evalscope 0.10.0__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- evalscope/__init__.py +4 -1
- evalscope/api/benchmark/__init__.py +11 -0
- evalscope/api/benchmark/adapters/__init__.py +7 -0
- evalscope/api/benchmark/adapters/agent_adapter.py +8 -0
- evalscope/api/benchmark/adapters/default_data_adapter.py +754 -0
- evalscope/api/benchmark/adapters/image_edit_adapter.py +82 -0
- evalscope/api/benchmark/adapters/multi_choice_adapter.py +86 -0
- evalscope/api/benchmark/adapters/ner_adapter.py +212 -0
- evalscope/api/benchmark/adapters/text2image_adapter.py +157 -0
- evalscope/api/benchmark/adapters/vision_language_adapter.py +8 -0
- evalscope/api/benchmark/benchmark.py +404 -0
- evalscope/api/benchmark/meta.py +124 -0
- evalscope/api/dataset/__init__.py +2 -0
- evalscope/api/dataset/dataset.py +370 -0
- evalscope/api/dataset/loader.py +266 -0
- evalscope/api/dataset/utils.py +143 -0
- evalscope/api/evaluator/__init__.py +3 -0
- evalscope/api/evaluator/cache.py +382 -0
- evalscope/api/evaluator/evaluator.py +61 -0
- evalscope/api/evaluator/state.py +280 -0
- evalscope/api/filter/__init__.py +1 -0
- evalscope/api/filter/filter.py +72 -0
- evalscope/api/messages/__init__.py +12 -0
- evalscope/api/messages/chat_message.py +248 -0
- evalscope/api/messages/content.py +102 -0
- evalscope/api/messages/utils.py +35 -0
- evalscope/api/metric/__init__.py +2 -0
- evalscope/api/metric/metric.py +60 -0
- evalscope/api/metric/scorer.py +113 -0
- evalscope/api/mixin/__init__.py +2 -0
- evalscope/api/mixin/llm_judge_mixin.py +170 -0
- evalscope/api/mixin/sandbox_mixin.py +182 -0
- evalscope/api/model/__init__.py +12 -0
- evalscope/api/model/generate_config.py +161 -0
- evalscope/api/model/model.py +386 -0
- evalscope/api/model/model_output.py +285 -0
- evalscope/api/registry.py +182 -0
- evalscope/api/tool/__init__.py +3 -0
- evalscope/api/tool/tool_call.py +101 -0
- evalscope/api/tool/tool_info.py +173 -0
- evalscope/api/tool/utils.py +64 -0
- evalscope/app/__init__.py +28 -0
- evalscope/app/app.py +38 -0
- evalscope/app/arguments.py +11 -0
- evalscope/app/constants.py +22 -0
- evalscope/app/ui/__init__.py +20 -0
- evalscope/app/ui/app_ui.py +53 -0
- evalscope/app/ui/multi_model.py +353 -0
- evalscope/app/ui/sidebar.py +42 -0
- evalscope/app/ui/single_model.py +220 -0
- evalscope/app/ui/visualization.py +36 -0
- evalscope/app/utils/data_utils.py +195 -0
- evalscope/app/utils/env_utils.py +12 -0
- evalscope/app/utils/localization.py +221 -0
- evalscope/app/utils/text_utils.py +119 -0
- evalscope/app/utils/visualization.py +96 -0
- evalscope/arguments.py +32 -9
- evalscope/backend/opencompass/api_meta_template.py +2 -1
- evalscope/backend/opencompass/backend_manager.py +10 -7
- evalscope/backend/rag_eval/__init__.py +1 -1
- evalscope/backend/rag_eval/backend_manager.py +23 -6
- evalscope/backend/rag_eval/clip_benchmark/dataset_builder.py +33 -21
- evalscope/backend/rag_eval/clip_benchmark/task_template.py +8 -4
- evalscope/backend/rag_eval/cmteb/arguments.py +14 -1
- evalscope/backend/rag_eval/cmteb/task_template.py +19 -3
- evalscope/backend/rag_eval/cmteb/tasks/CustomTask.py +1 -1
- evalscope/backend/rag_eval/ragas/arguments.py +0 -1
- evalscope/backend/rag_eval/ragas/task_template.py +2 -1
- evalscope/backend/rag_eval/ragas/tasks/build_distribution.py +2 -1
- evalscope/backend/rag_eval/ragas/tasks/build_transform.py +7 -4
- evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +9 -3
- evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +2 -6
- evalscope/backend/rag_eval/utils/embedding.py +125 -32
- evalscope/backend/rag_eval/utils/llm.py +16 -16
- evalscope/backend/vlm_eval_kit/backend_manager.py +8 -3
- evalscope/benchmarks/__init__.py +17 -5
- evalscope/benchmarks/aa_lcr/__init__.py +0 -0
- evalscope/benchmarks/aa_lcr/aa_lcr_adapter.py +205 -0
- evalscope/benchmarks/ai2d/__init__.py +0 -0
- evalscope/benchmarks/ai2d/ai2d_adapter.py +54 -0
- evalscope/benchmarks/aime/__init__.py +0 -0
- evalscope/benchmarks/aime/aime24_adapter.py +55 -0
- evalscope/benchmarks/aime/aime25_adapter.py +181 -0
- evalscope/benchmarks/aime/grader.py +307 -0
- evalscope/{metrics/math_accuracy.py → benchmarks/aime/math_normalize.py} +61 -72
- evalscope/benchmarks/alpaca_eval/__init__.py +0 -0
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +133 -0
- evalscope/benchmarks/amc/__init__.py +0 -0
- evalscope/benchmarks/amc/amc_adapter.py +51 -0
- evalscope/benchmarks/arc/arc_adapter.py +34 -149
- evalscope/benchmarks/arena_hard/__init__.py +0 -0
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +149 -0
- evalscope/benchmarks/arena_hard/utils.py +186 -0
- evalscope/benchmarks/bbh/bbh_adapter.py +117 -157
- evalscope/benchmarks/bfcl/__init__.py +0 -0
- evalscope/benchmarks/bfcl/v3/__init__.py +0 -0
- evalscope/benchmarks/bfcl/v3/bfcl_v3_adapter.py +370 -0
- evalscope/benchmarks/bfcl/v3/generation.py +222 -0
- evalscope/benchmarks/bfcl/v3/utils.py +23 -0
- evalscope/benchmarks/bfcl/v4/__init__.py +0 -0
- evalscope/benchmarks/bfcl/v4/bfcl_v4_adapter.py +229 -0
- evalscope/benchmarks/bfcl/v4/utils.py +410 -0
- evalscope/benchmarks/biomix_qa/__init__.py +0 -0
- evalscope/benchmarks/biomix_qa/biomix_qa_adapter.py +36 -0
- evalscope/benchmarks/blink/__init__.py +0 -0
- evalscope/benchmarks/blink/blink_adapter.py +61 -0
- evalscope/benchmarks/ceval/ceval_adapter.py +93 -174
- evalscope/benchmarks/chartqa/__init__.py +0 -0
- evalscope/benchmarks/chartqa/chartqa_adapter.py +80 -0
- evalscope/benchmarks/chartqa/utils.py +38 -0
- evalscope/benchmarks/chinese_simple_qa/__init__.py +0 -0
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +170 -0
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +34 -140
- evalscope/benchmarks/coin_flip/__init__.py +0 -0
- evalscope/benchmarks/coin_flip/coin_flip_adapter.py +128 -0
- evalscope/benchmarks/commonsense_qa/__init__.py +0 -0
- evalscope/benchmarks/commonsense_qa/commonsense_qa_adapter.py +32 -0
- evalscope/benchmarks/competition_math/competition_math_adapter.py +64 -112
- evalscope/benchmarks/data_collection/__init__.py +0 -0
- evalscope/benchmarks/data_collection/data_collection_adapter.py +215 -0
- evalscope/benchmarks/docmath/__init__.py +0 -0
- evalscope/benchmarks/docmath/docmath_adapter.py +143 -0
- evalscope/benchmarks/docmath/utils.py +219 -0
- evalscope/benchmarks/docvqa/__init__.py +0 -0
- evalscope/benchmarks/docvqa/docvqa_adapter.py +67 -0
- evalscope/benchmarks/drivelology/__init__.py +0 -0
- evalscope/benchmarks/drivelology/drivelology_binary_adapter.py +170 -0
- evalscope/benchmarks/drivelology/drivelology_multilabel_adapter.py +254 -0
- evalscope/benchmarks/drivelology/drivelology_selection_adapter.py +49 -0
- evalscope/benchmarks/drivelology/drivelology_writing_adapter.py +218 -0
- evalscope/benchmarks/drop/__init__.py +0 -0
- evalscope/benchmarks/drop/drop_adapter.py +155 -0
- evalscope/benchmarks/drop/utils.py +156 -0
- evalscope/benchmarks/frames/__init__.py +0 -0
- evalscope/benchmarks/frames/frames_adapter.py +175 -0
- evalscope/benchmarks/frames/utils.py +37 -0
- evalscope/benchmarks/general_arena/__init__.py +0 -0
- evalscope/benchmarks/general_arena/general_arena_adapter.py +454 -0
- evalscope/benchmarks/general_arena/utils.py +223 -0
- evalscope/benchmarks/general_mcq/__init__.py +0 -0
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +58 -0
- evalscope/benchmarks/general_qa/general_qa_adapter.py +75 -107
- evalscope/benchmarks/gpqa/__init__.py +0 -0
- evalscope/benchmarks/gpqa/gpqa_adapter.py +90 -0
- evalscope/benchmarks/gpqa/prompt.py +88 -0
- evalscope/benchmarks/gsm8k/gsm8k_adapter.py +77 -144
- evalscope/benchmarks/hallusion_bench/__init__.py +0 -0
- evalscope/benchmarks/hallusion_bench/hallusion_bench_adapter.py +159 -0
- evalscope/benchmarks/halu_eval/__init__.py +0 -0
- evalscope/benchmarks/halu_eval/halu_eval_adapter.py +128 -0
- evalscope/benchmarks/halu_eval/halu_eval_instructions.py +84 -0
- evalscope/benchmarks/healthbench/__init__.py +0 -0
- evalscope/benchmarks/healthbench/healthbench_adapter.py +282 -0
- evalscope/benchmarks/healthbench/utils.py +102 -0
- evalscope/benchmarks/hellaswag/hellaswag_adapter.py +36 -134
- evalscope/benchmarks/hle/__init__.py +0 -0
- evalscope/benchmarks/hle/hle_adapter.py +153 -0
- evalscope/benchmarks/humaneval/humaneval_adapter.py +80 -88
- evalscope/benchmarks/humaneval/utils.py +235 -0
- evalscope/benchmarks/ifeval/ifeval_adapter.py +71 -45
- evalscope/benchmarks/ifeval/instructions.py +112 -68
- evalscope/benchmarks/ifeval/instructions_registry.py +1 -1
- evalscope/benchmarks/ifeval/instructions_util.py +2 -3
- evalscope/benchmarks/ifeval/utils.py +6 -7
- evalscope/benchmarks/image_edit/__init__.py +0 -0
- evalscope/benchmarks/image_edit/gedit/__init__.py +0 -0
- evalscope/benchmarks/image_edit/gedit/gedit_adapter.py +138 -0
- evalscope/benchmarks/image_edit/gedit/utils.py +372 -0
- evalscope/benchmarks/image_edit/gedit/vie_prompts.py +406 -0
- evalscope/benchmarks/infovqa/__init__.py +0 -0
- evalscope/benchmarks/infovqa/infovqa_adapter.py +66 -0
- evalscope/benchmarks/iquiz/iquiz_adapter.py +30 -58
- evalscope/benchmarks/live_code_bench/__init__.py +0 -0
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +195 -0
- evalscope/benchmarks/live_code_bench/extract_utils.py +70 -0
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +150 -0
- evalscope/benchmarks/live_code_bench/load_utils.py +63 -0
- evalscope/benchmarks/live_code_bench/pass_k_utils.py +56 -0
- evalscope/benchmarks/live_code_bench/prompts.py +207 -0
- evalscope/benchmarks/live_code_bench/sandbox_evaluate_utils.py +220 -0
- evalscope/benchmarks/live_code_bench/testing_util.py +544 -0
- evalscope/benchmarks/logi_qa/__int__.py +0 -0
- evalscope/benchmarks/logi_qa/logi_qa_adapter.py +41 -0
- evalscope/benchmarks/maritime_bench/__init__.py +0 -0
- evalscope/benchmarks/maritime_bench/maritime_bench_adapter.py +56 -0
- evalscope/benchmarks/math_500/__init__.py +0 -0
- evalscope/benchmarks/math_500/math_500_adapter.py +55 -0
- evalscope/benchmarks/math_qa/__init__.py +0 -0
- evalscope/benchmarks/math_qa/math_qa_adapter.py +35 -0
- evalscope/benchmarks/math_verse/__init__.py +0 -0
- evalscope/benchmarks/math_verse/math_verse_adapter.py +105 -0
- evalscope/benchmarks/math_vision/__init__.py +0 -0
- evalscope/benchmarks/math_vision/math_vision_adapter.py +116 -0
- evalscope/benchmarks/math_vista/__init__.py +0 -0
- evalscope/benchmarks/math_vista/math_vista_adapter.py +114 -0
- evalscope/benchmarks/med_mcqa/__init__.py +0 -0
- evalscope/benchmarks/med_mcqa/med_mcqa_adapter.py +32 -0
- evalscope/benchmarks/minerva_math/__init__.py +0 -0
- evalscope/benchmarks/minerva_math/minerva_math_adapter.py +53 -0
- evalscope/benchmarks/mm_bench/__init__.py +0 -0
- evalscope/benchmarks/mm_bench/mm_bench_adapter.py +99 -0
- evalscope/benchmarks/mm_star/__init__.py +0 -0
- evalscope/benchmarks/mm_star/mm_star_adapter.py +73 -0
- evalscope/benchmarks/mmlu/mmlu_adapter.py +32 -210
- evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +87 -103
- evalscope/benchmarks/mmlu_redux/__init__.py +0 -0
- evalscope/benchmarks/mmlu_redux/mmlu_redux_adapter.py +139 -0
- evalscope/benchmarks/mmmu/__init__.py +0 -0
- evalscope/benchmarks/mmmu/mmmu_adapter.py +159 -0
- evalscope/benchmarks/mmmu_pro/__init__.py +0 -0
- evalscope/benchmarks/mmmu_pro/mmmu_pro_adapter.py +124 -0
- evalscope/benchmarks/mri_mcqa/__init__.py +0 -0
- evalscope/benchmarks/mri_mcqa/mri_mcqa_adapter.py +34 -0
- evalscope/benchmarks/multi_if/__init__.py +0 -0
- evalscope/benchmarks/multi_if/ifeval.py +3354 -0
- evalscope/benchmarks/multi_if/metrics.py +120 -0
- evalscope/benchmarks/multi_if/multi_if_adapter.py +161 -0
- evalscope/benchmarks/music_trivia/__init__.py +0 -0
- evalscope/benchmarks/music_trivia/music_trivia_adapter.py +36 -0
- evalscope/benchmarks/musr/__init__.py +0 -0
- evalscope/benchmarks/musr/musr_adapter.py +43 -0
- evalscope/benchmarks/needle_haystack/__init__.py +0 -0
- evalscope/benchmarks/needle_haystack/needle_haystack_adapter.py +389 -0
- evalscope/benchmarks/needle_haystack/utils.py +79 -0
- evalscope/benchmarks/ner/__init__.py +0 -0
- evalscope/benchmarks/ner/broad_twitter_corpus_adapter.py +52 -0
- evalscope/benchmarks/ner/conll2003_adapter.py +48 -0
- evalscope/benchmarks/ner/copious_adapter.py +85 -0
- evalscope/benchmarks/ner/cross_ner_adapter.py +120 -0
- evalscope/benchmarks/ner/cross_ner_entities/__init__.py +0 -0
- evalscope/benchmarks/ner/cross_ner_entities/ai.py +54 -0
- evalscope/benchmarks/ner/cross_ner_entities/literature.py +36 -0
- evalscope/benchmarks/ner/cross_ner_entities/music.py +39 -0
- evalscope/benchmarks/ner/cross_ner_entities/politics.py +37 -0
- evalscope/benchmarks/ner/cross_ner_entities/science.py +58 -0
- evalscope/benchmarks/ner/genia_ner_adapter.py +66 -0
- evalscope/benchmarks/ner/harvey_ner_adapter.py +58 -0
- evalscope/benchmarks/ner/mit_movie_trivia_adapter.py +74 -0
- evalscope/benchmarks/ner/mit_restaurant_adapter.py +66 -0
- evalscope/benchmarks/ner/ontonotes5_adapter.py +87 -0
- evalscope/benchmarks/ner/wnut2017_adapter.py +61 -0
- evalscope/benchmarks/ocr_bench/__init__.py +0 -0
- evalscope/benchmarks/ocr_bench/ocr_bench/__init__.py +0 -0
- evalscope/benchmarks/ocr_bench/ocr_bench/ocr_bench_adapter.py +101 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/IoUscore_metric.py +87 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/TEDS_metric.py +963 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/__init__.py +0 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/ocr_bench_v2_adapter.py +161 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/page_ocr_metric.py +50 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/parallel.py +46 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/__init__.py +0 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/readme.txt +26 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/rrc_evaluation_funcs_1_1.py +537 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/script.py +481 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_metric.py +179 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/utils.py +433 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/vqa_metric.py +254 -0
- evalscope/benchmarks/olympiad_bench/__init__.py +0 -0
- evalscope/benchmarks/olympiad_bench/olympiad_bench_adapter.py +163 -0
- evalscope/benchmarks/olympiad_bench/utils.py +565 -0
- evalscope/benchmarks/omni_bench/__init__.py +0 -0
- evalscope/benchmarks/omni_bench/omni_bench_adapter.py +86 -0
- evalscope/benchmarks/omnidoc_bench/__init__.py +0 -0
- evalscope/benchmarks/omnidoc_bench/end2end_eval.py +349 -0
- evalscope/benchmarks/omnidoc_bench/metrics.py +547 -0
- evalscope/benchmarks/omnidoc_bench/omnidoc_bench_adapter.py +135 -0
- evalscope/benchmarks/omnidoc_bench/utils.py +1937 -0
- evalscope/benchmarks/piqa/__init__.py +0 -0
- evalscope/benchmarks/piqa/piqa_adapter.py +32 -0
- evalscope/benchmarks/poly_math/__init__.py +0 -0
- evalscope/benchmarks/poly_math/poly_math_adapter.py +132 -0
- evalscope/benchmarks/poly_math/utils/instruction.py +105 -0
- evalscope/benchmarks/pope/__init__.py +0 -0
- evalscope/benchmarks/pope/pope_adapter.py +112 -0
- evalscope/benchmarks/process_bench/__init__.py +0 -0
- evalscope/benchmarks/process_bench/process_bench_adapter.py +171 -0
- evalscope/benchmarks/pumed_qa/__init__.py +0 -0
- evalscope/benchmarks/pumed_qa/pubmed_qa_adapter.py +175 -0
- evalscope/benchmarks/qasc/__init__.py +0 -0
- evalscope/benchmarks/qasc/qasc_adapter.py +35 -0
- evalscope/benchmarks/race/race_adapter.py +33 -120
- evalscope/benchmarks/real_world_qa/__init__.py +0 -0
- evalscope/benchmarks/real_world_qa/real_world_qa_adapter.py +64 -0
- evalscope/benchmarks/sciq/__init__.py +0 -0
- evalscope/benchmarks/sciq/sciq_adapter.py +36 -0
- evalscope/benchmarks/seed_bench_2_plus/__init__.py +0 -0
- evalscope/benchmarks/seed_bench_2_plus/seed_bench_2_plus_adapter.py +72 -0
- evalscope/benchmarks/simple_qa/__init__.py +0 -0
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +169 -0
- evalscope/benchmarks/simple_vqa/__init__.py +0 -0
- evalscope/benchmarks/simple_vqa/simple_vqa_adapter.py +169 -0
- evalscope/benchmarks/siqa/__init__.py +0 -0
- evalscope/benchmarks/siqa/siqa_adapter.py +39 -0
- evalscope/benchmarks/super_gpqa/__init__.py +0 -0
- evalscope/benchmarks/super_gpqa/prompt.py +88 -0
- evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +165 -0
- evalscope/benchmarks/super_gpqa/utils.py +86 -0
- evalscope/benchmarks/tau_bench/__init__.py +0 -0
- evalscope/benchmarks/tau_bench/tau2_bench/__init__.py +0 -0
- evalscope/benchmarks/tau_bench/tau2_bench/generation.py +158 -0
- evalscope/benchmarks/tau_bench/tau2_bench/tau2_bench_adapter.py +146 -0
- evalscope/benchmarks/tau_bench/tau_bench/__init__.py +0 -0
- evalscope/benchmarks/tau_bench/tau_bench/generation.py +147 -0
- evalscope/benchmarks/tau_bench/tau_bench/tau_bench_adapter.py +168 -0
- evalscope/benchmarks/text2image/__init__.py +0 -0
- evalscope/benchmarks/text2image/evalmuse_adapter.py +78 -0
- evalscope/benchmarks/text2image/genai_bench_adapter.py +53 -0
- evalscope/benchmarks/text2image/general_t2i_adapter.py +42 -0
- evalscope/benchmarks/text2image/hpdv2_adapter.py +52 -0
- evalscope/benchmarks/text2image/tifa_adapter.py +27 -0
- evalscope/benchmarks/tool_bench/__init__.py +0 -0
- evalscope/benchmarks/tool_bench/tool_bench_adapter.py +102 -0
- evalscope/benchmarks/tool_bench/utils.py +203 -0
- evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +56 -118
- evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +70 -270
- evalscope/benchmarks/visu_logic/__init__.py +0 -0
- evalscope/benchmarks/visu_logic/visu_logic_adapter.py +75 -0
- evalscope/benchmarks/winogrande/__init__.py +0 -0
- evalscope/benchmarks/winogrande/winogrande_adapter.py +34 -0
- evalscope/benchmarks/wmt/__init__.py +0 -0
- evalscope/benchmarks/wmt/wmt24_adapter.py +294 -0
- evalscope/benchmarks/zerobench/__init__.py +0 -0
- evalscope/benchmarks/zerobench/zerobench_adapter.py +64 -0
- evalscope/cli/cli.py +2 -0
- evalscope/cli/start_app.py +12 -2
- evalscope/cli/start_eval.py +4 -3
- evalscope/cli/start_perf.py +10 -2
- evalscope/cli/start_server.py +6 -3
- evalscope/collections/__init__.py +27 -3
- evalscope/collections/sampler.py +12 -11
- evalscope/collections/schema.py +13 -12
- evalscope/config.py +218 -147
- evalscope/constants.py +78 -82
- evalscope/evaluator/__init__.py +1 -1
- evalscope/evaluator/evaluator.py +334 -318
- evalscope/filters/__init__.py +2 -0
- evalscope/filters/extraction.py +126 -0
- evalscope/filters/selection.py +57 -0
- evalscope/metrics/__init__.py +59 -3
- evalscope/metrics/bert_score/__init__.py +0 -0
- evalscope/metrics/bert_score/scorer.py +338 -0
- evalscope/metrics/bert_score/utils.py +697 -0
- evalscope/metrics/bundled_rouge_score/rouge_scorer.py +20 -15
- evalscope/metrics/llm_judge.py +211 -0
- evalscope/metrics/math_parser.py +545 -0
- evalscope/metrics/metric.py +611 -0
- evalscope/metrics/metrics.py +112 -23
- evalscope/metrics/rouge_metric.py +11 -13
- evalscope/metrics/t2v_metrics/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +134 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +282 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +115 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +87 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +99 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +176 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +82 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +74 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +306 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +84 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +223 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +153 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +24 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +190 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +100 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +313 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +192 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +320 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1111 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +457 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +370 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +765 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +274 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +896 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1876 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +83 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +58 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +187 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +179 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +115 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +348 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +870 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +514 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1291 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +476 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +35 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +393 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +129 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +18 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +23 -13
- evalscope/models/image_edit_model.py +125 -0
- evalscope/models/mockllm.py +65 -0
- evalscope/models/model_apis.py +69 -0
- evalscope/models/modelscope.py +455 -0
- evalscope/models/openai_compatible.py +144 -0
- evalscope/models/text2image_model.py +124 -0
- evalscope/models/utils/openai.py +708 -0
- evalscope/perf/__init__.py +0 -1
- evalscope/perf/arguments.py +103 -69
- evalscope/perf/benchmark.py +114 -163
- evalscope/perf/http_client.py +59 -89
- evalscope/perf/main.py +91 -18
- evalscope/perf/plugin/__init__.py +3 -2
- evalscope/perf/plugin/api/__init__.py +4 -3
- evalscope/perf/plugin/api/base.py +27 -7
- evalscope/perf/plugin/api/custom_api.py +170 -57
- evalscope/perf/plugin/api/dashscope_api.py +4 -10
- evalscope/perf/plugin/api/default_api.py +214 -0
- evalscope/perf/plugin/api/openai_api.py +120 -41
- evalscope/perf/plugin/datasets/__init__.py +10 -6
- evalscope/perf/plugin/datasets/base.py +43 -1
- evalscope/perf/plugin/datasets/custom.py +22 -3
- evalscope/perf/plugin/datasets/flickr8k.py +5 -27
- evalscope/perf/plugin/datasets/kontext_bench.py +28 -0
- evalscope/perf/plugin/datasets/line_by_line.py +7 -3
- evalscope/perf/plugin/datasets/longalpaca.py +7 -3
- evalscope/perf/plugin/datasets/openqa.py +13 -14
- evalscope/perf/plugin/datasets/random_dataset.py +67 -0
- evalscope/perf/plugin/datasets/random_vl_dataset.py +80 -0
- evalscope/perf/plugin/datasets/speed_benchmark.py +11 -0
- evalscope/perf/plugin/registry.py +36 -16
- evalscope/perf/utils/analysis_result.py +24 -23
- evalscope/perf/utils/benchmark_util.py +95 -55
- evalscope/perf/utils/db_util.py +115 -78
- evalscope/perf/utils/local_server.py +12 -47
- evalscope/perf/utils/log_utils.py +63 -0
- evalscope/perf/utils/rich_display.py +192 -0
- evalscope/report/__init__.py +46 -3
- evalscope/report/combinator.py +143 -32
- evalscope/report/generator.py +74 -34
- evalscope/report/report.py +238 -0
- evalscope/run.py +71 -46
- evalscope/summarizer.py +5 -5
- evalscope/third_party/longbench_write/infer.py +1 -1
- evalscope/third_party/thinkbench/__init__.py +3 -0
- evalscope/third_party/thinkbench/eval.py +441 -0
- evalscope/third_party/thinkbench/infer.py +130 -0
- evalscope/third_party/thinkbench/resources/critique_template.txt +17 -0
- evalscope/third_party/thinkbench/resources/reformat_template.txt +31 -0
- evalscope/third_party/thinkbench/tools/__init__.py +0 -0
- evalscope/third_party/thinkbench/tools/llm.py +48 -0
- evalscope/third_party/thinkbench/tools/utils.py +13 -0
- evalscope/third_party/toolbench_static/llm/swift_infer.py +46 -20
- evalscope/third_party/toolbench_static/toolbench_static.py +2 -1
- evalscope/utils/__init__.py +82 -2
- evalscope/utils/argument_utils.py +64 -0
- evalscope/utils/chat_service.py +8 -6
- evalscope/utils/deprecation_utils.py +53 -0
- evalscope/utils/function_utils.py +266 -0
- evalscope/utils/import_utils.py +154 -0
- evalscope/utils/io_utils.py +336 -8
- evalscope/utils/json_schema.py +231 -0
- evalscope/utils/logger.py +121 -31
- evalscope/utils/model_utils.py +57 -1
- evalscope/utils/multi_choices.py +303 -0
- evalscope/utils/ner.py +377 -0
- evalscope/utils/url_utils.py +65 -0
- evalscope/version.py +2 -2
- evalscope-1.2.0.dist-info/METADATA +553 -0
- evalscope-1.2.0.dist-info/RECORD +628 -0
- {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/WHEEL +1 -1
- {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/top_level.txt +0 -1
- evalscope/backend/vlm_eval_kit/custom_dataset.py +0 -46
- evalscope/benchmarks/arc/ai2_arc.py +0 -151
- evalscope/benchmarks/benchmark.py +0 -76
- evalscope/benchmarks/ceval/ceval_exam.py +0 -146
- evalscope/benchmarks/ceval/samples.jsonl +0 -1
- evalscope/benchmarks/cmmlu/cmmlu.py +0 -161
- evalscope/benchmarks/cmmlu/samples.jsonl +0 -5
- evalscope/benchmarks/competition_math/competition_math.py +0 -79
- evalscope/benchmarks/data_adapter.py +0 -291
- evalscope/benchmarks/gsm8k/gsm8k.py +0 -121
- evalscope/benchmarks/hellaswag/hellaswag.py +0 -112
- evalscope/benchmarks/humaneval/humaneval.py +0 -79
- evalscope/benchmarks/mmlu/mmlu.py +0 -160
- evalscope/benchmarks/mmlu/samples.jsonl +0 -5
- evalscope/benchmarks/race/race.py +0 -104
- evalscope/benchmarks/race/samples.jsonl +0 -5
- evalscope/benchmarks/trivia_qa/trivia_qa.py +0 -89
- evalscope/benchmarks/truthful_qa/truthful_qa.py +0 -163
- evalscope/collections/evaluator.py +0 -198
- evalscope/evaluator/rating_eval.py +0 -157
- evalscope/evaluator/reviewer/__init__.py +0 -1
- evalscope/evaluator/reviewer/auto_reviewer.py +0 -391
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/named_metrics.py +0 -17
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- evalscope/models/base_adapter.py +0 -52
- evalscope/models/chat_adapter.py +0 -138
- evalscope/models/choice_adapter.py +0 -211
- evalscope/models/custom/__init__.py +0 -3
- evalscope/models/custom/custom_model.py +0 -53
- evalscope/models/custom/dummy_model.py +0 -63
- evalscope/models/custom_adapter.py +0 -67
- evalscope/models/local_model.py +0 -74
- evalscope/models/model.py +0 -229
- evalscope/models/server_adapter.py +0 -111
- evalscope/registry/__init__.py +0 -1
- evalscope/registry/config/cfg_arena.yaml +0 -77
- evalscope/registry/config/cfg_arena_zhihu.yaml +0 -63
- evalscope/registry/config/cfg_pairwise_baseline.yaml +0 -83
- evalscope/registry/config/cfg_single.yaml +0 -78
- evalscope/registry/data/prompt_template/lmsys_v2.jsonl +0 -8
- evalscope/registry/data/prompt_template/prompt_templates.jsonl +0 -8
- evalscope/registry/data/qa_browser/battle.jsonl +0 -634
- evalscope/registry/data/qa_browser/category_mapping.yaml +0 -10
- evalscope/registry/data/question.jsonl +0 -80
- evalscope/registry/tasks/arc.yaml +0 -28
- evalscope/registry/tasks/bbh.yaml +0 -26
- evalscope/registry/tasks/bbh_mini.yaml +0 -26
- evalscope/registry/tasks/ceval.yaml +0 -27
- evalscope/registry/tasks/ceval_mini.yaml +0 -26
- evalscope/registry/tasks/cmmlu.yaml +0 -27
- evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +0 -28
- evalscope/registry/tasks/general_qa.yaml +0 -27
- evalscope/registry/tasks/gsm8k.yaml +0 -29
- evalscope/registry/tasks/mmlu.yaml +0 -29
- evalscope/registry/tasks/mmlu_mini.yaml +0 -27
- evalscope/report/app.py +0 -506
- evalscope/report/utils.py +0 -133
- evalscope/run_arena.py +0 -202
- evalscope/utils/arena_utils.py +0 -217
- evalscope/utils/completion_parsers.py +0 -82
- evalscope/utils/utils.py +0 -301
- evalscope-0.10.0.dist-info/METADATA +0 -565
- evalscope-0.10.0.dist-info/RECORD +0 -286
- tests/__init__.py +0 -1
- tests/cli/__init__.py +0 -1
- tests/cli/test_collection.py +0 -57
- tests/cli/test_run.py +0 -165
- tests/perf/__init__.py +0 -1
- tests/perf/test_perf.py +0 -101
- tests/rag/test_clip_benchmark.py +0 -85
- tests/rag/test_mteb.py +0 -138
- tests/rag/test_ragas.py +0 -120
- tests/swift/__init__.py +0 -1
- tests/swift/test_run_swift_eval.py +0 -145
- tests/swift/test_run_swift_vlm_eval.py +0 -127
- tests/swift/test_run_swift_vlm_jugde_eval.py +0 -156
- tests/test_run_all.py +0 -12
- tests/vlm/__init__.py +0 -1
- tests/vlm/test_vlmeval.py +0 -60
- {tests/rag → evalscope/api}/__init__.py +0 -0
- {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/entry_points.txt +0 -0
- {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info/licenses}/LICENSE +0 -0
|
@@ -0,0 +1,282 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn.functional as F
|
|
3
|
+
from einops import rearrange, repeat
|
|
4
|
+
from torch import einsum, nn
|
|
5
|
+
|
|
6
|
+
# helper functions
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def exists(val):
|
|
10
|
+
return val is not None
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def default(val, d):
|
|
14
|
+
return val if exists(val) else d
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
# normalization
|
|
18
|
+
# they use layernorm without bias, something that pytorch does not offer
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class LayerNorm(nn.Module):
|
|
22
|
+
|
|
23
|
+
def __init__(self, dim):
|
|
24
|
+
super().__init__()
|
|
25
|
+
self.weight = nn.Parameter(torch.ones(dim))
|
|
26
|
+
self.register_buffer('bias', torch.zeros(dim))
|
|
27
|
+
|
|
28
|
+
def forward(self, x):
|
|
29
|
+
return F.layer_norm(x, x.shape[-1:], self.weight, self.bias)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
# residual
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class Residual(nn.Module):
|
|
36
|
+
|
|
37
|
+
def __init__(self, fn):
|
|
38
|
+
super().__init__()
|
|
39
|
+
self.fn = fn
|
|
40
|
+
|
|
41
|
+
def forward(self, x, *args, **kwargs):
|
|
42
|
+
return self.fn(x, *args, **kwargs) + x
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
# rotary positional embedding
|
|
46
|
+
# https://arxiv.org/abs/2104.09864
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
class RotaryEmbedding(nn.Module):
|
|
50
|
+
|
|
51
|
+
def __init__(self, dim):
|
|
52
|
+
super().__init__()
|
|
53
|
+
inv_freq = 1.0 / (10000**(torch.arange(0, dim, 2).float() / dim))
|
|
54
|
+
self.register_buffer('inv_freq', inv_freq)
|
|
55
|
+
|
|
56
|
+
def forward(self, max_seq_len, *, device):
|
|
57
|
+
seq = torch.arange(max_seq_len, device=device, dtype=self.inv_freq.dtype)
|
|
58
|
+
freqs = einsum('i , j -> i j', seq, self.inv_freq)
|
|
59
|
+
return torch.cat((freqs, freqs), dim=-1)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def rotate_half(x):
|
|
63
|
+
x = rearrange(x, '... (j d) -> ... j d', j=2)
|
|
64
|
+
x1, x2 = x.unbind(dim=-2)
|
|
65
|
+
return torch.cat((-x2, x1), dim=-1)
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def apply_rotary_pos_emb(pos, t):
|
|
69
|
+
return (t * pos.cos()) + (rotate_half(t) * pos.sin())
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
# classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward
|
|
73
|
+
# https://arxiv.org/abs/2002.05202
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class SwiGLU(nn.Module):
|
|
77
|
+
|
|
78
|
+
def forward(self, x):
|
|
79
|
+
x, gate = x.chunk(2, dim=-1)
|
|
80
|
+
return F.silu(gate) * x
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
# parallel attention and feedforward with residual
|
|
84
|
+
# discovered by Wang et al + EleutherAI from GPT-J fame
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class ParallelTransformerBlock(nn.Module):
|
|
88
|
+
|
|
89
|
+
def __init__(self, dim, dim_head=64, heads=8, ff_mult=4):
|
|
90
|
+
super().__init__()
|
|
91
|
+
self.norm = LayerNorm(dim)
|
|
92
|
+
|
|
93
|
+
attn_inner_dim = dim_head * heads
|
|
94
|
+
ff_inner_dim = dim * ff_mult
|
|
95
|
+
self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2))
|
|
96
|
+
|
|
97
|
+
self.heads = heads
|
|
98
|
+
self.scale = dim_head**-0.5
|
|
99
|
+
self.rotary_emb = RotaryEmbedding(dim_head)
|
|
100
|
+
|
|
101
|
+
self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False)
|
|
102
|
+
self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False)
|
|
103
|
+
|
|
104
|
+
self.ff_out = nn.Sequential(SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False))
|
|
105
|
+
|
|
106
|
+
self.register_buffer('pos_emb', None, persistent=False)
|
|
107
|
+
|
|
108
|
+
def get_rotary_embedding(self, n, device):
|
|
109
|
+
if self.pos_emb is not None and self.pos_emb.shape[-2] >= n:
|
|
110
|
+
return self.pos_emb[:n]
|
|
111
|
+
|
|
112
|
+
pos_emb = self.rotary_emb(n, device=device)
|
|
113
|
+
self.register_buffer('pos_emb', pos_emb, persistent=False)
|
|
114
|
+
return pos_emb
|
|
115
|
+
|
|
116
|
+
def forward(self, x, attn_mask=None):
|
|
117
|
+
"""
|
|
118
|
+
einstein notation
|
|
119
|
+
b - batch
|
|
120
|
+
h - heads
|
|
121
|
+
n, i, j - sequence length (base sequence length, source, target)
|
|
122
|
+
d - feature dimension
|
|
123
|
+
"""
|
|
124
|
+
|
|
125
|
+
n, device, h = x.shape[1], x.device, self.heads
|
|
126
|
+
|
|
127
|
+
# pre layernorm
|
|
128
|
+
|
|
129
|
+
x = self.norm(x)
|
|
130
|
+
|
|
131
|
+
# attention queries, keys, values, and feedforward inner
|
|
132
|
+
|
|
133
|
+
q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1)
|
|
134
|
+
|
|
135
|
+
# split heads
|
|
136
|
+
# they use multi-query single-key-value attention, yet another Noam Shazeer paper
|
|
137
|
+
# they found no performance loss past a certain scale, and more efficient decoding obviously
|
|
138
|
+
# https://arxiv.org/abs/1911.02150
|
|
139
|
+
|
|
140
|
+
q = rearrange(q, 'b n (h d) -> b h n d', h=h)
|
|
141
|
+
|
|
142
|
+
# rotary embeddings
|
|
143
|
+
|
|
144
|
+
positions = self.get_rotary_embedding(n, device)
|
|
145
|
+
q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k))
|
|
146
|
+
|
|
147
|
+
# scale
|
|
148
|
+
|
|
149
|
+
q = q * self.scale
|
|
150
|
+
|
|
151
|
+
# similarity
|
|
152
|
+
|
|
153
|
+
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
|
154
|
+
|
|
155
|
+
# extra attention mask - for masking out attention from text CLS token to padding
|
|
156
|
+
|
|
157
|
+
if exists(attn_mask):
|
|
158
|
+
attn_mask = rearrange(attn_mask, 'b i j -> b 1 i j')
|
|
159
|
+
sim = sim.masked_fill(~attn_mask, -torch.finfo(sim.dtype).max)
|
|
160
|
+
|
|
161
|
+
# attention
|
|
162
|
+
|
|
163
|
+
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
|
|
164
|
+
attn = sim.softmax(dim=-1)
|
|
165
|
+
|
|
166
|
+
# aggregate values
|
|
167
|
+
|
|
168
|
+
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
|
169
|
+
|
|
170
|
+
# merge heads
|
|
171
|
+
|
|
172
|
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
173
|
+
return self.attn_out(out) + self.ff_out(ff)
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
# cross attention - using multi-query + one-headed key / values as in PaLM w/ optional parallel feedforward
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
class CrossAttention(nn.Module):
|
|
180
|
+
|
|
181
|
+
def __init__(
|
|
182
|
+
self, dim, *, context_dim=None, dim_head=64, heads=12, parallel_ff=False, ff_mult=4, norm_context=False
|
|
183
|
+
):
|
|
184
|
+
super().__init__()
|
|
185
|
+
self.heads = heads
|
|
186
|
+
self.scale = dim_head**-0.5
|
|
187
|
+
inner_dim = heads * dim_head
|
|
188
|
+
context_dim = default(context_dim, dim)
|
|
189
|
+
|
|
190
|
+
self.norm = LayerNorm(dim)
|
|
191
|
+
self.context_norm = LayerNorm(context_dim) if norm_context else nn.Identity()
|
|
192
|
+
|
|
193
|
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
|
194
|
+
self.to_kv = nn.Linear(context_dim, dim_head * 2, bias=False)
|
|
195
|
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
|
196
|
+
|
|
197
|
+
# whether to have parallel feedforward
|
|
198
|
+
|
|
199
|
+
ff_inner_dim = ff_mult * dim
|
|
200
|
+
|
|
201
|
+
self.ff = nn.Sequential(
|
|
202
|
+
nn.Linear(dim, ff_inner_dim * 2, bias=False), SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False)
|
|
203
|
+
) if parallel_ff else None
|
|
204
|
+
|
|
205
|
+
def forward(self, x, context, mask):
|
|
206
|
+
"""
|
|
207
|
+
einstein notation
|
|
208
|
+
b - batch
|
|
209
|
+
h - heads
|
|
210
|
+
n, i, j - sequence length (base sequence length, source, target)
|
|
211
|
+
d - feature dimension
|
|
212
|
+
"""
|
|
213
|
+
|
|
214
|
+
# pre-layernorm, for queries and context
|
|
215
|
+
|
|
216
|
+
x = self.norm(x)
|
|
217
|
+
context = self.context_norm(context)
|
|
218
|
+
|
|
219
|
+
# get queries
|
|
220
|
+
|
|
221
|
+
q = self.to_q(x)
|
|
222
|
+
q = rearrange(q, 'b n (h d) -> b h n d', h=self.heads)
|
|
223
|
+
|
|
224
|
+
# scale
|
|
225
|
+
|
|
226
|
+
q = q * self.scale
|
|
227
|
+
|
|
228
|
+
# get key / values
|
|
229
|
+
|
|
230
|
+
k, v = self.to_kv(context).chunk(2, dim=-1)
|
|
231
|
+
|
|
232
|
+
# query / key similarity
|
|
233
|
+
|
|
234
|
+
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
|
235
|
+
|
|
236
|
+
# attention
|
|
237
|
+
mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1)
|
|
238
|
+
sim = sim + mask # context mask
|
|
239
|
+
sim = sim - sim.amax(dim=-1, keepdim=True)
|
|
240
|
+
attn = sim.softmax(dim=-1)
|
|
241
|
+
|
|
242
|
+
# aggregate
|
|
243
|
+
|
|
244
|
+
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
|
245
|
+
|
|
246
|
+
# merge and combine heads
|
|
247
|
+
|
|
248
|
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
249
|
+
out = self.to_out(out)
|
|
250
|
+
|
|
251
|
+
# add parallel feedforward (for multimodal layers)
|
|
252
|
+
|
|
253
|
+
if exists(self.ff):
|
|
254
|
+
out = out + self.ff(x)
|
|
255
|
+
|
|
256
|
+
return out
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
class Cross_model(nn.Module):
|
|
260
|
+
|
|
261
|
+
def __init__(self, dim=512, layer_num=4, dim_head=64, heads=8, ff_mult=4):
|
|
262
|
+
super().__init__()
|
|
263
|
+
|
|
264
|
+
self.layers = nn.ModuleList([])
|
|
265
|
+
|
|
266
|
+
for ind in range(layer_num):
|
|
267
|
+
self.layers.append(
|
|
268
|
+
nn.ModuleList([
|
|
269
|
+
Residual(
|
|
270
|
+
CrossAttention(dim=dim, dim_head=dim_head, heads=heads, parallel_ff=True, ff_mult=ff_mult)
|
|
271
|
+
),
|
|
272
|
+
Residual(ParallelTransformerBlock(dim=dim, dim_head=dim_head, heads=heads, ff_mult=ff_mult))
|
|
273
|
+
])
|
|
274
|
+
)
|
|
275
|
+
|
|
276
|
+
def forward(self, query_tokens, context_tokens, mask):
|
|
277
|
+
|
|
278
|
+
for cross_attn, self_attn_ff in self.layers:
|
|
279
|
+
query_tokens = cross_attn(query_tokens, context_tokens, mask)
|
|
280
|
+
query_tokens = self_attn_ff(query_tokens)
|
|
281
|
+
|
|
282
|
+
return query_tokens
|
|
@@ -0,0 +1,115 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import torch
|
|
3
|
+
from typing import List
|
|
4
|
+
|
|
5
|
+
from ...constants import CACHE_DIR
|
|
6
|
+
from ..model import ScoreModel
|
|
7
|
+
|
|
8
|
+
CLIP_MODELS = [
|
|
9
|
+
'openai:RN50', 'yfcc15m:RN50', 'cc12m:RN50', 'openai:RN101', 'yfcc15m:RN101', 'openai:RN50x4', 'openai:RN50x16',
|
|
10
|
+
'openai:RN50x64', 'openai:ViT-B-32', 'laion400m_e31:ViT-B-32', 'laion400m_e32:ViT-B-32', 'laion2b_e16:ViT-B-32',
|
|
11
|
+
'laion2b_s34b_b79k:ViT-B-32', 'datacomp_xl_s13b_b90k:ViT-B-32', 'datacomp_m_s128m_b4k:ViT-B-32',
|
|
12
|
+
'commonpool_m_clip_s128m_b4k:ViT-B-32', 'commonpool_m_laion_s128m_b4k:ViT-B-32',
|
|
13
|
+
'commonpool_m_image_s128m_b4k:ViT-B-32', 'commonpool_m_text_s128m_b4k:ViT-B-32',
|
|
14
|
+
'commonpool_m_basic_s128m_b4k:ViT-B-32', 'commonpool_m_s128m_b4k:ViT-B-32', 'datacomp_s_s13m_b4k:ViT-B-32',
|
|
15
|
+
'commonpool_s_clip_s13m_b4k:ViT-B-32', 'commonpool_s_laion_s13m_b4k:ViT-B-32',
|
|
16
|
+
'commonpool_s_image_s13m_b4k:ViT-B-32', 'commonpool_s_text_s13m_b4k:ViT-B-32',
|
|
17
|
+
'commonpool_s_basic_s13m_b4k:ViT-B-32', 'commonpool_s_s13m_b4k:ViT-B-32', 'metaclip_400m:ViT-B-32',
|
|
18
|
+
'metaclip_fullcc:ViT-B-32', 'datacomp_s34b_b86k:ViT-B-32-256', 'openai:ViT-B-16', 'laion400m_e31:ViT-B-16',
|
|
19
|
+
'laion400m_e32:ViT-B-16', 'laion2b_s34b_b88k:ViT-B-16', 'datacomp_xl_s13b_b90k:ViT-B-16',
|
|
20
|
+
'datacomp_l_s1b_b8k:ViT-B-16', 'commonpool_l_clip_s1b_b8k:ViT-B-16', 'commonpool_l_laion_s1b_b8k:ViT-B-16',
|
|
21
|
+
'commonpool_l_image_s1b_b8k:ViT-B-16', 'commonpool_l_text_s1b_b8k:ViT-B-16', 'commonpool_l_basic_s1b_b8k:ViT-B-16',
|
|
22
|
+
'commonpool_l_s1b_b8k:ViT-B-16', 'dfn2b:ViT-B-16', 'metaclip_400m:ViT-B-16', 'metaclip_fullcc:ViT-B-16',
|
|
23
|
+
'laion400m_e31:ViT-B-16-plus-240', 'laion400m_e32:ViT-B-16-plus-240', 'openai:ViT-L-14', 'laion400m_e31:ViT-L-14',
|
|
24
|
+
'laion400m_e32:ViT-L-14', 'laion2b_s32b_b82k:ViT-L-14', 'datacomp_xl_s13b_b90k:ViT-L-14',
|
|
25
|
+
'commonpool_xl_clip_s13b_b90k:ViT-L-14', 'commonpool_xl_laion_s13b_b90k:ViT-L-14',
|
|
26
|
+
'commonpool_xl_s13b_b90k:ViT-L-14', 'metaclip_400m:ViT-L-14', 'metaclip_fullcc:ViT-L-14', 'dfn2b:ViT-L-14',
|
|
27
|
+
'dfn2b_s39b:ViT-L-14', 'openai:ViT-L-14-336', 'laion2b_s32b_b79k:ViT-H-14', 'metaclip_fullcc:ViT-H-14',
|
|
28
|
+
'metaclip_altogether:ViT-H-14', 'dfn5b:ViT-H-14', 'dfn5b:ViT-H-14-378', 'laion2b_s12b_b42k:ViT-g-14',
|
|
29
|
+
'laion2b_s34b_b88k:ViT-g-14', 'laion2b_s39b_b160k:ViT-bigG-14', 'metaclip_fullcc:ViT-bigG-14',
|
|
30
|
+
'laion2b_s12b_b32k:roberta-ViT-B-32', 'laion5b_s13b_b90k:xlm-roberta-base-ViT-B-32',
|
|
31
|
+
'frozen_laion5b_s13b_b90k:xlm-roberta-large-ViT-H-14', 'laion400m_s13b_b51k:convnext_base',
|
|
32
|
+
'laion2b_s13b_b82k:convnext_base_w', 'laion2b_s13b_b82k_augreg:convnext_base_w',
|
|
33
|
+
'laion_aesthetic_s13b_b82k:convnext_base_w', 'laion_aesthetic_s13b_b82k:convnext_base_w_320',
|
|
34
|
+
'laion_aesthetic_s13b_b82k_augreg:convnext_base_w_320', 'laion2b_s26b_b102k_augreg:convnext_large_d',
|
|
35
|
+
'laion2b_s29b_b131k_ft:convnext_large_d_320', 'laion2b_s29b_b131k_ft_soup:convnext_large_d_320',
|
|
36
|
+
'laion2b_s34b_b82k_augreg:convnext_xxlarge', 'laion2b_s34b_b82k_augreg_rewind:convnext_xxlarge',
|
|
37
|
+
'laion2b_s34b_b82k_augreg_soup:convnext_xxlarge', 'laion2b_s13b_b90k:coca_ViT-B-32',
|
|
38
|
+
'mscoco_finetuned_laion2b_s13b_b90k:coca_ViT-B-32', 'laion2b_s13b_b90k:coca_ViT-L-14',
|
|
39
|
+
'mscoco_finetuned_laion2b_s13b_b90k:coca_ViT-L-14', 'laion400m_s11b_b41k:EVA01-g-14',
|
|
40
|
+
'merged2b_s11b_b114k:EVA01-g-14-plus', 'merged2b_s8b_b131k:EVA02-B-16', 'merged2b_s4b_b131k:EVA02-L-14',
|
|
41
|
+
'merged2b_s6b_b61k:EVA02-L-14-336', 'laion2b_s4b_b115k:EVA02-E-14', 'laion2b_s9b_b144k:EVA02-E-14-plus',
|
|
42
|
+
'webli:ViT-B-16-SigLIP', 'webli:ViT-B-16-SigLIP-256', 'webli:ViT-B-16-SigLIP-i18n-256', 'webli:ViT-B-16-SigLIP-384',
|
|
43
|
+
'webli:ViT-B-16-SigLIP-512', 'webli:ViT-L-16-SigLIP-256', 'webli:ViT-L-16-SigLIP-384', 'webli:ViT-SO400M-14-SigLIP',
|
|
44
|
+
'webli:ViT-SO400M-16-SigLIP-i18n-256', 'webli:ViT-SO400M-14-SigLIP-378', 'webli:ViT-SO400M-14-SigLIP-384',
|
|
45
|
+
'webli:ViT-B-32-SigLIP2-256', 'webli:ViT-B-16-SigLIP2', 'webli:ViT-B-16-SigLIP2-256', 'webli:ViT-B-16-SigLIP2-384',
|
|
46
|
+
'webli:ViT-B-16-SigLIP2-512', 'webli:ViT-L-16-SigLIP2-256', 'webli:ViT-L-16-SigLIP2-384',
|
|
47
|
+
'webli:ViT-L-16-SigLIP2-512', 'webli:ViT-SO400M-14-SigLIP2', 'webli:ViT-SO400M-14-SigLIP2-378',
|
|
48
|
+
'webli:ViT-SO400M-16-SigLIP2-256', 'webli:ViT-SO400M-16-SigLIP2-384', 'webli:ViT-SO400M-16-SigLIP2-512',
|
|
49
|
+
'webli:ViT-gopt-16-SigLIP2-256', 'webli:ViT-gopt-16-SigLIP2-384', 'datacomp1b:ViT-L-14-CLIPA',
|
|
50
|
+
'datacomp1b:ViT-L-14-CLIPA-336', 'datacomp1b:ViT-H-14-CLIPA', 'laion2b:ViT-H-14-CLIPA-336',
|
|
51
|
+
'datacomp1b:ViT-H-14-CLIPA-336', 'datacomp1b:ViT-bigG-14-CLIPA', 'datacomp1b:ViT-bigG-14-CLIPA-336',
|
|
52
|
+
'v1:nllb-clip-base', 'v1:nllb-clip-large', 'v1:nllb-clip-base-siglip', 'mrl:nllb-clip-base-siglip',
|
|
53
|
+
'v1:nllb-clip-large-siglip', 'mrl:nllb-clip-large-siglip', 'datacompdr:MobileCLIP-S1', 'datacompdr:MobileCLIP-S2',
|
|
54
|
+
'datacompdr:MobileCLIP-B', 'datacompdr_lt:MobileCLIP-B', 'datacomp1b:ViTamin-S', 'datacomp1b:ViTamin-S-LTT',
|
|
55
|
+
'datacomp1b:ViTamin-B', 'datacomp1b:ViTamin-B-LTT', 'datacomp1b:ViTamin-L', 'datacomp1b:ViTamin-L-256',
|
|
56
|
+
'datacomp1b:ViTamin-L-336', 'datacomp1b:ViTamin-L-384', 'datacomp1b:ViTamin-L2', 'datacomp1b:ViTamin-L2-256',
|
|
57
|
+
'datacomp1b:ViTamin-L2-336', 'datacomp1b:ViTamin-L2-384', 'datacomp1b:ViTamin-XL-256', 'datacomp1b:ViTamin-XL-336',
|
|
58
|
+
'datacomp1b:ViTamin-XL-384', 'openai:RN50-quickgelu', 'yfcc15m:RN50-quickgelu', 'cc12m:RN50-quickgelu',
|
|
59
|
+
'openai:RN101-quickgelu', 'yfcc15m:RN101-quickgelu', 'openai:RN50x4-quickgelu', 'openai:RN50x16-quickgelu',
|
|
60
|
+
'openai:RN50x64-quickgelu', 'openai:ViT-B-32-quickgelu', 'laion400m_e31:ViT-B-32-quickgelu',
|
|
61
|
+
'laion400m_e32:ViT-B-32-quickgelu', 'metaclip_400m:ViT-B-32-quickgelu', 'metaclip_fullcc:ViT-B-32-quickgelu',
|
|
62
|
+
'openai:ViT-B-16-quickgelu', 'dfn2b:ViT-B-16-quickgelu', 'metaclip_400m:ViT-B-16-quickgelu',
|
|
63
|
+
'metaclip_fullcc:ViT-B-16-quickgelu', 'openai:ViT-L-14-quickgelu', 'metaclip_400m:ViT-L-14-quickgelu',
|
|
64
|
+
'metaclip_fullcc:ViT-L-14-quickgelu', 'dfn2b:ViT-L-14-quickgelu', 'openai:ViT-L-14-336-quickgelu',
|
|
65
|
+
'metaclip_fullcc:ViT-H-14-quickgelu', 'dfn5b:ViT-H-14-quickgelu', 'dfn5b:ViT-H-14-378-quickgelu',
|
|
66
|
+
'metaclip_fullcc:ViT-bigG-14-quickgelu'
|
|
67
|
+
] # noqa: E501
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
class CLIPScoreModel(ScoreModel):
|
|
71
|
+
"A wrapper for OpenCLIP models (including openAI's CLIP, OpenCLIP, DatacompCLIP)"
|
|
72
|
+
|
|
73
|
+
def __init__(self, model_name='openai:ViT-L-14', device='cuda', cache_dir=CACHE_DIR):
|
|
74
|
+
assert model_name in CLIP_MODELS
|
|
75
|
+
super().__init__(model_name=model_name, device=device, cache_dir=cache_dir)
|
|
76
|
+
|
|
77
|
+
def load_model(self):
|
|
78
|
+
"""Load the model, tokenizer, image transform
|
|
79
|
+
"""
|
|
80
|
+
import open_clip
|
|
81
|
+
|
|
82
|
+
from ..utils import download_open_clip_model
|
|
83
|
+
|
|
84
|
+
self.pretrained, self.arch = self.model_name.split(':')
|
|
85
|
+
# load model from modelscope
|
|
86
|
+
model_file_path = download_open_clip_model(self.arch, self.pretrained, self.cache_dir)
|
|
87
|
+
|
|
88
|
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
|
89
|
+
self.arch, pretrained=model_file_path, device=self.device
|
|
90
|
+
)
|
|
91
|
+
self.tokenizer = open_clip.get_tokenizer(self.arch)
|
|
92
|
+
self.model.eval()
|
|
93
|
+
|
|
94
|
+
def load_images(self, image: List[str]) -> torch.Tensor:
|
|
95
|
+
"""Load the image(s), and return a tensor (after preprocessing) put on self.device
|
|
96
|
+
"""
|
|
97
|
+
image = [self.image_loader(x) for x in image]
|
|
98
|
+
image = [self.preprocess(x) for x in image]
|
|
99
|
+
image = torch.stack(image, dim=0).to(self.device)
|
|
100
|
+
return image
|
|
101
|
+
|
|
102
|
+
@torch.no_grad()
|
|
103
|
+
def forward(self, images: List[str], texts: List[str]) -> torch.Tensor:
|
|
104
|
+
"""Forward pass of the model to return n scores for n (image, text) pairs (in PyTorch Tensor)
|
|
105
|
+
"""
|
|
106
|
+
assert len(images) == len(texts)
|
|
107
|
+
image = self.load_images(images)
|
|
108
|
+
text = self.tokenizer(texts).to(self.device)
|
|
109
|
+
image_features = self.model.encode_image(image)
|
|
110
|
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
111
|
+
text_features = self.model.encode_text(text)
|
|
112
|
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
113
|
+
|
|
114
|
+
# return cosine similarity as scores
|
|
115
|
+
return (image_features * text_features).sum(dim=-1)
|
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from typing import List
|
|
3
|
+
|
|
4
|
+
from ...constants import CACHE_DIR
|
|
5
|
+
from ..model import ScoreModel
|
|
6
|
+
|
|
7
|
+
HPSV2_MODELS = ['hpsv2', 'hpsv2.1']
|
|
8
|
+
HPS_VERSION_MAP = {
|
|
9
|
+
'hpsv2': 'HPS_v2_compressed.pt',
|
|
10
|
+
'hpsv2.1': 'HPS_v2.1_compressed.pt',
|
|
11
|
+
}
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class HPSV2ScoreModel(ScoreModel):
|
|
15
|
+
'A wrapper for HPSv2 models '
|
|
16
|
+
|
|
17
|
+
def __init__(self, model_name='openai:ViT-L-14', device='cuda', cache_dir=CACHE_DIR):
|
|
18
|
+
assert model_name in HPSV2_MODELS
|
|
19
|
+
super().__init__(model_name=model_name, device=device, cache_dir=cache_dir)
|
|
20
|
+
|
|
21
|
+
def load_model(self):
|
|
22
|
+
"""Load the model, tokenizer, image transform
|
|
23
|
+
"""
|
|
24
|
+
import open_clip
|
|
25
|
+
|
|
26
|
+
from ..utils import download_file, download_open_clip_model
|
|
27
|
+
|
|
28
|
+
self.pretrained, self.arch = 'laion2B-s32B-b79K:ViT-H-14'.split(':')
|
|
29
|
+
# load model from modelscope
|
|
30
|
+
model_file_path = download_open_clip_model(self.arch, self.pretrained, self.cache_dir)
|
|
31
|
+
|
|
32
|
+
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
|
33
|
+
self.arch,
|
|
34
|
+
pretrained=model_file_path,
|
|
35
|
+
precision='amp',
|
|
36
|
+
device=self.device,
|
|
37
|
+
jit=False,
|
|
38
|
+
force_quick_gelu=False,
|
|
39
|
+
force_custom_text=False,
|
|
40
|
+
force_patch_dropout=False,
|
|
41
|
+
force_image_size=None,
|
|
42
|
+
pretrained_image=False,
|
|
43
|
+
image_mean=None,
|
|
44
|
+
image_std=None,
|
|
45
|
+
image_resize_mode='longest',
|
|
46
|
+
aug_cfg={},
|
|
47
|
+
output_dict=True
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
# update weight
|
|
51
|
+
model_weight_path = download_file('AI-ModelScope/HPSv2', HPS_VERSION_MAP[self.model_name], self.cache_dir)
|
|
52
|
+
checkpoint = torch.load(model_weight_path, map_location=self.device, weights_only=False)
|
|
53
|
+
self.model.load_state_dict(checkpoint['state_dict'])
|
|
54
|
+
self.tokenizer = open_clip.get_tokenizer(self.arch)
|
|
55
|
+
self.model.eval()
|
|
56
|
+
|
|
57
|
+
def load_images(self, image: List[str]):
|
|
58
|
+
"""Load the image(s), and return a tensor (after preprocessing) put on self.device
|
|
59
|
+
"""
|
|
60
|
+
images = [self.image_loader(x) for x in image]
|
|
61
|
+
return images
|
|
62
|
+
|
|
63
|
+
@torch.no_grad()
|
|
64
|
+
def forward(self, images: List[str], texts: List[str]) -> torch.Tensor:
|
|
65
|
+
"""Forward pass of the model to return n scores for n (image, text) pairs (in PyTorch Tensor)
|
|
66
|
+
"""
|
|
67
|
+
assert len(images) == len(texts)
|
|
68
|
+
images = self.load_images(images)
|
|
69
|
+
scores = torch.zeros(len(images), dtype=torch.float16).to(self.device)
|
|
70
|
+
for i in range(len(images)):
|
|
71
|
+
caption = texts[i]
|
|
72
|
+
image = images[i]
|
|
73
|
+
# Process the image
|
|
74
|
+
image = self.preprocess(image).unsqueeze(0).to(device=self.device, non_blocking=True)
|
|
75
|
+
# Process the prompt
|
|
76
|
+
text = self.tokenizer([caption]).to(device=self.device, non_blocking=True) # Updated to use texts[i]
|
|
77
|
+
# Calculate the HPS
|
|
78
|
+
with torch.amp.autocast(device_type=self.device):
|
|
79
|
+
outputs = self.model(image, text)
|
|
80
|
+
image_features, text_features = outputs['image_features'], outputs['text_features']
|
|
81
|
+
logits_per_image = image_features @ text_features.T
|
|
82
|
+
|
|
83
|
+
hps_score = torch.diagonal(logits_per_image).cpu().numpy()
|
|
84
|
+
scores[i] = float(hps_score[0])
|
|
85
|
+
|
|
86
|
+
# return cosine similarity as scores
|
|
87
|
+
return scores
|
|
@@ -0,0 +1,86 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from modelscope import AutoProcessor
|
|
3
|
+
from transformers import CLIPConfig
|
|
4
|
+
from typing import List
|
|
5
|
+
|
|
6
|
+
from ...constants import CACHE_DIR
|
|
7
|
+
from ..model import ScoreModel
|
|
8
|
+
|
|
9
|
+
MPS_MODELS = ['mps']
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class MPSModel(ScoreModel):
|
|
13
|
+
'A wrapper for MPS Score models'
|
|
14
|
+
|
|
15
|
+
def __init__(self, model_name='mps', device='cuda', cache_dir=CACHE_DIR):
|
|
16
|
+
assert model_name in MPS_MODELS
|
|
17
|
+
super().__init__(model_name=model_name, device=device, cache_dir=cache_dir)
|
|
18
|
+
|
|
19
|
+
def load_model(self):
|
|
20
|
+
"""Load the model, tokenizer, image transform
|
|
21
|
+
"""
|
|
22
|
+
from ..utils import download_file
|
|
23
|
+
from .build_mps_model.clip_model import CLIPModel
|
|
24
|
+
|
|
25
|
+
assert self.model_name == 'mps'
|
|
26
|
+
|
|
27
|
+
processor_name_or_path = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K'
|
|
28
|
+
self.processor = AutoProcessor.from_pretrained(processor_name_or_path)
|
|
29
|
+
|
|
30
|
+
config = download_file('AI-ModelScope/MPS', file_name='config.json', cache_dir=self.cache_dir)
|
|
31
|
+
model_pretrained_path = download_file(
|
|
32
|
+
'AI-ModelScope/MPS', file_name='MPS_overall_state_dict.pt', cache_dir=self.cache_dir
|
|
33
|
+
) # modelscope model
|
|
34
|
+
model_weight = torch.load(model_pretrained_path, weights_only=True, map_location='cpu')
|
|
35
|
+
|
|
36
|
+
self.model = CLIPModel(config=CLIPConfig.from_json_file(config))
|
|
37
|
+
self.model.load_state_dict(model_weight, strict=False)
|
|
38
|
+
self.model.eval().to(self.device)
|
|
39
|
+
|
|
40
|
+
def load_images(self, image: List[str]) -> torch.Tensor:
|
|
41
|
+
"""Load the image(s), and return a tensor (no preprocessing!!) put on self.device
|
|
42
|
+
"""
|
|
43
|
+
image = [self.image_loader(x) for x in image]
|
|
44
|
+
image = self.processor(images=image, return_tensors='pt')['pixel_values']
|
|
45
|
+
return image
|
|
46
|
+
|
|
47
|
+
def process_text(self, text: List[str]) -> dict:
|
|
48
|
+
"""Process the text(s), and return a tensor (after preprocessing) put on self.device
|
|
49
|
+
"""
|
|
50
|
+
text_inputs = self.processor(
|
|
51
|
+
text=text,
|
|
52
|
+
padding='max_length',
|
|
53
|
+
truncation=True,
|
|
54
|
+
return_tensors='pt',
|
|
55
|
+
).input_ids
|
|
56
|
+
return text_inputs
|
|
57
|
+
|
|
58
|
+
@torch.no_grad()
|
|
59
|
+
def forward(self, images: List[str], texts: List[str], condition=None) -> torch.Tensor:
|
|
60
|
+
"""Forward pass of the model to return n scores for n (image, text) pairs (in PyTorch Tensor)
|
|
61
|
+
"""
|
|
62
|
+
assert len(images) == len(texts)
|
|
63
|
+
image_input = self.load_images(images).to(self.device)
|
|
64
|
+
text_input = self.process_text(texts).to(self.device)
|
|
65
|
+
if condition is None:
|
|
66
|
+
condition = 'light, color, clarity, tone, style, ambiance, artistry, shape, face, hair, hands, limbs, structure, instance, texture, quantity, attributes, position, number, location, word, things.'
|
|
67
|
+
condition_batch = self.process_text(condition).repeat(text_input.shape[0], 1).to(self.device)
|
|
68
|
+
|
|
69
|
+
# embed
|
|
70
|
+
text_f, text_features = self.model.model.get_text_features(text_input)
|
|
71
|
+
|
|
72
|
+
image_f = self.model.model.get_image_features(image_input.half())
|
|
73
|
+
condition_f, _ = self.model.model.get_text_features(condition_batch)
|
|
74
|
+
|
|
75
|
+
sim_text_condition = torch.einsum('b i d, b j d -> b j i', text_f, condition_f)
|
|
76
|
+
sim_text_condition = torch.max(sim_text_condition, dim=1, keepdim=True)[0]
|
|
77
|
+
sim_text_condition = sim_text_condition / sim_text_condition.max()
|
|
78
|
+
mask = torch.where(sim_text_condition > 0.3, 0, float('-inf'))
|
|
79
|
+
mask = mask.repeat(1, image_f.shape[1], 1)
|
|
80
|
+
image_features = self.model.cross_model(image_f, text_f, mask.half())[:, 0, :]
|
|
81
|
+
|
|
82
|
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
|
83
|
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
|
84
|
+
image_score = self.model.logit_scale.exp() * text_features @ image_features.T
|
|
85
|
+
|
|
86
|
+
return image_score[0]
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from abc import abstractmethod
|
|
3
|
+
from modelscope import AutoModel, AutoProcessor
|
|
4
|
+
from typing import List
|
|
5
|
+
|
|
6
|
+
from ...constants import CACHE_DIR
|
|
7
|
+
from ..model import ScoreModel
|
|
8
|
+
|
|
9
|
+
PICKSCORE_MODELS = ['pickscore-v1']
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class PickScoreModel(ScoreModel):
|
|
13
|
+
'A wrapper for PickScore models'
|
|
14
|
+
|
|
15
|
+
def __init__(self, model_name='pickscore-v1', device='cuda', cache_dir=CACHE_DIR):
|
|
16
|
+
assert model_name in PICKSCORE_MODELS
|
|
17
|
+
super().__init__(model_name=model_name, device=device, cache_dir=cache_dir)
|
|
18
|
+
|
|
19
|
+
def load_model(self):
|
|
20
|
+
"""Load the model, tokenizer, image transform
|
|
21
|
+
"""
|
|
22
|
+
assert self.model_name == 'pickscore-v1'
|
|
23
|
+
processor_name_or_path = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K'
|
|
24
|
+
# model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1"
|
|
25
|
+
model_pretrained_name_or_path = 'AI-ModelScope/PickScore_v1' # modelscope model
|
|
26
|
+
|
|
27
|
+
self.processor = AutoProcessor.from_pretrained(processor_name_or_path)
|
|
28
|
+
self.model = AutoModel.from_pretrained(model_pretrained_name_or_path).eval().to(self.device)
|
|
29
|
+
|
|
30
|
+
def load_images(self, image: List[str]) -> torch.Tensor:
|
|
31
|
+
"""Load the image(s), and return a tensor (no preprocessing!!) put on self.device
|
|
32
|
+
"""
|
|
33
|
+
image = [self.image_loader(x) for x in image]
|
|
34
|
+
image = self.processor(images=image, padding=True, truncation=True, max_length=77,
|
|
35
|
+
return_tensors='pt').to(self.device)
|
|
36
|
+
# image = torch.stack(image, dim=0).to(self.device)
|
|
37
|
+
return image
|
|
38
|
+
|
|
39
|
+
@torch.no_grad()
|
|
40
|
+
def forward(self, images: List[str], texts: List[str]) -> torch.Tensor:
|
|
41
|
+
"""Forward pass of the model to return n scores for n (image, text) pairs (in PyTorch Tensor)
|
|
42
|
+
"""
|
|
43
|
+
assert len(images) == len(texts)
|
|
44
|
+
image = self.load_images(images)
|
|
45
|
+
text_inputs = self.processor(
|
|
46
|
+
text=texts,
|
|
47
|
+
padding=True,
|
|
48
|
+
truncation=True,
|
|
49
|
+
max_length=77,
|
|
50
|
+
return_tensors='pt',
|
|
51
|
+
).to(self.device)
|
|
52
|
+
|
|
53
|
+
# embed
|
|
54
|
+
image_embs = self.model.get_image_features(**image)
|
|
55
|
+
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
|
|
56
|
+
|
|
57
|
+
text_embs = self.model.get_text_features(**text_inputs)
|
|
58
|
+
text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True)
|
|
59
|
+
|
|
60
|
+
# score
|
|
61
|
+
scores = (image_embs * text_embs).sum(dim=-1)
|
|
62
|
+
return scores
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
from ...constants import CACHE_DIR
|
|
2
|
+
from .blip2_itm_model import BLIP2_ITM_MODELS, BLIP2ITMScoreModel
|
|
3
|
+
from .fga_blip2_model import FGA_BLIP2_MODELS, FGA_BLIP2ScoreModel
|
|
4
|
+
from .image_reward_model import IMAGE_REWARD_MODELS, ImageRewardScoreModel
|
|
5
|
+
|
|
6
|
+
ALL_ITM_MODELS = [
|
|
7
|
+
BLIP2_ITM_MODELS,
|
|
8
|
+
IMAGE_REWARD_MODELS,
|
|
9
|
+
FGA_BLIP2_MODELS,
|
|
10
|
+
]
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def list_all_itmscore_models():
|
|
14
|
+
return [model for models in ALL_ITM_MODELS for model in models]
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def get_itmscore_model(model_name, device='cuda', cache_dir=CACHE_DIR):
|
|
18
|
+
assert model_name in list_all_itmscore_models()
|
|
19
|
+
if model_name in BLIP2_ITM_MODELS:
|
|
20
|
+
return BLIP2ITMScoreModel(model_name, device=device, cache_dir=cache_dir)
|
|
21
|
+
elif model_name in IMAGE_REWARD_MODELS:
|
|
22
|
+
return ImageRewardScoreModel(model_name, device=device, cache_dir=cache_dir)
|
|
23
|
+
elif model_name in FGA_BLIP2_MODELS:
|
|
24
|
+
return FGA_BLIP2ScoreModel(model_name, device=device, cache_dir=cache_dir)
|
|
25
|
+
else:
|
|
26
|
+
raise NotImplementedError()
|