diffusers 0.31.0__py3-none-any.whl → 0.32.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +72 -26
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/METADATA +6 -6
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1058 @@
1
+ # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import PIL.Image
19
+ import torch
20
+ from transformers import (
21
+ CLIPTextModelWithProjection,
22
+ CLIPTokenizer,
23
+ T5EncoderModel,
24
+ T5TokenizerFast,
25
+ )
26
+
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin
29
+ from ...models.attention_processor import PAGCFGJointAttnProcessor2_0, PAGJointAttnProcessor2_0
30
+ from ...models.autoencoders import AutoencoderKL
31
+ from ...models.transformers import SD3Transformer2DModel
32
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
33
+ from ...utils import (
34
+ USE_PEFT_BACKEND,
35
+ is_torch_xla_available,
36
+ logging,
37
+ replace_example_docstring,
38
+ scale_lora_layers,
39
+ unscale_lora_layers,
40
+ )
41
+ from ...utils.torch_utils import randn_tensor
42
+ from ..pipeline_utils import DiffusionPipeline
43
+ from ..stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
44
+ from .pag_utils import PAGMixin
45
+
46
+
47
+ if is_torch_xla_available():
48
+ import torch_xla.core.xla_model as xm
49
+
50
+ XLA_AVAILABLE = True
51
+ else:
52
+ XLA_AVAILABLE = False
53
+
54
+
55
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
+
57
+ EXAMPLE_DOC_STRING = """
58
+ Examples:
59
+ ```py
60
+ >>> import torch
61
+ >>> from diffusers import StableDiffusion3PAGImg2ImgPipeline
62
+ >>> from diffusers.utils import load_image
63
+
64
+ >>> pipe = StableDiffusion3PAGImg2ImgPipeline.from_pretrained(
65
+ ... "stabilityai/stable-diffusion-3-medium-diffusers",
66
+ ... torch_dtype=torch.float16,
67
+ ... pag_applied_layers=["blocks.13"],
68
+ ... )
69
+ >>> pipe.to("cuda")
70
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
71
+ >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
72
+ >>> init_image = load_image(url).convert("RGB")
73
+ >>> image = pipe(prompt, image=init_image, guidance_scale=5.0, pag_scale=0.7).images[0]
74
+ ```
75
+ """
76
+
77
+
78
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
79
+ def retrieve_latents(
80
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
81
+ ):
82
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
83
+ return encoder_output.latent_dist.sample(generator)
84
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
85
+ return encoder_output.latent_dist.mode()
86
+ elif hasattr(encoder_output, "latents"):
87
+ return encoder_output.latents
88
+ else:
89
+ raise AttributeError("Could not access latents of provided encoder_output")
90
+
91
+
92
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
93
+ def retrieve_timesteps(
94
+ scheduler,
95
+ num_inference_steps: Optional[int] = None,
96
+ device: Optional[Union[str, torch.device]] = None,
97
+ timesteps: Optional[List[int]] = None,
98
+ sigmas: Optional[List[float]] = None,
99
+ **kwargs,
100
+ ):
101
+ r"""
102
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
103
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
104
+
105
+ Args:
106
+ scheduler (`SchedulerMixin`):
107
+ The scheduler to get timesteps from.
108
+ num_inference_steps (`int`):
109
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
110
+ must be `None`.
111
+ device (`str` or `torch.device`, *optional*):
112
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
113
+ timesteps (`List[int]`, *optional*):
114
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
115
+ `num_inference_steps` and `sigmas` must be `None`.
116
+ sigmas (`List[float]`, *optional*):
117
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
118
+ `num_inference_steps` and `timesteps` must be `None`.
119
+
120
+ Returns:
121
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
122
+ second element is the number of inference steps.
123
+ """
124
+ if timesteps is not None and sigmas is not None:
125
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
126
+ if timesteps is not None:
127
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
128
+ if not accepts_timesteps:
129
+ raise ValueError(
130
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
131
+ f" timestep schedules. Please check whether you are using the correct scheduler."
132
+ )
133
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
134
+ timesteps = scheduler.timesteps
135
+ num_inference_steps = len(timesteps)
136
+ elif sigmas is not None:
137
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
+ if not accept_sigmas:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ else:
147
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
148
+ timesteps = scheduler.timesteps
149
+ return timesteps, num_inference_steps
150
+
151
+
152
+ class StableDiffusion3PAGImg2ImgPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, PAGMixin):
153
+ r"""
154
+ [PAG pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/pag) for image-to-image generation
155
+ using Stable Diffusion 3.
156
+
157
+ Args:
158
+ transformer ([`SD3Transformer2DModel`]):
159
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
160
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
161
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
162
+ vae ([`AutoencoderKL`]):
163
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
164
+ text_encoder ([`CLIPTextModelWithProjection`]):
165
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
166
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
167
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
168
+ as its dimension.
169
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
170
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
171
+ specifically the
172
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
173
+ variant.
174
+ text_encoder_3 ([`T5EncoderModel`]):
175
+ Frozen text-encoder. Stable Diffusion 3 uses
176
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
177
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
178
+ tokenizer (`CLIPTokenizer`):
179
+ Tokenizer of class
180
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
181
+ tokenizer_2 (`CLIPTokenizer`):
182
+ Second Tokenizer of class
183
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
184
+ tokenizer_3 (`T5TokenizerFast`):
185
+ Tokenizer of class
186
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
187
+ """
188
+
189
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
190
+ _optional_components = []
191
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
192
+
193
+ def __init__(
194
+ self,
195
+ transformer: SD3Transformer2DModel,
196
+ scheduler: FlowMatchEulerDiscreteScheduler,
197
+ vae: AutoencoderKL,
198
+ text_encoder: CLIPTextModelWithProjection,
199
+ tokenizer: CLIPTokenizer,
200
+ text_encoder_2: CLIPTextModelWithProjection,
201
+ tokenizer_2: CLIPTokenizer,
202
+ text_encoder_3: T5EncoderModel,
203
+ tokenizer_3: T5TokenizerFast,
204
+ pag_applied_layers: Union[str, List[str]] = "blocks.1", # 1st transformer block
205
+ ):
206
+ super().__init__()
207
+
208
+ self.register_modules(
209
+ vae=vae,
210
+ text_encoder=text_encoder,
211
+ text_encoder_2=text_encoder_2,
212
+ text_encoder_3=text_encoder_3,
213
+ tokenizer=tokenizer,
214
+ tokenizer_2=tokenizer_2,
215
+ tokenizer_3=tokenizer_3,
216
+ transformer=transformer,
217
+ scheduler=scheduler,
218
+ )
219
+ self.vae_scale_factor = (
220
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
221
+ )
222
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
223
+ self.tokenizer_max_length = (
224
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
225
+ )
226
+ self.default_sample_size = (
227
+ self.transformer.config.sample_size
228
+ if hasattr(self, "transformer") and self.transformer is not None
229
+ else 128
230
+ )
231
+ self.patch_size = (
232
+ self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
233
+ )
234
+
235
+ self.set_pag_applied_layers(
236
+ pag_applied_layers, pag_attn_processors=(PAGCFGJointAttnProcessor2_0(), PAGJointAttnProcessor2_0())
237
+ )
238
+
239
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
240
+ def _get_t5_prompt_embeds(
241
+ self,
242
+ prompt: Union[str, List[str]] = None,
243
+ num_images_per_prompt: int = 1,
244
+ max_sequence_length: int = 256,
245
+ device: Optional[torch.device] = None,
246
+ dtype: Optional[torch.dtype] = None,
247
+ ):
248
+ device = device or self._execution_device
249
+ dtype = dtype or self.text_encoder.dtype
250
+
251
+ prompt = [prompt] if isinstance(prompt, str) else prompt
252
+ batch_size = len(prompt)
253
+
254
+ if self.text_encoder_3 is None:
255
+ return torch.zeros(
256
+ (
257
+ batch_size * num_images_per_prompt,
258
+ self.tokenizer_max_length,
259
+ self.transformer.config.joint_attention_dim,
260
+ ),
261
+ device=device,
262
+ dtype=dtype,
263
+ )
264
+
265
+ text_inputs = self.tokenizer_3(
266
+ prompt,
267
+ padding="max_length",
268
+ max_length=max_sequence_length,
269
+ truncation=True,
270
+ add_special_tokens=True,
271
+ return_tensors="pt",
272
+ )
273
+ text_input_ids = text_inputs.input_ids
274
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
275
+
276
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
277
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
278
+ logger.warning(
279
+ "The following part of your input was truncated because `max_sequence_length` is set to "
280
+ f" {max_sequence_length} tokens: {removed_text}"
281
+ )
282
+
283
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
284
+
285
+ dtype = self.text_encoder_3.dtype
286
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
287
+
288
+ _, seq_len, _ = prompt_embeds.shape
289
+
290
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
291
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
292
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
293
+
294
+ return prompt_embeds
295
+
296
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
297
+ def _get_clip_prompt_embeds(
298
+ self,
299
+ prompt: Union[str, List[str]],
300
+ num_images_per_prompt: int = 1,
301
+ device: Optional[torch.device] = None,
302
+ clip_skip: Optional[int] = None,
303
+ clip_model_index: int = 0,
304
+ ):
305
+ device = device or self._execution_device
306
+
307
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
308
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
309
+
310
+ tokenizer = clip_tokenizers[clip_model_index]
311
+ text_encoder = clip_text_encoders[clip_model_index]
312
+
313
+ prompt = [prompt] if isinstance(prompt, str) else prompt
314
+ batch_size = len(prompt)
315
+
316
+ text_inputs = tokenizer(
317
+ prompt,
318
+ padding="max_length",
319
+ max_length=self.tokenizer_max_length,
320
+ truncation=True,
321
+ return_tensors="pt",
322
+ )
323
+
324
+ text_input_ids = text_inputs.input_ids
325
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
326
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
327
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
328
+ logger.warning(
329
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
330
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
331
+ )
332
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
333
+ pooled_prompt_embeds = prompt_embeds[0]
334
+
335
+ if clip_skip is None:
336
+ prompt_embeds = prompt_embeds.hidden_states[-2]
337
+ else:
338
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
339
+
340
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
341
+
342
+ _, seq_len, _ = prompt_embeds.shape
343
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
344
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
345
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
346
+
347
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
348
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
349
+
350
+ return prompt_embeds, pooled_prompt_embeds
351
+
352
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
353
+ def encode_prompt(
354
+ self,
355
+ prompt: Union[str, List[str]],
356
+ prompt_2: Union[str, List[str]],
357
+ prompt_3: Union[str, List[str]],
358
+ device: Optional[torch.device] = None,
359
+ num_images_per_prompt: int = 1,
360
+ do_classifier_free_guidance: bool = True,
361
+ negative_prompt: Optional[Union[str, List[str]]] = None,
362
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
363
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
364
+ prompt_embeds: Optional[torch.FloatTensor] = None,
365
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
366
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
367
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
368
+ clip_skip: Optional[int] = None,
369
+ max_sequence_length: int = 256,
370
+ lora_scale: Optional[float] = None,
371
+ ):
372
+ r"""
373
+
374
+ Args:
375
+ prompt (`str` or `List[str]`, *optional*):
376
+ prompt to be encoded
377
+ prompt_2 (`str` or `List[str]`, *optional*):
378
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
379
+ used in all text-encoders
380
+ prompt_3 (`str` or `List[str]`, *optional*):
381
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
382
+ used in all text-encoders
383
+ device: (`torch.device`):
384
+ torch device
385
+ num_images_per_prompt (`int`):
386
+ number of images that should be generated per prompt
387
+ do_classifier_free_guidance (`bool`):
388
+ whether to use classifier free guidance or not
389
+ negative_prompt (`str` or `List[str]`, *optional*):
390
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
391
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
392
+ less than `1`).
393
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
394
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
395
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
396
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
397
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
398
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
399
+ prompt_embeds (`torch.FloatTensor`, *optional*):
400
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
401
+ provided, text embeddings will be generated from `prompt` input argument.
402
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
403
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
404
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
405
+ argument.
406
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
407
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
408
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
409
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
410
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
411
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
412
+ input argument.
413
+ clip_skip (`int`, *optional*):
414
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
415
+ the output of the pre-final layer will be used for computing the prompt embeddings.
416
+ lora_scale (`float`, *optional*):
417
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
418
+ """
419
+ device = device or self._execution_device
420
+
421
+ # set lora scale so that monkey patched LoRA
422
+ # function of text encoder can correctly access it
423
+ if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
424
+ self._lora_scale = lora_scale
425
+
426
+ # dynamically adjust the LoRA scale
427
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
428
+ scale_lora_layers(self.text_encoder, lora_scale)
429
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
430
+ scale_lora_layers(self.text_encoder_2, lora_scale)
431
+
432
+ prompt = [prompt] if isinstance(prompt, str) else prompt
433
+ if prompt is not None:
434
+ batch_size = len(prompt)
435
+ else:
436
+ batch_size = prompt_embeds.shape[0]
437
+
438
+ if prompt_embeds is None:
439
+ prompt_2 = prompt_2 or prompt
440
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
441
+
442
+ prompt_3 = prompt_3 or prompt
443
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
444
+
445
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
446
+ prompt=prompt,
447
+ device=device,
448
+ num_images_per_prompt=num_images_per_prompt,
449
+ clip_skip=clip_skip,
450
+ clip_model_index=0,
451
+ )
452
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
453
+ prompt=prompt_2,
454
+ device=device,
455
+ num_images_per_prompt=num_images_per_prompt,
456
+ clip_skip=clip_skip,
457
+ clip_model_index=1,
458
+ )
459
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
460
+
461
+ t5_prompt_embed = self._get_t5_prompt_embeds(
462
+ prompt=prompt_3,
463
+ num_images_per_prompt=num_images_per_prompt,
464
+ max_sequence_length=max_sequence_length,
465
+ device=device,
466
+ )
467
+
468
+ clip_prompt_embeds = torch.nn.functional.pad(
469
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
470
+ )
471
+
472
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
473
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
474
+
475
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
476
+ negative_prompt = negative_prompt or ""
477
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
478
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
479
+
480
+ # normalize str to list
481
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
482
+ negative_prompt_2 = (
483
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
484
+ )
485
+ negative_prompt_3 = (
486
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
487
+ )
488
+
489
+ if prompt is not None and type(prompt) is not type(negative_prompt):
490
+ raise TypeError(
491
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
492
+ f" {type(prompt)}."
493
+ )
494
+ elif batch_size != len(negative_prompt):
495
+ raise ValueError(
496
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
497
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
498
+ " the batch size of `prompt`."
499
+ )
500
+
501
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
502
+ negative_prompt,
503
+ device=device,
504
+ num_images_per_prompt=num_images_per_prompt,
505
+ clip_skip=None,
506
+ clip_model_index=0,
507
+ )
508
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
509
+ negative_prompt_2,
510
+ device=device,
511
+ num_images_per_prompt=num_images_per_prompt,
512
+ clip_skip=None,
513
+ clip_model_index=1,
514
+ )
515
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
516
+
517
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
518
+ prompt=negative_prompt_3,
519
+ num_images_per_prompt=num_images_per_prompt,
520
+ max_sequence_length=max_sequence_length,
521
+ device=device,
522
+ )
523
+
524
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
525
+ negative_clip_prompt_embeds,
526
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
527
+ )
528
+
529
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
530
+ negative_pooled_prompt_embeds = torch.cat(
531
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
532
+ )
533
+
534
+ if self.text_encoder is not None:
535
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
536
+ # Retrieve the original scale by scaling back the LoRA layers
537
+ unscale_lora_layers(self.text_encoder, lora_scale)
538
+
539
+ if self.text_encoder_2 is not None:
540
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
541
+ # Retrieve the original scale by scaling back the LoRA layers
542
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
543
+
544
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
545
+
546
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.check_inputs
547
+ def check_inputs(
548
+ self,
549
+ prompt,
550
+ prompt_2,
551
+ prompt_3,
552
+ height,
553
+ width,
554
+ strength,
555
+ negative_prompt=None,
556
+ negative_prompt_2=None,
557
+ negative_prompt_3=None,
558
+ prompt_embeds=None,
559
+ negative_prompt_embeds=None,
560
+ pooled_prompt_embeds=None,
561
+ negative_pooled_prompt_embeds=None,
562
+ callback_on_step_end_tensor_inputs=None,
563
+ max_sequence_length=None,
564
+ ):
565
+ if (
566
+ height % (self.vae_scale_factor * self.patch_size) != 0
567
+ or width % (self.vae_scale_factor * self.patch_size) != 0
568
+ ):
569
+ raise ValueError(
570
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
571
+ f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
572
+ )
573
+
574
+ if strength < 0 or strength > 1:
575
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
576
+
577
+ if callback_on_step_end_tensor_inputs is not None and not all(
578
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
579
+ ):
580
+ raise ValueError(
581
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
582
+ )
583
+
584
+ if prompt is not None and prompt_embeds is not None:
585
+ raise ValueError(
586
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
587
+ " only forward one of the two."
588
+ )
589
+ elif prompt_2 is not None and prompt_embeds is not None:
590
+ raise ValueError(
591
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
592
+ " only forward one of the two."
593
+ )
594
+ elif prompt_3 is not None and prompt_embeds is not None:
595
+ raise ValueError(
596
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
597
+ " only forward one of the two."
598
+ )
599
+ elif prompt is None and prompt_embeds is None:
600
+ raise ValueError(
601
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
602
+ )
603
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
604
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
605
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
606
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
607
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
608
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
609
+
610
+ if negative_prompt is not None and negative_prompt_embeds is not None:
611
+ raise ValueError(
612
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
613
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
614
+ )
615
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
616
+ raise ValueError(
617
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
618
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
619
+ )
620
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
621
+ raise ValueError(
622
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
623
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
624
+ )
625
+
626
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
627
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
628
+ raise ValueError(
629
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
630
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
631
+ f" {negative_prompt_embeds.shape}."
632
+ )
633
+
634
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
635
+ raise ValueError(
636
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
637
+ )
638
+
639
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
640
+ raise ValueError(
641
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
642
+ )
643
+
644
+ if max_sequence_length is not None and max_sequence_length > 512:
645
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
646
+
647
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
648
+ def get_timesteps(self, num_inference_steps, strength, device):
649
+ # get the original timestep using init_timestep
650
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
651
+
652
+ t_start = int(max(num_inference_steps - init_timestep, 0))
653
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
654
+ if hasattr(self.scheduler, "set_begin_index"):
655
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
656
+
657
+ return timesteps, num_inference_steps - t_start
658
+
659
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.prepare_latents
660
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
661
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
662
+ raise ValueError(
663
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
664
+ )
665
+
666
+ image = image.to(device=device, dtype=dtype)
667
+
668
+ batch_size = batch_size * num_images_per_prompt
669
+ if image.shape[1] == self.vae.config.latent_channels:
670
+ init_latents = image
671
+
672
+ else:
673
+ if isinstance(generator, list) and len(generator) != batch_size:
674
+ raise ValueError(
675
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
676
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
677
+ )
678
+
679
+ elif isinstance(generator, list):
680
+ init_latents = [
681
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
682
+ for i in range(batch_size)
683
+ ]
684
+ init_latents = torch.cat(init_latents, dim=0)
685
+ else:
686
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
687
+
688
+ init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
689
+
690
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
691
+ # expand init_latents for batch_size
692
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
693
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
694
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
695
+ raise ValueError(
696
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
697
+ )
698
+ else:
699
+ init_latents = torch.cat([init_latents], dim=0)
700
+
701
+ shape = init_latents.shape
702
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
703
+
704
+ # get latents
705
+ init_latents = self.scheduler.scale_noise(init_latents, timestep, noise)
706
+ latents = init_latents.to(device=device, dtype=dtype)
707
+
708
+ return latents
709
+
710
+ @property
711
+ def guidance_scale(self):
712
+ return self._guidance_scale
713
+
714
+ @property
715
+ def clip_skip(self):
716
+ return self._clip_skip
717
+
718
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
719
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
720
+ # corresponds to doing no classifier free guidance.
721
+ @property
722
+ def do_classifier_free_guidance(self):
723
+ return self._guidance_scale > 1
724
+
725
+ @property
726
+ def joint_attention_kwargs(self):
727
+ return self._joint_attention_kwargs
728
+
729
+ @property
730
+ def num_timesteps(self):
731
+ return self._num_timesteps
732
+
733
+ @property
734
+ def interrupt(self):
735
+ return self._interrupt
736
+
737
+ @torch.no_grad()
738
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
739
+ def __call__(
740
+ self,
741
+ prompt: Union[str, List[str]] = None,
742
+ prompt_2: Optional[Union[str, List[str]]] = None,
743
+ prompt_3: Optional[Union[str, List[str]]] = None,
744
+ height: Optional[int] = None,
745
+ width: Optional[int] = None,
746
+ image: PipelineImageInput = None,
747
+ strength: float = 0.6,
748
+ num_inference_steps: int = 50,
749
+ sigmas: Optional[List[float]] = None,
750
+ guidance_scale: float = 7.0,
751
+ negative_prompt: Optional[Union[str, List[str]]] = None,
752
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
753
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
754
+ num_images_per_prompt: Optional[int] = 1,
755
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
756
+ latents: Optional[torch.FloatTensor] = None,
757
+ prompt_embeds: Optional[torch.FloatTensor] = None,
758
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
759
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
760
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
761
+ output_type: Optional[str] = "pil",
762
+ return_dict: bool = True,
763
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
764
+ clip_skip: Optional[int] = None,
765
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
766
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
767
+ max_sequence_length: int = 256,
768
+ pag_scale: float = 3.0,
769
+ pag_adaptive_scale: float = 0.0,
770
+ ):
771
+ r"""
772
+ Function invoked when calling the pipeline for generation.
773
+
774
+ Args:
775
+ prompt (`str` or `List[str]`, *optional*):
776
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
777
+ instead.
778
+ prompt_2 (`str` or `List[str]`, *optional*):
779
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
780
+ will be used instead
781
+ prompt_3 (`str` or `List[str]`, *optional*):
782
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
783
+ will be used instead
784
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
785
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
786
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
787
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
788
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
789
+ latents as `image`, but if passing latents directly it is not encoded again.
790
+ strength (`float`, *optional*, defaults to 0.8):
791
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
792
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
793
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
794
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
795
+ essentially ignores `image`.
796
+ num_inference_steps (`int`, *optional*, defaults to 50):
797
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
798
+ expense of slower inference.
799
+ sigmas (`List[float]`, *optional*):
800
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
801
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
802
+ will be used.
803
+ guidance_scale (`float`, *optional*, defaults to 7.0):
804
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
805
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
806
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
807
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
808
+ usually at the expense of lower image quality.
809
+ negative_prompt (`str` or `List[str]`, *optional*):
810
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
811
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
812
+ less than `1`).
813
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
814
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
815
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
816
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
817
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
818
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
819
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
820
+ The number of images to generate per prompt.
821
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
822
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
823
+ to make generation deterministic.
824
+ latents (`torch.FloatTensor`, *optional*):
825
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
826
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
827
+ tensor will ge generated by sampling using the supplied random `generator`.
828
+ prompt_embeds (`torch.FloatTensor`, *optional*):
829
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
830
+ provided, text embeddings will be generated from `prompt` input argument.
831
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
832
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
833
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
834
+ argument.
835
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
836
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
837
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
838
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
839
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
840
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
841
+ input argument.
842
+ output_type (`str`, *optional*, defaults to `"pil"`):
843
+ The output format of the generate image. Choose between
844
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
845
+ return_dict (`bool`, *optional*, defaults to `True`):
846
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
847
+ of a plain tuple.
848
+ joint_attention_kwargs (`dict`, *optional*):
849
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
850
+ `self.processor` in
851
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
852
+ callback_on_step_end (`Callable`, *optional*):
853
+ A function that calls at the end of each denoising steps during the inference. The function is called
854
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
855
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
856
+ `callback_on_step_end_tensor_inputs`.
857
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
858
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
859
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
860
+ `._callback_tensor_inputs` attribute of your pipeline class.
861
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
862
+ pag_scale (`float`, *optional*, defaults to 3.0):
863
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
864
+ guidance will not be used.
865
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
866
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
867
+ used.
868
+
869
+ Examples:
870
+
871
+ Returns:
872
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
873
+ [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
874
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
875
+ """
876
+ height = height or self.default_sample_size * self.vae_scale_factor
877
+ width = width or self.default_sample_size * self.vae_scale_factor
878
+ # 1. Check inputs. Raise error if not correct
879
+ self.check_inputs(
880
+ prompt,
881
+ prompt_2,
882
+ prompt_3,
883
+ height,
884
+ width,
885
+ strength,
886
+ negative_prompt=negative_prompt,
887
+ negative_prompt_2=negative_prompt_2,
888
+ negative_prompt_3=negative_prompt_3,
889
+ prompt_embeds=prompt_embeds,
890
+ negative_prompt_embeds=negative_prompt_embeds,
891
+ pooled_prompt_embeds=pooled_prompt_embeds,
892
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
893
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
894
+ max_sequence_length=max_sequence_length,
895
+ )
896
+
897
+ self._guidance_scale = guidance_scale
898
+ self._clip_skip = clip_skip
899
+ self._joint_attention_kwargs = joint_attention_kwargs
900
+ self._interrupt = False
901
+ self._pag_scale = pag_scale
902
+ self._pag_adaptive_scale = pag_adaptive_scale
903
+
904
+ # 2. Define call parameters
905
+ if prompt is not None and isinstance(prompt, str):
906
+ batch_size = 1
907
+ elif prompt is not None and isinstance(prompt, list):
908
+ batch_size = len(prompt)
909
+ else:
910
+ batch_size = prompt_embeds.shape[0]
911
+
912
+ device = self._execution_device
913
+
914
+ lora_scale = (
915
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
916
+ )
917
+ (
918
+ prompt_embeds,
919
+ negative_prompt_embeds,
920
+ pooled_prompt_embeds,
921
+ negative_pooled_prompt_embeds,
922
+ ) = self.encode_prompt(
923
+ prompt=prompt,
924
+ prompt_2=prompt_2,
925
+ prompt_3=prompt_3,
926
+ negative_prompt=negative_prompt,
927
+ negative_prompt_2=negative_prompt_2,
928
+ negative_prompt_3=negative_prompt_3,
929
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
930
+ prompt_embeds=prompt_embeds,
931
+ negative_prompt_embeds=negative_prompt_embeds,
932
+ pooled_prompt_embeds=pooled_prompt_embeds,
933
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
934
+ device=device,
935
+ clip_skip=self.clip_skip,
936
+ num_images_per_prompt=num_images_per_prompt,
937
+ max_sequence_length=max_sequence_length,
938
+ lora_scale=lora_scale,
939
+ )
940
+
941
+ if self.do_perturbed_attention_guidance:
942
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
943
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
944
+ )
945
+ pooled_prompt_embeds = self._prepare_perturbed_attention_guidance(
946
+ pooled_prompt_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance
947
+ )
948
+ elif self.do_classifier_free_guidance:
949
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
950
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
951
+
952
+ # 3. Preprocess image
953
+ image = self.image_processor.preprocess(image, height=height, width=width)
954
+
955
+ # 4. Prepare timesteps
956
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
957
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
958
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
959
+ # 5. Prepare latent variables
960
+ num_channels_latents = self.transformer.config.in_channels
961
+ if latents is None:
962
+ latents = self.prepare_latents(
963
+ image,
964
+ latent_timestep,
965
+ batch_size,
966
+ num_images_per_prompt,
967
+ prompt_embeds.dtype,
968
+ device,
969
+ generator,
970
+ )
971
+
972
+ if self.do_perturbed_attention_guidance:
973
+ original_attn_proc = self.transformer.attn_processors
974
+ self._set_pag_attn_processor(
975
+ pag_applied_layers=self.pag_applied_layers,
976
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
977
+ )
978
+
979
+ # 6. Denoising loop
980
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
981
+ self._num_timesteps = len(timesteps)
982
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
983
+ for i, t in enumerate(timesteps):
984
+ if self.interrupt:
985
+ continue
986
+
987
+ # expand the latents if we are doing classifier free guidance, perturbed-attention guidance, or both
988
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
989
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
990
+ timestep = t.expand(latent_model_input.shape[0])
991
+
992
+ noise_pred = self.transformer(
993
+ hidden_states=latent_model_input,
994
+ timestep=timestep,
995
+ encoder_hidden_states=prompt_embeds,
996
+ pooled_projections=pooled_prompt_embeds,
997
+ joint_attention_kwargs=self.joint_attention_kwargs,
998
+ return_dict=False,
999
+ )[0]
1000
+
1001
+ # perform guidance
1002
+ if self.do_perturbed_attention_guidance:
1003
+ noise_pred = self._apply_perturbed_attention_guidance(
1004
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1005
+ )
1006
+
1007
+ elif self.do_classifier_free_guidance:
1008
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1009
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1010
+
1011
+ # compute the previous noisy sample x_t -> x_t-1
1012
+ latents_dtype = latents.dtype
1013
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1014
+
1015
+ if latents.dtype != latents_dtype:
1016
+ if torch.backends.mps.is_available():
1017
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1018
+ latents = latents.to(latents_dtype)
1019
+
1020
+ if callback_on_step_end is not None:
1021
+ callback_kwargs = {}
1022
+ for k in callback_on_step_end_tensor_inputs:
1023
+ callback_kwargs[k] = locals()[k]
1024
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1025
+
1026
+ latents = callback_outputs.pop("latents", latents)
1027
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1028
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1029
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1030
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1031
+ )
1032
+
1033
+ # call the callback, if provided
1034
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1035
+ progress_bar.update()
1036
+
1037
+ if XLA_AVAILABLE:
1038
+ xm.mark_step()
1039
+
1040
+ if output_type == "latent":
1041
+ image = latents
1042
+
1043
+ else:
1044
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1045
+
1046
+ image = self.vae.decode(latents, return_dict=False)[0]
1047
+ image = self.image_processor.postprocess(image, output_type=output_type)
1048
+
1049
+ # Offload all models
1050
+ self.maybe_free_model_hooks()
1051
+
1052
+ if self.do_perturbed_attention_guidance:
1053
+ self.transformer.set_attn_processor(original_attn_proc)
1054
+
1055
+ if not return_dict:
1056
+ return (image,)
1057
+
1058
+ return StableDiffusion3PipelineOutput(images=image)