evalscope 0.10.0__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- evalscope/__init__.py +4 -1
- evalscope/api/benchmark/__init__.py +11 -0
- evalscope/api/benchmark/adapters/__init__.py +7 -0
- evalscope/api/benchmark/adapters/agent_adapter.py +8 -0
- evalscope/api/benchmark/adapters/default_data_adapter.py +754 -0
- evalscope/api/benchmark/adapters/image_edit_adapter.py +82 -0
- evalscope/api/benchmark/adapters/multi_choice_adapter.py +86 -0
- evalscope/api/benchmark/adapters/ner_adapter.py +212 -0
- evalscope/api/benchmark/adapters/text2image_adapter.py +157 -0
- evalscope/api/benchmark/adapters/vision_language_adapter.py +8 -0
- evalscope/api/benchmark/benchmark.py +404 -0
- evalscope/api/benchmark/meta.py +124 -0
- evalscope/api/dataset/__init__.py +2 -0
- evalscope/api/dataset/dataset.py +370 -0
- evalscope/api/dataset/loader.py +266 -0
- evalscope/api/dataset/utils.py +143 -0
- evalscope/api/evaluator/__init__.py +3 -0
- evalscope/api/evaluator/cache.py +382 -0
- evalscope/api/evaluator/evaluator.py +61 -0
- evalscope/api/evaluator/state.py +280 -0
- evalscope/api/filter/__init__.py +1 -0
- evalscope/api/filter/filter.py +72 -0
- evalscope/api/messages/__init__.py +12 -0
- evalscope/api/messages/chat_message.py +248 -0
- evalscope/api/messages/content.py +102 -0
- evalscope/api/messages/utils.py +35 -0
- evalscope/api/metric/__init__.py +2 -0
- evalscope/api/metric/metric.py +60 -0
- evalscope/api/metric/scorer.py +113 -0
- evalscope/api/mixin/__init__.py +2 -0
- evalscope/api/mixin/llm_judge_mixin.py +170 -0
- evalscope/api/mixin/sandbox_mixin.py +182 -0
- evalscope/api/model/__init__.py +12 -0
- evalscope/api/model/generate_config.py +161 -0
- evalscope/api/model/model.py +386 -0
- evalscope/api/model/model_output.py +285 -0
- evalscope/api/registry.py +182 -0
- evalscope/api/tool/__init__.py +3 -0
- evalscope/api/tool/tool_call.py +101 -0
- evalscope/api/tool/tool_info.py +173 -0
- evalscope/api/tool/utils.py +64 -0
- evalscope/app/__init__.py +28 -0
- evalscope/app/app.py +38 -0
- evalscope/app/arguments.py +11 -0
- evalscope/app/constants.py +22 -0
- evalscope/app/ui/__init__.py +20 -0
- evalscope/app/ui/app_ui.py +53 -0
- evalscope/app/ui/multi_model.py +353 -0
- evalscope/app/ui/sidebar.py +42 -0
- evalscope/app/ui/single_model.py +220 -0
- evalscope/app/ui/visualization.py +36 -0
- evalscope/app/utils/data_utils.py +195 -0
- evalscope/app/utils/env_utils.py +12 -0
- evalscope/app/utils/localization.py +221 -0
- evalscope/app/utils/text_utils.py +119 -0
- evalscope/app/utils/visualization.py +96 -0
- evalscope/arguments.py +32 -9
- evalscope/backend/opencompass/api_meta_template.py +2 -1
- evalscope/backend/opencompass/backend_manager.py +10 -7
- evalscope/backend/rag_eval/__init__.py +1 -1
- evalscope/backend/rag_eval/backend_manager.py +23 -6
- evalscope/backend/rag_eval/clip_benchmark/dataset_builder.py +33 -21
- evalscope/backend/rag_eval/clip_benchmark/task_template.py +8 -4
- evalscope/backend/rag_eval/cmteb/arguments.py +14 -1
- evalscope/backend/rag_eval/cmteb/task_template.py +19 -3
- evalscope/backend/rag_eval/cmteb/tasks/CustomTask.py +1 -1
- evalscope/backend/rag_eval/ragas/arguments.py +0 -1
- evalscope/backend/rag_eval/ragas/task_template.py +2 -1
- evalscope/backend/rag_eval/ragas/tasks/build_distribution.py +2 -1
- evalscope/backend/rag_eval/ragas/tasks/build_transform.py +7 -4
- evalscope/backend/rag_eval/ragas/tasks/testset_generation.py +9 -3
- evalscope/backend/rag_eval/ragas/tasks/translate_prompt.py +2 -6
- evalscope/backend/rag_eval/utils/embedding.py +125 -32
- evalscope/backend/rag_eval/utils/llm.py +16 -16
- evalscope/backend/vlm_eval_kit/backend_manager.py +8 -3
- evalscope/benchmarks/__init__.py +17 -5
- evalscope/benchmarks/aa_lcr/__init__.py +0 -0
- evalscope/benchmarks/aa_lcr/aa_lcr_adapter.py +205 -0
- evalscope/benchmarks/ai2d/__init__.py +0 -0
- evalscope/benchmarks/ai2d/ai2d_adapter.py +54 -0
- evalscope/benchmarks/aime/__init__.py +0 -0
- evalscope/benchmarks/aime/aime24_adapter.py +55 -0
- evalscope/benchmarks/aime/aime25_adapter.py +181 -0
- evalscope/benchmarks/aime/grader.py +307 -0
- evalscope/{metrics/math_accuracy.py → benchmarks/aime/math_normalize.py} +61 -72
- evalscope/benchmarks/alpaca_eval/__init__.py +0 -0
- evalscope/benchmarks/alpaca_eval/alpaca_eval_adapter.py +133 -0
- evalscope/benchmarks/amc/__init__.py +0 -0
- evalscope/benchmarks/amc/amc_adapter.py +51 -0
- evalscope/benchmarks/arc/arc_adapter.py +34 -149
- evalscope/benchmarks/arena_hard/__init__.py +0 -0
- evalscope/benchmarks/arena_hard/arena_hard_adapter.py +149 -0
- evalscope/benchmarks/arena_hard/utils.py +186 -0
- evalscope/benchmarks/bbh/bbh_adapter.py +117 -157
- evalscope/benchmarks/bfcl/__init__.py +0 -0
- evalscope/benchmarks/bfcl/v3/__init__.py +0 -0
- evalscope/benchmarks/bfcl/v3/bfcl_v3_adapter.py +370 -0
- evalscope/benchmarks/bfcl/v3/generation.py +222 -0
- evalscope/benchmarks/bfcl/v3/utils.py +23 -0
- evalscope/benchmarks/bfcl/v4/__init__.py +0 -0
- evalscope/benchmarks/bfcl/v4/bfcl_v4_adapter.py +229 -0
- evalscope/benchmarks/bfcl/v4/utils.py +410 -0
- evalscope/benchmarks/biomix_qa/__init__.py +0 -0
- evalscope/benchmarks/biomix_qa/biomix_qa_adapter.py +36 -0
- evalscope/benchmarks/blink/__init__.py +0 -0
- evalscope/benchmarks/blink/blink_adapter.py +61 -0
- evalscope/benchmarks/ceval/ceval_adapter.py +93 -174
- evalscope/benchmarks/chartqa/__init__.py +0 -0
- evalscope/benchmarks/chartqa/chartqa_adapter.py +80 -0
- evalscope/benchmarks/chartqa/utils.py +38 -0
- evalscope/benchmarks/chinese_simple_qa/__init__.py +0 -0
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +170 -0
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +34 -140
- evalscope/benchmarks/coin_flip/__init__.py +0 -0
- evalscope/benchmarks/coin_flip/coin_flip_adapter.py +128 -0
- evalscope/benchmarks/commonsense_qa/__init__.py +0 -0
- evalscope/benchmarks/commonsense_qa/commonsense_qa_adapter.py +32 -0
- evalscope/benchmarks/competition_math/competition_math_adapter.py +64 -112
- evalscope/benchmarks/data_collection/__init__.py +0 -0
- evalscope/benchmarks/data_collection/data_collection_adapter.py +215 -0
- evalscope/benchmarks/docmath/__init__.py +0 -0
- evalscope/benchmarks/docmath/docmath_adapter.py +143 -0
- evalscope/benchmarks/docmath/utils.py +219 -0
- evalscope/benchmarks/docvqa/__init__.py +0 -0
- evalscope/benchmarks/docvqa/docvqa_adapter.py +67 -0
- evalscope/benchmarks/drivelology/__init__.py +0 -0
- evalscope/benchmarks/drivelology/drivelology_binary_adapter.py +170 -0
- evalscope/benchmarks/drivelology/drivelology_multilabel_adapter.py +254 -0
- evalscope/benchmarks/drivelology/drivelology_selection_adapter.py +49 -0
- evalscope/benchmarks/drivelology/drivelology_writing_adapter.py +218 -0
- evalscope/benchmarks/drop/__init__.py +0 -0
- evalscope/benchmarks/drop/drop_adapter.py +155 -0
- evalscope/benchmarks/drop/utils.py +156 -0
- evalscope/benchmarks/frames/__init__.py +0 -0
- evalscope/benchmarks/frames/frames_adapter.py +175 -0
- evalscope/benchmarks/frames/utils.py +37 -0
- evalscope/benchmarks/general_arena/__init__.py +0 -0
- evalscope/benchmarks/general_arena/general_arena_adapter.py +454 -0
- evalscope/benchmarks/general_arena/utils.py +223 -0
- evalscope/benchmarks/general_mcq/__init__.py +0 -0
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +58 -0
- evalscope/benchmarks/general_qa/general_qa_adapter.py +75 -107
- evalscope/benchmarks/gpqa/__init__.py +0 -0
- evalscope/benchmarks/gpqa/gpqa_adapter.py +90 -0
- evalscope/benchmarks/gpqa/prompt.py +88 -0
- evalscope/benchmarks/gsm8k/gsm8k_adapter.py +77 -144
- evalscope/benchmarks/hallusion_bench/__init__.py +0 -0
- evalscope/benchmarks/hallusion_bench/hallusion_bench_adapter.py +159 -0
- evalscope/benchmarks/halu_eval/__init__.py +0 -0
- evalscope/benchmarks/halu_eval/halu_eval_adapter.py +128 -0
- evalscope/benchmarks/halu_eval/halu_eval_instructions.py +84 -0
- evalscope/benchmarks/healthbench/__init__.py +0 -0
- evalscope/benchmarks/healthbench/healthbench_adapter.py +282 -0
- evalscope/benchmarks/healthbench/utils.py +102 -0
- evalscope/benchmarks/hellaswag/hellaswag_adapter.py +36 -134
- evalscope/benchmarks/hle/__init__.py +0 -0
- evalscope/benchmarks/hle/hle_adapter.py +153 -0
- evalscope/benchmarks/humaneval/humaneval_adapter.py +80 -88
- evalscope/benchmarks/humaneval/utils.py +235 -0
- evalscope/benchmarks/ifeval/ifeval_adapter.py +71 -45
- evalscope/benchmarks/ifeval/instructions.py +112 -68
- evalscope/benchmarks/ifeval/instructions_registry.py +1 -1
- evalscope/benchmarks/ifeval/instructions_util.py +2 -3
- evalscope/benchmarks/ifeval/utils.py +6 -7
- evalscope/benchmarks/image_edit/__init__.py +0 -0
- evalscope/benchmarks/image_edit/gedit/__init__.py +0 -0
- evalscope/benchmarks/image_edit/gedit/gedit_adapter.py +138 -0
- evalscope/benchmarks/image_edit/gedit/utils.py +372 -0
- evalscope/benchmarks/image_edit/gedit/vie_prompts.py +406 -0
- evalscope/benchmarks/infovqa/__init__.py +0 -0
- evalscope/benchmarks/infovqa/infovqa_adapter.py +66 -0
- evalscope/benchmarks/iquiz/iquiz_adapter.py +30 -58
- evalscope/benchmarks/live_code_bench/__init__.py +0 -0
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +195 -0
- evalscope/benchmarks/live_code_bench/extract_utils.py +70 -0
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +150 -0
- evalscope/benchmarks/live_code_bench/load_utils.py +63 -0
- evalscope/benchmarks/live_code_bench/pass_k_utils.py +56 -0
- evalscope/benchmarks/live_code_bench/prompts.py +207 -0
- evalscope/benchmarks/live_code_bench/sandbox_evaluate_utils.py +220 -0
- evalscope/benchmarks/live_code_bench/testing_util.py +544 -0
- evalscope/benchmarks/logi_qa/__int__.py +0 -0
- evalscope/benchmarks/logi_qa/logi_qa_adapter.py +41 -0
- evalscope/benchmarks/maritime_bench/__init__.py +0 -0
- evalscope/benchmarks/maritime_bench/maritime_bench_adapter.py +56 -0
- evalscope/benchmarks/math_500/__init__.py +0 -0
- evalscope/benchmarks/math_500/math_500_adapter.py +55 -0
- evalscope/benchmarks/math_qa/__init__.py +0 -0
- evalscope/benchmarks/math_qa/math_qa_adapter.py +35 -0
- evalscope/benchmarks/math_verse/__init__.py +0 -0
- evalscope/benchmarks/math_verse/math_verse_adapter.py +105 -0
- evalscope/benchmarks/math_vision/__init__.py +0 -0
- evalscope/benchmarks/math_vision/math_vision_adapter.py +116 -0
- evalscope/benchmarks/math_vista/__init__.py +0 -0
- evalscope/benchmarks/math_vista/math_vista_adapter.py +114 -0
- evalscope/benchmarks/med_mcqa/__init__.py +0 -0
- evalscope/benchmarks/med_mcqa/med_mcqa_adapter.py +32 -0
- evalscope/benchmarks/minerva_math/__init__.py +0 -0
- evalscope/benchmarks/minerva_math/minerva_math_adapter.py +53 -0
- evalscope/benchmarks/mm_bench/__init__.py +0 -0
- evalscope/benchmarks/mm_bench/mm_bench_adapter.py +99 -0
- evalscope/benchmarks/mm_star/__init__.py +0 -0
- evalscope/benchmarks/mm_star/mm_star_adapter.py +73 -0
- evalscope/benchmarks/mmlu/mmlu_adapter.py +32 -210
- evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +87 -103
- evalscope/benchmarks/mmlu_redux/__init__.py +0 -0
- evalscope/benchmarks/mmlu_redux/mmlu_redux_adapter.py +139 -0
- evalscope/benchmarks/mmmu/__init__.py +0 -0
- evalscope/benchmarks/mmmu/mmmu_adapter.py +159 -0
- evalscope/benchmarks/mmmu_pro/__init__.py +0 -0
- evalscope/benchmarks/mmmu_pro/mmmu_pro_adapter.py +124 -0
- evalscope/benchmarks/mri_mcqa/__init__.py +0 -0
- evalscope/benchmarks/mri_mcqa/mri_mcqa_adapter.py +34 -0
- evalscope/benchmarks/multi_if/__init__.py +0 -0
- evalscope/benchmarks/multi_if/ifeval.py +3354 -0
- evalscope/benchmarks/multi_if/metrics.py +120 -0
- evalscope/benchmarks/multi_if/multi_if_adapter.py +161 -0
- evalscope/benchmarks/music_trivia/__init__.py +0 -0
- evalscope/benchmarks/music_trivia/music_trivia_adapter.py +36 -0
- evalscope/benchmarks/musr/__init__.py +0 -0
- evalscope/benchmarks/musr/musr_adapter.py +43 -0
- evalscope/benchmarks/needle_haystack/__init__.py +0 -0
- evalscope/benchmarks/needle_haystack/needle_haystack_adapter.py +389 -0
- evalscope/benchmarks/needle_haystack/utils.py +79 -0
- evalscope/benchmarks/ner/__init__.py +0 -0
- evalscope/benchmarks/ner/broad_twitter_corpus_adapter.py +52 -0
- evalscope/benchmarks/ner/conll2003_adapter.py +48 -0
- evalscope/benchmarks/ner/copious_adapter.py +85 -0
- evalscope/benchmarks/ner/cross_ner_adapter.py +120 -0
- evalscope/benchmarks/ner/cross_ner_entities/__init__.py +0 -0
- evalscope/benchmarks/ner/cross_ner_entities/ai.py +54 -0
- evalscope/benchmarks/ner/cross_ner_entities/literature.py +36 -0
- evalscope/benchmarks/ner/cross_ner_entities/music.py +39 -0
- evalscope/benchmarks/ner/cross_ner_entities/politics.py +37 -0
- evalscope/benchmarks/ner/cross_ner_entities/science.py +58 -0
- evalscope/benchmarks/ner/genia_ner_adapter.py +66 -0
- evalscope/benchmarks/ner/harvey_ner_adapter.py +58 -0
- evalscope/benchmarks/ner/mit_movie_trivia_adapter.py +74 -0
- evalscope/benchmarks/ner/mit_restaurant_adapter.py +66 -0
- evalscope/benchmarks/ner/ontonotes5_adapter.py +87 -0
- evalscope/benchmarks/ner/wnut2017_adapter.py +61 -0
- evalscope/benchmarks/ocr_bench/__init__.py +0 -0
- evalscope/benchmarks/ocr_bench/ocr_bench/__init__.py +0 -0
- evalscope/benchmarks/ocr_bench/ocr_bench/ocr_bench_adapter.py +101 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/IoUscore_metric.py +87 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/TEDS_metric.py +963 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/__init__.py +0 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/ocr_bench_v2_adapter.py +161 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/page_ocr_metric.py +50 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/parallel.py +46 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/__init__.py +0 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/readme.txt +26 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/rrc_evaluation_funcs_1_1.py +537 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_eval/script.py +481 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/spotting_metric.py +179 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/utils.py +433 -0
- evalscope/benchmarks/ocr_bench/ocr_bench_v2/vqa_metric.py +254 -0
- evalscope/benchmarks/olympiad_bench/__init__.py +0 -0
- evalscope/benchmarks/olympiad_bench/olympiad_bench_adapter.py +163 -0
- evalscope/benchmarks/olympiad_bench/utils.py +565 -0
- evalscope/benchmarks/omni_bench/__init__.py +0 -0
- evalscope/benchmarks/omni_bench/omni_bench_adapter.py +86 -0
- evalscope/benchmarks/omnidoc_bench/__init__.py +0 -0
- evalscope/benchmarks/omnidoc_bench/end2end_eval.py +349 -0
- evalscope/benchmarks/omnidoc_bench/metrics.py +547 -0
- evalscope/benchmarks/omnidoc_bench/omnidoc_bench_adapter.py +135 -0
- evalscope/benchmarks/omnidoc_bench/utils.py +1937 -0
- evalscope/benchmarks/piqa/__init__.py +0 -0
- evalscope/benchmarks/piqa/piqa_adapter.py +32 -0
- evalscope/benchmarks/poly_math/__init__.py +0 -0
- evalscope/benchmarks/poly_math/poly_math_adapter.py +132 -0
- evalscope/benchmarks/poly_math/utils/instruction.py +105 -0
- evalscope/benchmarks/pope/__init__.py +0 -0
- evalscope/benchmarks/pope/pope_adapter.py +112 -0
- evalscope/benchmarks/process_bench/__init__.py +0 -0
- evalscope/benchmarks/process_bench/process_bench_adapter.py +171 -0
- evalscope/benchmarks/pumed_qa/__init__.py +0 -0
- evalscope/benchmarks/pumed_qa/pubmed_qa_adapter.py +175 -0
- evalscope/benchmarks/qasc/__init__.py +0 -0
- evalscope/benchmarks/qasc/qasc_adapter.py +35 -0
- evalscope/benchmarks/race/race_adapter.py +33 -120
- evalscope/benchmarks/real_world_qa/__init__.py +0 -0
- evalscope/benchmarks/real_world_qa/real_world_qa_adapter.py +64 -0
- evalscope/benchmarks/sciq/__init__.py +0 -0
- evalscope/benchmarks/sciq/sciq_adapter.py +36 -0
- evalscope/benchmarks/seed_bench_2_plus/__init__.py +0 -0
- evalscope/benchmarks/seed_bench_2_plus/seed_bench_2_plus_adapter.py +72 -0
- evalscope/benchmarks/simple_qa/__init__.py +0 -0
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +169 -0
- evalscope/benchmarks/simple_vqa/__init__.py +0 -0
- evalscope/benchmarks/simple_vqa/simple_vqa_adapter.py +169 -0
- evalscope/benchmarks/siqa/__init__.py +0 -0
- evalscope/benchmarks/siqa/siqa_adapter.py +39 -0
- evalscope/benchmarks/super_gpqa/__init__.py +0 -0
- evalscope/benchmarks/super_gpqa/prompt.py +88 -0
- evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +165 -0
- evalscope/benchmarks/super_gpqa/utils.py +86 -0
- evalscope/benchmarks/tau_bench/__init__.py +0 -0
- evalscope/benchmarks/tau_bench/tau2_bench/__init__.py +0 -0
- evalscope/benchmarks/tau_bench/tau2_bench/generation.py +158 -0
- evalscope/benchmarks/tau_bench/tau2_bench/tau2_bench_adapter.py +146 -0
- evalscope/benchmarks/tau_bench/tau_bench/__init__.py +0 -0
- evalscope/benchmarks/tau_bench/tau_bench/generation.py +147 -0
- evalscope/benchmarks/tau_bench/tau_bench/tau_bench_adapter.py +168 -0
- evalscope/benchmarks/text2image/__init__.py +0 -0
- evalscope/benchmarks/text2image/evalmuse_adapter.py +78 -0
- evalscope/benchmarks/text2image/genai_bench_adapter.py +53 -0
- evalscope/benchmarks/text2image/general_t2i_adapter.py +42 -0
- evalscope/benchmarks/text2image/hpdv2_adapter.py +52 -0
- evalscope/benchmarks/text2image/tifa_adapter.py +27 -0
- evalscope/benchmarks/tool_bench/__init__.py +0 -0
- evalscope/benchmarks/tool_bench/tool_bench_adapter.py +102 -0
- evalscope/benchmarks/tool_bench/utils.py +203 -0
- evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +56 -118
- evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +70 -270
- evalscope/benchmarks/visu_logic/__init__.py +0 -0
- evalscope/benchmarks/visu_logic/visu_logic_adapter.py +75 -0
- evalscope/benchmarks/winogrande/__init__.py +0 -0
- evalscope/benchmarks/winogrande/winogrande_adapter.py +34 -0
- evalscope/benchmarks/wmt/__init__.py +0 -0
- evalscope/benchmarks/wmt/wmt24_adapter.py +294 -0
- evalscope/benchmarks/zerobench/__init__.py +0 -0
- evalscope/benchmarks/zerobench/zerobench_adapter.py +64 -0
- evalscope/cli/cli.py +2 -0
- evalscope/cli/start_app.py +12 -2
- evalscope/cli/start_eval.py +4 -3
- evalscope/cli/start_perf.py +10 -2
- evalscope/cli/start_server.py +6 -3
- evalscope/collections/__init__.py +27 -3
- evalscope/collections/sampler.py +12 -11
- evalscope/collections/schema.py +13 -12
- evalscope/config.py +218 -147
- evalscope/constants.py +78 -82
- evalscope/evaluator/__init__.py +1 -1
- evalscope/evaluator/evaluator.py +334 -318
- evalscope/filters/__init__.py +2 -0
- evalscope/filters/extraction.py +126 -0
- evalscope/filters/selection.py +57 -0
- evalscope/metrics/__init__.py +59 -3
- evalscope/metrics/bert_score/__init__.py +0 -0
- evalscope/metrics/bert_score/scorer.py +338 -0
- evalscope/metrics/bert_score/utils.py +697 -0
- evalscope/metrics/bundled_rouge_score/rouge_scorer.py +20 -15
- evalscope/metrics/llm_judge.py +211 -0
- evalscope/metrics/math_parser.py +545 -0
- evalscope/metrics/metric.py +611 -0
- evalscope/metrics/metrics.py +112 -23
- evalscope/metrics/rouge_metric.py +11 -13
- evalscope/metrics/t2v_metrics/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/clipscore.py +14 -0
- evalscope/metrics/t2v_metrics/constants.py +12 -0
- evalscope/metrics/t2v_metrics/itmscore.py +14 -0
- evalscope/metrics/t2v_metrics/models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/__init__.py +30 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/base_model.py +6 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/clip_model.py +134 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/build_mps_model/cross_modeling.py +282 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/clip_model.py +115 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/hpsv2_model.py +87 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/mps_model.py +86 -0
- evalscope/metrics/t2v_metrics/models/clipscore_models/pickscore_model.py +62 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/blip2_itm_model.py +85 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/fga_blip2_model.py +99 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/ImageReward.py +176 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward/blip_pretrain.py +82 -0
- evalscope/metrics/t2v_metrics/models/itmscore_models/image_reward_model.py +74 -0
- evalscope/metrics/t2v_metrics/models/model.py +45 -0
- evalscope/metrics/t2v_metrics/models/utils.py +25 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/__init__.py +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/__init__.py +1 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/language_model/clip_t5.py +306 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py +12 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/clip_encoder.py +84 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py +50 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5_model.py +223 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/gpt4v_model.py +153 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/__init__.py +26 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/config.py +465 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/dist_utils.py +141 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/gradcam.py +24 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/logger.py +190 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/optims.py +100 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/registry.py +313 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/utils.py +416 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/__init__.py +8 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa.py +192 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/common/vqa_tools/vqa_eval.py +320 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/default.yaml +10 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_caption_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_coco.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_flant5xxl.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain.yaml +36 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_no_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_iter_80k_total_100k_prefix.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_flant5xxl.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt2.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_opt6.7b.yaml +42 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_pretrain_vitL.yaml +37 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna13b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/blip2/blip2_vicuna7b.yaml +43 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_config_albef.json +22 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/configs/models/med_large_config.json +21 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/__init__.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/base_model.py +231 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/Qformer.py +1111 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/__init__.py +0 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2.py +211 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_image_text_matching.py +109 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_qformer.py +457 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5.py +370 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/blip2_t5_instruct.py +765 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/fga_blip2.py +274 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_llama.py +896 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip2_models/modeling_t5.py +1876 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/__init__.py +83 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip.py +58 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_caption.py +212 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_classification.py +164 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_feature_extractor.py +202 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_image_text_matching.py +187 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_nlvr.py +179 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_outputs.py +115 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_pretrain.py +371 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/blip_vqa.py +348 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/blip_models/nlvr_encoder.py +870 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/clip_vit.py +273 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/eva_vit.py +514 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/med.py +1291 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/models/vit.py +476 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/__init__.py +35 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/base_processor.py +27 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/blip_processors.py +233 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/lavis/processors/randaugment.py +393 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/mm_utils.py +129 -0
- evalscope/metrics/t2v_metrics/models/vqascore_models/vqa_model.py +18 -0
- evalscope/metrics/t2v_metrics/score.py +78 -0
- evalscope/metrics/t2v_metrics/vqascore.py +14 -0
- evalscope/models/__init__.py +23 -13
- evalscope/models/image_edit_model.py +125 -0
- evalscope/models/mockllm.py +65 -0
- evalscope/models/model_apis.py +69 -0
- evalscope/models/modelscope.py +455 -0
- evalscope/models/openai_compatible.py +144 -0
- evalscope/models/text2image_model.py +124 -0
- evalscope/models/utils/openai.py +708 -0
- evalscope/perf/__init__.py +0 -1
- evalscope/perf/arguments.py +103 -69
- evalscope/perf/benchmark.py +114 -163
- evalscope/perf/http_client.py +59 -89
- evalscope/perf/main.py +91 -18
- evalscope/perf/plugin/__init__.py +3 -2
- evalscope/perf/plugin/api/__init__.py +4 -3
- evalscope/perf/plugin/api/base.py +27 -7
- evalscope/perf/plugin/api/custom_api.py +170 -57
- evalscope/perf/plugin/api/dashscope_api.py +4 -10
- evalscope/perf/plugin/api/default_api.py +214 -0
- evalscope/perf/plugin/api/openai_api.py +120 -41
- evalscope/perf/plugin/datasets/__init__.py +10 -6
- evalscope/perf/plugin/datasets/base.py +43 -1
- evalscope/perf/plugin/datasets/custom.py +22 -3
- evalscope/perf/plugin/datasets/flickr8k.py +5 -27
- evalscope/perf/plugin/datasets/kontext_bench.py +28 -0
- evalscope/perf/plugin/datasets/line_by_line.py +7 -3
- evalscope/perf/plugin/datasets/longalpaca.py +7 -3
- evalscope/perf/plugin/datasets/openqa.py +13 -14
- evalscope/perf/plugin/datasets/random_dataset.py +67 -0
- evalscope/perf/plugin/datasets/random_vl_dataset.py +80 -0
- evalscope/perf/plugin/datasets/speed_benchmark.py +11 -0
- evalscope/perf/plugin/registry.py +36 -16
- evalscope/perf/utils/analysis_result.py +24 -23
- evalscope/perf/utils/benchmark_util.py +95 -55
- evalscope/perf/utils/db_util.py +115 -78
- evalscope/perf/utils/local_server.py +12 -47
- evalscope/perf/utils/log_utils.py +63 -0
- evalscope/perf/utils/rich_display.py +192 -0
- evalscope/report/__init__.py +46 -3
- evalscope/report/combinator.py +143 -32
- evalscope/report/generator.py +74 -34
- evalscope/report/report.py +238 -0
- evalscope/run.py +71 -46
- evalscope/summarizer.py +5 -5
- evalscope/third_party/longbench_write/infer.py +1 -1
- evalscope/third_party/thinkbench/__init__.py +3 -0
- evalscope/third_party/thinkbench/eval.py +441 -0
- evalscope/third_party/thinkbench/infer.py +130 -0
- evalscope/third_party/thinkbench/resources/critique_template.txt +17 -0
- evalscope/third_party/thinkbench/resources/reformat_template.txt +31 -0
- evalscope/third_party/thinkbench/tools/__init__.py +0 -0
- evalscope/third_party/thinkbench/tools/llm.py +48 -0
- evalscope/third_party/thinkbench/tools/utils.py +13 -0
- evalscope/third_party/toolbench_static/llm/swift_infer.py +46 -20
- evalscope/third_party/toolbench_static/toolbench_static.py +2 -1
- evalscope/utils/__init__.py +82 -2
- evalscope/utils/argument_utils.py +64 -0
- evalscope/utils/chat_service.py +8 -6
- evalscope/utils/deprecation_utils.py +53 -0
- evalscope/utils/function_utils.py +266 -0
- evalscope/utils/import_utils.py +154 -0
- evalscope/utils/io_utils.py +336 -8
- evalscope/utils/json_schema.py +231 -0
- evalscope/utils/logger.py +121 -31
- evalscope/utils/model_utils.py +57 -1
- evalscope/utils/multi_choices.py +303 -0
- evalscope/utils/ner.py +377 -0
- evalscope/utils/url_utils.py +65 -0
- evalscope/version.py +2 -2
- evalscope-1.2.0.dist-info/METADATA +553 -0
- evalscope-1.2.0.dist-info/RECORD +628 -0
- {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/WHEEL +1 -1
- {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/top_level.txt +0 -1
- evalscope/backend/vlm_eval_kit/custom_dataset.py +0 -46
- evalscope/benchmarks/arc/ai2_arc.py +0 -151
- evalscope/benchmarks/benchmark.py +0 -76
- evalscope/benchmarks/ceval/ceval_exam.py +0 -146
- evalscope/benchmarks/ceval/samples.jsonl +0 -1
- evalscope/benchmarks/cmmlu/cmmlu.py +0 -161
- evalscope/benchmarks/cmmlu/samples.jsonl +0 -5
- evalscope/benchmarks/competition_math/competition_math.py +0 -79
- evalscope/benchmarks/data_adapter.py +0 -291
- evalscope/benchmarks/gsm8k/gsm8k.py +0 -121
- evalscope/benchmarks/hellaswag/hellaswag.py +0 -112
- evalscope/benchmarks/humaneval/humaneval.py +0 -79
- evalscope/benchmarks/mmlu/mmlu.py +0 -160
- evalscope/benchmarks/mmlu/samples.jsonl +0 -5
- evalscope/benchmarks/race/race.py +0 -104
- evalscope/benchmarks/race/samples.jsonl +0 -5
- evalscope/benchmarks/trivia_qa/trivia_qa.py +0 -89
- evalscope/benchmarks/truthful_qa/truthful_qa.py +0 -163
- evalscope/collections/evaluator.py +0 -198
- evalscope/evaluator/rating_eval.py +0 -157
- evalscope/evaluator/reviewer/__init__.py +0 -1
- evalscope/evaluator/reviewer/auto_reviewer.py +0 -391
- evalscope/metrics/code_metric.py +0 -98
- evalscope/metrics/named_metrics.py +0 -17
- evalscope/metrics/resources/gpt2-zhcn3-v4.bpe +0 -58485
- evalscope/metrics/resources/gpt2-zhcn3-v4.json +0 -1
- evalscope/models/base_adapter.py +0 -52
- evalscope/models/chat_adapter.py +0 -138
- evalscope/models/choice_adapter.py +0 -211
- evalscope/models/custom/__init__.py +0 -3
- evalscope/models/custom/custom_model.py +0 -53
- evalscope/models/custom/dummy_model.py +0 -63
- evalscope/models/custom_adapter.py +0 -67
- evalscope/models/local_model.py +0 -74
- evalscope/models/model.py +0 -229
- evalscope/models/server_adapter.py +0 -111
- evalscope/registry/__init__.py +0 -1
- evalscope/registry/config/cfg_arena.yaml +0 -77
- evalscope/registry/config/cfg_arena_zhihu.yaml +0 -63
- evalscope/registry/config/cfg_pairwise_baseline.yaml +0 -83
- evalscope/registry/config/cfg_single.yaml +0 -78
- evalscope/registry/data/prompt_template/lmsys_v2.jsonl +0 -8
- evalscope/registry/data/prompt_template/prompt_templates.jsonl +0 -8
- evalscope/registry/data/qa_browser/battle.jsonl +0 -634
- evalscope/registry/data/qa_browser/category_mapping.yaml +0 -10
- evalscope/registry/data/question.jsonl +0 -80
- evalscope/registry/tasks/arc.yaml +0 -28
- evalscope/registry/tasks/bbh.yaml +0 -26
- evalscope/registry/tasks/bbh_mini.yaml +0 -26
- evalscope/registry/tasks/ceval.yaml +0 -27
- evalscope/registry/tasks/ceval_mini.yaml +0 -26
- evalscope/registry/tasks/cmmlu.yaml +0 -27
- evalscope/registry/tasks/eval_qwen-7b-chat_v100.yaml +0 -28
- evalscope/registry/tasks/general_qa.yaml +0 -27
- evalscope/registry/tasks/gsm8k.yaml +0 -29
- evalscope/registry/tasks/mmlu.yaml +0 -29
- evalscope/registry/tasks/mmlu_mini.yaml +0 -27
- evalscope/report/app.py +0 -506
- evalscope/report/utils.py +0 -133
- evalscope/run_arena.py +0 -202
- evalscope/utils/arena_utils.py +0 -217
- evalscope/utils/completion_parsers.py +0 -82
- evalscope/utils/utils.py +0 -301
- evalscope-0.10.0.dist-info/METADATA +0 -565
- evalscope-0.10.0.dist-info/RECORD +0 -286
- tests/__init__.py +0 -1
- tests/cli/__init__.py +0 -1
- tests/cli/test_collection.py +0 -57
- tests/cli/test_run.py +0 -165
- tests/perf/__init__.py +0 -1
- tests/perf/test_perf.py +0 -101
- tests/rag/test_clip_benchmark.py +0 -85
- tests/rag/test_mteb.py +0 -138
- tests/rag/test_ragas.py +0 -120
- tests/swift/__init__.py +0 -1
- tests/swift/test_run_swift_eval.py +0 -145
- tests/swift/test_run_swift_vlm_eval.py +0 -127
- tests/swift/test_run_swift_vlm_jugde_eval.py +0 -156
- tests/test_run_all.py +0 -12
- tests/vlm/__init__.py +0 -1
- tests/vlm/test_vlmeval.py +0 -60
- {tests/rag → evalscope/api}/__init__.py +0 -0
- {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info}/entry_points.txt +0 -0
- {evalscope-0.10.0.dist-info → evalscope-1.2.0.dist-info/licenses}/LICENSE +0 -0
|
@@ -0,0 +1,306 @@
|
|
|
1
|
+
# Copyright 2023 Zhiqiu Lin
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import torch
|
|
16
|
+
from dataclasses import dataclass, field
|
|
17
|
+
from transformers import AutoConfig, AutoModelForSeq2SeqLM, T5Config, T5ForConditionalGeneration
|
|
18
|
+
from transformers.modeling_outputs import Seq2SeqLMOutput
|
|
19
|
+
from typing import List, Optional, Tuple, Union
|
|
20
|
+
|
|
21
|
+
from ..multimodal_encoder.builder import build_vision_tower
|
|
22
|
+
from ..multimodal_projector.builder import build_vision_projector
|
|
23
|
+
|
|
24
|
+
IMAGE_TOKEN_INDEX = -200
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@dataclass
|
|
28
|
+
class ModelArguments:
|
|
29
|
+
tune_mm_mlp_adapter: bool = field(default=False)
|
|
30
|
+
vision_tower: Optional[str] = field(default='openai/clip-vit-large-patch14-336')
|
|
31
|
+
mm_vision_select_layer: Optional[int] = field(default=-2) # default to the second last layer in llava1.5
|
|
32
|
+
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
|
|
33
|
+
mm_projector_type: Optional[str] = field(default='mlp2x_gelu')
|
|
34
|
+
mm_vision_select_feature: Optional[str] = field(default='patch')
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class CLIPT5Config(T5Config):
|
|
38
|
+
model_type = 'clip_t5'
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class CLIPT5ForConditionalGeneration(T5ForConditionalGeneration):
|
|
42
|
+
# This class supports both T5 and FlanT5
|
|
43
|
+
config_class = CLIPT5Config
|
|
44
|
+
|
|
45
|
+
def __init__(self, config):
|
|
46
|
+
super(CLIPT5ForConditionalGeneration, self).__init__(config)
|
|
47
|
+
self.embed_tokens = self.encoder.embed_tokens
|
|
48
|
+
if hasattr(config, 'mm_vision_tower'):
|
|
49
|
+
self.vision_tower = build_vision_tower(config, delay_load=False)
|
|
50
|
+
self.mm_projector = build_vision_projector(config)
|
|
51
|
+
|
|
52
|
+
def get_vision_tower(self):
|
|
53
|
+
vision_tower = getattr(self, 'vision_tower', None)
|
|
54
|
+
if type(vision_tower) is list:
|
|
55
|
+
vision_tower = vision_tower[0]
|
|
56
|
+
return vision_tower
|
|
57
|
+
|
|
58
|
+
def get_model(self):
|
|
59
|
+
return self # for compatibility with LlavaMetaForCausalLM
|
|
60
|
+
|
|
61
|
+
def prepare_inputs_labels_for_multimodal(
|
|
62
|
+
self, input_ids, attention_mask, decoder_attention_mask, past_key_values, labels, images
|
|
63
|
+
):
|
|
64
|
+
# The labels are now separated from the input_ids.
|
|
65
|
+
vision_tower = self.get_vision_tower()
|
|
66
|
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
|
67
|
+
raise NotImplementedError()
|
|
68
|
+
|
|
69
|
+
if type(images) is list or images.ndim == 5:
|
|
70
|
+
concat_images = torch.cat([image for image in images], dim=0)
|
|
71
|
+
image_features = self.encode_images(concat_images)
|
|
72
|
+
split_sizes = [image.shape[0] for image in images]
|
|
73
|
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
|
74
|
+
image_features = [x.flatten(0, 1) for x in image_features]
|
|
75
|
+
else:
|
|
76
|
+
image_features = self.encode_images(images)
|
|
77
|
+
|
|
78
|
+
new_input_embeds = []
|
|
79
|
+
cur_image_idx = 0
|
|
80
|
+
for _, cur_input_ids in enumerate(input_ids):
|
|
81
|
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
|
82
|
+
# multimodal LLM, but the current sample is not multimodal
|
|
83
|
+
raise NotImplementedError()
|
|
84
|
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
|
85
|
+
cur_new_input_embeds = []
|
|
86
|
+
while image_token_indices.numel() > 0:
|
|
87
|
+
cur_image_features = image_features[cur_image_idx]
|
|
88
|
+
image_token_start = image_token_indices[0]
|
|
89
|
+
cur_new_input_embeds.append(self.embed_tokens(cur_input_ids[:image_token_start]))
|
|
90
|
+
cur_new_input_embeds.append(cur_image_features)
|
|
91
|
+
cur_image_idx += 1
|
|
92
|
+
cur_input_ids = cur_input_ids[image_token_start + 1:]
|
|
93
|
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
|
94
|
+
if cur_input_ids.numel() > 0:
|
|
95
|
+
cur_new_input_embeds.append(self.embed_tokens(cur_input_ids))
|
|
96
|
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
|
97
|
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
|
98
|
+
new_input_embeds.append(cur_new_input_embeds)
|
|
99
|
+
|
|
100
|
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
|
101
|
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
|
102
|
+
|
|
103
|
+
new_input_embeds_align = []
|
|
104
|
+
_input_embeds_lengths = []
|
|
105
|
+
for cur_new_embed in new_input_embeds:
|
|
106
|
+
_input_embeds_lengths.append(cur_new_embed.shape[0])
|
|
107
|
+
cur_new_embed = torch.cat((
|
|
108
|
+
cur_new_embed,
|
|
109
|
+
torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]),
|
|
110
|
+
dtype=cur_new_embed.dtype,
|
|
111
|
+
device=cur_new_embed.device)
|
|
112
|
+
),
|
|
113
|
+
dim=0)
|
|
114
|
+
new_input_embeds_align.append(cur_new_embed)
|
|
115
|
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
|
116
|
+
|
|
117
|
+
if attention_mask is not None:
|
|
118
|
+
new_attention_mask = []
|
|
119
|
+
for cur_attention_mask, _input_embeds_length in zip(attention_mask, _input_embeds_lengths):
|
|
120
|
+
new_attn_mask_pad_left = torch.full((_input_embeds_length - input_ids.shape[1], ),
|
|
121
|
+
True,
|
|
122
|
+
dtype=attention_mask.dtype,
|
|
123
|
+
device=attention_mask.device)
|
|
124
|
+
new_attn_mask_pad_right = torch.full((new_input_embeds.shape[1] - _input_embeds_length, ),
|
|
125
|
+
False,
|
|
126
|
+
dtype=attention_mask.dtype,
|
|
127
|
+
device=attention_mask.device)
|
|
128
|
+
cur_new_attention_mask = torch.cat(
|
|
129
|
+
(new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0
|
|
130
|
+
)
|
|
131
|
+
new_attention_mask.append(cur_new_attention_mask)
|
|
132
|
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
|
133
|
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
|
134
|
+
else:
|
|
135
|
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
|
136
|
+
|
|
137
|
+
if attention_mask is not None:
|
|
138
|
+
new_attn_mask_pad_left = torch.full(
|
|
139
|
+
(attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]),
|
|
140
|
+
True,
|
|
141
|
+
dtype=attention_mask.dtype,
|
|
142
|
+
device=attention_mask.device
|
|
143
|
+
)
|
|
144
|
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
|
145
|
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
|
146
|
+
|
|
147
|
+
return None, attention_mask, decoder_attention_mask, past_key_values, new_input_embeds, labels
|
|
148
|
+
|
|
149
|
+
def encode_images(self, images):
|
|
150
|
+
image_features = self.get_vision_tower()(images)
|
|
151
|
+
image_features = self.mm_projector(image_features)
|
|
152
|
+
return image_features
|
|
153
|
+
|
|
154
|
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
|
155
|
+
vision_tower = model_args.vision_tower
|
|
156
|
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
|
157
|
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
|
158
|
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
|
159
|
+
|
|
160
|
+
self.config.mm_vision_tower = vision_tower
|
|
161
|
+
self.config.pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter
|
|
162
|
+
|
|
163
|
+
if self.get_vision_tower() is None:
|
|
164
|
+
vision_tower = build_vision_tower(model_args)
|
|
165
|
+
|
|
166
|
+
if fsdp is not None and len(fsdp) > 0:
|
|
167
|
+
self.vision_tower = [vision_tower]
|
|
168
|
+
else:
|
|
169
|
+
self.vision_tower = vision_tower
|
|
170
|
+
else:
|
|
171
|
+
if fsdp is not None and len(fsdp) > 0:
|
|
172
|
+
vision_tower = self.vision_tower[0]
|
|
173
|
+
else:
|
|
174
|
+
vision_tower = self.vision_tower
|
|
175
|
+
if not vision_tower.is_loaded:
|
|
176
|
+
vision_tower.load_model()
|
|
177
|
+
|
|
178
|
+
self.config.use_mm_proj = True
|
|
179
|
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'mlp2x_gelu')
|
|
180
|
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
|
181
|
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
|
182
|
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
|
183
|
+
|
|
184
|
+
if getattr(self, 'mm_projector', None) is None:
|
|
185
|
+
self.mm_projector = build_vision_projector(self.config)
|
|
186
|
+
|
|
187
|
+
if pretrain_mm_mlp_adapter is not None:
|
|
188
|
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
|
189
|
+
|
|
190
|
+
def get_w(weights, keyword):
|
|
191
|
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
|
192
|
+
|
|
193
|
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
|
194
|
+
|
|
195
|
+
def forward(
|
|
196
|
+
self,
|
|
197
|
+
input_ids: torch.LongTensor = None,
|
|
198
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
199
|
+
decoder_attention_mask: Optional[torch.Tensor] = None,
|
|
200
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
201
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
202
|
+
labels: Optional[torch.LongTensor] = None,
|
|
203
|
+
use_cache: Optional[bool] = None,
|
|
204
|
+
output_attentions: Optional[bool] = None,
|
|
205
|
+
output_hidden_states: Optional[bool] = None,
|
|
206
|
+
images: Optional[torch.FloatTensor] = None,
|
|
207
|
+
return_dict: Optional[bool] = None,
|
|
208
|
+
**kwargs,
|
|
209
|
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
|
210
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
211
|
+
output_hidden_states = (
|
|
212
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
213
|
+
)
|
|
214
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
215
|
+
|
|
216
|
+
if inputs_embeds is None:
|
|
217
|
+
_, attention_mask, decoder_attention_mask, past_key_values, inputs_embeds, labels = \
|
|
218
|
+
self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, decoder_attention_mask, past_key_values, labels, images)
|
|
219
|
+
|
|
220
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
221
|
+
outputs = super(CLIPT5ForConditionalGeneration, self).forward(
|
|
222
|
+
input_ids=None, # will be None if inputs_embeds is not None
|
|
223
|
+
attention_mask=attention_mask,
|
|
224
|
+
decoder_attention_mask=decoder_attention_mask,
|
|
225
|
+
labels=labels,
|
|
226
|
+
past_key_values=past_key_values,
|
|
227
|
+
inputs_embeds=inputs_embeds,
|
|
228
|
+
use_cache=use_cache,
|
|
229
|
+
output_attentions=output_attentions,
|
|
230
|
+
output_hidden_states=output_hidden_states,
|
|
231
|
+
return_dict=return_dict,
|
|
232
|
+
**kwargs,
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
return outputs
|
|
236
|
+
|
|
237
|
+
@torch.no_grad()
|
|
238
|
+
def generate(
|
|
239
|
+
self,
|
|
240
|
+
inputs: Optional[torch.Tensor] = None,
|
|
241
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
242
|
+
images: Optional[torch.Tensor] = None,
|
|
243
|
+
**kwargs,
|
|
244
|
+
):
|
|
245
|
+
assert images is not None, 'images must be provided'
|
|
246
|
+
assert inputs is not None, 'inputs must be provided'
|
|
247
|
+
assert attention_mask is not None, 'attention_mask must be provided'
|
|
248
|
+
_, attention_mask, _, _, inputs_embeds, _ = \
|
|
249
|
+
self.prepare_inputs_labels_for_multimodal(inputs, attention_mask, None, None, None, images)
|
|
250
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
251
|
+
outputs = super(CLIPT5ForConditionalGeneration, self).generate(
|
|
252
|
+
input_ids=None, # will be None if inputs_embeds is not None
|
|
253
|
+
attention_mask=attention_mask,
|
|
254
|
+
inputs_embeds=inputs_embeds,
|
|
255
|
+
)
|
|
256
|
+
return outputs
|
|
257
|
+
|
|
258
|
+
def prepare_inputs_for_generation(
|
|
259
|
+
self,
|
|
260
|
+
input_ids,
|
|
261
|
+
past_key_values=None,
|
|
262
|
+
attention_mask=None,
|
|
263
|
+
head_mask=None,
|
|
264
|
+
decoder_head_mask=None,
|
|
265
|
+
decoder_attention_mask=None,
|
|
266
|
+
cross_attn_head_mask=None,
|
|
267
|
+
use_cache=None,
|
|
268
|
+
encoder_outputs=None,
|
|
269
|
+
inputs_embeds=None,
|
|
270
|
+
**kwargs,
|
|
271
|
+
):
|
|
272
|
+
# cut decoder_input_ids if past_key_values is used
|
|
273
|
+
if past_key_values is not None:
|
|
274
|
+
past_length = past_key_values[0][0].shape[2]
|
|
275
|
+
|
|
276
|
+
# Some generation methods already pass only the last input ID
|
|
277
|
+
if input_ids.shape[1] > past_length:
|
|
278
|
+
remove_prefix_length = past_length
|
|
279
|
+
else:
|
|
280
|
+
# Default to old behavior: keep only final ID
|
|
281
|
+
remove_prefix_length = input_ids.shape[1] - 1
|
|
282
|
+
|
|
283
|
+
input_ids = input_ids[:, remove_prefix_length:]
|
|
284
|
+
|
|
285
|
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
286
|
+
if inputs_embeds is not None and past_key_values is None:
|
|
287
|
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
|
288
|
+
else:
|
|
289
|
+
model_inputs = {'input_ids': input_ids}
|
|
290
|
+
|
|
291
|
+
model_inputs.update({
|
|
292
|
+
'decoder_input_ids': input_ids,
|
|
293
|
+
'past_key_values': past_key_values,
|
|
294
|
+
'encoder_outputs': encoder_outputs,
|
|
295
|
+
'attention_mask': attention_mask,
|
|
296
|
+
'head_mask': head_mask,
|
|
297
|
+
'decoder_head_mask': decoder_head_mask,
|
|
298
|
+
'decoder_attention_mask': decoder_attention_mask,
|
|
299
|
+
'cross_attn_head_mask': cross_attn_head_mask,
|
|
300
|
+
'use_cache': use_cache,
|
|
301
|
+
})
|
|
302
|
+
return model_inputs
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
AutoConfig.register('clip_t5', CLIPT5Config)
|
|
306
|
+
AutoModelForSeq2SeqLM.register(CLIPT5Config, CLIPT5ForConditionalGeneration)
|
evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_encoder/builder.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
from .clip_encoder import CLIPVisionTower
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
|
7
|
+
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
|
8
|
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
|
9
|
+
if is_absolute_path_exists or vision_tower.startswith('openai') or vision_tower.startswith('laion'):
|
|
10
|
+
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
|
11
|
+
|
|
12
|
+
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class CLIPVisionTower(nn.Module):
|
|
7
|
+
|
|
8
|
+
def __init__(self, vision_tower, args, delay_load=False):
|
|
9
|
+
super().__init__()
|
|
10
|
+
|
|
11
|
+
self.is_loaded = False
|
|
12
|
+
|
|
13
|
+
self.vision_tower_name = vision_tower
|
|
14
|
+
self.select_layer = args.mm_vision_select_layer
|
|
15
|
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
|
16
|
+
|
|
17
|
+
if not delay_load:
|
|
18
|
+
self.load_model()
|
|
19
|
+
else:
|
|
20
|
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
|
21
|
+
|
|
22
|
+
def load_model(self):
|
|
23
|
+
from .....utils import download_file
|
|
24
|
+
model_path = download_file(self.vision_tower_name.replace('openai', 'openai-mirror'))
|
|
25
|
+
self.image_processor = CLIPImageProcessor.from_pretrained(model_path)
|
|
26
|
+
self.vision_tower = CLIPVisionModel.from_pretrained(model_path)
|
|
27
|
+
self.vision_tower.requires_grad_(False)
|
|
28
|
+
|
|
29
|
+
self.is_loaded = True
|
|
30
|
+
|
|
31
|
+
def feature_select(self, image_forward_outs):
|
|
32
|
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
|
33
|
+
if self.select_feature == 'patch':
|
|
34
|
+
image_features = image_features[:, 1:]
|
|
35
|
+
elif self.select_feature == 'cls_patch':
|
|
36
|
+
image_features = image_features
|
|
37
|
+
else:
|
|
38
|
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
|
39
|
+
return image_features
|
|
40
|
+
|
|
41
|
+
@torch.no_grad()
|
|
42
|
+
def forward(self, images):
|
|
43
|
+
if type(images) is list:
|
|
44
|
+
image_features = []
|
|
45
|
+
for image in images:
|
|
46
|
+
image_forward_out = self.vision_tower(
|
|
47
|
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True
|
|
48
|
+
)
|
|
49
|
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
|
50
|
+
image_features.append(image_feature)
|
|
51
|
+
else:
|
|
52
|
+
image_forward_outs = self.vision_tower(
|
|
53
|
+
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
|
|
54
|
+
)
|
|
55
|
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
|
56
|
+
|
|
57
|
+
return image_features
|
|
58
|
+
|
|
59
|
+
@property
|
|
60
|
+
def dummy_feature(self):
|
|
61
|
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
|
62
|
+
|
|
63
|
+
@property
|
|
64
|
+
def dtype(self):
|
|
65
|
+
return self.vision_tower.dtype
|
|
66
|
+
|
|
67
|
+
@property
|
|
68
|
+
def device(self):
|
|
69
|
+
return self.vision_tower.device
|
|
70
|
+
|
|
71
|
+
@property
|
|
72
|
+
def config(self):
|
|
73
|
+
if self.is_loaded:
|
|
74
|
+
return self.vision_tower.config
|
|
75
|
+
else:
|
|
76
|
+
return self.cfg_only
|
|
77
|
+
|
|
78
|
+
@property
|
|
79
|
+
def hidden_size(self):
|
|
80
|
+
return self.config.hidden_size
|
|
81
|
+
|
|
82
|
+
@property
|
|
83
|
+
def num_patches(self):
|
|
84
|
+
return (self.config.image_size // self.config.patch_size)**2
|
evalscope/metrics/t2v_metrics/models/vqascore_models/clip_t5/model/multimodal_projector/builder.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
import re
|
|
2
|
+
import torch
|
|
3
|
+
import torch.nn as nn
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class IdentityMap(nn.Module):
|
|
7
|
+
|
|
8
|
+
def __init__(self):
|
|
9
|
+
super().__init__()
|
|
10
|
+
|
|
11
|
+
def forward(self, x, *args, **kwargs):
|
|
12
|
+
return x
|
|
13
|
+
|
|
14
|
+
@property
|
|
15
|
+
def config(self):
|
|
16
|
+
return {'mm_projector_type': 'identity'}
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class SimpleResBlock(nn.Module):
|
|
20
|
+
|
|
21
|
+
def __init__(self, channels):
|
|
22
|
+
super().__init__()
|
|
23
|
+
self.pre_norm = nn.LayerNorm(channels)
|
|
24
|
+
|
|
25
|
+
self.proj = nn.Sequential(nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels))
|
|
26
|
+
|
|
27
|
+
def forward(self, x):
|
|
28
|
+
x = self.pre_norm(x)
|
|
29
|
+
return x + self.proj(x)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
|
33
|
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
|
34
|
+
|
|
35
|
+
if projector_type == 'linear':
|
|
36
|
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
|
37
|
+
|
|
38
|
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
|
39
|
+
if mlp_gelu_match:
|
|
40
|
+
mlp_depth = int(mlp_gelu_match.group(1))
|
|
41
|
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
|
42
|
+
for _ in range(1, mlp_depth):
|
|
43
|
+
modules.append(nn.GELU())
|
|
44
|
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
|
45
|
+
return nn.Sequential(*modules)
|
|
46
|
+
|
|
47
|
+
if projector_type == 'identity':
|
|
48
|
+
return IdentityMap()
|
|
49
|
+
|
|
50
|
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
|
@@ -0,0 +1,223 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from typing import List
|
|
3
|
+
|
|
4
|
+
from ...constants import CACHE_DIR, CONTEXT_LEN, DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, SYSTEM_MSG
|
|
5
|
+
from .clip_t5.model import CLIPT5ForConditionalGeneration, ModelArguments
|
|
6
|
+
from .mm_utils import expand2square, load_pretrained_model, t5_tokenizer_image_token
|
|
7
|
+
from .vqa_model import VQAScoreModel
|
|
8
|
+
|
|
9
|
+
default_question_template = 'Does this figure show "{}"? Please answer yes or no.'
|
|
10
|
+
default_answer_template = 'Yes'
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def format_question(question, conversation_style='plain'):
|
|
14
|
+
if conversation_style == 't5_plain': # for 1st stage t5 model
|
|
15
|
+
question = DEFAULT_IMAGE_TOKEN + question
|
|
16
|
+
elif conversation_style == 't5_chat': # for 2nd stage t5 model
|
|
17
|
+
question = SYSTEM_MSG + ' USER: ' + DEFAULT_IMAGE_TOKEN + '\n' + question + ' ASSISTANT: '
|
|
18
|
+
elif conversation_style == 't5_chat_no_system': # for 2nd stage t5 model
|
|
19
|
+
question = 'USER: ' + DEFAULT_IMAGE_TOKEN + '\n' + question + ' ASSISTANT: '
|
|
20
|
+
elif conversation_style == 't5_chat_no_system_no_user': # for 2nd stage t5 model
|
|
21
|
+
question = '' + DEFAULT_IMAGE_TOKEN + '\n' + question + ' : '
|
|
22
|
+
# elif conversation_style == 't5_chat_ood_system': # for 2nd stage t5 model
|
|
23
|
+
# question = SYSTEM_MSG + " HUMAN: " + DEFAULT_IMAGE_TOKEN + "\n" + question + " GPT: "
|
|
24
|
+
else:
|
|
25
|
+
raise NotImplementedError()
|
|
26
|
+
return question
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def format_answer(answer, conversation_style='plain'):
|
|
30
|
+
return answer
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
CLIP_T5_MODELS = {
|
|
34
|
+
# We recommend using 'clip-flant5-xxl' for maximal performance.
|
|
35
|
+
# If you want to use a smaller model, we recommend using 'clip-flant5-xl'.
|
|
36
|
+
'clip-flant5-xxl': {
|
|
37
|
+
'tokenizer': {
|
|
38
|
+
'path': 'AI-ModelScope/clip-flant5-xxl', # zhiqiulin/clip-flant5-xxl
|
|
39
|
+
'model_max_length': CONTEXT_LEN,
|
|
40
|
+
},
|
|
41
|
+
'model': {
|
|
42
|
+
'path': 'AI-ModelScope/clip-flant5-xxl', # zhiqiulin/clip-flant5-xxl
|
|
43
|
+
'conversation': 't5_chat',
|
|
44
|
+
'image_aspect_ratio': 'pad',
|
|
45
|
+
},
|
|
46
|
+
},
|
|
47
|
+
'clip-flant5-xl': {
|
|
48
|
+
'tokenizer': {
|
|
49
|
+
'path': 'zhiqiulin/clip-flant5-xl',
|
|
50
|
+
'model_max_length': CONTEXT_LEN,
|
|
51
|
+
},
|
|
52
|
+
'model': {
|
|
53
|
+
'path': 'zhiqiulin/clip-flant5-xl',
|
|
54
|
+
'conversation': 't5_chat',
|
|
55
|
+
'image_aspect_ratio': 'pad',
|
|
56
|
+
},
|
|
57
|
+
},
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
class CLIPT5Model(VQAScoreModel):
|
|
62
|
+
"""A wrapper for the CLIP-FlanT5 or CLIP-T5 models"""
|
|
63
|
+
|
|
64
|
+
def __init__(self, model_name='clip-flant5-xxl', device='cuda', cache_dir=CACHE_DIR):
|
|
65
|
+
assert model_name in CLIP_T5_MODELS
|
|
66
|
+
super().__init__(model_name=model_name, device=device, cache_dir=cache_dir)
|
|
67
|
+
|
|
68
|
+
def load_model(self):
|
|
69
|
+
"""Load the model, tokenizer, image transform
|
|
70
|
+
"""
|
|
71
|
+
model_args = ModelArguments()
|
|
72
|
+
model_max_length = CLIP_T5_MODELS[self.model_name]['tokenizer']['model_max_length'] \
|
|
73
|
+
if 'model_max_length' in CLIP_T5_MODELS[self.model_name]['tokenizer'] else None
|
|
74
|
+
padding_side = CLIP_T5_MODELS[self.model_name]['tokenizer']['padding_side'] \
|
|
75
|
+
if 'padding_side' in CLIP_T5_MODELS[self.model_name]['tokenizer'] else None
|
|
76
|
+
mmprojector_repo = CLIP_T5_MODELS[self.model_name]['model']['mmprojector_repo'] \
|
|
77
|
+
if 'mmprojector_repo' in CLIP_T5_MODELS[self.model_name]['model'] else None
|
|
78
|
+
mmprojector_name = CLIP_T5_MODELS[self.model_name]['model']['mmprojector_name'] \
|
|
79
|
+
if 'mmprojector_name' in CLIP_T5_MODELS[self.model_name]['model'] else None
|
|
80
|
+
|
|
81
|
+
# default is 'pad'
|
|
82
|
+
# stage-1 models use 'square'
|
|
83
|
+
self.image_aspect_ratio = CLIP_T5_MODELS[self.model_name]['model']['image_aspect_ratio'] \
|
|
84
|
+
if 'image_aspect_ratio' in CLIP_T5_MODELS[self.model_name]['model'] else 'pad'
|
|
85
|
+
|
|
86
|
+
self.conversational_style = CLIP_T5_MODELS[self.model_name]['model']['conversation']
|
|
87
|
+
|
|
88
|
+
self.context_len = CONTEXT_LEN
|
|
89
|
+
|
|
90
|
+
self.tokenizer, self.model, self.image_processor = load_pretrained_model(
|
|
91
|
+
CLIPT5ForConditionalGeneration,
|
|
92
|
+
model_args,
|
|
93
|
+
model_path=CLIP_T5_MODELS[self.model_name]['model']['path'],
|
|
94
|
+
tokenizer_path=CLIP_T5_MODELS[self.model_name]['tokenizer']['path'],
|
|
95
|
+
model_max_length=model_max_length,
|
|
96
|
+
padding_side=padding_side,
|
|
97
|
+
image_aspect_ratio=self.image_aspect_ratio,
|
|
98
|
+
mmprojector_repo=mmprojector_repo,
|
|
99
|
+
mmprojector_name=mmprojector_name,
|
|
100
|
+
device=self.device,
|
|
101
|
+
cache_dir=self.cache_dir
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
def load_images(self, image: List[str]) -> torch.Tensor:
|
|
105
|
+
"""Load the image(s), and return a tensor (after preprocessing) put on self.device
|
|
106
|
+
"""
|
|
107
|
+
image = [self.image_loader(x) for x in image]
|
|
108
|
+
if self.image_aspect_ratio == 'pad':
|
|
109
|
+
image = [
|
|
110
|
+
expand2square(image, tuple(int(x * 255) for x in self.image_processor.image_mean)) for image in image
|
|
111
|
+
]
|
|
112
|
+
image = [self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] for image in image]
|
|
113
|
+
assert all(x.shape == image[0].shape for x in image)
|
|
114
|
+
image = torch.stack(image, dim=0).to(self.device)
|
|
115
|
+
return image
|
|
116
|
+
|
|
117
|
+
@torch.no_grad()
|
|
118
|
+
@torch.autocast(device_type='cuda', dtype=torch.bfloat16)
|
|
119
|
+
def forward(
|
|
120
|
+
self,
|
|
121
|
+
images: List[str],
|
|
122
|
+
texts: List[str],
|
|
123
|
+
question_template: str = default_question_template,
|
|
124
|
+
answer_template: str = default_answer_template
|
|
125
|
+
) -> torch.Tensor:
|
|
126
|
+
"""Forward pass of the model to return n scores for n (image, text) pairs (in PyTorch Tensor)
|
|
127
|
+
"""
|
|
128
|
+
assert len(images) == len(texts), 'Number of images and texts must match'
|
|
129
|
+
# Turn "a photo of a dog" into
|
|
130
|
+
# Q: "Does this figure show "a photo of a dog"? Please answer yes or no."
|
|
131
|
+
# A: "Yes"
|
|
132
|
+
questions = [question_template.format(text) for text in texts]
|
|
133
|
+
answers = [answer_template.format(text) for text in texts]
|
|
134
|
+
|
|
135
|
+
# Formatting for CLIP-FlanT5 desired input including system message and image tokens
|
|
136
|
+
questions = [format_question(question, conversation_style=self.conversational_style) for question in questions]
|
|
137
|
+
answers = [format_answer(answer, conversation_style=self.conversational_style) for answer in answers]
|
|
138
|
+
|
|
139
|
+
images = self.load_images(images)
|
|
140
|
+
|
|
141
|
+
input_ids = [t5_tokenizer_image_token(qs, self.tokenizer, return_tensors='pt') for qs in questions]
|
|
142
|
+
labels = [t5_tokenizer_image_token(ans, self.tokenizer, return_tensors='pt') for ans in answers]
|
|
143
|
+
|
|
144
|
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
145
|
+
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
|
|
146
|
+
)
|
|
147
|
+
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
|
|
148
|
+
input_ids = input_ids[:, :self.tokenizer.model_max_length]
|
|
149
|
+
labels = labels[:, :self.tokenizer.model_max_length]
|
|
150
|
+
|
|
151
|
+
attention_mask = input_ids.ne(self.tokenizer.pad_token_id)
|
|
152
|
+
decoder_attention_mask = labels.ne(IGNORE_INDEX)
|
|
153
|
+
|
|
154
|
+
input_ids, attention_mask, decoder_attention_mask, labels = input_ids.to(self.device), \
|
|
155
|
+
attention_mask.to(self.device), decoder_attention_mask.to(self.device), labels.to(self.device)
|
|
156
|
+
model_input_kwargs = {
|
|
157
|
+
'input_ids': input_ids,
|
|
158
|
+
'attention_mask': attention_mask,
|
|
159
|
+
'decoder_attention_mask': decoder_attention_mask,
|
|
160
|
+
'labels': labels,
|
|
161
|
+
'images': images,
|
|
162
|
+
'past_key_values': None,
|
|
163
|
+
'inputs_embeds': None,
|
|
164
|
+
'use_cache': None,
|
|
165
|
+
'output_attentions': None,
|
|
166
|
+
'output_hidden_states': None,
|
|
167
|
+
'return_dict': True,
|
|
168
|
+
}
|
|
169
|
+
|
|
170
|
+
outputs = self.model(**model_input_kwargs)
|
|
171
|
+
|
|
172
|
+
logits = outputs.logits
|
|
173
|
+
lm_prob = torch.zeros(logits.shape[0])
|
|
174
|
+
loss_fct = torch.nn.CrossEntropyLoss(reduction='mean')
|
|
175
|
+
for k in range(lm_prob.shape[0]):
|
|
176
|
+
lm_prob[k] = (-loss_fct(logits[k],
|
|
177
|
+
labels[k])).exp() # exp to cancel the log and get raw prob between 0 and 1
|
|
178
|
+
return lm_prob
|
|
179
|
+
|
|
180
|
+
@torch.no_grad()
|
|
181
|
+
@torch.autocast(device_type='cuda', dtype=torch.bfloat16)
|
|
182
|
+
def generate(
|
|
183
|
+
self,
|
|
184
|
+
images: List[str],
|
|
185
|
+
prompts: List[str],
|
|
186
|
+
temperature: float = 0.2,
|
|
187
|
+
):
|
|
188
|
+
"""Forward pass of the model to return n strings for n (image, prompt) pairs
|
|
189
|
+
"""
|
|
190
|
+
assert len(images) == len(prompts), 'Number of images and texts must match'
|
|
191
|
+
|
|
192
|
+
# Formatting for CLIP-FlanT5 desired input including system message and image tokens
|
|
193
|
+
questions = [format_question(prompt, conversation_style=self.conversational_style) for prompt in prompts]
|
|
194
|
+
images = self.load_images(images)
|
|
195
|
+
|
|
196
|
+
input_ids = [t5_tokenizer_image_token(qs, self.tokenizer, return_tensors='pt') for qs in questions]
|
|
197
|
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
198
|
+
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
|
|
199
|
+
)
|
|
200
|
+
input_ids = input_ids[:, :self.tokenizer.model_max_length]
|
|
201
|
+
|
|
202
|
+
attention_mask = input_ids.ne(self.tokenizer.pad_token_id)
|
|
203
|
+
|
|
204
|
+
input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
|
|
205
|
+
model_input_kwargs = {
|
|
206
|
+
'inputs': input_ids,
|
|
207
|
+
'images': images,
|
|
208
|
+
'attention_mask': attention_mask,
|
|
209
|
+
'do_sample': True if temperature > 0 else False,
|
|
210
|
+
'temperature': temperature,
|
|
211
|
+
'top_p': None,
|
|
212
|
+
'num_beams': 1,
|
|
213
|
+
'max_new_token': 1024,
|
|
214
|
+
'use_cache': True,
|
|
215
|
+
}
|
|
216
|
+
|
|
217
|
+
outputs = self.model.generate(**model_input_kwargs)
|
|
218
|
+
outputs = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
219
|
+
for i in range(len(outputs)):
|
|
220
|
+
if outputs[i].endswith(' '):
|
|
221
|
+
outputs[i] = outputs[i][:-1]
|
|
222
|
+
outputs[i] = outputs[i].strip()
|
|
223
|
+
return outputs
|