evalscope 0.10.0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (606) hide show
  1. evalscope/__init__.py +4 -1
  2. evalscope/api/benchmark/__init__.py +11 -0
  3. evalscope/api/benchmark/adapters/__init__.py +7 -0
  4. evalscope/api/benchmark/adapters/agent_adapter.py +8 -0
  5. evalscope/api/benchmark/adapters/default_data_adapter.py +754 -0
  6. evalscope/api/benchmark/adapters/image_edit_adapter.py +82 -0
  7. evalscope/api/benchmark/adapters/multi_choice_adapter.py +86 -0
  8. evalscope/api/benchmark/adapters/ner_adapter.py +212 -0
  9. evalscope/api/benchmark/adapters/text2image_adapter.py +157 -0
  10. evalscope/api/benchmark/adapters/vision_language_adapter.py +8 -0
  11. evalscope/api/benchmark/benchmark.py +404 -0
  12. evalscope/api/benchmark/meta.py +124 -0
  13. evalscope/api/dataset/__init__.py +2 -0
  14. evalscope/api/dataset/dataset.py +370 -0
  15. evalscope/api/dataset/loader.py +266 -0
  16. evalscope/api/dataset/utils.py +143 -0
  17. evalscope/api/evaluator/__init__.py +3 -0
  18. evalscope/api/evaluator/cache.py +382 -0
  19. evalscope/api/evaluator/evaluator.py +61 -0
  20. evalscope/api/evaluator/state.py +280 -0
  21. evalscope/api/filter/__init__.py +1 -0
  22. evalscope/api/filter/filter.py +72 -0
  23. evalscope/api/messages/__init__.py +12 -0
  24. evalscope/api/messages/chat_message.py +248 -0
  25. evalscope/api/messages/content.py +102 -0
  26. evalscope/api/messages/utils.py +35 -0
  27. evalscope/api/metric/__init__.py +2 -0
  28. evalscope/api/metric/metric.py +60 -0
  29. evalscope/api/metric/scorer.py +113 -0
  30. evalscope/api/mixin/__init__.py +2 -0
  31. evalscope/api/mixin/llm_judge_mixin.py +170 -0
  32. evalscope/api/mixin/sandbox_mixin.py +182 -0
  33. evalscope/api/model/__init__.py +12 -0
  34. evalscope/api/model/generate_config.py +161 -0
  35. evalscope/api/model/model.py +386 -0
  36. evalscope/api/model/model_output.py +285 -0
  37. evalscope/api/registry.py +182 -0
  38. evalscope/api/tool/__init__.py +3 -0
  39. evalscope/api/tool/tool_call.py +101 -0
  40. evalscope/api/tool/tool_info.py +173 -0
  41. evalscope/api/tool/utils.py +64 -0
  42. evalscope/app/__init__.py +28 -0
  43. evalscope/app/app.py +38 -0
  44. evalscope/app/arguments.py +11 -0
  45. evalscope/app/constants.py +22 -0
  46. evalscope/app/ui/__init__.py +20 -0
  47. evalscope/app/ui/app_ui.py +53 -0
  48. evalscope/app/ui/multi_model.py +353 -0
  49. evalscope/app/ui/sidebar.py +42 -0
  50. evalscope/app/ui/single_model.py +220 -0
  51. evalscope/app/ui/visualization.py +36 -0
  52. evalscope/app/utils/data_utils.py +195 -0
  53. evalscope/app/utils/env_utils.py +12 -0
  54. evalscope/app/utils/localization.py +221 -0
  55. evalscope/app/utils/text_utils.py +119 -0
  56. evalscope/app/utils/visualization.py +96 -0
  57. evalscope/arguments.py +32 -9
  58. evalscope/backend/opencompass/api_meta_template.py +2 -1
  59. evalscope/backend/opencompass/backend_manager.py +10 -7
  60. evalscope/backend/rag_eval/__init__.py +1 -1
  61. evalscope/backend/rag_eval/backend_manager.py +23 -6
  62. evalscope/backend/rag_eval/clip_benchmark/dataset_builder.py +33 -21
  63. evalscope/backend/rag_eval/clip_benchmark/task_template.py +8 -4
  64. evalscope/backend/rag_eval/cmteb/arguments.py +14 -1
  65. evalscope/backend/rag_eval/cmteb/task_template.py +19 -3
  66. evalscope/backend/rag_eval/cmteb/tasks/CustomTask.py +1 -1
  67. evalscope/backend/rag_eval/ragas/arguments.py +0 -1
  68. evalscope/backend/rag_eval/ragas/task_template.py +2 -1
  69. evalscope/backend/rag_eval/ragas/tasks/build_distribution.py +2 -1
  70. evalscope/backend/rag_eval/ragas/tasks/build_transform.py +7 -4
  71. evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +9 -3
  72. evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +2 -6
  73. evalscope/backend/rag_eval/utils/embedding.py +125 -32
  74. evalscope/backend/rag_eval/utils/llm.py +16 -16
  75. evalscope/backend/vlm_eval_kit/backend_manager.py +8 -3
  76. evalscope/benchmarks/__init__.py +17 -5
  77. evalscope/benchmarks/aa_lcr/__init__.py +0 -0
  78. evalscope/benchmarks/aa_lcr/aa_lcr_adapter.py +205 -0
  79. evalscope/benchmarks/ai2d/__init__.py +0 -0
  80. evalscope/benchmarks/ai2d/ai2d_adapter.py +54 -0
  81. evalscope/benchmarks/aime/__init__.py +0 -0
  82. evalscope/benchmarks/aime/aime24_adapter.py +55 -0
  83. evalscope/benchmarks/aime/aime25_adapter.py +181 -0
  84. evalscope/benchmarks/aime/grader.py +307 -0
  85. evalscope/{metrics/math_accuracy.py → benchmarks/aime/math_normalize.py} +61 -72
  86. evalscope/benchmarks/alpaca_eval/__init__.py +0 -0
  87. evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +133 -0
  88. evalscope/benchmarks/amc/__init__.py +0 -0
  89. evalscope/benchmarks/amc/amc_adapter.py +51 -0
  90. evalscope/benchmarks/arc/arc_adapter.py +34 -149
  91. evalscope/benchmarks/arena_hard/__init__.py +0 -0
  92. evalscope/benchmarks/arena_hard/arena_hard_adapter.py +149 -0
  93. evalscope/benchmarks/arena_hard/utils.py +186 -0
  94. evalscope/benchmarks/bbh/bbh_adapter.py +117 -157
  95. evalscope/benchmarks/bfcl/__init__.py +0 -0
  96. evalscope/benchmarks/bfcl/v3/__init__.py +0 -0
  97. evalscope/benchmarks/bfcl/v3/bfcl_v3_adapter.py +370 -0
  98. evalscope/benchmarks/bfcl/v3/generation.py +222 -0
  99. evalscope/benchmarks/bfcl/v3/utils.py +23 -0
  100. evalscope/benchmarks/bfcl/v4/__init__.py +0 -0
  101. evalscope/benchmarks/bfcl/v4/bfcl_v4_adapter.py +229 -0
  102. evalscope/benchmarks/bfcl/v4/utils.py +410 -0
  103. evalscope/benchmarks/biomix_qa/__init__.py +0 -0
  104. evalscope/benchmarks/biomix_qa/biomix_qa_adapter.py +36 -0
  105. evalscope/benchmarks/blink/__init__.py +0 -0
  106. evalscope/benchmarks/blink/blink_adapter.py +61 -0
  107. evalscope/benchmarks/ceval/ceval_adapter.py +93 -174
  108. evalscope/benchmarks/chartqa/__init__.py +0 -0
  109. evalscope/benchmarks/chartqa/chartqa_adapter.py +80 -0
  110. evalscope/benchmarks/chartqa/utils.py +38 -0
  111. evalscope/benchmarks/chinese_simple_qa/__init__.py +0 -0
  112. evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +170 -0
  113. evalscope/benchmarks/cmmlu/cmmlu_adapter.py +34 -140
  114. evalscope/benchmarks/coin_flip/__init__.py +0 -0
  115. evalscope/benchmarks/coin_flip/coin_flip_adapter.py +128 -0
  116. evalscope/benchmarks/commonsense_qa/__init__.py +0 -0
  117. evalscope/benchmarks/commonsense_qa/commonsense_qa_adapter.py +32 -0
  118. evalscope/benchmarks/competition_math/competition_math_adapter.py +64 -112
  119. evalscope/benchmarks/data_collection/__init__.py +0 -0
  120. evalscope/benchmarks/data_collection/data_collection_adapter.py +215 -0
  121. evalscope/benchmarks/docmath/__init__.py +0 -0
  122. evalscope/benchmarks/docmath/docmath_adapter.py +143 -0
  123. evalscope/benchmarks/docmath/utils.py +219 -0
  124. evalscope/benchmarks/docvqa/__init__.py +0 -0
  125. evalscope/benchmarks/docvqa/docvqa_adapter.py +67 -0
  126. evalscope/benchmarks/drivelology/__init__.py +0 -0
  127. evalscope/benchmarks/drivelology/drivelology_binary_adapter.py +170 -0
  128. evalscope/benchmarks/drivelology/drivelology_multilabel_adapter.py +254 -0
  129. evalscope/benchmarks/drivelology/drivelology_selection_adapter.py +49 -0
  130. evalscope/benchmarks/drivelology/drivelology_writing_adapter.py +218 -0
  131. evalscope/benchmarks/drop/__init__.py +0 -0
  132. evalscope/benchmarks/drop/drop_adapter.py +155 -0
  133. evalscope/benchmarks/drop/utils.py +156 -0
  134. evalscope/benchmarks/frames/__init__.py +0 -0
  135. evalscope/benchmarks/frames/frames_adapter.py +175 -0
  136. evalscope/benchmarks/frames/utils.py +37 -0
  137. evalscope/benchmarks/general_arena/__init__.py +0 -0
  138. evalscope/benchmarks/general_arena/general_arena_adapter.py +454 -0
  139. evalscope/benchmarks/general_arena/utils.py +223 -0
  140. evalscope/benchmarks/general_mcq/__init__.py +0 -0
  141. evalscope/benchmarks/general_mcq/general_mcq_adapter.py +58 -0
  142. evalscope/benchmarks/general_qa/general_qa_adapter.py +75 -107
  143. evalscope/benchmarks/gpqa/__init__.py +0 -0
  144. evalscope/benchmarks/gpqa/gpqa_adapter.py +90 -0
  145. evalscope/benchmarks/gpqa/prompt.py +88 -0
  146. evalscope/benchmarks/gsm8k/gsm8k_adapter.py +77 -144
  147. evalscope/benchmarks/hallusion_bench/__init__.py +0 -0
  148. evalscope/benchmarks/hallusion_bench/hallusion_bench_adapter.py +159 -0
  149. evalscope/benchmarks/halu_eval/__init__.py +0 -0
  150. evalscope/benchmarks/halu_eval/halu_eval_adapter.py +128 -0
  151. evalscope/benchmarks/halu_eval/halu_eval_instructions.py +84 -0
  152. evalscope/benchmarks/healthbench/__init__.py +0 -0
  153. evalscope/benchmarks/healthbench/healthbench_adapter.py +282 -0
  154. evalscope/benchmarks/healthbench/utils.py +102 -0
  155. evalscope/benchmarks/hellaswag/hellaswag_adapter.py +36 -134
  156. evalscope/benchmarks/hle/__init__.py +0 -0
  157. evalscope/benchmarks/hle/hle_adapter.py +153 -0
  158. evalscope/benchmarks/humaneval/humaneval_adapter.py +80 -88
  159. evalscope/benchmarks/humaneval/utils.py +235 -0
  160. evalscope/benchmarks/ifeval/ifeval_adapter.py +71 -45
  161. evalscope/benchmarks/ifeval/instructions.py +112 -68
  162. evalscope/benchmarks/ifeval/instructions_registry.py +1 -1
  163. evalscope/benchmarks/ifeval/instructions_util.py +2 -3
  164. evalscope/benchmarks/ifeval/utils.py +6 -7
  165. evalscope/benchmarks/image_edit/__init__.py +0 -0
  166. evalscope/benchmarks/image_edit/gedit/__init__.py +0 -0
  167. evalscope/benchmarks/image_edit/gedit/gedit_adapter.py +138 -0
  168. evalscope/benchmarks/image_edit/gedit/utils.py +372 -0
  169. evalscope/benchmarks/image_edit/gedit/vie_prompts.py +406 -0
  170. evalscope/benchmarks/infovqa/__init__.py +0 -0
  171. evalscope/benchmarks/infovqa/infovqa_adapter.py +66 -0
  172. evalscope/benchmarks/iquiz/iquiz_adapter.py +30 -58
  173. evalscope/benchmarks/live_code_bench/__init__.py +0 -0
  174. evalscope/benchmarks/live_code_bench/evaluate_utils.py +195 -0
  175. evalscope/benchmarks/live_code_bench/extract_utils.py +70 -0
  176. evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +150 -0
  177. evalscope/benchmarks/live_code_bench/load_utils.py +63 -0
  178. evalscope/benchmarks/live_code_bench/pass_k_utils.py +56 -0
  179. evalscope/benchmarks/live_code_bench/prompts.py +207 -0
  180. evalscope/benchmarks/live_code_bench/sandbox_evaluate_utils.py +220 -0
  181. evalscope/benchmarks/live_code_bench/testing_util.py +544 -0
  182. evalscope/benchmarks/logi_qa/__int__.py +0 -0
  183. evalscope/benchmarks/logi_qa/logi_qa_adapter.py +41 -0
  184. evalscope/benchmarks/maritime_bench/__init__.py +0 -0
  185. evalscope/benchmarks/maritime_bench/maritime_bench_adapter.py +56 -0
  186. evalscope/benchmarks/math_500/__init__.py +0 -0
  187. evalscope/benchmarks/math_500/math_500_adapter.py +55 -0
  188. evalscope/benchmarks/math_qa/__init__.py +0 -0
  189. evalscope/benchmarks/math_qa/math_qa_adapter.py +35 -0
  190. evalscope/benchmarks/math_verse/__init__.py +0 -0
  191. evalscope/benchmarks/math_verse/math_verse_adapter.py +105 -0
  192. evalscope/benchmarks/math_vision/__init__.py +0 -0
  193. evalscope/benchmarks/math_vision/math_vision_adapter.py +116 -0
  194. evalscope/benchmarks/math_vista/__init__.py +0 -0
  195. evalscope/benchmarks/math_vista/math_vista_adapter.py +114 -0
  196. evalscope/benchmarks/med_mcqa/__init__.py +0 -0
  197. evalscope/benchmarks/med_mcqa/med_mcqa_adapter.py +32 -0
  198. evalscope/benchmarks/minerva_math/__init__.py +0 -0
  199. evalscope/benchmarks/minerva_math/minerva_math_adapter.py +53 -0
  200. evalscope/benchmarks/mm_bench/__init__.py +0 -0
  201. evalscope/benchmarks/mm_bench/mm_bench_adapter.py +99 -0
  202. evalscope/benchmarks/mm_star/__init__.py +0 -0
  203. evalscope/benchmarks/mm_star/mm_star_adapter.py +73 -0
  204. evalscope/benchmarks/mmlu/mmlu_adapter.py +32 -210
  205. evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +87 -103
  206. evalscope/benchmarks/mmlu_redux/__init__.py +0 -0
  207. evalscope/benchmarks/mmlu_redux/mmlu_redux_adapter.py +139 -0
  208. evalscope/benchmarks/mmmu/__init__.py +0 -0
  209. evalscope/benchmarks/mmmu/mmmu_adapter.py +159 -0
  210. evalscope/benchmarks/mmmu_pro/__init__.py +0 -0
  211. evalscope/benchmarks/mmmu_pro/mmmu_pro_adapter.py +124 -0
  212. evalscope/benchmarks/mri_mcqa/__init__.py +0 -0
  213. evalscope/benchmarks/mri_mcqa/mri_mcqa_adapter.py +34 -0
  214. evalscope/benchmarks/multi_if/__init__.py +0 -0
  215. evalscope/benchmarks/multi_if/ifeval.py +3354 -0
  216. evalscope/benchmarks/multi_if/metrics.py +120 -0
  217. evalscope/benchmarks/multi_if/multi_if_adapter.py +161 -0
  218. evalscope/benchmarks/music_trivia/__init__.py +0 -0
  219. evalscope/benchmarks/music_trivia/music_trivia_adapter.py +36 -0
  220. evalscope/benchmarks/musr/__init__.py +0 -0
  221. evalscope/benchmarks/musr/musr_adapter.py +43 -0
  222. evalscope/benchmarks/needle_haystack/__init__.py +0 -0
  223. evalscope/benchmarks/needle_haystack/needle_haystack_adapter.py +389 -0
  224. evalscope/benchmarks/needle_haystack/utils.py +79 -0
  225. evalscope/benchmarks/ner/__init__.py +0 -0
  226. evalscope/benchmarks/ner/broad_twitter_corpus_adapter.py +52 -0
  227. evalscope/benchmarks/ner/conll2003_adapter.py +48 -0
  228. evalscope/benchmarks/ner/copious_adapter.py +85 -0
  229. evalscope/benchmarks/ner/cross_ner_adapter.py +120 -0
  230. evalscope/benchmarks/ner/cross_ner_entities/__init__.py +0 -0
  231. evalscope/benchmarks/ner/cross_ner_entities/ai.py +54 -0
  232. evalscope/benchmarks/ner/cross_ner_entities/literature.py +36 -0
  233. evalscope/benchmarks/ner/cross_ner_entities/music.py +39 -0
  234. evalscope/benchmarks/ner/cross_ner_entities/politics.py +37 -0
  235. evalscope/benchmarks/ner/cross_ner_entities/science.py +58 -0
  236. evalscope/benchmarks/ner/genia_ner_adapter.py +66 -0
  237. evalscope/benchmarks/ner/harvey_ner_adapter.py +58 -0
  238. evalscope/benchmarks/ner/mit_movie_trivia_adapter.py +74 -0
  239. evalscope/benchmarks/ner/mit_restaurant_adapter.py +66 -0
  240. evalscope/benchmarks/ner/ontonotes5_adapter.py +87 -0
  241. evalscope/benchmarks/ner/wnut2017_adapter.py +61 -0
  242. evalscope/benchmarks/ocr_bench/__init__.py +0 -0
  243. evalscope/benchmarks/ocr_bench/ocr_bench/__init__.py +0 -0
  244. evalscope/benchmarks/ocr_bench/ocr_bench/ocr_bench_adapter.py +101 -0
  245. evalscope/benchmarks/ocr_bench/ocr_bench_v2/IoUscore_metric.py +87 -0
  246. evalscope/benchmarks/ocr_bench/ocr_bench_v2/TEDS_metric.py +963 -0
  247. evalscope/benchmarks/ocr_bench/ocr_bench_v2/__init__.py +0 -0
  248. evalscope/benchmarks/ocr_bench/ocr_bench_v2/ocr_bench_v2_adapter.py +161 -0
  249. evalscope/benchmarks/ocr_bench/ocr_bench_v2/page_ocr_metric.py +50 -0
  250. evalscope/benchmarks/ocr_bench/ocr_bench_v2/parallel.py +46 -0
  251. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/__init__.py +0 -0
  252. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/readme.txt +26 -0
  253. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/rrc_evaluation_funcs_1_1.py +537 -0
  254. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/script.py +481 -0
  255. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_metric.py +179 -0
  256. evalscope/benchmarks/ocr_bench/ocr_bench_v2/utils.py +433 -0
  257. evalscope/benchmarks/ocr_bench/ocr_bench_v2/vqa_metric.py +254 -0
  258. evalscope/benchmarks/olympiad_bench/__init__.py +0 -0
  259. evalscope/benchmarks/olympiad_bench/olympiad_bench_adapter.py +163 -0
  260. evalscope/benchmarks/olympiad_bench/utils.py +565 -0
  261. evalscope/benchmarks/omni_bench/__init__.py +0 -0
  262. evalscope/benchmarks/omni_bench/omni_bench_adapter.py +86 -0
  263. evalscope/benchmarks/omnidoc_bench/__init__.py +0 -0
  264. evalscope/benchmarks/omnidoc_bench/end2end_eval.py +349 -0
  265. evalscope/benchmarks/omnidoc_bench/metrics.py +547 -0
  266. evalscope/benchmarks/omnidoc_bench/omnidoc_bench_adapter.py +135 -0
  267. evalscope/benchmarks/omnidoc_bench/utils.py +1937 -0
  268. evalscope/benchmarks/piqa/__init__.py +0 -0
  269. evalscope/benchmarks/piqa/piqa_adapter.py +32 -0
  270. evalscope/benchmarks/poly_math/__init__.py +0 -0
  271. evalscope/benchmarks/poly_math/poly_math_adapter.py +132 -0
  272. evalscope/benchmarks/poly_math/utils/instruction.py +105 -0
  273. evalscope/benchmarks/pope/__init__.py +0 -0
  274. evalscope/benchmarks/pope/pope_adapter.py +112 -0
  275. evalscope/benchmarks/process_bench/__init__.py +0 -0
  276. evalscope/benchmarks/process_bench/process_bench_adapter.py +171 -0
  277. evalscope/benchmarks/pumed_qa/__init__.py +0 -0
  278. evalscope/benchmarks/pumed_qa/pubmed_qa_adapter.py +175 -0
  279. evalscope/benchmarks/qasc/__init__.py +0 -0
  280. evalscope/benchmarks/qasc/qasc_adapter.py +35 -0
  281. evalscope/benchmarks/race/race_adapter.py +33 -120
  282. evalscope/benchmarks/real_world_qa/__init__.py +0 -0
  283. evalscope/benchmarks/real_world_qa/real_world_qa_adapter.py +64 -0
  284. evalscope/benchmarks/sciq/__init__.py +0 -0
  285. evalscope/benchmarks/sciq/sciq_adapter.py +36 -0
  286. evalscope/benchmarks/seed_bench_2_plus/__init__.py +0 -0
  287. evalscope/benchmarks/seed_bench_2_plus/seed_bench_2_plus_adapter.py +72 -0
  288. evalscope/benchmarks/simple_qa/__init__.py +0 -0
  289. evalscope/benchmarks/simple_qa/simple_qa_adapter.py +169 -0
  290. evalscope/benchmarks/simple_vqa/__init__.py +0 -0
  291. evalscope/benchmarks/simple_vqa/simple_vqa_adapter.py +169 -0
  292. evalscope/benchmarks/siqa/__init__.py +0 -0
  293. evalscope/benchmarks/siqa/siqa_adapter.py +39 -0
  294. evalscope/benchmarks/super_gpqa/__init__.py +0 -0
  295. evalscope/benchmarks/super_gpqa/prompt.py +88 -0
  296. evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +165 -0
  297. evalscope/benchmarks/super_gpqa/utils.py +86 -0
  298. evalscope/benchmarks/tau_bench/__init__.py +0 -0
  299. evalscope/benchmarks/tau_bench/tau2_bench/__init__.py +0 -0
  300. evalscope/benchmarks/tau_bench/tau2_bench/generation.py +158 -0
  301. evalscope/benchmarks/tau_bench/tau2_bench/tau2_bench_adapter.py +146 -0
  302. evalscope/benchmarks/tau_bench/tau_bench/__init__.py +0 -0
  303. evalscope/benchmarks/tau_bench/tau_bench/generation.py +147 -0
  304. evalscope/benchmarks/tau_bench/tau_bench/tau_bench_adapter.py +168 -0
  305. evalscope/benchmarks/text2image/__init__.py +0 -0
  306. evalscope/benchmarks/text2image/evalmuse_adapter.py +78 -0
  307. evalscope/benchmarks/text2image/genai_bench_adapter.py +53 -0
  308. evalscope/benchmarks/text2image/general_t2i_adapter.py +42 -0
  309. evalscope/benchmarks/text2image/hpdv2_adapter.py +52 -0
  310. evalscope/benchmarks/text2image/tifa_adapter.py +27 -0
  311. evalscope/benchmarks/tool_bench/__init__.py +0 -0
  312. evalscope/benchmarks/tool_bench/tool_bench_adapter.py +102 -0
  313. evalscope/benchmarks/tool_bench/utils.py +203 -0
  314. evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +56 -118
  315. evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +70 -270
  316. evalscope/benchmarks/visu_logic/__init__.py +0 -0
  317. evalscope/benchmarks/visu_logic/visu_logic_adapter.py +75 -0
  318. evalscope/benchmarks/winogrande/__init__.py +0 -0
  319. evalscope/benchmarks/winogrande/winogrande_adapter.py +34 -0
  320. evalscope/benchmarks/wmt/__init__.py +0 -0
  321. evalscope/benchmarks/wmt/wmt24_adapter.py +294 -0
  322. evalscope/benchmarks/zerobench/__init__.py +0 -0
  323. evalscope/benchmarks/zerobench/zerobench_adapter.py +64 -0
  324. evalscope/cli/cli.py +2 -0
  325. evalscope/cli/start_app.py +12 -2
  326. evalscope/cli/start_eval.py +4 -3
  327. evalscope/cli/start_perf.py +10 -2
  328. evalscope/cli/start_server.py +6 -3
  329. evalscope/collections/__init__.py +27 -3
  330. evalscope/collections/sampler.py +12 -11
  331. evalscope/collections/schema.py +13 -12
  332. evalscope/config.py +218 -147
  333. evalscope/constants.py +78 -82
  334. evalscope/evaluator/__init__.py +1 -1
  335. evalscope/evaluator/evaluator.py +334 -318
  336. evalscope/filters/__init__.py +2 -0
  337. evalscope/filters/extraction.py +126 -0
  338. evalscope/filters/selection.py +57 -0
  339. evalscope/metrics/__init__.py +59 -3
  340. evalscope/metrics/bert_score/__init__.py +0 -0
  341. evalscope/metrics/bert_score/scorer.py +338 -0
  342. evalscope/metrics/bert_score/utils.py +697 -0
  343. evalscope/metrics/bundled_rouge_score/rouge_scorer.py +20 -15
  344. evalscope/metrics/llm_judge.py +211 -0
  345. evalscope/metrics/math_parser.py +545 -0
  346. evalscope/metrics/metric.py +611 -0
  347. evalscope/metrics/metrics.py +112 -23
  348. evalscope/metrics/rouge_metric.py +11 -13
  349. evalscope/metrics/t2v_metrics/__init__.py +0 -0
  350. evalscope/metrics/t2v_metrics/clipscore.py +14 -0
  351. evalscope/metrics/t2v_metrics/constants.py +12 -0
  352. evalscope/metrics/t2v_metrics/itmscore.py +14 -0
  353. evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
  354. evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
  355. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
  356. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
  357. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +134 -0
  358. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +282 -0
  359. evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +115 -0
  360. evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +87 -0
  361. evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +86 -0
  362. evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
  363. evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
  364. evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +85 -0
  365. evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +99 -0
  366. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +176 -0
  367. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
  368. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +82 -0
  369. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +74 -0
  370. evalscope/metrics/t2v_metrics/models/model.py +45 -0
  371. evalscope/metrics/t2v_metrics/models/utils.py +25 -0
  372. evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
  373. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
  374. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
  375. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +306 -0
  376. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
  377. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +84 -0
  378. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
  379. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +223 -0
  380. evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +153 -0
  381. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
  382. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
  383. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
  384. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +24 -0
  385. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +190 -0
  386. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +100 -0
  387. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +313 -0
  388. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
  389. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
  390. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +192 -0
  391. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +320 -0
  392. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
  393. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
  394. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
  395. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
  396. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
  397. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
  398. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
  399. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
  400. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
  401. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
  402. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
  403. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
  404. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
  405. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
  406. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
  407. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
  408. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
  409. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
  410. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
  411. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
  412. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
  413. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
  414. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
  415. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +212 -0
  416. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
  417. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1111 -0
  418. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
  419. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
  420. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
  421. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +457 -0
  422. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +370 -0
  423. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +765 -0
  424. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +274 -0
  425. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +896 -0
  426. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1876 -0
  427. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +83 -0
  428. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +58 -0
  429. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
  430. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
  431. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
  432. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +187 -0
  433. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +179 -0
  434. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +115 -0
  435. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
  436. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +348 -0
  437. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +870 -0
  438. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +273 -0
  439. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +514 -0
  440. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1291 -0
  441. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +476 -0
  442. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +35 -0
  443. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
  444. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
  445. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +393 -0
  446. evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +129 -0
  447. evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +18 -0
  448. evalscope/metrics/t2v_metrics/score.py +78 -0
  449. evalscope/metrics/t2v_metrics/vqascore.py +14 -0
  450. evalscope/models/__init__.py +23 -13
  451. evalscope/models/image_edit_model.py +125 -0
  452. evalscope/models/mockllm.py +65 -0
  453. evalscope/models/model_apis.py +69 -0
  454. evalscope/models/modelscope.py +455 -0
  455. evalscope/models/openai_compatible.py +144 -0
  456. evalscope/models/text2image_model.py +124 -0
  457. evalscope/models/utils/openai.py +708 -0
  458. evalscope/perf/__init__.py +0 -1
  459. evalscope/perf/arguments.py +103 -69
  460. evalscope/perf/benchmark.py +114 -163
  461. evalscope/perf/http_client.py +59 -89
  462. evalscope/perf/main.py +91 -18
  463. evalscope/perf/plugin/__init__.py +3 -2
  464. evalscope/perf/plugin/api/__init__.py +4 -3
  465. evalscope/perf/plugin/api/base.py +27 -7
  466. evalscope/perf/plugin/api/custom_api.py +170 -57
  467. evalscope/perf/plugin/api/dashscope_api.py +4 -10
  468. evalscope/perf/plugin/api/default_api.py +214 -0
  469. evalscope/perf/plugin/api/openai_api.py +120 -41
  470. evalscope/perf/plugin/datasets/__init__.py +10 -6
  471. evalscope/perf/plugin/datasets/base.py +43 -1
  472. evalscope/perf/plugin/datasets/custom.py +22 -3
  473. evalscope/perf/plugin/datasets/flickr8k.py +5 -27
  474. evalscope/perf/plugin/datasets/kontext_bench.py +28 -0
  475. evalscope/perf/plugin/datasets/line_by_line.py +7 -3
  476. evalscope/perf/plugin/datasets/longalpaca.py +7 -3
  477. evalscope/perf/plugin/datasets/openqa.py +13 -14
  478. evalscope/perf/plugin/datasets/random_dataset.py +67 -0
  479. evalscope/perf/plugin/datasets/random_vl_dataset.py +80 -0
  480. evalscope/perf/plugin/datasets/speed_benchmark.py +11 -0
  481. evalscope/perf/plugin/registry.py +36 -16
  482. evalscope/perf/utils/analysis_result.py +24 -23
  483. evalscope/perf/utils/benchmark_util.py +95 -55
  484. evalscope/perf/utils/db_util.py +115 -78
  485. evalscope/perf/utils/local_server.py +12 -47
  486. evalscope/perf/utils/log_utils.py +63 -0
  487. evalscope/perf/utils/rich_display.py +192 -0
  488. evalscope/report/__init__.py +46 -3
  489. evalscope/report/combinator.py +143 -32
  490. evalscope/report/generator.py +74 -34
  491. evalscope/report/report.py +238 -0
  492. evalscope/run.py +71 -46
  493. evalscope/summarizer.py +5 -5
  494. evalscope/third_party/longbench_write/infer.py +1 -1
  495. evalscope/third_party/thinkbench/__init__.py +3 -0
  496. evalscope/third_party/thinkbench/eval.py +441 -0
  497. evalscope/third_party/thinkbench/infer.py +130 -0
  498. evalscope/third_party/thinkbench/resources/critique_template.txt +17 -0
  499. evalscope/third_party/thinkbench/resources/reformat_template.txt +31 -0
  500. evalscope/third_party/thinkbench/tools/__init__.py +0 -0
  501. evalscope/third_party/thinkbench/tools/llm.py +48 -0
  502. evalscope/third_party/thinkbench/tools/utils.py +13 -0
  503. evalscope/third_party/toolbench_static/llm/swift_infer.py +46 -20
  504. evalscope/third_party/toolbench_static/toolbench_static.py +2 -1
  505. evalscope/utils/__init__.py +82 -2
  506. evalscope/utils/argument_utils.py +64 -0
  507. evalscope/utils/chat_service.py +8 -6
  508. evalscope/utils/deprecation_utils.py +53 -0
  509. evalscope/utils/function_utils.py +266 -0
  510. evalscope/utils/import_utils.py +154 -0
  511. evalscope/utils/io_utils.py +336 -8
  512. evalscope/utils/json_schema.py +231 -0
  513. evalscope/utils/logger.py +121 -31
  514. evalscope/utils/model_utils.py +57 -1
  515. evalscope/utils/multi_choices.py +303 -0
  516. evalscope/utils/ner.py +377 -0
  517. evalscope/utils/url_utils.py +65 -0
  518. evalscope/version.py +2 -2
  519. evalscope-1.2.0.dist-info/METADATA +553 -0
  520. evalscope-1.2.0.dist-info/RECORD +628 -0
  521. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/WHEEL +1 -1
  522. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/top_level.txt +0 -1
  523. evalscope/backend/vlm_eval_kit/custom_dataset.py +0 -46
  524. evalscope/benchmarks/arc/ai2_arc.py +0 -151
  525. evalscope/benchmarks/benchmark.py +0 -76
  526. evalscope/benchmarks/ceval/ceval_exam.py +0 -146
  527. evalscope/benchmarks/ceval/samples.jsonl +0 -1
  528. evalscope/benchmarks/cmmlu/cmmlu.py +0 -161
  529. evalscope/benchmarks/cmmlu/samples.jsonl +0 -5
  530. evalscope/benchmarks/competition_math/competition_math.py +0 -79
  531. evalscope/benchmarks/data_adapter.py +0 -291
  532. evalscope/benchmarks/gsm8k/gsm8k.py +0 -121
  533. evalscope/benchmarks/hellaswag/hellaswag.py +0 -112
  534. evalscope/benchmarks/humaneval/humaneval.py +0 -79
  535. evalscope/benchmarks/mmlu/mmlu.py +0 -160
  536. evalscope/benchmarks/mmlu/samples.jsonl +0 -5
  537. evalscope/benchmarks/race/race.py +0 -104
  538. evalscope/benchmarks/race/samples.jsonl +0 -5
  539. evalscope/benchmarks/trivia_qa/trivia_qa.py +0 -89
  540. evalscope/benchmarks/truthful_qa/truthful_qa.py +0 -163
  541. evalscope/collections/evaluator.py +0 -198
  542. evalscope/evaluator/rating_eval.py +0 -157
  543. evalscope/evaluator/reviewer/__init__.py +0 -1
  544. evalscope/evaluator/reviewer/auto_reviewer.py +0 -391
  545. evalscope/metrics/code_metric.py +0 -98
  546. evalscope/metrics/named_metrics.py +0 -17
  547. evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
  548. evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
  549. evalscope/models/base_adapter.py +0 -52
  550. evalscope/models/chat_adapter.py +0 -138
  551. evalscope/models/choice_adapter.py +0 -211
  552. evalscope/models/custom/__init__.py +0 -3
  553. evalscope/models/custom/custom_model.py +0 -53
  554. evalscope/models/custom/dummy_model.py +0 -63
  555. evalscope/models/custom_adapter.py +0 -67
  556. evalscope/models/local_model.py +0 -74
  557. evalscope/models/model.py +0 -229
  558. evalscope/models/server_adapter.py +0 -111
  559. evalscope/registry/__init__.py +0 -1
  560. evalscope/registry/config/cfg_arena.yaml +0 -77
  561. evalscope/registry/config/cfg_arena_zhihu.yaml +0 -63
  562. evalscope/registry/config/cfg_pairwise_baseline.yaml +0 -83
  563. evalscope/registry/config/cfg_single.yaml +0 -78
  564. evalscope/registry/data/prompt_template/lmsys_v2.jsonl +0 -8
  565. evalscope/registry/data/prompt_template/prompt_templates.jsonl +0 -8
  566. evalscope/registry/data/qa_browser/battle.jsonl +0 -634
  567. evalscope/registry/data/qa_browser/category_mapping.yaml +0 -10
  568. evalscope/registry/data/question.jsonl +0 -80
  569. evalscope/registry/tasks/arc.yaml +0 -28
  570. evalscope/registry/tasks/bbh.yaml +0 -26
  571. evalscope/registry/tasks/bbh_mini.yaml +0 -26
  572. evalscope/registry/tasks/ceval.yaml +0 -27
  573. evalscope/registry/tasks/ceval_mini.yaml +0 -26
  574. evalscope/registry/tasks/cmmlu.yaml +0 -27
  575. evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +0 -28
  576. evalscope/registry/tasks/general_qa.yaml +0 -27
  577. evalscope/registry/tasks/gsm8k.yaml +0 -29
  578. evalscope/registry/tasks/mmlu.yaml +0 -29
  579. evalscope/registry/tasks/mmlu_mini.yaml +0 -27
  580. evalscope/report/app.py +0 -506
  581. evalscope/report/utils.py +0 -133
  582. evalscope/run_arena.py +0 -202
  583. evalscope/utils/arena_utils.py +0 -217
  584. evalscope/utils/completion_parsers.py +0 -82
  585. evalscope/utils/utils.py +0 -301
  586. evalscope-0.10.0.dist-info/METADATA +0 -565
  587. evalscope-0.10.0.dist-info/RECORD +0 -286
  588. tests/__init__.py +0 -1
  589. tests/cli/__init__.py +0 -1
  590. tests/cli/test_collection.py +0 -57
  591. tests/cli/test_run.py +0 -165
  592. tests/perf/__init__.py +0 -1
  593. tests/perf/test_perf.py +0 -101
  594. tests/rag/test_clip_benchmark.py +0 -85
  595. tests/rag/test_mteb.py +0 -138
  596. tests/rag/test_ragas.py +0 -120
  597. tests/swift/__init__.py +0 -1
  598. tests/swift/test_run_swift_eval.py +0 -145
  599. tests/swift/test_run_swift_vlm_eval.py +0 -127
  600. tests/swift/test_run_swift_vlm_jugde_eval.py +0 -156
  601. tests/test_run_all.py +0 -12
  602. tests/vlm/__init__.py +0 -1
  603. tests/vlm/test_vlmeval.py +0 -60
  604. {tests/rag → evalscope/api}/__init__.py +0 -0
  605. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/entry_points.txt +0 -0
  606. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info/licenses}/LICENSE +0 -0
@@ -0,0 +1,1111 @@
1
+ """
2
+ * Copyright (c) 2023, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ * Based on huggingface code base
8
+ * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
9
+ """
10
+
11
+ import math
12
+ import os
13
+ import torch
14
+ import torch.nn.functional as F
15
+ import torch.utils.checkpoint
16
+ import warnings
17
+ from dataclasses import dataclass
18
+ from torch import Tensor, device, dtype, nn
19
+ from torch.nn import CrossEntropyLoss
20
+ from transformers.activations import ACT2FN
21
+ from transformers.file_utils import ModelOutput
22
+ from transformers.modeling_outputs import (
23
+ BaseModelOutputWithPastAndCrossAttentions,
24
+ BaseModelOutputWithPoolingAndCrossAttentions,
25
+ CausalLMOutputWithCrossAttentions,
26
+ MaskedLMOutput,
27
+ MultipleChoiceModelOutput,
28
+ NextSentencePredictorOutput,
29
+ QuestionAnsweringModelOutput,
30
+ SequenceClassifierOutput,
31
+ TokenClassifierOutput,
32
+ )
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.models.bert.configuration_bert import BertConfig
35
+ from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
36
+ from transformers.utils import logging
37
+ from typing import Any, Dict, Optional, Tuple
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ class BertEmbeddings(nn.Module):
43
+ """Construct the embeddings from word and position embeddings."""
44
+
45
+ def __init__(self, config):
46
+ super().__init__()
47
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
48
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
49
+
50
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
51
+ # any TensorFlow checkpoint file
52
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
53
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
54
+
55
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
56
+ self.register_buffer('position_ids', torch.arange(config.max_position_embeddings).expand((1, -1)))
57
+ self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute')
58
+
59
+ self.config = config
60
+
61
+ def forward(
62
+ self,
63
+ input_ids=None,
64
+ position_ids=None,
65
+ query_embeds=None,
66
+ past_key_values_length=0,
67
+ ):
68
+ if input_ids is not None:
69
+ seq_length = input_ids.size()[1]
70
+ else:
71
+ seq_length = 0
72
+
73
+ if position_ids is None:
74
+ position_ids = self.position_ids[:, past_key_values_length:seq_length + past_key_values_length].clone()
75
+
76
+ if input_ids is not None:
77
+ embeddings = self.word_embeddings(input_ids)
78
+ if self.position_embedding_type == 'absolute':
79
+ position_embeddings = self.position_embeddings(position_ids)
80
+ embeddings = embeddings + position_embeddings
81
+
82
+ if query_embeds is not None:
83
+ embeddings = torch.cat((query_embeds, embeddings), dim=1)
84
+ else:
85
+ embeddings = query_embeds
86
+
87
+ embeddings = self.LayerNorm(embeddings)
88
+ embeddings = self.dropout(embeddings)
89
+ return embeddings
90
+
91
+
92
+ class BertSelfAttention(nn.Module):
93
+
94
+ def __init__(self, config, is_cross_attention):
95
+ super().__init__()
96
+ self.config = config
97
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size'):
98
+ raise ValueError(
99
+ 'The hidden size (%d) is not a multiple of the number of attention '
100
+ 'heads (%d)' % (config.hidden_size, config.num_attention_heads)
101
+ )
102
+
103
+ self.num_attention_heads = config.num_attention_heads
104
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
105
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
106
+
107
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
108
+ if is_cross_attention:
109
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
110
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
111
+ else:
112
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
113
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
114
+
115
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
116
+ self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute')
117
+ if (self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query'):
118
+ self.max_position_embeddings = config.max_position_embeddings
119
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
120
+ self.save_attention = False
121
+
122
+ def save_attn_gradients(self, attn_gradients):
123
+ self.attn_gradients = attn_gradients
124
+
125
+ def get_attn_gradients(self):
126
+ return self.attn_gradients
127
+
128
+ def save_attention_map(self, attention_map):
129
+ self.attention_map = attention_map
130
+
131
+ def get_attention_map(self):
132
+ return self.attention_map
133
+
134
+ def transpose_for_scores(self, x):
135
+ new_x_shape = x.size()[:-1] + (
136
+ self.num_attention_heads,
137
+ self.attention_head_size,
138
+ )
139
+ x = x.view(*new_x_shape)
140
+ return x.permute(0, 2, 1, 3)
141
+
142
+ def forward(
143
+ self,
144
+ hidden_states,
145
+ attention_mask=None,
146
+ head_mask=None,
147
+ encoder_hidden_states=None,
148
+ encoder_attention_mask=None,
149
+ past_key_value=None,
150
+ output_attentions=False,
151
+ ):
152
+
153
+ # If this is instantiated as a cross-attention module, the keys
154
+ # and values come from an encoder; the attention mask needs to be
155
+ # such that the encoder's padding tokens are not attended to.
156
+ is_cross_attention = encoder_hidden_states is not None
157
+
158
+ if is_cross_attention:
159
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
160
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
161
+ attention_mask = encoder_attention_mask
162
+ elif past_key_value is not None:
163
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
164
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
165
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
166
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
167
+ else:
168
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
169
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
170
+
171
+ mixed_query_layer = self.query(hidden_states)
172
+
173
+ query_layer = self.transpose_for_scores(mixed_query_layer)
174
+
175
+ past_key_value = (key_layer, value_layer)
176
+
177
+ # Take the dot product between "query" and "key" to get the raw attention scores.
178
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
179
+
180
+ if (self.position_embedding_type == 'relative_key' or self.position_embedding_type == 'relative_key_query'):
181
+ seq_length = hidden_states.size()[1]
182
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
183
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
184
+ distance = position_ids_l - position_ids_r
185
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
186
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
187
+
188
+ if self.position_embedding_type == 'relative_key':
189
+ relative_position_scores = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding)
190
+ attention_scores = attention_scores + relative_position_scores
191
+ elif self.position_embedding_type == 'relative_key_query':
192
+ relative_position_scores_query = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding)
193
+ relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr', key_layer, positional_embedding)
194
+ attention_scores = (attention_scores + relative_position_scores_query + relative_position_scores_key)
195
+
196
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
197
+ if attention_mask is not None:
198
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
199
+ attention_scores = attention_scores + attention_mask
200
+
201
+ # Normalize the attention scores to probabilities.
202
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
203
+
204
+ if is_cross_attention and self.save_attention:
205
+ self.save_attention_map(attention_probs)
206
+ attention_probs.register_hook(self.save_attn_gradients)
207
+
208
+ # This is actually dropping out entire tokens to attend to, which might
209
+ # seem a bit unusual, but is taken from the original Transformer paper.
210
+ attention_probs_dropped = self.dropout(attention_probs)
211
+
212
+ # Mask heads if we want to
213
+ if head_mask is not None:
214
+ attention_probs_dropped = attention_probs_dropped * head_mask
215
+
216
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
217
+
218
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
219
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
220
+ context_layer = context_layer.view(*new_context_layer_shape)
221
+
222
+ outputs = ((context_layer, attention_probs) if output_attentions else (context_layer, ))
223
+
224
+ outputs = outputs + (past_key_value, )
225
+ return outputs
226
+
227
+
228
+ class BertSelfOutput(nn.Module):
229
+
230
+ def __init__(self, config):
231
+ super().__init__()
232
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
233
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
234
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
235
+
236
+ def forward(self, hidden_states, input_tensor):
237
+ hidden_states = self.dense(hidden_states)
238
+ hidden_states = self.dropout(hidden_states)
239
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
240
+ return hidden_states
241
+
242
+
243
+ class BertAttention(nn.Module):
244
+
245
+ def __init__(self, config, is_cross_attention=False):
246
+ super().__init__()
247
+ self.self = BertSelfAttention(config, is_cross_attention)
248
+ self.output = BertSelfOutput(config)
249
+ self.pruned_heads = set()
250
+
251
+ def prune_heads(self, heads):
252
+ if len(heads) == 0:
253
+ return
254
+ heads, index = find_pruneable_heads_and_indices(
255
+ heads,
256
+ self.self.num_attention_heads,
257
+ self.self.attention_head_size,
258
+ self.pruned_heads,
259
+ )
260
+
261
+ # Prune linear layers
262
+ self.self.query = prune_linear_layer(self.self.query, index)
263
+ self.self.key = prune_linear_layer(self.self.key, index)
264
+ self.self.value = prune_linear_layer(self.self.value, index)
265
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
266
+
267
+ # Update hyper params and store pruned heads
268
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
269
+ self.self.all_head_size = (self.self.attention_head_size * self.self.num_attention_heads)
270
+ self.pruned_heads = self.pruned_heads.union(heads)
271
+
272
+ def forward(
273
+ self,
274
+ hidden_states,
275
+ attention_mask=None,
276
+ head_mask=None,
277
+ encoder_hidden_states=None,
278
+ encoder_attention_mask=None,
279
+ past_key_value=None,
280
+ output_attentions=False,
281
+ ):
282
+ self_outputs = self.self(
283
+ hidden_states,
284
+ attention_mask,
285
+ head_mask,
286
+ encoder_hidden_states,
287
+ encoder_attention_mask,
288
+ past_key_value,
289
+ output_attentions,
290
+ )
291
+ attention_output = self.output(self_outputs[0], hidden_states)
292
+
293
+ outputs = (attention_output, ) + self_outputs[1:] # add attentions if we output them
294
+ return outputs
295
+
296
+
297
+ class BertIntermediate(nn.Module):
298
+
299
+ def __init__(self, config):
300
+ super().__init__()
301
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
302
+ if isinstance(config.hidden_act, str):
303
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
304
+ else:
305
+ self.intermediate_act_fn = config.hidden_act
306
+
307
+ def forward(self, hidden_states):
308
+ hidden_states = self.dense(hidden_states)
309
+ hidden_states = self.intermediate_act_fn(hidden_states)
310
+ return hidden_states
311
+
312
+
313
+ class BertOutput(nn.Module):
314
+
315
+ def __init__(self, config):
316
+ super().__init__()
317
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
318
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
319
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
320
+
321
+ def forward(self, hidden_states, input_tensor):
322
+ hidden_states = self.dense(hidden_states)
323
+ hidden_states = self.dropout(hidden_states)
324
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
325
+ return hidden_states
326
+
327
+
328
+ class BertLayer(nn.Module):
329
+
330
+ def __init__(self, config, layer_num):
331
+ super().__init__()
332
+ self.config = config
333
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
334
+ self.seq_len_dim = 1
335
+ self.attention = BertAttention(config)
336
+ self.layer_num = layer_num
337
+ if (self.config.add_cross_attention and layer_num % self.config.cross_attention_freq == 0):
338
+ self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
339
+ self.has_cross_attention = True
340
+ else:
341
+ self.has_cross_attention = False
342
+ self.intermediate = BertIntermediate(config)
343
+ self.output = BertOutput(config)
344
+
345
+ self.intermediate_query = BertIntermediate(config)
346
+ self.output_query = BertOutput(config)
347
+
348
+ def forward(
349
+ self,
350
+ hidden_states,
351
+ attention_mask=None,
352
+ head_mask=None,
353
+ encoder_hidden_states=None,
354
+ encoder_attention_mask=None,
355
+ past_key_value=None,
356
+ output_attentions=False,
357
+ query_length=0,
358
+ ):
359
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
360
+ self_attn_past_key_value = (past_key_value[:2] if past_key_value is not None else None)
361
+ self_attention_outputs = self.attention(
362
+ hidden_states,
363
+ attention_mask,
364
+ head_mask,
365
+ output_attentions=output_attentions,
366
+ past_key_value=self_attn_past_key_value,
367
+ )
368
+ attention_output = self_attention_outputs[0]
369
+ outputs = self_attention_outputs[1:-1]
370
+
371
+ present_key_value = self_attention_outputs[-1]
372
+
373
+ if query_length > 0:
374
+ query_attention_output = attention_output[:, :query_length, :]
375
+
376
+ if self.has_cross_attention:
377
+ assert (
378
+ encoder_hidden_states is not None
379
+ ), 'encoder_hidden_states must be given for cross-attention layers'
380
+ cross_attention_outputs = self.crossattention(
381
+ query_attention_output,
382
+ attention_mask,
383
+ head_mask,
384
+ encoder_hidden_states,
385
+ encoder_attention_mask,
386
+ output_attentions=output_attentions,
387
+ )
388
+ query_attention_output = cross_attention_outputs[0]
389
+ outputs = (
390
+ outputs + cross_attention_outputs[1:-1]
391
+ ) # add cross attentions if we output attention weights
392
+
393
+ layer_output = apply_chunking_to_forward(
394
+ self.feed_forward_chunk_query,
395
+ self.chunk_size_feed_forward,
396
+ self.seq_len_dim,
397
+ query_attention_output,
398
+ )
399
+ if attention_output.shape[1] > query_length:
400
+ layer_output_text = apply_chunking_to_forward(
401
+ self.feed_forward_chunk,
402
+ self.chunk_size_feed_forward,
403
+ self.seq_len_dim,
404
+ attention_output[:, query_length:, :],
405
+ )
406
+ layer_output = torch.cat([layer_output, layer_output_text], dim=1)
407
+ else:
408
+ layer_output = apply_chunking_to_forward(
409
+ self.feed_forward_chunk,
410
+ self.chunk_size_feed_forward,
411
+ self.seq_len_dim,
412
+ attention_output,
413
+ )
414
+ outputs = (layer_output, ) + outputs
415
+
416
+ outputs = outputs + (present_key_value, )
417
+
418
+ return outputs
419
+
420
+ def feed_forward_chunk(self, attention_output):
421
+ intermediate_output = self.intermediate(attention_output)
422
+ layer_output = self.output(intermediate_output, attention_output)
423
+ return layer_output
424
+
425
+ def feed_forward_chunk_query(self, attention_output):
426
+ intermediate_output = self.intermediate_query(attention_output)
427
+ layer_output = self.output_query(intermediate_output, attention_output)
428
+ return layer_output
429
+
430
+
431
+ class BertEncoder(nn.Module):
432
+
433
+ def __init__(self, config):
434
+ super().__init__()
435
+ self.config = config
436
+ self.layer = nn.ModuleList([BertLayer(config, i) for i in range(config.num_hidden_layers)])
437
+
438
+ def forward(
439
+ self,
440
+ hidden_states,
441
+ attention_mask=None,
442
+ head_mask=None,
443
+ encoder_hidden_states=None,
444
+ encoder_attention_mask=None,
445
+ past_key_values=None,
446
+ use_cache=None,
447
+ output_attentions=False,
448
+ output_hidden_states=False,
449
+ return_dict=True,
450
+ query_length=0,
451
+ ):
452
+ all_hidden_states = () if output_hidden_states else None
453
+ all_self_attentions = () if output_attentions else None
454
+ all_cross_attentions = (() if output_attentions and self.config.add_cross_attention else None)
455
+
456
+ next_decoder_cache = () if use_cache else None
457
+
458
+ for i in range(self.config.num_hidden_layers):
459
+ layer_module = self.layer[i]
460
+ if output_hidden_states:
461
+ all_hidden_states = all_hidden_states + (hidden_states, )
462
+
463
+ layer_head_mask = head_mask[i] if head_mask is not None else None
464
+ past_key_value = past_key_values[i] if past_key_values is not None else None
465
+
466
+ if getattr(self.config, 'gradient_checkpointing', False) and self.training:
467
+
468
+ if use_cache:
469
+ logger.warn(
470
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
471
+ )
472
+ use_cache = False
473
+
474
+ def create_custom_forward(module):
475
+
476
+ def custom_forward(*inputs):
477
+ return module(*inputs, past_key_value, output_attentions, query_length)
478
+
479
+ return custom_forward
480
+
481
+ layer_outputs = torch.utils.checkpoint.checkpoint(
482
+ create_custom_forward(layer_module),
483
+ hidden_states,
484
+ attention_mask,
485
+ layer_head_mask,
486
+ encoder_hidden_states,
487
+ encoder_attention_mask,
488
+ )
489
+ else:
490
+ layer_outputs = layer_module(
491
+ hidden_states,
492
+ attention_mask,
493
+ layer_head_mask,
494
+ encoder_hidden_states,
495
+ encoder_attention_mask,
496
+ past_key_value,
497
+ output_attentions,
498
+ query_length,
499
+ )
500
+
501
+ hidden_states = layer_outputs[0]
502
+ if use_cache:
503
+ next_decoder_cache += (layer_outputs[-1], )
504
+ if output_attentions:
505
+ all_self_attentions = all_self_attentions + (layer_outputs[1], )
506
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2], )
507
+
508
+ if output_hidden_states:
509
+ all_hidden_states = all_hidden_states + (hidden_states, )
510
+
511
+ if not return_dict:
512
+ return tuple(
513
+ v for v in [
514
+ hidden_states,
515
+ next_decoder_cache,
516
+ all_hidden_states,
517
+ all_self_attentions,
518
+ all_cross_attentions,
519
+ ] if v is not None
520
+ )
521
+ return BaseModelOutputWithPastAndCrossAttentions(
522
+ last_hidden_state=hidden_states,
523
+ past_key_values=next_decoder_cache,
524
+ hidden_states=all_hidden_states,
525
+ attentions=all_self_attentions,
526
+ cross_attentions=all_cross_attentions,
527
+ )
528
+
529
+
530
+ class BertPooler(nn.Module):
531
+
532
+ def __init__(self, config):
533
+ super().__init__()
534
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
535
+ self.activation = nn.Tanh()
536
+
537
+ def forward(self, hidden_states):
538
+ # We "pool" the model by simply taking the hidden state corresponding
539
+ # to the first token.
540
+ first_token_tensor = hidden_states[:, 0]
541
+ pooled_output = self.dense(first_token_tensor)
542
+ pooled_output = self.activation(pooled_output)
543
+ return pooled_output
544
+
545
+
546
+ class BertPredictionHeadTransform(nn.Module):
547
+
548
+ def __init__(self, config):
549
+ super().__init__()
550
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
551
+ if isinstance(config.hidden_act, str):
552
+ self.transform_act_fn = ACT2FN[config.hidden_act]
553
+ else:
554
+ self.transform_act_fn = config.hidden_act
555
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
556
+
557
+ def forward(self, hidden_states):
558
+ hidden_states = self.dense(hidden_states)
559
+ hidden_states = self.transform_act_fn(hidden_states)
560
+ hidden_states = self.LayerNorm(hidden_states)
561
+ return hidden_states
562
+
563
+
564
+ class BertLMPredictionHead(nn.Module):
565
+
566
+ def __init__(self, config):
567
+ super().__init__()
568
+ self.transform = BertPredictionHeadTransform(config)
569
+
570
+ # The output weights are the same as the input embeddings, but there is
571
+ # an output-only bias for each token.
572
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
573
+
574
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
575
+
576
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
577
+ self.decoder.bias = self.bias
578
+
579
+ def forward(self, hidden_states):
580
+ hidden_states = self.transform(hidden_states)
581
+ hidden_states = self.decoder(hidden_states)
582
+ return hidden_states
583
+
584
+
585
+ class BertOnlyMLMHead(nn.Module):
586
+
587
+ def __init__(self, config):
588
+ super().__init__()
589
+ self.predictions = BertLMPredictionHead(config)
590
+
591
+ def forward(self, sequence_output):
592
+ prediction_scores = self.predictions(sequence_output)
593
+ return prediction_scores
594
+
595
+
596
+ class BertPreTrainedModel(PreTrainedModel):
597
+ """
598
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
599
+ models.
600
+ """
601
+
602
+ config_class = BertConfig
603
+ base_model_prefix = 'bert'
604
+ _keys_to_ignore_on_load_missing = [r'position_ids']
605
+
606
+ def _init_weights(self, module):
607
+ """Initialize the weights"""
608
+ if isinstance(module, (nn.Linear, nn.Embedding)):
609
+ # Slightly different from the TF version which uses truncated_normal for initialization
610
+ # cf https://github.com/pytorch/pytorch/pull/5617
611
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
612
+ elif isinstance(module, nn.LayerNorm):
613
+ module.bias.data.zero_()
614
+ module.weight.data.fill_(1.0)
615
+ if isinstance(module, nn.Linear) and module.bias is not None:
616
+ module.bias.data.zero_()
617
+
618
+
619
+ class BertModel(BertPreTrainedModel):
620
+ """
621
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
622
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
623
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
624
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
625
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
626
+ input to the forward pass.
627
+ """
628
+
629
+ def __init__(self, config, add_pooling_layer=False):
630
+ super().__init__(config)
631
+ self.config = config
632
+
633
+ self.embeddings = BertEmbeddings(config)
634
+
635
+ self.encoder = BertEncoder(config)
636
+
637
+ self.pooler = BertPooler(config) if add_pooling_layer else None
638
+
639
+ self.init_weights()
640
+
641
+ def get_input_embeddings(self):
642
+ return self.embeddings.word_embeddings
643
+
644
+ def set_input_embeddings(self, value):
645
+ self.embeddings.word_embeddings = value
646
+
647
+ def _prune_heads(self, heads_to_prune):
648
+ """
649
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
650
+ class PreTrainedModel
651
+ """
652
+ for layer, heads in heads_to_prune.items():
653
+ self.encoder.layer[layer].attention.prune_heads(heads)
654
+
655
+ def get_extended_attention_mask(
656
+ self,
657
+ attention_mask: Tensor,
658
+ input_shape: Tuple[int],
659
+ device: device,
660
+ is_decoder: bool,
661
+ has_query: bool = False,
662
+ ) -> Tensor:
663
+ """
664
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
665
+
666
+ Arguments:
667
+ attention_mask (:obj:`torch.Tensor`):
668
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
669
+ input_shape (:obj:`Tuple[int]`):
670
+ The shape of the input to the model.
671
+ device: (:obj:`torch.device`):
672
+ The device of the input to the model.
673
+
674
+ Returns:
675
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
676
+ """
677
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
678
+ # ourselves in which case we just need to make it broadcastable to all heads.
679
+ if attention_mask.dim() == 3:
680
+ extended_attention_mask = attention_mask[:, None, :, :]
681
+ elif attention_mask.dim() == 2:
682
+ # Provided a padding mask of dimensions [batch_size, seq_length]
683
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
684
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
685
+ if is_decoder:
686
+ batch_size, seq_length = input_shape
687
+
688
+ seq_ids = torch.arange(seq_length, device=device)
689
+ causal_mask = (seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None])
690
+
691
+ # add a prefix ones mask to the causal mask
692
+ # causal and attention masks must have same type with pytorch version < 1.3
693
+ causal_mask = causal_mask.to(attention_mask.dtype)
694
+
695
+ if causal_mask.shape[1] < attention_mask.shape[1]:
696
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
697
+ if has_query: # UniLM style attention mask
698
+ causal_mask = torch.cat(
699
+ [
700
+ torch.zeros(
701
+ (batch_size, prefix_seq_len, seq_length),
702
+ device=device,
703
+ dtype=causal_mask.dtype,
704
+ ),
705
+ causal_mask,
706
+ ],
707
+ axis=1,
708
+ )
709
+ causal_mask = torch.cat(
710
+ [
711
+ torch.ones(
712
+ (batch_size, causal_mask.shape[1], prefix_seq_len),
713
+ device=device,
714
+ dtype=causal_mask.dtype,
715
+ ),
716
+ causal_mask,
717
+ ],
718
+ axis=-1,
719
+ )
720
+ extended_attention_mask = (causal_mask[:, None, :, :] * attention_mask[:, None, None, :])
721
+ else:
722
+ extended_attention_mask = attention_mask[:, None, None, :]
723
+ else:
724
+ raise ValueError(
725
+ 'Wrong shape for input_ids (shape {}) or attention_mask (shape {})'.format(
726
+ input_shape, attention_mask.shape
727
+ )
728
+ )
729
+
730
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
731
+ # masked positions, this operation will create a tensor which is 0.0 for
732
+ # positions we want to attend and -10000.0 for masked positions.
733
+ # Since we are adding it to the raw scores before the softmax, this is
734
+ # effectively the same as removing these entirely.
735
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
736
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
737
+ return extended_attention_mask
738
+
739
+ def forward(
740
+ self,
741
+ input_ids=None,
742
+ attention_mask=None,
743
+ position_ids=None,
744
+ head_mask=None,
745
+ query_embeds=None,
746
+ encoder_hidden_states=None,
747
+ encoder_attention_mask=None,
748
+ past_key_values=None,
749
+ use_cache=None,
750
+ output_attentions=None,
751
+ output_hidden_states=None,
752
+ return_dict=None,
753
+ is_decoder=False,
754
+ ):
755
+ r"""
756
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
757
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
758
+ the model is configured as a decoder.
759
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
760
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
761
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
762
+ - 1 for tokens that are **not masked**,
763
+ - 0 for tokens that are **masked**.
764
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
765
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
766
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
767
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
768
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
769
+ use_cache (:obj:`bool`, `optional`):
770
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
771
+ decoding (see :obj:`past_key_values`).
772
+ """
773
+ output_attentions = (output_attentions if output_attentions is not None else self.config.output_attentions)
774
+ output_hidden_states = (
775
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
776
+ )
777
+ return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
778
+
779
+ # use_cache = use_cache if use_cache is not None else self.config.use_cache
780
+
781
+ if input_ids is None:
782
+ assert (query_embeds is not None), 'You have to specify query_embeds when input_ids is None'
783
+
784
+ # past_key_values_length
785
+ past_key_values_length = (
786
+ past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0
787
+ )
788
+
789
+ query_length = query_embeds.shape[1] if query_embeds is not None else 0
790
+
791
+ embedding_output = self.embeddings(
792
+ input_ids=input_ids,
793
+ position_ids=position_ids,
794
+ query_embeds=query_embeds,
795
+ past_key_values_length=past_key_values_length,
796
+ )
797
+
798
+ input_shape = embedding_output.size()[:-1]
799
+ batch_size, seq_length = input_shape
800
+ device = embedding_output.device
801
+
802
+ if attention_mask is None:
803
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
804
+
805
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
806
+ # ourselves in which case we just need to make it broadcastable to all heads.
807
+ if is_decoder:
808
+ extended_attention_mask = self.get_extended_attention_mask(
809
+ attention_mask,
810
+ input_ids.shape,
811
+ device,
812
+ is_decoder,
813
+ has_query=(query_embeds is not None),
814
+ )
815
+ else:
816
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device, is_decoder)
817
+
818
+ # If a 2D or 3D attention mask is provided for the cross-attention
819
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
820
+ if encoder_hidden_states is not None:
821
+ if type(encoder_hidden_states) == list:
822
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
823
+ else:
824
+ (
825
+ encoder_batch_size,
826
+ encoder_sequence_length,
827
+ _,
828
+ ) = encoder_hidden_states.size()
829
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
830
+
831
+ if type(encoder_attention_mask) == list:
832
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
833
+ elif encoder_attention_mask is None:
834
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
835
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
836
+ else:
837
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
838
+ else:
839
+ encoder_extended_attention_mask = None
840
+
841
+ # Prepare head mask if needed
842
+ # 1.0 in head_mask indicate we keep the head
843
+ # attention_probs has shape bsz x n_heads x N x N
844
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
845
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
846
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
847
+
848
+ encoder_outputs = self.encoder(
849
+ embedding_output,
850
+ attention_mask=extended_attention_mask,
851
+ head_mask=head_mask,
852
+ encoder_hidden_states=encoder_hidden_states,
853
+ encoder_attention_mask=encoder_extended_attention_mask,
854
+ past_key_values=past_key_values,
855
+ use_cache=use_cache,
856
+ output_attentions=output_attentions,
857
+ output_hidden_states=output_hidden_states,
858
+ return_dict=return_dict,
859
+ query_length=query_length,
860
+ )
861
+ sequence_output = encoder_outputs[0]
862
+ pooled_output = (self.pooler(sequence_output) if self.pooler is not None else None)
863
+
864
+ if not return_dict:
865
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
866
+
867
+ return BaseModelOutputWithPoolingAndCrossAttentions(
868
+ last_hidden_state=sequence_output,
869
+ pooler_output=pooled_output,
870
+ past_key_values=encoder_outputs.past_key_values,
871
+ hidden_states=encoder_outputs.hidden_states,
872
+ attentions=encoder_outputs.attentions,
873
+ cross_attentions=encoder_outputs.cross_attentions,
874
+ )
875
+
876
+
877
+ class BertLMHeadModel(BertPreTrainedModel):
878
+
879
+ _keys_to_ignore_on_load_unexpected = [r'pooler']
880
+ _keys_to_ignore_on_load_missing = [r'position_ids', r'predictions.decoder.bias']
881
+
882
+ def __init__(self, config):
883
+ super().__init__(config)
884
+
885
+ self.bert = BertModel(config, add_pooling_layer=False)
886
+ self.cls = BertOnlyMLMHead(config)
887
+
888
+ self.init_weights()
889
+
890
+ def get_output_embeddings(self):
891
+ return self.cls.predictions.decoder
892
+
893
+ def set_output_embeddings(self, new_embeddings):
894
+ self.cls.predictions.decoder = new_embeddings
895
+
896
+ def forward(
897
+ self,
898
+ input_ids=None,
899
+ attention_mask=None,
900
+ position_ids=None,
901
+ head_mask=None,
902
+ query_embeds=None,
903
+ encoder_hidden_states=None,
904
+ encoder_attention_mask=None,
905
+ labels=None,
906
+ past_key_values=None,
907
+ use_cache=True,
908
+ output_attentions=None,
909
+ output_hidden_states=None,
910
+ return_dict=None,
911
+ return_logits=False,
912
+ is_decoder=True,
913
+ reduction='mean',
914
+ ):
915
+ r"""
916
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
917
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
918
+ the model is configured as a decoder.
919
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
920
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
921
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
922
+ - 1 for tokens that are **not masked**,
923
+ - 0 for tokens that are **masked**.
924
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
925
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
926
+ ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
927
+ ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
928
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
929
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
930
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
931
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
932
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
933
+ use_cache (:obj:`bool`, `optional`):
934
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
935
+ decoding (see :obj:`past_key_values`).
936
+ Returns:
937
+ Example::
938
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
939
+ >>> import torch
940
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
941
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
942
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
943
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
944
+ >>> outputs = model(**inputs)
945
+ >>> prediction_logits = outputs.logits
946
+ """
947
+ return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
948
+ if labels is not None:
949
+ use_cache = False
950
+ if past_key_values is not None:
951
+ query_embeds = None
952
+
953
+ outputs = self.bert(
954
+ input_ids,
955
+ attention_mask=attention_mask,
956
+ position_ids=position_ids,
957
+ head_mask=head_mask,
958
+ query_embeds=query_embeds,
959
+ encoder_hidden_states=encoder_hidden_states,
960
+ encoder_attention_mask=encoder_attention_mask,
961
+ past_key_values=past_key_values,
962
+ use_cache=use_cache,
963
+ output_attentions=output_attentions,
964
+ output_hidden_states=output_hidden_states,
965
+ return_dict=return_dict,
966
+ is_decoder=is_decoder,
967
+ )
968
+
969
+ sequence_output = outputs[0]
970
+ if query_embeds is not None:
971
+ sequence_output = outputs[0][:, query_embeds.shape[1]:, :]
972
+
973
+ prediction_scores = self.cls(sequence_output)
974
+
975
+ if return_logits:
976
+ return prediction_scores[:, :-1, :].contiguous()
977
+
978
+ lm_loss = None
979
+ if labels is not None:
980
+ # we are doing next-token prediction; shift prediction scores and input ids by one
981
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
982
+ labels = labels[:, 1:].contiguous()
983
+ loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
984
+ lm_loss = loss_fct(
985
+ shifted_prediction_scores.view(-1, self.config.vocab_size),
986
+ labels.view(-1),
987
+ )
988
+ if reduction == 'none':
989
+ lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
990
+
991
+ if not return_dict:
992
+ output = (prediction_scores, ) + outputs[2:]
993
+ return ((lm_loss, ) + output) if lm_loss is not None else output
994
+
995
+ return CausalLMOutputWithCrossAttentions(
996
+ loss=lm_loss,
997
+ logits=prediction_scores,
998
+ past_key_values=outputs.past_key_values,
999
+ hidden_states=outputs.hidden_states,
1000
+ attentions=outputs.attentions,
1001
+ cross_attentions=outputs.cross_attentions,
1002
+ )
1003
+
1004
+ def prepare_inputs_for_generation(self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs):
1005
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
1006
+ if attention_mask is None:
1007
+ attention_mask = input_ids.new_ones(input_ids.shape)
1008
+ query_mask = input_ids.new_ones(query_embeds.shape[:-1])
1009
+ attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
1010
+
1011
+ # cut decoder_input_ids if past is used
1012
+ if past is not None:
1013
+ input_ids = input_ids[:, -1:]
1014
+
1015
+ return {
1016
+ 'input_ids': input_ids,
1017
+ 'query_embeds': query_embeds,
1018
+ 'attention_mask': attention_mask,
1019
+ 'past_key_values': past,
1020
+ 'encoder_hidden_states': model_kwargs.get('encoder_hidden_states', None),
1021
+ 'encoder_attention_mask': model_kwargs.get('encoder_attention_mask', None),
1022
+ 'is_decoder': True,
1023
+ }
1024
+
1025
+ def _reorder_cache(self, past, beam_idx):
1026
+ reordered_past = ()
1027
+ for layer_past in past:
1028
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past), )
1029
+ return reordered_past
1030
+
1031
+
1032
+ class BertForMaskedLM(BertPreTrainedModel):
1033
+
1034
+ _keys_to_ignore_on_load_unexpected = [r'pooler']
1035
+ _keys_to_ignore_on_load_missing = [r'position_ids', r'predictions.decoder.bias']
1036
+
1037
+ def __init__(self, config):
1038
+ super().__init__(config)
1039
+
1040
+ self.bert = BertModel(config, add_pooling_layer=False)
1041
+ self.cls = BertOnlyMLMHead(config)
1042
+
1043
+ self.init_weights()
1044
+
1045
+ def get_output_embeddings(self):
1046
+ return self.cls.predictions.decoder
1047
+
1048
+ def set_output_embeddings(self, new_embeddings):
1049
+ self.cls.predictions.decoder = new_embeddings
1050
+
1051
+ def forward(
1052
+ self,
1053
+ input_ids=None,
1054
+ attention_mask=None,
1055
+ position_ids=None,
1056
+ head_mask=None,
1057
+ query_embeds=None,
1058
+ encoder_hidden_states=None,
1059
+ encoder_attention_mask=None,
1060
+ labels=None,
1061
+ output_attentions=None,
1062
+ output_hidden_states=None,
1063
+ return_dict=None,
1064
+ return_logits=False,
1065
+ is_decoder=False,
1066
+ ):
1067
+ r"""
1068
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1069
+ Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
1070
+ config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
1071
+ (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
1072
+ """
1073
+
1074
+ return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
1075
+
1076
+ outputs = self.bert(
1077
+ input_ids,
1078
+ attention_mask=attention_mask,
1079
+ position_ids=position_ids,
1080
+ head_mask=head_mask,
1081
+ query_embeds=query_embeds,
1082
+ encoder_hidden_states=encoder_hidden_states,
1083
+ encoder_attention_mask=encoder_attention_mask,
1084
+ output_attentions=output_attentions,
1085
+ output_hidden_states=output_hidden_states,
1086
+ return_dict=return_dict,
1087
+ is_decoder=is_decoder,
1088
+ )
1089
+
1090
+ if query_embeds is not None:
1091
+ sequence_output = outputs[0][:, query_embeds.shape[1]:, :]
1092
+ prediction_scores = self.cls(sequence_output)
1093
+
1094
+ if return_logits:
1095
+ return prediction_scores
1096
+
1097
+ masked_lm_loss = None
1098
+ if labels is not None:
1099
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
1100
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1101
+
1102
+ if not return_dict:
1103
+ output = (prediction_scores, ) + outputs[2:]
1104
+ return (((masked_lm_loss, ) + output) if masked_lm_loss is not None else output)
1105
+
1106
+ return MaskedLMOutput(
1107
+ loss=masked_lm_loss,
1108
+ logits=prediction_scores,
1109
+ hidden_states=outputs.hidden_states,
1110
+ attentions=outputs.attentions,
1111
+ )