evalscope 0.10.0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (606) hide show
  1. evalscope/__init__.py +4 -1
  2. evalscope/api/benchmark/__init__.py +11 -0
  3. evalscope/api/benchmark/adapters/__init__.py +7 -0
  4. evalscope/api/benchmark/adapters/agent_adapter.py +8 -0
  5. evalscope/api/benchmark/adapters/default_data_adapter.py +754 -0
  6. evalscope/api/benchmark/adapters/image_edit_adapter.py +82 -0
  7. evalscope/api/benchmark/adapters/multi_choice_adapter.py +86 -0
  8. evalscope/api/benchmark/adapters/ner_adapter.py +212 -0
  9. evalscope/api/benchmark/adapters/text2image_adapter.py +157 -0
  10. evalscope/api/benchmark/adapters/vision_language_adapter.py +8 -0
  11. evalscope/api/benchmark/benchmark.py +404 -0
  12. evalscope/api/benchmark/meta.py +124 -0
  13. evalscope/api/dataset/__init__.py +2 -0
  14. evalscope/api/dataset/dataset.py +370 -0
  15. evalscope/api/dataset/loader.py +266 -0
  16. evalscope/api/dataset/utils.py +143 -0
  17. evalscope/api/evaluator/__init__.py +3 -0
  18. evalscope/api/evaluator/cache.py +382 -0
  19. evalscope/api/evaluator/evaluator.py +61 -0
  20. evalscope/api/evaluator/state.py +280 -0
  21. evalscope/api/filter/__init__.py +1 -0
  22. evalscope/api/filter/filter.py +72 -0
  23. evalscope/api/messages/__init__.py +12 -0
  24. evalscope/api/messages/chat_message.py +248 -0
  25. evalscope/api/messages/content.py +102 -0
  26. evalscope/api/messages/utils.py +35 -0
  27. evalscope/api/metric/__init__.py +2 -0
  28. evalscope/api/metric/metric.py +60 -0
  29. evalscope/api/metric/scorer.py +113 -0
  30. evalscope/api/mixin/__init__.py +2 -0
  31. evalscope/api/mixin/llm_judge_mixin.py +170 -0
  32. evalscope/api/mixin/sandbox_mixin.py +182 -0
  33. evalscope/api/model/__init__.py +12 -0
  34. evalscope/api/model/generate_config.py +161 -0
  35. evalscope/api/model/model.py +386 -0
  36. evalscope/api/model/model_output.py +285 -0
  37. evalscope/api/registry.py +182 -0
  38. evalscope/api/tool/__init__.py +3 -0
  39. evalscope/api/tool/tool_call.py +101 -0
  40. evalscope/api/tool/tool_info.py +173 -0
  41. evalscope/api/tool/utils.py +64 -0
  42. evalscope/app/__init__.py +28 -0
  43. evalscope/app/app.py +38 -0
  44. evalscope/app/arguments.py +11 -0
  45. evalscope/app/constants.py +22 -0
  46. evalscope/app/ui/__init__.py +20 -0
  47. evalscope/app/ui/app_ui.py +53 -0
  48. evalscope/app/ui/multi_model.py +353 -0
  49. evalscope/app/ui/sidebar.py +42 -0
  50. evalscope/app/ui/single_model.py +220 -0
  51. evalscope/app/ui/visualization.py +36 -0
  52. evalscope/app/utils/data_utils.py +195 -0
  53. evalscope/app/utils/env_utils.py +12 -0
  54. evalscope/app/utils/localization.py +221 -0
  55. evalscope/app/utils/text_utils.py +119 -0
  56. evalscope/app/utils/visualization.py +96 -0
  57. evalscope/arguments.py +32 -9
  58. evalscope/backend/opencompass/api_meta_template.py +2 -1
  59. evalscope/backend/opencompass/backend_manager.py +10 -7
  60. evalscope/backend/rag_eval/__init__.py +1 -1
  61. evalscope/backend/rag_eval/backend_manager.py +23 -6
  62. evalscope/backend/rag_eval/clip_benchmark/dataset_builder.py +33 -21
  63. evalscope/backend/rag_eval/clip_benchmark/task_template.py +8 -4
  64. evalscope/backend/rag_eval/cmteb/arguments.py +14 -1
  65. evalscope/backend/rag_eval/cmteb/task_template.py +19 -3
  66. evalscope/backend/rag_eval/cmteb/tasks/CustomTask.py +1 -1
  67. evalscope/backend/rag_eval/ragas/arguments.py +0 -1
  68. evalscope/backend/rag_eval/ragas/task_template.py +2 -1
  69. evalscope/backend/rag_eval/ragas/tasks/build_distribution.py +2 -1
  70. evalscope/backend/rag_eval/ragas/tasks/build_transform.py +7 -4
  71. evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +9 -3
  72. evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +2 -6
  73. evalscope/backend/rag_eval/utils/embedding.py +125 -32
  74. evalscope/backend/rag_eval/utils/llm.py +16 -16
  75. evalscope/backend/vlm_eval_kit/backend_manager.py +8 -3
  76. evalscope/benchmarks/__init__.py +17 -5
  77. evalscope/benchmarks/aa_lcr/__init__.py +0 -0
  78. evalscope/benchmarks/aa_lcr/aa_lcr_adapter.py +205 -0
  79. evalscope/benchmarks/ai2d/__init__.py +0 -0
  80. evalscope/benchmarks/ai2d/ai2d_adapter.py +54 -0
  81. evalscope/benchmarks/aime/__init__.py +0 -0
  82. evalscope/benchmarks/aime/aime24_adapter.py +55 -0
  83. evalscope/benchmarks/aime/aime25_adapter.py +181 -0
  84. evalscope/benchmarks/aime/grader.py +307 -0
  85. evalscope/{metrics/math_accuracy.py → benchmarks/aime/math_normalize.py} +61 -72
  86. evalscope/benchmarks/alpaca_eval/__init__.py +0 -0
  87. evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +133 -0
  88. evalscope/benchmarks/amc/__init__.py +0 -0
  89. evalscope/benchmarks/amc/amc_adapter.py +51 -0
  90. evalscope/benchmarks/arc/arc_adapter.py +34 -149
  91. evalscope/benchmarks/arena_hard/__init__.py +0 -0
  92. evalscope/benchmarks/arena_hard/arena_hard_adapter.py +149 -0
  93. evalscope/benchmarks/arena_hard/utils.py +186 -0
  94. evalscope/benchmarks/bbh/bbh_adapter.py +117 -157
  95. evalscope/benchmarks/bfcl/__init__.py +0 -0
  96. evalscope/benchmarks/bfcl/v3/__init__.py +0 -0
  97. evalscope/benchmarks/bfcl/v3/bfcl_v3_adapter.py +370 -0
  98. evalscope/benchmarks/bfcl/v3/generation.py +222 -0
  99. evalscope/benchmarks/bfcl/v3/utils.py +23 -0
  100. evalscope/benchmarks/bfcl/v4/__init__.py +0 -0
  101. evalscope/benchmarks/bfcl/v4/bfcl_v4_adapter.py +229 -0
  102. evalscope/benchmarks/bfcl/v4/utils.py +410 -0
  103. evalscope/benchmarks/biomix_qa/__init__.py +0 -0
  104. evalscope/benchmarks/biomix_qa/biomix_qa_adapter.py +36 -0
  105. evalscope/benchmarks/blink/__init__.py +0 -0
  106. evalscope/benchmarks/blink/blink_adapter.py +61 -0
  107. evalscope/benchmarks/ceval/ceval_adapter.py +93 -174
  108. evalscope/benchmarks/chartqa/__init__.py +0 -0
  109. evalscope/benchmarks/chartqa/chartqa_adapter.py +80 -0
  110. evalscope/benchmarks/chartqa/utils.py +38 -0
  111. evalscope/benchmarks/chinese_simple_qa/__init__.py +0 -0
  112. evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +170 -0
  113. evalscope/benchmarks/cmmlu/cmmlu_adapter.py +34 -140
  114. evalscope/benchmarks/coin_flip/__init__.py +0 -0
  115. evalscope/benchmarks/coin_flip/coin_flip_adapter.py +128 -0
  116. evalscope/benchmarks/commonsense_qa/__init__.py +0 -0
  117. evalscope/benchmarks/commonsense_qa/commonsense_qa_adapter.py +32 -0
  118. evalscope/benchmarks/competition_math/competition_math_adapter.py +64 -112
  119. evalscope/benchmarks/data_collection/__init__.py +0 -0
  120. evalscope/benchmarks/data_collection/data_collection_adapter.py +215 -0
  121. evalscope/benchmarks/docmath/__init__.py +0 -0
  122. evalscope/benchmarks/docmath/docmath_adapter.py +143 -0
  123. evalscope/benchmarks/docmath/utils.py +219 -0
  124. evalscope/benchmarks/docvqa/__init__.py +0 -0
  125. evalscope/benchmarks/docvqa/docvqa_adapter.py +67 -0
  126. evalscope/benchmarks/drivelology/__init__.py +0 -0
  127. evalscope/benchmarks/drivelology/drivelology_binary_adapter.py +170 -0
  128. evalscope/benchmarks/drivelology/drivelology_multilabel_adapter.py +254 -0
  129. evalscope/benchmarks/drivelology/drivelology_selection_adapter.py +49 -0
  130. evalscope/benchmarks/drivelology/drivelology_writing_adapter.py +218 -0
  131. evalscope/benchmarks/drop/__init__.py +0 -0
  132. evalscope/benchmarks/drop/drop_adapter.py +155 -0
  133. evalscope/benchmarks/drop/utils.py +156 -0
  134. evalscope/benchmarks/frames/__init__.py +0 -0
  135. evalscope/benchmarks/frames/frames_adapter.py +175 -0
  136. evalscope/benchmarks/frames/utils.py +37 -0
  137. evalscope/benchmarks/general_arena/__init__.py +0 -0
  138. evalscope/benchmarks/general_arena/general_arena_adapter.py +454 -0
  139. evalscope/benchmarks/general_arena/utils.py +223 -0
  140. evalscope/benchmarks/general_mcq/__init__.py +0 -0
  141. evalscope/benchmarks/general_mcq/general_mcq_adapter.py +58 -0
  142. evalscope/benchmarks/general_qa/general_qa_adapter.py +75 -107
  143. evalscope/benchmarks/gpqa/__init__.py +0 -0
  144. evalscope/benchmarks/gpqa/gpqa_adapter.py +90 -0
  145. evalscope/benchmarks/gpqa/prompt.py +88 -0
  146. evalscope/benchmarks/gsm8k/gsm8k_adapter.py +77 -144
  147. evalscope/benchmarks/hallusion_bench/__init__.py +0 -0
  148. evalscope/benchmarks/hallusion_bench/hallusion_bench_adapter.py +159 -0
  149. evalscope/benchmarks/halu_eval/__init__.py +0 -0
  150. evalscope/benchmarks/halu_eval/halu_eval_adapter.py +128 -0
  151. evalscope/benchmarks/halu_eval/halu_eval_instructions.py +84 -0
  152. evalscope/benchmarks/healthbench/__init__.py +0 -0
  153. evalscope/benchmarks/healthbench/healthbench_adapter.py +282 -0
  154. evalscope/benchmarks/healthbench/utils.py +102 -0
  155. evalscope/benchmarks/hellaswag/hellaswag_adapter.py +36 -134
  156. evalscope/benchmarks/hle/__init__.py +0 -0
  157. evalscope/benchmarks/hle/hle_adapter.py +153 -0
  158. evalscope/benchmarks/humaneval/humaneval_adapter.py +80 -88
  159. evalscope/benchmarks/humaneval/utils.py +235 -0
  160. evalscope/benchmarks/ifeval/ifeval_adapter.py +71 -45
  161. evalscope/benchmarks/ifeval/instructions.py +112 -68
  162. evalscope/benchmarks/ifeval/instructions_registry.py +1 -1
  163. evalscope/benchmarks/ifeval/instructions_util.py +2 -3
  164. evalscope/benchmarks/ifeval/utils.py +6 -7
  165. evalscope/benchmarks/image_edit/__init__.py +0 -0
  166. evalscope/benchmarks/image_edit/gedit/__init__.py +0 -0
  167. evalscope/benchmarks/image_edit/gedit/gedit_adapter.py +138 -0
  168. evalscope/benchmarks/image_edit/gedit/utils.py +372 -0
  169. evalscope/benchmarks/image_edit/gedit/vie_prompts.py +406 -0
  170. evalscope/benchmarks/infovqa/__init__.py +0 -0
  171. evalscope/benchmarks/infovqa/infovqa_adapter.py +66 -0
  172. evalscope/benchmarks/iquiz/iquiz_adapter.py +30 -58
  173. evalscope/benchmarks/live_code_bench/__init__.py +0 -0
  174. evalscope/benchmarks/live_code_bench/evaluate_utils.py +195 -0
  175. evalscope/benchmarks/live_code_bench/extract_utils.py +70 -0
  176. evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +150 -0
  177. evalscope/benchmarks/live_code_bench/load_utils.py +63 -0
  178. evalscope/benchmarks/live_code_bench/pass_k_utils.py +56 -0
  179. evalscope/benchmarks/live_code_bench/prompts.py +207 -0
  180. evalscope/benchmarks/live_code_bench/sandbox_evaluate_utils.py +220 -0
  181. evalscope/benchmarks/live_code_bench/testing_util.py +544 -0
  182. evalscope/benchmarks/logi_qa/__int__.py +0 -0
  183. evalscope/benchmarks/logi_qa/logi_qa_adapter.py +41 -0
  184. evalscope/benchmarks/maritime_bench/__init__.py +0 -0
  185. evalscope/benchmarks/maritime_bench/maritime_bench_adapter.py +56 -0
  186. evalscope/benchmarks/math_500/__init__.py +0 -0
  187. evalscope/benchmarks/math_500/math_500_adapter.py +55 -0
  188. evalscope/benchmarks/math_qa/__init__.py +0 -0
  189. evalscope/benchmarks/math_qa/math_qa_adapter.py +35 -0
  190. evalscope/benchmarks/math_verse/__init__.py +0 -0
  191. evalscope/benchmarks/math_verse/math_verse_adapter.py +105 -0
  192. evalscope/benchmarks/math_vision/__init__.py +0 -0
  193. evalscope/benchmarks/math_vision/math_vision_adapter.py +116 -0
  194. evalscope/benchmarks/math_vista/__init__.py +0 -0
  195. evalscope/benchmarks/math_vista/math_vista_adapter.py +114 -0
  196. evalscope/benchmarks/med_mcqa/__init__.py +0 -0
  197. evalscope/benchmarks/med_mcqa/med_mcqa_adapter.py +32 -0
  198. evalscope/benchmarks/minerva_math/__init__.py +0 -0
  199. evalscope/benchmarks/minerva_math/minerva_math_adapter.py +53 -0
  200. evalscope/benchmarks/mm_bench/__init__.py +0 -0
  201. evalscope/benchmarks/mm_bench/mm_bench_adapter.py +99 -0
  202. evalscope/benchmarks/mm_star/__init__.py +0 -0
  203. evalscope/benchmarks/mm_star/mm_star_adapter.py +73 -0
  204. evalscope/benchmarks/mmlu/mmlu_adapter.py +32 -210
  205. evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +87 -103
  206. evalscope/benchmarks/mmlu_redux/__init__.py +0 -0
  207. evalscope/benchmarks/mmlu_redux/mmlu_redux_adapter.py +139 -0
  208. evalscope/benchmarks/mmmu/__init__.py +0 -0
  209. evalscope/benchmarks/mmmu/mmmu_adapter.py +159 -0
  210. evalscope/benchmarks/mmmu_pro/__init__.py +0 -0
  211. evalscope/benchmarks/mmmu_pro/mmmu_pro_adapter.py +124 -0
  212. evalscope/benchmarks/mri_mcqa/__init__.py +0 -0
  213. evalscope/benchmarks/mri_mcqa/mri_mcqa_adapter.py +34 -0
  214. evalscope/benchmarks/multi_if/__init__.py +0 -0
  215. evalscope/benchmarks/multi_if/ifeval.py +3354 -0
  216. evalscope/benchmarks/multi_if/metrics.py +120 -0
  217. evalscope/benchmarks/multi_if/multi_if_adapter.py +161 -0
  218. evalscope/benchmarks/music_trivia/__init__.py +0 -0
  219. evalscope/benchmarks/music_trivia/music_trivia_adapter.py +36 -0
  220. evalscope/benchmarks/musr/__init__.py +0 -0
  221. evalscope/benchmarks/musr/musr_adapter.py +43 -0
  222. evalscope/benchmarks/needle_haystack/__init__.py +0 -0
  223. evalscope/benchmarks/needle_haystack/needle_haystack_adapter.py +389 -0
  224. evalscope/benchmarks/needle_haystack/utils.py +79 -0
  225. evalscope/benchmarks/ner/__init__.py +0 -0
  226. evalscope/benchmarks/ner/broad_twitter_corpus_adapter.py +52 -0
  227. evalscope/benchmarks/ner/conll2003_adapter.py +48 -0
  228. evalscope/benchmarks/ner/copious_adapter.py +85 -0
  229. evalscope/benchmarks/ner/cross_ner_adapter.py +120 -0
  230. evalscope/benchmarks/ner/cross_ner_entities/__init__.py +0 -0
  231. evalscope/benchmarks/ner/cross_ner_entities/ai.py +54 -0
  232. evalscope/benchmarks/ner/cross_ner_entities/literature.py +36 -0
  233. evalscope/benchmarks/ner/cross_ner_entities/music.py +39 -0
  234. evalscope/benchmarks/ner/cross_ner_entities/politics.py +37 -0
  235. evalscope/benchmarks/ner/cross_ner_entities/science.py +58 -0
  236. evalscope/benchmarks/ner/genia_ner_adapter.py +66 -0
  237. evalscope/benchmarks/ner/harvey_ner_adapter.py +58 -0
  238. evalscope/benchmarks/ner/mit_movie_trivia_adapter.py +74 -0
  239. evalscope/benchmarks/ner/mit_restaurant_adapter.py +66 -0
  240. evalscope/benchmarks/ner/ontonotes5_adapter.py +87 -0
  241. evalscope/benchmarks/ner/wnut2017_adapter.py +61 -0
  242. evalscope/benchmarks/ocr_bench/__init__.py +0 -0
  243. evalscope/benchmarks/ocr_bench/ocr_bench/__init__.py +0 -0
  244. evalscope/benchmarks/ocr_bench/ocr_bench/ocr_bench_adapter.py +101 -0
  245. evalscope/benchmarks/ocr_bench/ocr_bench_v2/IoUscore_metric.py +87 -0
  246. evalscope/benchmarks/ocr_bench/ocr_bench_v2/TEDS_metric.py +963 -0
  247. evalscope/benchmarks/ocr_bench/ocr_bench_v2/__init__.py +0 -0
  248. evalscope/benchmarks/ocr_bench/ocr_bench_v2/ocr_bench_v2_adapter.py +161 -0
  249. evalscope/benchmarks/ocr_bench/ocr_bench_v2/page_ocr_metric.py +50 -0
  250. evalscope/benchmarks/ocr_bench/ocr_bench_v2/parallel.py +46 -0
  251. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/__init__.py +0 -0
  252. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/readme.txt +26 -0
  253. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/rrc_evaluation_funcs_1_1.py +537 -0
  254. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/script.py +481 -0
  255. evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_metric.py +179 -0
  256. evalscope/benchmarks/ocr_bench/ocr_bench_v2/utils.py +433 -0
  257. evalscope/benchmarks/ocr_bench/ocr_bench_v2/vqa_metric.py +254 -0
  258. evalscope/benchmarks/olympiad_bench/__init__.py +0 -0
  259. evalscope/benchmarks/olympiad_bench/olympiad_bench_adapter.py +163 -0
  260. evalscope/benchmarks/olympiad_bench/utils.py +565 -0
  261. evalscope/benchmarks/omni_bench/__init__.py +0 -0
  262. evalscope/benchmarks/omni_bench/omni_bench_adapter.py +86 -0
  263. evalscope/benchmarks/omnidoc_bench/__init__.py +0 -0
  264. evalscope/benchmarks/omnidoc_bench/end2end_eval.py +349 -0
  265. evalscope/benchmarks/omnidoc_bench/metrics.py +547 -0
  266. evalscope/benchmarks/omnidoc_bench/omnidoc_bench_adapter.py +135 -0
  267. evalscope/benchmarks/omnidoc_bench/utils.py +1937 -0
  268. evalscope/benchmarks/piqa/__init__.py +0 -0
  269. evalscope/benchmarks/piqa/piqa_adapter.py +32 -0
  270. evalscope/benchmarks/poly_math/__init__.py +0 -0
  271. evalscope/benchmarks/poly_math/poly_math_adapter.py +132 -0
  272. evalscope/benchmarks/poly_math/utils/instruction.py +105 -0
  273. evalscope/benchmarks/pope/__init__.py +0 -0
  274. evalscope/benchmarks/pope/pope_adapter.py +112 -0
  275. evalscope/benchmarks/process_bench/__init__.py +0 -0
  276. evalscope/benchmarks/process_bench/process_bench_adapter.py +171 -0
  277. evalscope/benchmarks/pumed_qa/__init__.py +0 -0
  278. evalscope/benchmarks/pumed_qa/pubmed_qa_adapter.py +175 -0
  279. evalscope/benchmarks/qasc/__init__.py +0 -0
  280. evalscope/benchmarks/qasc/qasc_adapter.py +35 -0
  281. evalscope/benchmarks/race/race_adapter.py +33 -120
  282. evalscope/benchmarks/real_world_qa/__init__.py +0 -0
  283. evalscope/benchmarks/real_world_qa/real_world_qa_adapter.py +64 -0
  284. evalscope/benchmarks/sciq/__init__.py +0 -0
  285. evalscope/benchmarks/sciq/sciq_adapter.py +36 -0
  286. evalscope/benchmarks/seed_bench_2_plus/__init__.py +0 -0
  287. evalscope/benchmarks/seed_bench_2_plus/seed_bench_2_plus_adapter.py +72 -0
  288. evalscope/benchmarks/simple_qa/__init__.py +0 -0
  289. evalscope/benchmarks/simple_qa/simple_qa_adapter.py +169 -0
  290. evalscope/benchmarks/simple_vqa/__init__.py +0 -0
  291. evalscope/benchmarks/simple_vqa/simple_vqa_adapter.py +169 -0
  292. evalscope/benchmarks/siqa/__init__.py +0 -0
  293. evalscope/benchmarks/siqa/siqa_adapter.py +39 -0
  294. evalscope/benchmarks/super_gpqa/__init__.py +0 -0
  295. evalscope/benchmarks/super_gpqa/prompt.py +88 -0
  296. evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +165 -0
  297. evalscope/benchmarks/super_gpqa/utils.py +86 -0
  298. evalscope/benchmarks/tau_bench/__init__.py +0 -0
  299. evalscope/benchmarks/tau_bench/tau2_bench/__init__.py +0 -0
  300. evalscope/benchmarks/tau_bench/tau2_bench/generation.py +158 -0
  301. evalscope/benchmarks/tau_bench/tau2_bench/tau2_bench_adapter.py +146 -0
  302. evalscope/benchmarks/tau_bench/tau_bench/__init__.py +0 -0
  303. evalscope/benchmarks/tau_bench/tau_bench/generation.py +147 -0
  304. evalscope/benchmarks/tau_bench/tau_bench/tau_bench_adapter.py +168 -0
  305. evalscope/benchmarks/text2image/__init__.py +0 -0
  306. evalscope/benchmarks/text2image/evalmuse_adapter.py +78 -0
  307. evalscope/benchmarks/text2image/genai_bench_adapter.py +53 -0
  308. evalscope/benchmarks/text2image/general_t2i_adapter.py +42 -0
  309. evalscope/benchmarks/text2image/hpdv2_adapter.py +52 -0
  310. evalscope/benchmarks/text2image/tifa_adapter.py +27 -0
  311. evalscope/benchmarks/tool_bench/__init__.py +0 -0
  312. evalscope/benchmarks/tool_bench/tool_bench_adapter.py +102 -0
  313. evalscope/benchmarks/tool_bench/utils.py +203 -0
  314. evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +56 -118
  315. evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +70 -270
  316. evalscope/benchmarks/visu_logic/__init__.py +0 -0
  317. evalscope/benchmarks/visu_logic/visu_logic_adapter.py +75 -0
  318. evalscope/benchmarks/winogrande/__init__.py +0 -0
  319. evalscope/benchmarks/winogrande/winogrande_adapter.py +34 -0
  320. evalscope/benchmarks/wmt/__init__.py +0 -0
  321. evalscope/benchmarks/wmt/wmt24_adapter.py +294 -0
  322. evalscope/benchmarks/zerobench/__init__.py +0 -0
  323. evalscope/benchmarks/zerobench/zerobench_adapter.py +64 -0
  324. evalscope/cli/cli.py +2 -0
  325. evalscope/cli/start_app.py +12 -2
  326. evalscope/cli/start_eval.py +4 -3
  327. evalscope/cli/start_perf.py +10 -2
  328. evalscope/cli/start_server.py +6 -3
  329. evalscope/collections/__init__.py +27 -3
  330. evalscope/collections/sampler.py +12 -11
  331. evalscope/collections/schema.py +13 -12
  332. evalscope/config.py +218 -147
  333. evalscope/constants.py +78 -82
  334. evalscope/evaluator/__init__.py +1 -1
  335. evalscope/evaluator/evaluator.py +334 -318
  336. evalscope/filters/__init__.py +2 -0
  337. evalscope/filters/extraction.py +126 -0
  338. evalscope/filters/selection.py +57 -0
  339. evalscope/metrics/__init__.py +59 -3
  340. evalscope/metrics/bert_score/__init__.py +0 -0
  341. evalscope/metrics/bert_score/scorer.py +338 -0
  342. evalscope/metrics/bert_score/utils.py +697 -0
  343. evalscope/metrics/bundled_rouge_score/rouge_scorer.py +20 -15
  344. evalscope/metrics/llm_judge.py +211 -0
  345. evalscope/metrics/math_parser.py +545 -0
  346. evalscope/metrics/metric.py +611 -0
  347. evalscope/metrics/metrics.py +112 -23
  348. evalscope/metrics/rouge_metric.py +11 -13
  349. evalscope/metrics/t2v_metrics/__init__.py +0 -0
  350. evalscope/metrics/t2v_metrics/clipscore.py +14 -0
  351. evalscope/metrics/t2v_metrics/constants.py +12 -0
  352. evalscope/metrics/t2v_metrics/itmscore.py +14 -0
  353. evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
  354. evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
  355. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
  356. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
  357. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +134 -0
  358. evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +282 -0
  359. evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +115 -0
  360. evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +87 -0
  361. evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +86 -0
  362. evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
  363. evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
  364. evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +85 -0
  365. evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +99 -0
  366. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +176 -0
  367. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
  368. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +82 -0
  369. evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +74 -0
  370. evalscope/metrics/t2v_metrics/models/model.py +45 -0
  371. evalscope/metrics/t2v_metrics/models/utils.py +25 -0
  372. evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
  373. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
  374. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
  375. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +306 -0
  376. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
  377. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +84 -0
  378. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
  379. evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +223 -0
  380. evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +153 -0
  381. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
  382. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
  383. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
  384. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +24 -0
  385. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +190 -0
  386. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +100 -0
  387. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +313 -0
  388. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
  389. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
  390. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +192 -0
  391. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +320 -0
  392. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
  393. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
  394. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
  395. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
  396. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
  397. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
  398. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
  399. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
  400. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
  401. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
  402. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
  403. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
  404. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
  405. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
  406. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
  407. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
  408. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
  409. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
  410. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
  411. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
  412. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
  413. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
  414. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
  415. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +212 -0
  416. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
  417. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1111 -0
  418. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
  419. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
  420. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
  421. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +457 -0
  422. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +370 -0
  423. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +765 -0
  424. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +274 -0
  425. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +896 -0
  426. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1876 -0
  427. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +83 -0
  428. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +58 -0
  429. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
  430. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
  431. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
  432. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +187 -0
  433. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +179 -0
  434. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +115 -0
  435. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
  436. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +348 -0
  437. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +870 -0
  438. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +273 -0
  439. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +514 -0
  440. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1291 -0
  441. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +476 -0
  442. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +35 -0
  443. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
  444. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
  445. evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +393 -0
  446. evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +129 -0
  447. evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +18 -0
  448. evalscope/metrics/t2v_metrics/score.py +78 -0
  449. evalscope/metrics/t2v_metrics/vqascore.py +14 -0
  450. evalscope/models/__init__.py +23 -13
  451. evalscope/models/image_edit_model.py +125 -0
  452. evalscope/models/mockllm.py +65 -0
  453. evalscope/models/model_apis.py +69 -0
  454. evalscope/models/modelscope.py +455 -0
  455. evalscope/models/openai_compatible.py +144 -0
  456. evalscope/models/text2image_model.py +124 -0
  457. evalscope/models/utils/openai.py +708 -0
  458. evalscope/perf/__init__.py +0 -1
  459. evalscope/perf/arguments.py +103 -69
  460. evalscope/perf/benchmark.py +114 -163
  461. evalscope/perf/http_client.py +59 -89
  462. evalscope/perf/main.py +91 -18
  463. evalscope/perf/plugin/__init__.py +3 -2
  464. evalscope/perf/plugin/api/__init__.py +4 -3
  465. evalscope/perf/plugin/api/base.py +27 -7
  466. evalscope/perf/plugin/api/custom_api.py +170 -57
  467. evalscope/perf/plugin/api/dashscope_api.py +4 -10
  468. evalscope/perf/plugin/api/default_api.py +214 -0
  469. evalscope/perf/plugin/api/openai_api.py +120 -41
  470. evalscope/perf/plugin/datasets/__init__.py +10 -6
  471. evalscope/perf/plugin/datasets/base.py +43 -1
  472. evalscope/perf/plugin/datasets/custom.py +22 -3
  473. evalscope/perf/plugin/datasets/flickr8k.py +5 -27
  474. evalscope/perf/plugin/datasets/kontext_bench.py +28 -0
  475. evalscope/perf/plugin/datasets/line_by_line.py +7 -3
  476. evalscope/perf/plugin/datasets/longalpaca.py +7 -3
  477. evalscope/perf/plugin/datasets/openqa.py +13 -14
  478. evalscope/perf/plugin/datasets/random_dataset.py +67 -0
  479. evalscope/perf/plugin/datasets/random_vl_dataset.py +80 -0
  480. evalscope/perf/plugin/datasets/speed_benchmark.py +11 -0
  481. evalscope/perf/plugin/registry.py +36 -16
  482. evalscope/perf/utils/analysis_result.py +24 -23
  483. evalscope/perf/utils/benchmark_util.py +95 -55
  484. evalscope/perf/utils/db_util.py +115 -78
  485. evalscope/perf/utils/local_server.py +12 -47
  486. evalscope/perf/utils/log_utils.py +63 -0
  487. evalscope/perf/utils/rich_display.py +192 -0
  488. evalscope/report/__init__.py +46 -3
  489. evalscope/report/combinator.py +143 -32
  490. evalscope/report/generator.py +74 -34
  491. evalscope/report/report.py +238 -0
  492. evalscope/run.py +71 -46
  493. evalscope/summarizer.py +5 -5
  494. evalscope/third_party/longbench_write/infer.py +1 -1
  495. evalscope/third_party/thinkbench/__init__.py +3 -0
  496. evalscope/third_party/thinkbench/eval.py +441 -0
  497. evalscope/third_party/thinkbench/infer.py +130 -0
  498. evalscope/third_party/thinkbench/resources/critique_template.txt +17 -0
  499. evalscope/third_party/thinkbench/resources/reformat_template.txt +31 -0
  500. evalscope/third_party/thinkbench/tools/__init__.py +0 -0
  501. evalscope/third_party/thinkbench/tools/llm.py +48 -0
  502. evalscope/third_party/thinkbench/tools/utils.py +13 -0
  503. evalscope/third_party/toolbench_static/llm/swift_infer.py +46 -20
  504. evalscope/third_party/toolbench_static/toolbench_static.py +2 -1
  505. evalscope/utils/__init__.py +82 -2
  506. evalscope/utils/argument_utils.py +64 -0
  507. evalscope/utils/chat_service.py +8 -6
  508. evalscope/utils/deprecation_utils.py +53 -0
  509. evalscope/utils/function_utils.py +266 -0
  510. evalscope/utils/import_utils.py +154 -0
  511. evalscope/utils/io_utils.py +336 -8
  512. evalscope/utils/json_schema.py +231 -0
  513. evalscope/utils/logger.py +121 -31
  514. evalscope/utils/model_utils.py +57 -1
  515. evalscope/utils/multi_choices.py +303 -0
  516. evalscope/utils/ner.py +377 -0
  517. evalscope/utils/url_utils.py +65 -0
  518. evalscope/version.py +2 -2
  519. evalscope-1.2.0.dist-info/METADATA +553 -0
  520. evalscope-1.2.0.dist-info/RECORD +628 -0
  521. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/WHEEL +1 -1
  522. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/top_level.txt +0 -1
  523. evalscope/backend/vlm_eval_kit/custom_dataset.py +0 -46
  524. evalscope/benchmarks/arc/ai2_arc.py +0 -151
  525. evalscope/benchmarks/benchmark.py +0 -76
  526. evalscope/benchmarks/ceval/ceval_exam.py +0 -146
  527. evalscope/benchmarks/ceval/samples.jsonl +0 -1
  528. evalscope/benchmarks/cmmlu/cmmlu.py +0 -161
  529. evalscope/benchmarks/cmmlu/samples.jsonl +0 -5
  530. evalscope/benchmarks/competition_math/competition_math.py +0 -79
  531. evalscope/benchmarks/data_adapter.py +0 -291
  532. evalscope/benchmarks/gsm8k/gsm8k.py +0 -121
  533. evalscope/benchmarks/hellaswag/hellaswag.py +0 -112
  534. evalscope/benchmarks/humaneval/humaneval.py +0 -79
  535. evalscope/benchmarks/mmlu/mmlu.py +0 -160
  536. evalscope/benchmarks/mmlu/samples.jsonl +0 -5
  537. evalscope/benchmarks/race/race.py +0 -104
  538. evalscope/benchmarks/race/samples.jsonl +0 -5
  539. evalscope/benchmarks/trivia_qa/trivia_qa.py +0 -89
  540. evalscope/benchmarks/truthful_qa/truthful_qa.py +0 -163
  541. evalscope/collections/evaluator.py +0 -198
  542. evalscope/evaluator/rating_eval.py +0 -157
  543. evalscope/evaluator/reviewer/__init__.py +0 -1
  544. evalscope/evaluator/reviewer/auto_reviewer.py +0 -391
  545. evalscope/metrics/code_metric.py +0 -98
  546. evalscope/metrics/named_metrics.py +0 -17
  547. evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
  548. evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
  549. evalscope/models/base_adapter.py +0 -52
  550. evalscope/models/chat_adapter.py +0 -138
  551. evalscope/models/choice_adapter.py +0 -211
  552. evalscope/models/custom/__init__.py +0 -3
  553. evalscope/models/custom/custom_model.py +0 -53
  554. evalscope/models/custom/dummy_model.py +0 -63
  555. evalscope/models/custom_adapter.py +0 -67
  556. evalscope/models/local_model.py +0 -74
  557. evalscope/models/model.py +0 -229
  558. evalscope/models/server_adapter.py +0 -111
  559. evalscope/registry/__init__.py +0 -1
  560. evalscope/registry/config/cfg_arena.yaml +0 -77
  561. evalscope/registry/config/cfg_arena_zhihu.yaml +0 -63
  562. evalscope/registry/config/cfg_pairwise_baseline.yaml +0 -83
  563. evalscope/registry/config/cfg_single.yaml +0 -78
  564. evalscope/registry/data/prompt_template/lmsys_v2.jsonl +0 -8
  565. evalscope/registry/data/prompt_template/prompt_templates.jsonl +0 -8
  566. evalscope/registry/data/qa_browser/battle.jsonl +0 -634
  567. evalscope/registry/data/qa_browser/category_mapping.yaml +0 -10
  568. evalscope/registry/data/question.jsonl +0 -80
  569. evalscope/registry/tasks/arc.yaml +0 -28
  570. evalscope/registry/tasks/bbh.yaml +0 -26
  571. evalscope/registry/tasks/bbh_mini.yaml +0 -26
  572. evalscope/registry/tasks/ceval.yaml +0 -27
  573. evalscope/registry/tasks/ceval_mini.yaml +0 -26
  574. evalscope/registry/tasks/cmmlu.yaml +0 -27
  575. evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +0 -28
  576. evalscope/registry/tasks/general_qa.yaml +0 -27
  577. evalscope/registry/tasks/gsm8k.yaml +0 -29
  578. evalscope/registry/tasks/mmlu.yaml +0 -29
  579. evalscope/registry/tasks/mmlu_mini.yaml +0 -27
  580. evalscope/report/app.py +0 -506
  581. evalscope/report/utils.py +0 -133
  582. evalscope/run_arena.py +0 -202
  583. evalscope/utils/arena_utils.py +0 -217
  584. evalscope/utils/completion_parsers.py +0 -82
  585. evalscope/utils/utils.py +0 -301
  586. evalscope-0.10.0.dist-info/METADATA +0 -565
  587. evalscope-0.10.0.dist-info/RECORD +0 -286
  588. tests/__init__.py +0 -1
  589. tests/cli/__init__.py +0 -1
  590. tests/cli/test_collection.py +0 -57
  591. tests/cli/test_run.py +0 -165
  592. tests/perf/__init__.py +0 -1
  593. tests/perf/test_perf.py +0 -101
  594. tests/rag/test_clip_benchmark.py +0 -85
  595. tests/rag/test_mteb.py +0 -138
  596. tests/rag/test_ragas.py +0 -120
  597. tests/swift/__init__.py +0 -1
  598. tests/swift/test_run_swift_eval.py +0 -145
  599. tests/swift/test_run_swift_vlm_eval.py +0 -127
  600. tests/swift/test_run_swift_vlm_jugde_eval.py +0 -156
  601. tests/test_run_all.py +0 -12
  602. tests/vlm/__init__.py +0 -1
  603. tests/vlm/test_vlmeval.py +0 -60
  604. {tests/rag → evalscope/api}/__init__.py +0 -0
  605. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/entry_points.txt +0 -0
  606. {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info/licenses}/LICENSE +0 -0
@@ -0,0 +1,896 @@
1
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """ PyTorch LLaMA model."""
20
+ import math
21
+ import torch
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
25
+ from transformers.activations import ACT2FN
26
+ from transformers.modeling_outputs import (
27
+ BaseModelOutputWithPast,
28
+ CausalLMOutputWithPast,
29
+ SequenceClassifierOutputWithPast,
30
+ )
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.models.llama.configuration_llama import LlamaConfig
33
+ from transformers.utils import (
34
+ add_start_docstrings,
35
+ add_start_docstrings_to_model_forward,
36
+ logging,
37
+ replace_return_docstrings,
38
+ )
39
+ from typing import List, Optional, Tuple, Union
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CONFIG_FOR_DOC = 'LlamaConfig'
44
+
45
+
46
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
47
+ def _make_causal_mask(
48
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
49
+ ):
50
+ """
51
+ Make causal mask used for bi-directional self-attention.
52
+ """
53
+ bsz, tgt_len = input_ids_shape
54
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
55
+ mask_cond = torch.arange(mask.size(-1), device=device)
56
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
57
+ mask = mask.to(dtype)
58
+
59
+ if past_key_values_length > 0:
60
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
61
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
62
+
63
+
64
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
65
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
66
+ """
67
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
68
+ """
69
+ bsz, src_len = mask.size()
70
+ tgt_len = tgt_len if tgt_len is not None else src_len
71
+
72
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
73
+
74
+ inverted_mask = 1.0 - expanded_mask
75
+
76
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
77
+
78
+
79
+ class LlamaRMSNorm(nn.Module):
80
+
81
+ def __init__(self, hidden_size, eps=1e-6):
82
+ """
83
+ LlamaRMSNorm is equivalent to T5LayerNorm
84
+ """
85
+ super().__init__()
86
+ self.weight = nn.Parameter(torch.ones(hidden_size))
87
+ self.variance_epsilon = eps
88
+
89
+ def forward(self, hidden_states):
90
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
91
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
92
+
93
+ # convert into half-precision if necessary
94
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
95
+ hidden_states = hidden_states.to(self.weight.dtype)
96
+
97
+ return self.weight * hidden_states
98
+
99
+
100
+ class LlamaRotaryEmbedding(torch.nn.Module):
101
+
102
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
103
+ super().__init__()
104
+ inv_freq = 1.0 / (base**(torch.arange(0, dim, 2).float().to(device) / dim))
105
+ self.register_buffer('inv_freq', inv_freq)
106
+
107
+ # Build here to make `torch.jit.trace` work.
108
+ self.max_seq_len_cached = max_position_embeddings
109
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
110
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
111
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
112
+ emb = torch.cat((freqs, freqs), dim=-1)
113
+ self.register_buffer('cos_cached', emb.cos()[None, None, :, :], persistent=False)
114
+ self.register_buffer('sin_cached', emb.sin()[None, None, :, :], persistent=False)
115
+
116
+ def forward(self, x, seq_len=None):
117
+ # x: [bs, num_attention_heads, seq_len, head_size]
118
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
119
+ if seq_len > self.max_seq_len_cached:
120
+ self.max_seq_len_cached = seq_len
121
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
122
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
123
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
124
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
125
+ self.register_buffer('cos_cached', emb.cos()[None, None, :, :], persistent=False)
126
+ self.register_buffer('sin_cached', emb.sin()[None, None, :, :], persistent=False)
127
+ return (
128
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
129
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
130
+ )
131
+
132
+
133
+ def rotate_half(x):
134
+ """Rotates half the hidden dims of the input."""
135
+ x1 = x[..., :x.shape[-1] // 2]
136
+ x2 = x[..., x.shape[-1] // 2:]
137
+ return torch.cat((-x2, x1), dim=-1)
138
+
139
+
140
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
141
+ gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
142
+ gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
143
+ cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
144
+ sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
145
+ q_embed = (q * cos) + (rotate_half(q) * sin)
146
+ k_embed = (k * cos) + (rotate_half(k) * sin)
147
+ return q_embed, k_embed
148
+
149
+
150
+ class LlamaMLP(nn.Module):
151
+
152
+ def __init__(
153
+ self,
154
+ hidden_size: int,
155
+ intermediate_size: int,
156
+ hidden_act: str,
157
+ ):
158
+ super().__init__()
159
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
160
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
161
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
162
+ self.act_fn = ACT2FN[hidden_act]
163
+
164
+ def forward(self, x):
165
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
166
+
167
+
168
+ class LlamaAttention(nn.Module):
169
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
170
+
171
+ def __init__(self, config: LlamaConfig):
172
+ super().__init__()
173
+ self.config = config
174
+ self.hidden_size = config.hidden_size
175
+ self.num_heads = config.num_attention_heads
176
+ self.head_dim = self.hidden_size // self.num_heads
177
+ self.max_position_embeddings = config.max_position_embeddings
178
+
179
+ if (self.head_dim * self.num_heads) != self.hidden_size:
180
+ raise ValueError(
181
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
182
+ f' and `num_heads`: {self.num_heads}).'
183
+ )
184
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
185
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
186
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
187
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
188
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
189
+
190
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
191
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
192
+
193
+ def forward(
194
+ self,
195
+ hidden_states: torch.Tensor,
196
+ attention_mask: Optional[torch.Tensor] = None,
197
+ position_ids: Optional[torch.LongTensor] = None,
198
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
199
+ output_attentions: bool = False,
200
+ use_cache: bool = False,
201
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
202
+ bsz, q_len, _ = hidden_states.size()
203
+
204
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
205
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
206
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
207
+
208
+ kv_seq_len = key_states.shape[-2]
209
+ if past_key_value is not None:
210
+ kv_seq_len += past_key_value[0].shape[-2]
211
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
212
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
213
+ # [bsz, nh, t, hd]
214
+
215
+ if past_key_value is not None:
216
+ # reuse k, v, self_attention
217
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
218
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
219
+
220
+ past_key_value = (key_states, value_states) if use_cache else None
221
+
222
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
223
+
224
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
225
+ raise ValueError(
226
+ f'Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is'
227
+ f' {attn_weights.size()}'
228
+ )
229
+
230
+ if attention_mask is not None:
231
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
232
+ raise ValueError(
233
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
234
+ )
235
+ attn_weights = attn_weights + attention_mask
236
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
237
+
238
+ # upcast attention to fp32
239
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
240
+ attn_output = torch.matmul(attn_weights, value_states)
241
+
242
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
243
+ raise ValueError(
244
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
245
+ f' {attn_output.size()}'
246
+ )
247
+
248
+ attn_output = attn_output.transpose(1, 2)
249
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
250
+
251
+ attn_output = self.o_proj(attn_output)
252
+
253
+ if not output_attentions:
254
+ attn_weights = None
255
+
256
+ return attn_output, attn_weights, past_key_value
257
+
258
+
259
+ class LlamaDecoderLayer(nn.Module):
260
+
261
+ def __init__(self, config: LlamaConfig):
262
+ super().__init__()
263
+ self.hidden_size = config.hidden_size
264
+ self.self_attn = LlamaAttention(config=config)
265
+ self.mlp = LlamaMLP(
266
+ hidden_size=self.hidden_size,
267
+ intermediate_size=config.intermediate_size,
268
+ hidden_act=config.hidden_act,
269
+ )
270
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
271
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
272
+
273
+ def forward(
274
+ self,
275
+ hidden_states: torch.Tensor,
276
+ attention_mask: Optional[torch.Tensor] = None,
277
+ position_ids: Optional[torch.LongTensor] = None,
278
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
279
+ output_attentions: Optional[bool] = False,
280
+ use_cache: Optional[bool] = False,
281
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
282
+ """
283
+ Args:
284
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
285
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
286
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
287
+ output_attentions (`bool`, *optional*):
288
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
289
+ returned tensors for more detail.
290
+ use_cache (`bool`, *optional*):
291
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
292
+ (see `past_key_values`).
293
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
294
+ """
295
+
296
+ residual = hidden_states
297
+
298
+ hidden_states = self.input_layernorm(hidden_states)
299
+
300
+ # Self Attention
301
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
302
+ hidden_states=hidden_states,
303
+ attention_mask=attention_mask,
304
+ position_ids=position_ids,
305
+ past_key_value=past_key_value,
306
+ output_attentions=output_attentions,
307
+ use_cache=use_cache,
308
+ )
309
+ hidden_states = residual + hidden_states
310
+
311
+ # Fully Connected
312
+ residual = hidden_states
313
+ hidden_states = self.post_attention_layernorm(hidden_states)
314
+ hidden_states = self.mlp(hidden_states)
315
+ hidden_states = residual + hidden_states
316
+
317
+ outputs = (hidden_states, )
318
+
319
+ if output_attentions:
320
+ outputs += (self_attn_weights, )
321
+
322
+ if use_cache:
323
+ outputs += (present_key_value, )
324
+
325
+ return outputs
326
+
327
+
328
+ LLAMA_START_DOCSTRING = r"""
329
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
330
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
331
+ etc.)
332
+
333
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
334
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
335
+ and behavior.
336
+
337
+ Parameters:
338
+ config ([`LlamaConfig`]):
339
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
340
+ load the weights associated with the model, only the configuration. Check out the
341
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
342
+ """
343
+
344
+
345
+ @add_start_docstrings(
346
+ 'The bare LLaMA Model outputting raw hidden-states without any specific head on top.',
347
+ LLAMA_START_DOCSTRING,
348
+ )
349
+ class LlamaPreTrainedModel(PreTrainedModel):
350
+ config_class = LlamaConfig
351
+ base_model_prefix = 'model'
352
+ supports_gradient_checkpointing = True
353
+ _no_split_modules = ['LlamaDecoderLayer']
354
+ _keys_to_ignore_on_load_unexpected = [r'decoder\.version']
355
+
356
+ def _init_weights(self, module):
357
+ std = self.config.initializer_range
358
+ if isinstance(module, nn.Linear):
359
+ module.weight.data.normal_(mean=0.0, std=std)
360
+ if module.bias is not None:
361
+ module.bias.data.zero_()
362
+ elif isinstance(module, nn.Embedding):
363
+ module.weight.data.normal_(mean=0.0, std=std)
364
+ if module.padding_idx is not None:
365
+ module.weight.data[module.padding_idx].zero_()
366
+
367
+ def _set_gradient_checkpointing(self, module, value=False):
368
+ if isinstance(module, LlamaModel):
369
+ module.gradient_checkpointing = value
370
+
371
+
372
+ LLAMA_INPUTS_DOCSTRING = r"""
373
+ Args:
374
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
375
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
376
+ it.
377
+
378
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
379
+ [`PreTrainedTokenizer.__call__`] for details.
380
+
381
+ [What are input IDs?](../glossary#input-ids)
382
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
383
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
384
+
385
+ - 1 for tokens that are **not masked**,
386
+ - 0 for tokens that are **masked**.
387
+
388
+ [What are attention masks?](../glossary#attention-mask)
389
+
390
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
391
+ [`PreTrainedTokenizer.__call__`] for details.
392
+
393
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
394
+ `past_key_values`).
395
+
396
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
397
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
398
+ information on the default strategy.
399
+
400
+ - 1 indicates the head is **not masked**,
401
+ - 0 indicates the head is **masked**.
402
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
403
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
404
+ config.n_positions - 1]`.
405
+
406
+ [What are position IDs?](../glossary#position-ids)
407
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
408
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
409
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
410
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
411
+
412
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
413
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
414
+
415
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
416
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
417
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
418
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
419
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
420
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
421
+ model's internal embedding lookup matrix.
422
+ use_cache (`bool`, *optional*):
423
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
424
+ `past_key_values`).
425
+ output_attentions (`bool`, *optional*):
426
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
427
+ tensors for more detail.
428
+ output_hidden_states (`bool`, *optional*):
429
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
430
+ more detail.
431
+ return_dict (`bool`, *optional*):
432
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
433
+ """
434
+
435
+
436
+ @add_start_docstrings(
437
+ 'The bare LLaMA Model outputting raw hidden-states without any specific head on top.',
438
+ LLAMA_START_DOCSTRING,
439
+ )
440
+ class LlamaModel(LlamaPreTrainedModel):
441
+ """
442
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
443
+
444
+ Args:
445
+ config: LlamaConfig
446
+ """
447
+
448
+ def __init__(self, config: LlamaConfig):
449
+ super().__init__(config)
450
+ self.padding_idx = config.pad_token_id
451
+ self.vocab_size = config.vocab_size
452
+
453
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
454
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
455
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
456
+
457
+ self.gradient_checkpointing = False
458
+ # Initialize weights and apply final processing
459
+ self.post_init()
460
+
461
+ def get_input_embeddings(self):
462
+ return self.embed_tokens
463
+
464
+ def set_input_embeddings(self, value):
465
+ self.embed_tokens = value
466
+
467
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
468
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
469
+ # create causal mask
470
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
471
+ combined_attention_mask = None
472
+ if input_shape[-1] > 1:
473
+ combined_attention_mask = _make_causal_mask(
474
+ input_shape,
475
+ inputs_embeds.dtype,
476
+ device=inputs_embeds.device,
477
+ past_key_values_length=past_key_values_length,
478
+ )
479
+
480
+ if attention_mask is not None:
481
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
482
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype,
483
+ tgt_len=input_shape[-1]).to(inputs_embeds.device)
484
+ combined_attention_mask = (
485
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
486
+ )
487
+
488
+ return combined_attention_mask
489
+
490
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
491
+ def forward(
492
+ self,
493
+ input_ids: torch.LongTensor = None,
494
+ attention_mask: Optional[torch.Tensor] = None,
495
+ position_ids: Optional[torch.LongTensor] = None,
496
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
497
+ inputs_embeds: Optional[torch.FloatTensor] = None,
498
+ use_cache: Optional[bool] = None,
499
+ output_attentions: Optional[bool] = None,
500
+ output_hidden_states: Optional[bool] = None,
501
+ return_dict: Optional[bool] = None,
502
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
503
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
504
+ output_hidden_states = (
505
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
506
+ )
507
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
508
+
509
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
510
+
511
+ # retrieve input_ids and inputs_embeds
512
+ if input_ids is not None and inputs_embeds is not None:
513
+ raise ValueError('You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time')
514
+ elif input_ids is not None:
515
+ batch_size, seq_length = input_ids.shape
516
+ elif inputs_embeds is not None:
517
+ batch_size, seq_length, _ = inputs_embeds.shape
518
+ else:
519
+ raise ValueError('You have to specify either decoder_input_ids or decoder_inputs_embeds')
520
+
521
+ seq_length_with_past = seq_length
522
+ past_key_values_length = 0
523
+
524
+ if past_key_values is not None:
525
+ past_key_values_length = past_key_values[0][0].shape[2]
526
+ seq_length_with_past = seq_length_with_past + past_key_values_length
527
+
528
+ if position_ids is None:
529
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
530
+ position_ids = torch.arange(
531
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
532
+ )
533
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
534
+ else:
535
+ position_ids = position_ids.view(-1, seq_length).long()
536
+
537
+ if inputs_embeds is None:
538
+ inputs_embeds = self.embed_tokens(input_ids)
539
+ # embed positions
540
+ if attention_mask is None:
541
+ attention_mask = torch.ones((batch_size, seq_length_with_past),
542
+ dtype=torch.bool,
543
+ device=inputs_embeds.device)
544
+ attention_mask = self._prepare_decoder_attention_mask(
545
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
546
+ )
547
+
548
+ hidden_states = inputs_embeds
549
+
550
+ if self.gradient_checkpointing and self.training:
551
+ if use_cache:
552
+ logger.warning_once(
553
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
554
+ )
555
+ use_cache = False
556
+
557
+ # decoder layers
558
+ all_hidden_states = () if output_hidden_states else None
559
+ all_self_attns = () if output_attentions else None
560
+ next_decoder_cache = () if use_cache else None
561
+
562
+ for idx, decoder_layer in enumerate(self.layers):
563
+ if output_hidden_states:
564
+ all_hidden_states += (hidden_states, )
565
+
566
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
567
+
568
+ if self.gradient_checkpointing and self.training:
569
+
570
+ def create_custom_forward(module):
571
+
572
+ def custom_forward(*inputs):
573
+ # None for past_key_value
574
+ return module(*inputs, output_attentions, None)
575
+
576
+ return custom_forward
577
+
578
+ layer_outputs = torch.utils.checkpoint.checkpoint(
579
+ create_custom_forward(decoder_layer),
580
+ hidden_states,
581
+ attention_mask,
582
+ position_ids,
583
+ None,
584
+ )
585
+ else:
586
+ layer_outputs = decoder_layer(
587
+ hidden_states,
588
+ attention_mask=attention_mask,
589
+ position_ids=position_ids,
590
+ past_key_value=past_key_value,
591
+ output_attentions=output_attentions,
592
+ use_cache=use_cache,
593
+ )
594
+
595
+ hidden_states = layer_outputs[0]
596
+
597
+ if use_cache:
598
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1], )
599
+
600
+ if output_attentions:
601
+ all_self_attns += (layer_outputs[1], )
602
+
603
+ hidden_states = self.norm(hidden_states)
604
+
605
+ # add hidden states from the last decoder layer
606
+ if output_hidden_states:
607
+ all_hidden_states += (hidden_states, )
608
+
609
+ next_cache = next_decoder_cache if use_cache else None
610
+ if not return_dict:
611
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
612
+ return BaseModelOutputWithPast(
613
+ last_hidden_state=hidden_states,
614
+ past_key_values=next_cache,
615
+ hidden_states=all_hidden_states,
616
+ attentions=all_self_attns,
617
+ )
618
+
619
+
620
+ class LlamaForCausalLM(LlamaPreTrainedModel):
621
+
622
+ def __init__(self, config):
623
+ super().__init__(config)
624
+ self.model = LlamaModel(config)
625
+
626
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
627
+
628
+ # Initialize weights and apply final processing
629
+ self.post_init()
630
+
631
+ def get_input_embeddings(self):
632
+ return self.model.embed_tokens
633
+
634
+ def set_input_embeddings(self, value):
635
+ self.model.embed_tokens = value
636
+
637
+ def get_output_embeddings(self):
638
+ return self.lm_head
639
+
640
+ def set_output_embeddings(self, new_embeddings):
641
+ self.lm_head = new_embeddings
642
+
643
+ def set_decoder(self, decoder):
644
+ self.model = decoder
645
+
646
+ def get_decoder(self):
647
+ return self.model
648
+
649
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
650
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
651
+ def forward(
652
+ self,
653
+ input_ids: torch.LongTensor = None,
654
+ attention_mask: Optional[torch.Tensor] = None,
655
+ position_ids: Optional[torch.LongTensor] = None,
656
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
657
+ inputs_embeds: Optional[torch.FloatTensor] = None,
658
+ labels: Optional[torch.LongTensor] = None,
659
+ use_cache: Optional[bool] = None,
660
+ output_attentions: Optional[bool] = None,
661
+ output_hidden_states: Optional[bool] = None,
662
+ return_dict: Optional[bool] = None,
663
+ reduction: Optional[str] = 'mean',
664
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
665
+ r"""
666
+ Args:
667
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
668
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
669
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
670
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
671
+
672
+ Returns:
673
+
674
+ Example:
675
+
676
+ ```python
677
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
678
+
679
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
680
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
681
+
682
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
683
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
684
+
685
+ >>> # Generate
686
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
687
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
688
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
689
+ ```"""
690
+
691
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
692
+ output_hidden_states = (
693
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
694
+ )
695
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
696
+
697
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
698
+ outputs = self.model(
699
+ input_ids=input_ids,
700
+ attention_mask=attention_mask,
701
+ position_ids=position_ids,
702
+ past_key_values=past_key_values,
703
+ inputs_embeds=inputs_embeds,
704
+ use_cache=use_cache,
705
+ output_attentions=output_attentions,
706
+ output_hidden_states=output_hidden_states,
707
+ return_dict=return_dict,
708
+ )
709
+
710
+ hidden_states = outputs[0]
711
+ logits = self.lm_head(hidden_states)
712
+
713
+ loss = None
714
+ if labels is not None:
715
+ # Shift so that tokens < n predict n
716
+ shift_logits = logits[..., :-1, :].contiguous()
717
+ shift_labels = labels[..., 1:].contiguous()
718
+ # Flatten the tokens
719
+ loss_fct = CrossEntropyLoss(reduction=reduction)
720
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
721
+ shift_labels = shift_labels.view(-1)
722
+ # Enable model parallelism
723
+ shift_labels = shift_labels.to(shift_logits.device)
724
+ loss = loss_fct(shift_logits, shift_labels)
725
+ if reduction == 'none':
726
+ # loss = loss.view(logits.size(0), -1).sum(1)
727
+ loss = loss.view(logits.size(0), -1).mean(1)
728
+
729
+ if not return_dict:
730
+ output = (logits, ) + outputs[1:]
731
+ return (loss, ) + output if loss is not None else output
732
+
733
+ return CausalLMOutputWithPast(
734
+ loss=loss,
735
+ logits=logits,
736
+ past_key_values=outputs.past_key_values,
737
+ hidden_states=outputs.hidden_states,
738
+ attentions=outputs.attentions,
739
+ )
740
+
741
+ def prepare_inputs_for_generation(
742
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
743
+ ):
744
+ if past_key_values:
745
+ input_ids = input_ids[:, -1:]
746
+
747
+ position_ids = kwargs.get('position_ids', None)
748
+ if attention_mask is not None and position_ids is None:
749
+ # create position_ids on the fly for batch generation
750
+ position_ids = attention_mask.long().cumsum(-1) - 1
751
+ position_ids.masked_fill_(attention_mask == 0, 1)
752
+ if past_key_values:
753
+ position_ids = position_ids[:, -1].unsqueeze(-1)
754
+
755
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
756
+ if inputs_embeds is not None and past_key_values is None:
757
+ model_inputs = {'inputs_embeds': inputs_embeds}
758
+ else:
759
+ model_inputs = {'input_ids': input_ids}
760
+
761
+ model_inputs.update({
762
+ 'position_ids': position_ids,
763
+ 'past_key_values': past_key_values,
764
+ 'use_cache': kwargs.get('use_cache'),
765
+ 'attention_mask': attention_mask,
766
+ })
767
+ return model_inputs
768
+
769
+ @staticmethod
770
+ def _reorder_cache(past_key_values, beam_idx):
771
+ reordered_past = ()
772
+ for layer_past in past_key_values:
773
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past), )
774
+ return reordered_past
775
+
776
+
777
+ @add_start_docstrings(
778
+ """
779
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
780
+
781
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
782
+ (e.g. GPT-2) do.
783
+
784
+ Since it does classification on the last token, it requires to know the position of the last token. If a
785
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
786
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
787
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
788
+ each row of the batch).
789
+ """,
790
+ LLAMA_START_DOCSTRING,
791
+ )
792
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
793
+ _keys_to_ignore_on_load_missing = [r'lm_head.weight']
794
+
795
+ def __init__(self, config):
796
+ super().__init__(config)
797
+ self.num_labels = config.num_labels
798
+ self.model = LlamaModel(config)
799
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
800
+
801
+ # Initialize weights and apply final processing
802
+ self.post_init()
803
+
804
+ def get_input_embeddings(self):
805
+ return self.model.embed_tokens
806
+
807
+ def set_input_embeddings(self, value):
808
+ self.model.embed_tokens = value
809
+
810
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
811
+ def forward(
812
+ self,
813
+ input_ids: torch.LongTensor = None,
814
+ attention_mask: Optional[torch.Tensor] = None,
815
+ position_ids: Optional[torch.LongTensor] = None,
816
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
817
+ inputs_embeds: Optional[torch.FloatTensor] = None,
818
+ labels: Optional[torch.LongTensor] = None,
819
+ use_cache: Optional[bool] = None,
820
+ output_attentions: Optional[bool] = None,
821
+ output_hidden_states: Optional[bool] = None,
822
+ return_dict: Optional[bool] = None,
823
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
824
+ r"""
825
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
826
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
827
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
828
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
829
+ """
830
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
831
+
832
+ transformer_outputs = self.model(
833
+ input_ids,
834
+ attention_mask=attention_mask,
835
+ position_ids=position_ids,
836
+ past_key_values=past_key_values,
837
+ inputs_embeds=inputs_embeds,
838
+ use_cache=use_cache,
839
+ output_attentions=output_attentions,
840
+ output_hidden_states=output_hidden_states,
841
+ return_dict=return_dict,
842
+ )
843
+ hidden_states = transformer_outputs[0]
844
+ logits = self.score(hidden_states)
845
+
846
+ if input_ids is not None:
847
+ batch_size = input_ids.shape[0]
848
+ else:
849
+ batch_size = inputs_embeds.shape[0]
850
+
851
+ if self.config.pad_token_id is None and batch_size != 1:
852
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
853
+ if self.config.pad_token_id is None:
854
+ sequence_lengths = -1
855
+ else:
856
+ if input_ids is not None:
857
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
858
+ else:
859
+ sequence_lengths = -1
860
+
861
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
862
+
863
+ loss = None
864
+ if labels is not None:
865
+ labels = labels.to(logits.device)
866
+ if self.config.problem_type is None:
867
+ if self.num_labels == 1:
868
+ self.config.problem_type = 'regression'
869
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
870
+ self.config.problem_type = 'single_label_classification'
871
+ else:
872
+ self.config.problem_type = 'multi_label_classification'
873
+
874
+ if self.config.problem_type == 'regression':
875
+ loss_fct = MSELoss()
876
+ if self.num_labels == 1:
877
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
878
+ else:
879
+ loss = loss_fct(pooled_logits, labels)
880
+ elif self.config.problem_type == 'single_label_classification':
881
+ loss_fct = CrossEntropyLoss()
882
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
883
+ elif self.config.problem_type == 'multi_label_classification':
884
+ loss_fct = BCEWithLogitsLoss()
885
+ loss = loss_fct(pooled_logits, labels)
886
+ if not return_dict:
887
+ output = (pooled_logits, ) + transformer_outputs[1:]
888
+ return ((loss, ) + output) if loss is not None else output
889
+
890
+ return SequenceClassifierOutputWithPast(
891
+ loss=loss,
892
+ logits=pooled_logits,
893
+ past_key_values=transformer_outputs.past_key_values,
894
+ hidden_states=transformer_outputs.hidden_states,
895
+ attentions=transformer_outputs.attentions,
896
+ )