0
  188. evalscope/benchmarks/math_qa/__init__.py +0 -0
  189. evalscope/benchmarks/math_qa/math_qa_adapter.py +35 -0
  190. evalscope/benchmarks/math_verse/__init__.py +0 -0
  191. evalscope/benchmarks/math_verse/math_verse_adapter.py +105 -0
  192. evalscope/benchmarks/math_vision/__init__.py +0 -0
  193. evalscope/benchmarks/math_vision/math_vision_adapter.py +116 -0
  194. evalscope/benchmarks/math_vista/__init__.py +0 -0
  195. evalscope/benchmarks/math_vista/math_vista_adapter.py +114 -0
  196. evalscope/benchmarks/med_mcqa/__init__.py +0 -0
  197. evalscope/benchmarks/med_mcqa/med_mcqa_adapter.py +32 -0
  198. evalscope/benchmarks/minerva_math/__init__.py +0 -0
  199. evalscope/benchmarks/minerva_math/minerva_math_adapter.py +53 -0
  200. evalscope/benchmarks/mm_bench/__init__.py +0 -0
  201. evalscope/benchmarks/mm_bench/mm_bench_adapter.py +99 -0
  202. evalscope/benchmarks/mm_star/__init__.py +0 -0
  203. evalscope/benchmarks/mm_star/mm_star_adapter.py +73 -0
  204. evalscope/benchmarks/mmlu/mmlu_adapter.py +32 -210
  205. evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +87 -103
  206. evalscope/benchmarks/mmlu_redux/__init__.py +0 -0
  207. evalscope/benchmarks/mmlu_redux/mmlu_redux_adapter.py +139 -0
  208. evalscope/benchmarks/mmmu/__init__.py +0 -0
  209. evalscope/benchmarks/mmmu/mmmu_adapter.py +159 -0
  210. evalscope/benchmarks/mmmu_pro/__init__.py +0 -0
  211. evalscope/benchmarks/mmmu_pro/mmmu_pro_adapter.py +124 -0
  212. evalscope/benchmarks/mri_mcqa/__init__.py +0 -0
  213. evalscope/benchmarks/mri_mcqa/mri_mcqa_adapter.py +34 -0
  214. evalscope/benchmarks/multi_if/__init__.py +0 -0
  215. evalscope/benchmarks/multi_if/ifeval.py +3354 -0
  216. evalscope/benchmarks/multi_if/metrics.py +120 -0
  217. evalscope/benchmarks/multi_if/multi_if_adapter.py +161 -0
  218. evalscope/benchmarks/music_trivia/__init__.py +0 -0
  219. evalscope/benchmarks/music_trivia/music_trivia_adapter.py +36 -0
  220. evalscope/benchmarks/musr/__init__.py +0 -0
  221. evalscope/benchmarks/musr/musr_adapter.py +43 -0
  222. evalscope/benchmarks/needle_haystack/__init__.py +0 -0
  223. evalscope/benchmarks/needle_haystack/needle_haystack_adapter.py +389 -0
  224. evalscope/benchmarks/needle_haystack/utils.py +79 -0
  225. evalscope/benchmarks/ner/__init__.py +0 -0
  226. evalscope/benchmarks/ner/broad_twitter_corpus_adapter.py +52 -0
  227. evalscope/benchmarks/ner/conll2003_adapter.py +48 -0
  228. evalscope/benchmarks/ner/copious_adapter.py +85 -0
  229. evalscope/benchmarks/ner/cross_ner_adapter.py +120 -0
  230. evalscope/benchmarks/ner/cross_ner_entities/__init__.py +0 -0
  231. evalscope/benchmarks/ner/cross_ner_entities/ai.py +54 -0
  232. evalscope/benchmarks/ner/cross_ner_entities/literature.py +36 -0
  233. evalscope/benchmarks/ner/cross_ner_entities/music.py +39 -0
  234. evalscope/benchmarks/ner/cross_ner_entities/politics.py +37 -0
  235. evalscope/benchmarks/ner/cross_ner_entities/science.py +58 -0
  236. evalscope/benchmarks/ner/genia_ner_adapter.py +66 -0
  237. evalscope/benchmarks/ner/harvey_ner_adapter.py +58 -0
  238. evalscope/benchmarks/ner/mit_movie_trivia_adapter.py +74 -0
  239. evalscope/benchmarks/ner/mit_restaurant_adapter.py +66 -0
  240. evalscope/benchmarks/ner/ontonotes5_adapter.py +87 -0
  241. evalscope/benchmarks/ner/wnut2017_adapter.py +61 -0
  242. evalscope/benchmarks/ocr_bench/__init__.py +0 -0
  243. evalscope/benchmarks/ocr_bench/ocr_bench/__init__.py +0 -0
  244. evalscope/benchmarks/ocr_bench/ocr_bench/ocr_bench_adapter.py +101 -0
  245. evalscope/benchmarks/ocr_bench/ocr_bench_v2/IoUscore_metric.py +87 -0
  246. evalscope/benchmarks/ocr_bench/ocr_bench_v2/TEDS_metric.py +963 -0
  247. evalscope/benchmarks/ocr_bench/ocr_bench_v2/__init__.py +0 -0
  248. evalscope/benchmarks/ocr_bench/ocr_bench_v2/ocr_bench_v2_adapter.py +161 -0
  249. evalscope/benchmarks/ocr_bench/ocr_bench_v2/page_ocr_metric.py +50 -0
  250. evalscope/benchmarks/ocr_bench/ocr_bench_v2/parallel.py +46 -0
  251. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/__init__.py +0 -0
  252. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/readme.txt +26 -0
  253. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/rrc_evaluation_funcs_1_1.py +537 -0
  254. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/script.py +481 -0
  255. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_metric.py +179 -0
  256. evalscope/benchmarks/ocr_bench/ocr_bench_v2/utils.py +433 -0
  257. evalscope/benchmarks/ocr_bench/ocr_bench_v2/vqa_metric.py +254 -0
  258. evalscope/benchmarks/olympiad_bench/__init__.py +0 -0
  259. evalscope/benchmarks/olympiad_bench/olympiad_bench_adapter.py +163 -0
  260. evalscope/benchmarks/olympiad_bench/utils.py +565 -0
  261. evalscope/benchmarks/omni_bench/__init__.py +0 -0
  262. evalscope/benchmarks/omni_bench/omni_bench_adapter.py +86 -0
  263. evalscope/benchmarks/omnidoc_bench/__init__.py +0 -0
  264. evalscope/benchmarks/omnidoc_bench/end2end_eval.py +349 -0
  265. evalscope/benchmarks/omnidoc_bench/metrics.py +547 -0
  266. evalscope/benchmarks/omnidoc_bench/omnidoc_bench_adapter.py +135 -0
  267. evalscope/benchmarks/omnidoc_bench/utils.py +1937 -0
  268. evalscope/benchmarks/piqa/__init__.py +0 -0
  269. evalscope/benchmarks/piqa/piqa_adapter.py +32 -0
  270. evalscope/benchmarks/poly_math/__init__.py +0 -0
  271. evalscope/benchmarks/poly_math/poly_math_adapter.py +132 -0
  272. evalscope/benchmarks/poly_math/utils/instruction.py +105 -0
  273. evalscope/benchmarks/pope/__init__.py +0 -0
  274. evalscope/benchmarks/pope/pope_adapter.py +112 -0
  275. evalscope/benchmarks/process_bench/__init__.py +0 -0
  276. evalscope/benchmarks/process_bench/process_bench_adapter.py +171 -0
  277. evalscope/benchmarks/pumed_qa/__init__.py +0 -0
  278. evalscope/benchmarks/pumed_qa/pubmed_qa_adapter.py +175 -0
  279. evalscope/benchmarks/qasc/__init__.py +0 -0
  280. evalscope/benchmarks/qasc/qasc_adapter.py +35 -0
  281. evalscope/benchmarks/race/race_adapter.py +33 -120
  282. evalscope/benchmarks/real_world_qa/__init__.py +0 -0
  283. evalscope/benchmarks/real_world_qa/real_world_qa_adapter.py +64 -0
  284. evalscope/benchmarks/sciq/__init__.py +0 -0
  285. evalscope/benchmarks/sciq/sciq_adapter.py +36 -0
  286. evalscope/benchmarks/seed_bench_2_plus/__init__.py +0 -0
  287. evalscope/benchmarks/seed_bench_2_plus/seed_bench_2_plus_adapter.py +72 -0
  288. evalscope/benchmarks/simple_qa/__init__.py +0 -0
  289. evalscope/benchmarks/simple_qa/simple_qa_adapter.py +169 -0
  290. evalscope/benchmarks/simple_vqa/__init__.py +0 -0
  291. evalscope/benchmarks/simple_vqa/simple_vqa_adapter.py +169 -0
  292. evalscope/benchmarks/siqa/__init__.py +0 -0
  293. evalscope/benchmarks/siqa/siqa_adapter.py +39 -0
  294. evalscope/benchmarks/super_gpqa/__init__.py +0 -0
  295. evalscope/benchmarks/super_gpqa/prompt.py +88 -0
  296. evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +165 -0
  297. evalscope/benchmarks/super_gpqa/utils.py +86 -0
  298. evalscope/benchmarks/tau_bench/__init__.py +0 -0
  299. evalscope/benchmarks/tau_bench/tau2_bench/__init__.py +0 -0
  300. evalscope/benchmarks/tau_bench/tau2_bench/generation.py +158 -0
  301. evalscope/benchmarks/tau_bench/tau2_bench/tau2_bench_adapter.py +146 -0
  302. evalscope/benchmarks/tau_bench/tau_bench/__init__.py +0 -0
  303. evalscope/benchmarks/tau_bench/tau_bench/generation.py +147 -0
  304. evalscope/benchmarks/tau_bench/tau_bench/tau_bench_adapter.py +168 -0
  305. evalscope/benchmarks/text2image/__init__.py +0 -0
  306. evalscope/benchmarks/text2image/evalmuse_adapter.py +78 -0
  307. evalscope/benchmarks/text2image/genai_bench_adapter.py +53 -0
  308. evalscope/benchmarks/text2image/general_t2i_adapter.py +42 -0
  309. evalscope/benchmarks/text2image/hpdv2_adapter.py +52 -0
  310. evalscope/benchmarks/text2image/tifa_adapter.py +27 -0
  311. evalscope/benchmarks/tool_bench/__init__.py +0 -0
  312. evalscope/benchmarks/tool_bench/tool_bench_adapter.py +102 -0
  313. evalscope/benchmarks/tool_bench/utils.py +203 -0
  314. evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +56 -118
  315. evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +70 -270
  316. evalscope/benchmarks/visu_logic/__init__.py +0 -0
  317. evalscope/benchmarks/visu_logic/visu_logic_adapter.py +75 -0
  318. evalscope/benchmarks/winogrande/__init__.py +0 -0
  319. evalscope/benchmarks/winogrande/winogrande_adapter.py +34 -0
  320. evalscope/benchmarks/wmt/__init__.py +0 -0
  321. evalscope/benchmarks/wmt/wmt24_adapter.py +294 -0
  322. evalscope/benchmarks/zerobench/__init__.py +0 -0
  323. evalscope/benchmarks/zerobench/zerobench_adapter.py +64 -0
  324. evalscope/cli/cli.py +2 -0
  325. evalscope/cli/start_app.py +12 -2
  326. evalscope/cli/start_eval.py +4 -3
  327. evalscope/cli/start_perf.py +10 -2
  328. evalscope/cli/start_server.py +6 -3
  329. evalscope/collections/__init__.py +27 -3
  330. evalscope/collections/sampler.py +12 -11
  331. evalscope/collections/schema.py +13 -12
  332. evalscope/config.py +218 -147
  333. evalscope/constants.py +78 -82
  334. evalscope/evaluator/__init__.py +1 -1
  335. evalscope/evaluator/evaluator.py +334 -318
  336. evalscope/filters/__init__.py +2 -0
  337. evalscope/filters/extraction.py +126 -0
  338. evalscope/filters/selection.py +57 -0
  339. evalscope/metrics/__init__.py +59 -3
  340. evalscope/metrics/bert_score/__init__.py +0 -0
  341. evalscope/metrics/bert_score/scorer.py +338 -0
  342. evalscope/metrics/bert_score/utils.py +697 -0
  343. evalscope/metrics/bundled_rouge_score/rouge_scorer.py +20 -15
  344. evalscope/metrics/llm_judge.py +211 -0
  345. evalscope/metrics/math_parser.py +545 -0
  346. evalscope/metrics/metric.py +611 -0
  347. evalscope/metrics/metrics.py +112 -23
  348. evalscope/metrics/rouge_metric.py +11 -13
  349. evalscope/metrics/t2v_metrics/__init__.py +0 -0
  350. evalscope/metrics/t2v_metrics/clipscore.py +14 -0
  351. evalscope/metrics/t2v_metrics/constants.py +12 -0
  352. evalscope/metrics/t2v_metrics/itmscore.py +14 -0
  353. evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
  354. evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
  355. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
  356. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
  357. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +134 -0
  358. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +282 -0
  359. evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +115 -0
  360. evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +87 -0
  361. evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +86 -0
  362. evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
  363. evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
  364. evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +85 -0
  365. evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +99 -0
  366. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +176 -0
  367. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
  368. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +82 -0
  369. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +74 -0
  370. evalscope/metrics/t2v_metrics/models/model.py +45 -0
  371. evalscope/metrics/t2v_metrics/models/utils.py +25 -0
  372. evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
  373. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
  374. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
  375. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +306 -0
  376. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
  377. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +84 -0
  378. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
  379. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +223 -0
  380. evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +153 -0
  381. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
  382. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
  383. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
  384. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +24 -0
  385. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +190 -0
  386. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +100 -0
  387. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +313 -0
  388. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
  389. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
  390. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +192 -0
  391. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +320 -0
  392. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
  393. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
  394. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
  395. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
  396. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
  397. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
  398. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
  399. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
  400. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
  401. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
  402. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
  403. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
  404. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
  405. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
  406. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
  407. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
  408. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
  409. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
  410. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
  411. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
  412. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
  413. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
  414. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
  415. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +212 -0
  416. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
  417. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1111 -0
  418. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
  419. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
  420. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
  421. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +457 -0
  422. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +370 -0
  423. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +765 -0
  424. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +274 -0
  425. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +896 -0
  426. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1876 -0
  427. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +83 -0
  428. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +58 -0
  429. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
  430. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
  431. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
  432. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +187 -0
  433. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +179 -0
  434. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +115 -0
  435. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
  436. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +348 -0
  437. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +870 -0
  438. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +273 -0
  439. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +514 -0
  440. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1291 -0
  441. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +476 -0
  442. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +35 -0
  443. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
  444. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
  445. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +393 -0
  446. evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +129 -0
  447. evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +18 -0
  448. evalscope/metrics/t2v_metrics/score.py +78 -0
  449. evalscope/metrics/t2v_metrics/vqascore.py +14 -0
  450. evalscope/models/__init__.py +23 -13
  451. evalscope/models/image_edit_model.py +125 -0
  452. evalscope/models/mockllm.py +65 -0
  453. evalscope/models/model_apis.py +69 -0
  454. evalscope/models/modelscope.py +455 -0
  455. evalscope/models/openai_compatible.py +144 -0
  456. evalscope/models/text2image_model.py +124 -0
  457. evalscope/models/utils/openai.py +708 -0
  458. evalscope/perf/__init__.py +0 -1
  459. evalscope/perf/arguments.py +103 -69
  460. evalscope/perf/benchmark.py +114 -163
  461. evalscope/perf/http_client.py +59 -89
  462. evalscope/perf/main.py +91 -18
  463. evalscope/perf/plugin/__init__.py +3 -2
  464. evalscope/perf/plugin/api/__init__.py +4 -3
  465. evalscope/perf/plugin/api/base.py +27 -7
  466. evalscope/perf/plugin/api/custom_api.py +170 -57
  467. evalscope/perf/plugin/api/dashscope_api.py +4 -10
  468. evalscope/perf/plugin/api/default_api.py +214 -0
  469. evalscope/perf/plugin/api/openai_api.py +120 -41
  470. evalscope/perf/plugin/datasets/__init__.py +10 -6
  471. evalscope/perf/plugin/datasets/base.py +43 -1
  472. evalscope/perf/plugin/datasets/custom.py +22 -3
  473. evalscope/perf/plugin/datasets/flickr8k.py +5 -27
  474. evalscope/perf/plugin/datasets/kontext_bench.py +28 -0
  475. evalscope/perf/plugin/datasets/line_by_line.py +7 -3
  476. evalscope/perf/plugin/datasets/longalpaca.py +7 -3
  477. evalscope/perf/plugin/datasets/openqa.py +13 -14
  478. evalscope/perf/plugin/datasets/random_dataset.py +67 -0
  479. evalscope/perf/plugin/datasets/random_vl_dataset.py +80 -0
  480. evalscope/perf/plugin/datasets/speed_benchmark.py +11 -0
  481. evalscope/perf/plugin/registry.py +36 -16
  482. evalscope/perf/utils/analysis_result.py +24 -23
  483. evalscope/perf/utils/benchmark_util.py +95 -55
  484. evalscope/perf/utils/db_util.py +115 -78
  485. evalscope/perf/utils/local_server.py +12 -47
  486. evalscope/perf/utils/log_utils.py +63 -0
  487. evalscope/perf/utils/rich_display.py +192 -0
  488. evalscope/report/__init__.py +46 -3
  489. evalscope/report/combinator.py +143 -32
  490. evalscope/report/generator.py +74 -34
  491. evalscope/report/report.py +238 -0
  492. evalscope/run.py +71 -46
  493. evalscope/summarizer.py +5 -5
  494. evalscope/third_party/longbench_write/infer.py +1 -1
  495. evalscope/third_party/thinkbench/__init__.py +3 -0
  496. evalscope/third_party/thinkbench/eval.py +441 -0
  497. evalscope/third_party/thinkbench/infer.py +130 -0
  498. evalscope/third_party/thinkbench/resources/critique_template.txt +17 -0
  499. evalscope/third_party/thinkbench/resources/reformat_template.txt +31 -0
  500. evalscope/third_party/thinkbench/tools/__init__.py +0 -0
  501. evalscope/third_party/thinkbench/tools/llm.py +48 -0
  502. evalscope/third_party/thinkbench/tools/utils.py +13 -0
  503. evalscope/third_party/toolbench_static/llm/swift_infer.py +46 -20
  504. evalscope/third_party/toolbench_static/toolbench_static.py +2 -1
  505. evalscope/utils/__init__.py +82 -2
  506. evalscope/utils/argument_utils.py +64 -0
  507. evalscope/utils/chat_service.py +8 -6
  508. evalscope/utils/deprecation_utils.py +53 -0
  509. evalscope/utils/function_utils.py +266 -0
  510. evalscope/utils/import_utils.py +154 -0
  511. evalscope/utils/io_utils.py +336 -8
  512. evalscope/utils/json_schema.py +231 -0
  513. evalscope/utils/logger.py +121 -31
  514. evalscope/utils/model_utils.py +57 -1
  515. evalscope/utils/multi_choices.py +303 -0
  516. evalscope/utils/ner.py +377 -0
  517. evalscope/utils/url_utils.py +65 -0
  518. evalscope/version.py +2 -2
  519. evalscope-1.2.0.dist-info/METADATA +553 -0
  520. evalscope-1.2.0.dist-info/RECORD +628 -0
  521. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/WHEEL +1 -1
  522. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/top_level.txt +0 -1
  523. evalscope/backend/vlm_eval_kit/custom_dataset.py +0 -46
  524. evalscope/benchmarks/arc/ai2_arc.py +0 -151
  525. evalscope/benchmarks/benchmark.py +0 -76
  526. evalscope/benchmarks/ceval/ceval_exam.py +0 -146
  527. evalscope/benchmarks/ceval/samples.jsonl +0 -1
  528. evalscope/benchmarks/cmmlu/cmmlu.py +0 -161
  529. evalscope/benchmarks/cmmlu/samples.jsonl +0 -5
  530. evalscope/benchmarks/competition_math/competition_math.py +0 -79
  531. evalscope/benchmarks/data_adapter.py +0 -291
  532. evalscope/benchmarks/gsm8k/gsm8k.py +0 -121
  533. evalscope/benchmarks/hellaswag/hellaswag.py +0 -112
  534. evalscope/benchmarks/humaneval/humaneval.py +0 -79
  535. evalscope/benchmarks/mmlu/mmlu.py +0 -160
  536. evalscope/benchmarks/mmlu/samples.jsonl +0 -5
  537. evalscope/benchmarks/race/race.py +0 -104
  538. evalscope/benchmarks/race/samples.jsonl +0 -5
  539. evalscope/benchmarks/trivia_qa/trivia_qa.py +0 -89
  540. evalscope/benchmarks/truthful_qa/truthful_qa.py +0 -163
  541. evalscope/collections/evaluator.py +0 -198
  542. evalscope/evaluator/rating_eval.py +0 -157
  543. evalscope/evaluator/reviewer/__init__.py +0 -1
  544. evalscope/evaluator/reviewer/auto_reviewer.py +0 -391
  545. evalscope/metrics/code_metric.py +0 -98
  546. evalscope/metrics/named_metrics.py +0 -17
  547. evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
  548. evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
  549. evalscope/models/base_adapter.py +0 -52
  550. evalscope/models/chat_adapter.py +0 -138
  551. evalscope/models/choice_adapter.py +0 -211
  552. evalscope/models/custom/__init__.py +0 -3
  553. evalscope/models/custom/custom_model.py +0 -53
  554. evalscope/models/custom/dummy_model.py +0 -63
  555. evalscope/models/custom_adapter.py +0 -67
  556. evalscope/models/local_model.py +0 -74
  557. evalscope/models/model.py +0 -229
  558. evalscope/models/server_adapter.py +0 -111
  559. evalscope/registry/__init__.py +0 -1
  560. evalscope/registry/config/cfg_arena.yaml +0 -77
  561. evalscope/registry/config/cfg_arena_zhihu.yaml +0 -63
  562. evalscope/registry/config/cfg_pairwise_baseline.yaml +0 -83
  563. evalscope/registry/config/cfg_single.yaml +0 -78
  564. evalscope/registry/data/prompt_template/lmsys_v2.jsonl +0 -8
  565. evalscope/registry/data/prompt_template/prompt_templates.jsonl +0 -8
  566. evalscope/registry/data/qa_browser/battle.jsonl +0 -634
  567. evalscope/registry/data/qa_browser/category_mapping.yaml +0 -10
  568. evalscope/registry/data/question.jsonl +0 -80
  569. evalscope/registry/tasks/arc.yaml +0 -28
  570. evalscope/registry/tasks/bbh.yaml +0 -26
  571. evalscope/registry/tasks/bbh_mini.yaml +0 -26
  572. evalscope/registry/tasks/ceval.yaml +0 -27
  573. evalscope/registry/tasks/ceval_mini.yaml +0 -26
  574. evalscope/registry/tasks/cmmlu.yaml +0 -27
  575. evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +0 -28
  576. evalscope/registry/tasks/general_qa.yaml +0 -27
  577. evalscope/registry/tasks/gsm8k.yaml +0 -29
  578. evalscope/registry/tasks/mmlu.yaml +0 -29
  579. evalscope/registry/tasks/mmlu_mini.yaml +0 -27
  580. evalscope/report/app.py +0 -506
  581. evalscope/report/utils.py +0 -133
  582. evalscope/run_arena.py +0 -202
  583. evalscope/utils/arena_utils.py +0 -217
  584. evalscope/utils/completion_parsers.py +0 -82
  585. evalscope/utils/utils.py +0 -301
  586. evalscope-0.10.0.dist-info/METADATA +0 -565
  587. evalscope-0.10.0.dist-info/RECORD +0 -286
  588. tests/__init__.py +0 -1
  589. tests/cli/__init__.py +0 -1
  590. tests/cli/test_collection.py +0 -57
  591. tests/cli/test_run.py +0 -165
  592. tests/perf/__init__.py +0 -1
  593. tests/perf/test_perf.py +0 -101
  594. tests/rag/test_clip_benchmark.py +0 -85
  595. tests/rag/test_mteb.py +0 -138
  596. tests/rag/test_ragas.py +0 -120
  597. tests/swift/__init__.py +0 -1
  598. tests/swift/test_run_swift_eval.py +0 -145
  599. tests/swift/test_run_swift_vlm_eval.py +0 -127
  600. tests/swift/test_run_swift_vlm_jugde_eval.py +0 -156
  601. tests/test_run_all.py +0 -12
  602. tests/vlm/__init__.py +0 -1
  603. tests/vlm/test_vlmeval.py +0 -60
  604. {tests/rag → evalscope/api}/__init__.py +0 -0
  605. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/entry_points.txt +0 -0
  606. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info/licenses}/LICENSE +0 -0
@@ -0,0 +1,765 @@
1
+ """
2
+ Copyright (c) 2023, salesforce.com, inc.
3
+ All rights reserved.
4
+ SPDX-License-Identifier: BSD-3-Clause
5
+ For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ """
7
+ import copy
8
+ import logging
9
+ import random
10
+ import string
11
+ import torch
12
+ import torch.nn as nn
13
+ from torch.cuda.amp import autocast as autocast
14
+ from transformers import T5TokenizerFast
15
+ from transformers.modeling_outputs import BaseModelOutput
16
+
17
+ from ...common.registry import registry
18
+ from .blip2 import Blip2Base, disabled_train
19
+ from .modeling_t5 import T5Config, T5ForConditionalGeneration
20
+
21
+
22
+ @registry.register_model('blip2_t5_instruct')
23
+ class Blip2T5Instruct(Blip2Base):
24
+ """
25
+ BLIP2 T5 model.
26
+ Supported model types:
27
+ - flant5xl
28
+ - flant5xxl
29
+ Usage:
30
+ >>> from lavis.models import load_model
31
+ >>> model = load_model("blip2_t5_instruct", "flant5xl")
32
+ """
33
+
34
+ PRETRAINED_MODEL_CONFIG_DICT = {
35
+ 'flant5xl': 'configs/models/blip2/blip2_instruct_flant5xl.yaml',
36
+ 'flant5xxl': 'configs/models/blip2/blip2_instruct_flant5xxl.yaml',
37
+ }
38
+
39
+ def __init__(
40
+ self,
41
+ vit_model='eva_clip_g',
42
+ img_size=224,
43
+ drop_path_rate=0,
44
+ use_grad_checkpoint=False,
45
+ vit_precision='fp16',
46
+ freeze_vit=True,
47
+ num_query_token=32,
48
+ t5_model='google/flan-t5-xl',
49
+ prompt='',
50
+ max_txt_len=128,
51
+ max_output_txt_len=256,
52
+ apply_lemmatizer=False,
53
+ num_few_shot_examples=0,
54
+ few_shot_prob=0,
55
+ qformer_text_input=True,
56
+ ):
57
+ """
58
+ apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas.
59
+ """
60
+ super().__init__()
61
+
62
+ self.tokenizer = self.init_tokenizer(truncation_side='left')
63
+
64
+ self.visual_encoder, self.ln_vision = self.init_vision_encoder(
65
+ vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
66
+ )
67
+ if freeze_vit:
68
+ for name, param in self.visual_encoder.named_parameters():
69
+ param.requires_grad = False
70
+ self.visual_encoder = self.visual_encoder.eval()
71
+ self.visual_encoder.train = disabled_train
72
+ logging.info('freeze vision encoder')
73
+
74
+ self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features)
75
+
76
+ if not qformer_text_input:
77
+ self.Qformer.bert.embeddings.word_embeddings = None
78
+ self.Qformer.bert.embeddings.position_embeddings = None
79
+ for layer in self.Qformer.bert.encoder.layer:
80
+ layer.output = None
81
+ layer.intermediate = None
82
+ else:
83
+ self.Qformer.resize_token_embeddings(len(self.tokenizer))
84
+ self.Qformer.cls = None
85
+
86
+ self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='left')
87
+ self.t5_output_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='right')
88
+
89
+ t5_config = T5Config.from_pretrained(t5_model)
90
+ t5_config.dense_act_fn = 'gelu'
91
+ self.t5_model = T5ForConditionalGeneration.from_pretrained(t5_model, config=t5_config)
92
+
93
+ for name, param in self.t5_model.named_parameters():
94
+ param.requires_grad = False
95
+ param.data = param.data.bfloat16()
96
+
97
+ self.t5_proj = nn.Linear(self.Qformer.config.hidden_size, self.t5_model.config.hidden_size)
98
+
99
+ self.max_txt_len = max_txt_len
100
+ self.max_output_txt_len = max_output_txt_len
101
+ self.prompt = prompt
102
+
103
+ self._apply_lemmatizer = apply_lemmatizer
104
+ self._lemmatizer = None
105
+
106
+ self.num_few_shot_examples = num_few_shot_examples
107
+ self.few_shot_prob = few_shot_prob
108
+
109
+ self.qformer_text_input = qformer_text_input
110
+
111
+ def forward(self, samples):
112
+ # print('-----------------')
113
+ # print(samples["text_input"])
114
+ # print(samples["text_output"])
115
+ # print('-----------------')
116
+
117
+ image = samples['image']
118
+ with self.maybe_autocast():
119
+ image_embeds = self.ln_vision(self.visual_encoder(image))
120
+ image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
121
+
122
+ query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
123
+ if self.qformer_text_input:
124
+ text_Qformer = self.tokenizer(
125
+ samples['text_input'],
126
+ padding='longest',
127
+ truncation=True,
128
+ max_length=self.max_txt_len,
129
+ return_tensors='pt',
130
+ ).to(image.device)
131
+ query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
132
+ Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
133
+
134
+ query_output = self.Qformer.bert(
135
+ text_Qformer.input_ids,
136
+ attention_mask=Qformer_atts,
137
+ query_embeds=query_tokens,
138
+ encoder_hidden_states=image_embeds,
139
+ encoder_attention_mask=image_atts,
140
+ return_dict=True,
141
+ )
142
+ else:
143
+ query_output = self.Qformer.bert(
144
+ query_embeds=query_tokens,
145
+ encoder_hidden_states=image_embeds,
146
+ encoder_attention_mask=image_atts,
147
+ return_dict=True,
148
+ )
149
+
150
+ inputs_t5 = self.t5_proj(query_output.last_hidden_state[:, :query_tokens.size(1), :])
151
+ atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
152
+
153
+ fs_embeds, fs_atts = None, None
154
+ if self.few_shot_prob > 0 and 'few_shot_samples' in samples.keys():
155
+ fs_embeds, fs_atts = self.prepare_few_shot_embeds(samples['few_shot_samples'])
156
+
157
+ with self.maybe_autocast(dtype=torch.bfloat16):
158
+ input_tokens = self.t5_tokenizer(
159
+ samples['text_input'],
160
+ padding='longest',
161
+ truncation=True,
162
+ max_length=self.max_txt_len,
163
+ return_tensors='pt',
164
+ ).to(image.device)
165
+ output_tokens = self.t5_output_tokenizer(
166
+ samples['text_output'],
167
+ padding='longest',
168
+ truncation=True,
169
+ max_length=self.max_output_txt_len,
170
+ return_tensors='pt',
171
+ ).to(image.device)
172
+
173
+ encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
174
+
175
+ targets = output_tokens.input_ids.masked_fill(
176
+ output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100
177
+ )
178
+
179
+ inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
180
+ inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
181
+
182
+ if fs_embeds is not None:
183
+ inputs_embeds = torch.cat([fs_embeds, inputs_embeds], dim=1)
184
+ encoder_atts = torch.cat([fs_atts, encoder_atts], dim=1)
185
+
186
+ outputs = self.t5_model(
187
+ inputs_embeds=inputs_embeds,
188
+ attention_mask=encoder_atts,
189
+ decoder_attention_mask=output_tokens.attention_mask,
190
+ return_dict=True,
191
+ labels=targets,
192
+ )
193
+ loss = outputs.loss
194
+
195
+ return {'loss': loss}
196
+
197
+ def prepare_few_shot_embeds(self, samples):
198
+ this_n_fs = random.choices(
199
+ list(range(self.num_few_shot_examples + 1)),
200
+ weights=[1 - self.few_shot_prob]
201
+ + [self.few_shot_prob / self.num_few_shot_examples] * self.num_few_shot_examples
202
+ )[0]
203
+
204
+ if this_n_fs == 0:
205
+ return None, None
206
+
207
+ images = []
208
+ text_input = []
209
+ for sample in samples:
210
+ for n in range(this_n_fs):
211
+ images.append(sample['image'][n])
212
+ text_input.append(sample['text_input'][n])
213
+ images = torch.stack(images, dim=0)
214
+
215
+ image = images
216
+
217
+ with self.maybe_autocast():
218
+ image_embeds = self.ln_vision(self.visual_encoder(image))
219
+ image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
220
+
221
+ query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
222
+ if self.qformer_text_input:
223
+ text_Qformer = self.tokenizer(
224
+ text_input,
225
+ padding='longest',
226
+ truncation=True,
227
+ max_length=self.max_txt_len,
228
+ return_tensors='pt',
229
+ ).to(image.device)
230
+ query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
231
+ Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
232
+ query_output = self.Qformer.bert(
233
+ text_Qformer.input_ids,
234
+ attention_mask=Qformer_atts,
235
+ query_embeds=query_tokens,
236
+ encoder_hidden_states=image_embeds,
237
+ encoder_attention_mask=image_atts,
238
+ return_dict=True,
239
+ )
240
+ else:
241
+ query_output = self.Qformer.bert(
242
+ query_embeds=query_tokens,
243
+ encoder_hidden_states=image_embeds,
244
+ encoder_attention_mask=image_atts,
245
+ return_dict=True,
246
+ )
247
+
248
+ inputs_t5 = self.t5_proj(query_output.last_hidden_state[:, :query_tokens.size(1), :])
249
+ atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
250
+
251
+ with self.maybe_autocast(dtype=torch.bfloat16):
252
+ input_tokens = self.t5_tokenizer(
253
+ text_input,
254
+ padding='longest',
255
+ truncation=True,
256
+ max_length=self.max_txt_len,
257
+ return_tensors='pt',
258
+ ).to(image.device)
259
+
260
+ encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
261
+
262
+ inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
263
+ inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
264
+
265
+ if this_n_fs > 1:
266
+ encoder_atts = encoder_atts.reshape(encoder_atts.size(0) // this_n_fs, encoder_atts.size(1) * this_n_fs)
267
+ inputs_embeds = inputs_embeds.reshape(
268
+ inputs_embeds.size(0) // this_n_fs,
269
+ inputs_embeds.size(1) * this_n_fs, inputs_embeds.size(2)
270
+ )
271
+
272
+ return inputs_embeds, encoder_atts
273
+
274
+ @torch.no_grad()
275
+ def generate(
276
+ self,
277
+ samples,
278
+ use_nucleus_sampling=False,
279
+ num_beams=5,
280
+ max_length=256,
281
+ min_length=1,
282
+ top_p=0.9,
283
+ repetition_penalty=1.5,
284
+ length_penalty=1.0,
285
+ num_captions=1,
286
+ temperature=1,
287
+ ):
288
+ if 'prompt' in samples.keys():
289
+ prompt = samples['prompt']
290
+ else:
291
+ prompt = self.prompt
292
+
293
+ image = samples['image']
294
+
295
+ bs = image.size(0)
296
+
297
+ if isinstance(prompt, str):
298
+ prompt = [prompt] * bs
299
+ else:
300
+ assert len(prompt) == bs, 'The number of prompts must be equal to the batch size.'
301
+
302
+ # For TextCaps
303
+ if 'ocr_tokens' in samples.keys() and '{}' in prompt[0]:
304
+ prompt = [p.format(', '.join(samples['ocr_tokens'][i][:30])) for i, p in enumerate(prompt)]
305
+
306
+ query_tokens = self.query_tokens.expand(bs, -1, -1)
307
+ if self.qformer_text_input:
308
+ # remove ocr tokens in q_former (for eval textvqa)
309
+ # qformer_prompt = prompt
310
+ # qformer_prompt = ['Question: ' + qp.split(' Question: ')[1] for qp in qformer_prompt]
311
+
312
+ text_Qformer = self.tokenizer(
313
+ prompt,
314
+ padding='longest',
315
+ truncation=True,
316
+ max_length=self.max_txt_len,
317
+ return_tensors='pt',
318
+ ).to(image.device)
319
+ query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
320
+ Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
321
+
322
+ # For video data
323
+ if image.dim() == 5:
324
+ inputs_t5, atts_t5 = [], []
325
+ for j in range(image.size(2)):
326
+ this_frame = image[:, :, j, :, :]
327
+ with self.maybe_autocast():
328
+ frame_embeds = self.ln_vision(self.visual_encoder(this_frame))
329
+ frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)
330
+
331
+ if self.qformer_text_input:
332
+ frame_query_output = self.Qformer.bert(
333
+ text_Qformer.input_ids,
334
+ attention_mask=Qformer_atts,
335
+ query_embeds=query_tokens,
336
+ encoder_hidden_states=frame_embeds,
337
+ encoder_attention_mask=frame_atts,
338
+ return_dict=True,
339
+ )
340
+ else:
341
+ frame_query_output = self.Qformer.bert(
342
+ query_embeds=query_tokens,
343
+ encoder_hidden_states=frame_embeds,
344
+ encoder_attention_mask=frame_atts,
345
+ return_dict=True,
346
+ )
347
+
348
+ frame_inputs_t5 = self.t5_proj(frame_query_output.last_hidden_state[:, :query_tokens.size(1), :])
349
+ frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
350
+ inputs_t5.append(frame_inputs_t5)
351
+ atts_t5.append(frame_atts_t5)
352
+ inputs_t5 = torch.cat(inputs_t5, dim=1)
353
+ atts_t5 = torch.cat(atts_t5, dim=1)
354
+ else:
355
+ with self.maybe_autocast():
356
+ image_embeds = self.ln_vision(self.visual_encoder(image))
357
+ image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
358
+
359
+ if self.qformer_text_input:
360
+ query_output = self.Qformer.bert(
361
+ text_Qformer.input_ids,
362
+ attention_mask=Qformer_atts,
363
+ query_embeds=query_tokens,
364
+ encoder_hidden_states=image_embeds,
365
+ encoder_attention_mask=image_atts,
366
+ return_dict=True,
367
+ )
368
+ else:
369
+ query_output = self.Qformer.bert(
370
+ query_embeds=query_tokens,
371
+ encoder_hidden_states=image_embeds,
372
+ encoder_attention_mask=image_atts,
373
+ return_dict=True,
374
+ )
375
+
376
+ inputs_t5 = self.t5_proj(query_output.last_hidden_state[:, :query_tokens.size(1), :])
377
+ atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
378
+
379
+ input_tokens = self.t5_tokenizer(prompt, padding='longest', return_tensors='pt').to(image.device)
380
+
381
+ encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
382
+
383
+ with self.maybe_autocast(dtype=torch.bfloat16):
384
+ inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
385
+ inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
386
+
387
+ outputs = self.t5_model.generate(
388
+ inputs_embeds=inputs_embeds,
389
+ attention_mask=encoder_atts,
390
+ do_sample=use_nucleus_sampling,
391
+ top_p=top_p,
392
+ temperature=temperature,
393
+ num_beams=num_beams,
394
+ max_new_tokens=max_length,
395
+ min_length=min_length,
396
+ repetition_penalty=repetition_penalty,
397
+ length_penalty=length_penalty,
398
+ num_return_sequences=num_captions,
399
+ )
400
+ output_text = self.t5_tokenizer.batch_decode(outputs, skip_special_tokens=True)
401
+
402
+ return output_text
403
+
404
+ def predict_answers(
405
+ self,
406
+ samples,
407
+ num_beams=5,
408
+ inference_method='generate',
409
+ max_len=10,
410
+ min_len=1,
411
+ num_ans_candidates=128,
412
+ answer_list=None,
413
+ prompt='',
414
+ length_penalty=-1,
415
+ **kwargs
416
+ ):
417
+ if isinstance(samples['text_input'], str):
418
+ samples['text_input'] = [samples['text_input']]
419
+
420
+ if prompt:
421
+ if prompt.count('{}') == 2:
422
+ if 'ocr_tokens' in samples:
423
+ text_input = [
424
+ prompt.format(', '.join(samples['ocr_tokens'][i][:30]), samples['text_input'][i])
425
+ for i in range(len(samples['text_input']))
426
+ ]
427
+ elif 'choices' in samples:
428
+ text_input = []
429
+ for i in range(len(samples['text_input'])):
430
+ this_choices = [
431
+ f'({string.ascii_lowercase[j]}) {ch}' for j, ch in enumerate(samples['choices'][i])
432
+ ]
433
+ this_choices = ' '.join(this_choices)
434
+ text_input.append(prompt.format(samples['text_input'][i], this_choices))
435
+ else:
436
+ text_input = [prompt.format(question) for question in samples['text_input']]
437
+ else:
438
+ text_input = samples['text_input']
439
+
440
+ samples['prompt'] = text_input
441
+
442
+ output_text = self.generate(
443
+ samples, num_beams=num_beams, max_length=max_len, min_length=min_len, length_penalty=length_penalty
444
+ )
445
+
446
+ if self._apply_lemmatizer or ('apply_lemmatizer' in samples.keys() and samples['apply_lemmatizer']):
447
+ output_text = self._lemmatize(output_text)
448
+
449
+ return output_text
450
+
451
+ def predict_class(
452
+ self,
453
+ samples,
454
+ candidates,
455
+ n_segments=1,
456
+ ):
457
+ # If candidates is a list of lists, each sample has its candidates, then we need to iterate one by one
458
+ if type(candidates[0]) == list:
459
+ results = []
460
+
461
+ for i in range(samples['image'].size(0)):
462
+ this_sample = {
463
+ 'image': samples['image'][i].unsqueeze(0),
464
+ 'prompt': samples['prompt'],
465
+ }
466
+
467
+ if 'text_input' in samples.keys():
468
+ this_sample['text_input'] = [samples['text_input'][i]]
469
+
470
+ if 'context' in samples.keys():
471
+ this_sample['context'] = [samples['context'][i]]
472
+
473
+ if 'history' in samples.keys():
474
+ this_sample['history'] = [samples['history'][i]]
475
+
476
+ if 'caption' in samples.keys():
477
+ this_sample['caption'] = [samples['caption'][i]]
478
+
479
+ this_result = self._predict_class(this_sample, candidates[i], n_segments)
480
+ results.append(this_result)
481
+
482
+ try:
483
+ results = torch.cat(results, dim=0)
484
+ except:
485
+ results = [res.tolist()[0] for res in results]
486
+
487
+ return results
488
+
489
+ return self._predict_class(samples, candidates, n_segments)
490
+
491
+ def _predict_class(
492
+ self,
493
+ samples,
494
+ candidates,
495
+ n_segments=1,
496
+ ):
497
+ """
498
+ Args:
499
+ samples (dict): A dictionary containing the following keys:
500
+ - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
501
+ - prompt: the instruction
502
+ candidates:
503
+ (list): A list of candidate class names;
504
+ n_segments:
505
+ (int): Split the candidates into n_segments and predict one by one. This is useful when the number of candidates is too large.
506
+ Returns:
507
+ output_class: predicted class index
508
+ """
509
+
510
+ image = samples['image']
511
+ prompt = samples['prompt']
512
+
513
+ bs = image.size(0)
514
+
515
+ if isinstance(prompt, str):
516
+ prompt = [prompt] * bs
517
+ else:
518
+ assert len(prompt) == bs, 'The number of prompts must be equal to the batch size.'
519
+
520
+ if 'text_input' in samples.keys():
521
+ if type(samples['text_input'][0]) == list:
522
+ prompt = [prompt[i].format(*samples['text_input'][i]) for i in range(len(prompt))]
523
+ else:
524
+ prompt = [prompt[i].format(samples['text_input'][i]) for i in range(len(prompt))]
525
+
526
+ # scienceqa
527
+ if 'context' in samples.keys() and samples['context'] != '':
528
+ prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))]
529
+
530
+ # visual dialog
531
+ if 'history' in samples.keys() and samples['history'][0] != '':
532
+ prompt = [f'dialog history: {samples["history"][i]}\n{prompt[i]}' for i in range(len(prompt))]
533
+
534
+ if 'caption' in samples.keys() and samples['caption'][0] != '':
535
+ prompt = [f'This image has the caption "{samples["caption"][i]}". {prompt[i]}' for i in range(len(prompt))]
536
+
537
+ query_tokens = self.query_tokens.expand(bs, -1, -1)
538
+ if self.qformer_text_input:
539
+ text_Qformer = self.tokenizer(
540
+ prompt, padding='longest', truncation=True, max_length=self.max_txt_len, return_tensors='pt'
541
+ ).to(image.device)
542
+ query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
543
+ Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
544
+
545
+ if image.dim() == 5:
546
+ inputs_t5, atts_t5 = [], []
547
+ for j in range(image.size(2)):
548
+ this_frame = image[:, :, j, :, :]
549
+ with self.maybe_autocast():
550
+ frame_embeds = self.ln_vision(self.visual_encoder(this_frame))
551
+ frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)
552
+
553
+ if self.qformer_text_input:
554
+ frame_query_output = self.Qformer.bert(
555
+ text_Qformer.input_ids,
556
+ attention_mask=Qformer_atts,
557
+ query_embeds=query_tokens,
558
+ encoder_hidden_states=frame_embeds,
559
+ encoder_attention_mask=frame_atts,
560
+ return_dict=True,
561
+ )
562
+ else:
563
+ frame_query_output = self.Qformer.bert(
564
+ query_embeds=query_tokens,
565
+ encoder_hidden_states=frame_embeds,
566
+ encoder_attention_mask=frame_atts,
567
+ return_dict=True,
568
+ )
569
+
570
+ frame_inputs_t5 = self.t5_proj(frame_query_output.last_hidden_state[:, :query_tokens.size(1), :])
571
+ frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
572
+ inputs_t5.append(frame_inputs_t5)
573
+ atts_t5.append(frame_atts_t5)
574
+ inputs_t5 = torch.cat(inputs_t5, dim=1)
575
+ atts_t5 = torch.cat(atts_t5, dim=1)
576
+ else:
577
+ with self.maybe_autocast():
578
+ image_embeds = self.ln_vision(self.visual_encoder(image))
579
+ image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
580
+
581
+ if self.qformer_text_input:
582
+ query_output = self.Qformer.bert(
583
+ text_Qformer.input_ids,
584
+ attention_mask=Qformer_atts,
585
+ query_embeds=query_tokens,
586
+ encoder_hidden_states=image_embeds,
587
+ encoder_attention_mask=image_atts,
588
+ return_dict=True,
589
+ )
590
+ else:
591
+ query_output = self.Qformer.bert(
592
+ query_embeds=query_tokens,
593
+ encoder_hidden_states=image_embeds,
594
+ encoder_attention_mask=image_atts,
595
+ return_dict=True,
596
+ )
597
+
598
+ inputs_t5 = self.t5_proj(query_output.last_hidden_state[:, :query_tokens.size(1), :])
599
+ atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
600
+
601
+ input_tokens = self.t5_tokenizer(prompt, padding='longest', return_tensors='pt').to(image.device)
602
+ output_tokens = self.t5_tokenizer(candidates, padding='longest', return_tensors='pt').to(image.device)
603
+
604
+ encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
605
+
606
+ n_cands = len(candidates)
607
+
608
+ with self.maybe_autocast(dtype=torch.bfloat16):
609
+ inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
610
+ inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
611
+
612
+ encoder_outputs = self.t5_model.encoder(
613
+ inputs_embeds=inputs_embeds,
614
+ attention_mask=encoder_atts,
615
+ )
616
+
617
+ all_losses = []
618
+ for n in range(n_segments):
619
+ seg_len = n_cands // n_segments
620
+ if n == (n_segments - 1):
621
+ seg_len = n_cands - seg_len * (n_segments - 1)
622
+
623
+ # this_encoder_outputs = copy.deepcopy(encoder_outputs)
624
+ this_encoder_outputs = BaseModelOutput(last_hidden_state=encoder_outputs[0].clone(), )
625
+
626
+ this_encoder_outputs['last_hidden_state'] = this_encoder_outputs[0].repeat_interleave(seg_len, dim=0)
627
+ this_encoder_atts = encoder_atts.repeat_interleave(seg_len, dim=0)
628
+
629
+ start_i = n * (n_cands // n_segments)
630
+ end_i = start_i + seg_len
631
+ this_output_tokens_ids = output_tokens.input_ids[start_i:end_i].repeat(bs, 1)
632
+ this_output_tokens_atts = output_tokens.attention_mask[start_i:end_i].repeat(bs, 1)
633
+
634
+ this_targets = this_output_tokens_ids.masked_fill(
635
+ this_output_tokens_ids == self.t5_tokenizer.pad_token_id, -100
636
+ )
637
+
638
+ outputs = self.t5_model(
639
+ encoder_outputs=this_encoder_outputs,
640
+ attention_mask=this_encoder_atts,
641
+ decoder_attention_mask=this_output_tokens_atts,
642
+ return_dict=True,
643
+ labels=this_targets,
644
+ reduction='none',
645
+ )
646
+ loss = outputs.loss
647
+
648
+ loss = loss.reshape(bs, seg_len)
649
+ # output_class_ranks = torch.argsort(loss, dim=-1)
650
+ all_losses.append(loss)
651
+
652
+ all_losses = torch.cat(all_losses, dim=-1)
653
+ output_class_ranks = torch.argsort(all_losses, dim=-1)
654
+
655
+ # encoder_outputs['last_hidden_state'] = encoder_outputs[0].repeat_interleave(n_cands, dim=0)
656
+ # encoder_atts = encoder_atts.repeat_interleave(n_cands, dim=0)
657
+ # output_tokens.input_ids = output_tokens.input_ids.repeat(bs, 1)
658
+ # output_tokens.attention_mask = output_tokens.attention_mask.repeat(bs, 1)
659
+
660
+ # # compute the LM loss for each candidate (sum logprob across all tokens) and select the highest
661
+ # targets = output_tokens.input_ids.masked_fill(output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100)
662
+
663
+ # outputs = self.t5_model(
664
+ # encoder_outputs=encoder_outputs,
665
+ # attention_mask=encoder_atts,
666
+ # decoder_attention_mask=output_tokens.attention_mask,
667
+ # return_dict=True,
668
+ # labels=targets,
669
+ # reduction="none",
670
+ # )
671
+ # loss = outputs.loss
672
+
673
+ # loss = loss.reshape(bs, n_cands)
674
+ # output_class_ranks = torch.argsort(loss, dim=-1) # (bs, num_candidates)
675
+
676
+ return output_class_ranks
677
+
678
+ def _lemmatize(self, answers):
679
+
680
+ def apply(answer):
681
+ doc = self.lemmatizer(answer)
682
+
683
+ words = []
684
+ for token in doc:
685
+ if token.pos_ in ['NOUN', 'VERB']:
686
+ words.append(token.lemma_)
687
+ else:
688
+ words.append(token.text)
689
+ answer = ' '.join(words)
690
+
691
+ return answer
692
+
693
+ return [apply(answer) for answer in answers]
694
+
695
+ @property
696
+ def lemmatizer(self):
697
+ if self._lemmatizer is None:
698
+ try:
699
+ import spacy
700
+
701
+ self._lemmatizer = spacy.load('en_core_web_sm')
702
+ except ImportError:
703
+ logging.error(
704
+ """
705
+ Please install spacy and en_core_web_sm model to apply lemmatization.
706
+ python -m spacy download en_core_web_sm
707
+ OR
708
+ import spacy.cli
709
+ spacy.cli.download("en_core_web_sm")
710
+ """
711
+ )
712
+ exit(1)
713
+
714
+ return self._lemmatizer
715
+
716
+ @classmethod
717
+ def from_config(cls, cfg):
718
+ vit_model = cfg.get('vit_model', 'eva_clip_g')
719
+ img_size = cfg.get('image_size')
720
+ num_query_token = cfg.get('num_query_token')
721
+ t5_model = cfg.get('t5_model')
722
+
723
+ drop_path_rate = cfg.get('drop_path_rate', 0)
724
+ use_grad_checkpoint = cfg.get('use_grad_checkpoint', False)
725
+ vit_precision = cfg.get('vit_precision', 'fp16')
726
+ freeze_vit = cfg.get('freeze_vit', True)
727
+
728
+ prompt = cfg.get('prompt', '')
729
+ max_txt_len = cfg.get('max_txt_len', 128)
730
+ max_output_txt_len = cfg.get('max_output_txt_len', 256)
731
+
732
+ apply_lemmatizer = cfg.get('apply_lemmatizer', False)
733
+
734
+ num_few_shot_examples = cfg.get('num_few_shot_examples', 0)
735
+ few_shot_prob = cfg.get('few_shot_prob', 0.0)
736
+
737
+ qformer_text_input = cfg.get('qformer_text_input', True)
738
+
739
+ model = cls(
740
+ vit_model=vit_model,
741
+ img_size=img_size,
742
+ drop_path_rate=drop_path_rate,
743
+ use_grad_checkpoint=use_grad_checkpoint,
744
+ vit_precision=vit_precision,
745
+ freeze_vit=freeze_vit,
746
+ num_query_token=num_query_token,
747
+ t5_model=t5_model,
748
+ prompt=prompt,
749
+ max_txt_len=max_txt_len,
750
+ max_output_txt_len=max_output_txt_len,
751
+ apply_lemmatizer=apply_lemmatizer,
752
+ num_few_shot_examples=num_few_shot_examples,
753
+ few_shot_prob=few_shot_prob,
754
+ qformer_text_input=qformer_text_input,
755
+ )
756
+
757
+ # if qformer_text_input:
758
+ # # Hard-coded to load from BLIP-2 stage-1 pre-trained model (not ideal)
759
+ # model.load_from_pretrained(
760
+ # url_or_filename="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained.pth"
761
+ # )
762
+
763
+ model.load_checkpoint_from_config(cfg)
764
+
765
+ return model