diffusers 0.31.0__py3-none-any.whl → 0.32.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (214) hide show
  1. diffusers/__init__.py +66 -5
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +1 -1
  4. diffusers/dependency_versions_table.py +1 -1
  5. diffusers/image_processor.py +25 -17
  6. diffusers/loaders/__init__.py +22 -3
  7. diffusers/loaders/ip_adapter.py +538 -15
  8. diffusers/loaders/lora_base.py +124 -118
  9. diffusers/loaders/lora_conversion_utils.py +318 -3
  10. diffusers/loaders/lora_pipeline.py +1688 -368
  11. diffusers/loaders/peft.py +379 -0
  12. diffusers/loaders/single_file_model.py +71 -4
  13. diffusers/loaders/single_file_utils.py +519 -9
  14. diffusers/loaders/textual_inversion.py +3 -3
  15. diffusers/loaders/transformer_flux.py +181 -0
  16. diffusers/loaders/transformer_sd3.py +89 -0
  17. diffusers/loaders/unet.py +17 -4
  18. diffusers/models/__init__.py +47 -14
  19. diffusers/models/activations.py +22 -9
  20. diffusers/models/attention.py +13 -4
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2059 -281
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +2 -1
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +36 -27
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +29 -495
  36. diffusers/models/controlnet_sd3.py +25 -379
  37. diffusers/models/controlnet_sparsectrl.py +46 -718
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +838 -43
  49. diffusers/models/model_loading_utils.py +88 -6
  50. diffusers/models/modeling_flax_utils.py +1 -1
  51. diffusers/models/modeling_utils.py +72 -26
  52. diffusers/models/normalization.py +78 -13
  53. diffusers/models/transformers/__init__.py +5 -0
  54. diffusers/models/transformers/auraflow_transformer_2d.py +2 -2
  55. diffusers/models/transformers/cogvideox_transformer_3d.py +46 -11
  56. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  57. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  58. diffusers/models/transformers/pixart_transformer_2d.py +1 -1
  59. diffusers/models/transformers/sana_transformer.py +488 -0
  60. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  61. diffusers/models/transformers/transformer_2d.py +1 -1
  62. diffusers/models/transformers/transformer_allegro.py +422 -0
  63. diffusers/models/transformers/transformer_cogview3plus.py +1 -1
  64. diffusers/models/transformers/transformer_flux.py +30 -9
  65. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  66. diffusers/models/transformers/transformer_ltx.py +469 -0
  67. diffusers/models/transformers/transformer_mochi.py +499 -0
  68. diffusers/models/transformers/transformer_sd3.py +105 -17
  69. diffusers/models/transformers/transformer_temporal.py +1 -1
  70. diffusers/models/unets/unet_1d_blocks.py +1 -1
  71. diffusers/models/unets/unet_2d.py +8 -1
  72. diffusers/models/unets/unet_2d_blocks.py +88 -21
  73. diffusers/models/unets/unet_2d_condition.py +1 -1
  74. diffusers/models/unets/unet_3d_blocks.py +9 -7
  75. diffusers/models/unets/unet_motion_model.py +5 -5
  76. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  77. diffusers/models/unets/unet_stable_cascade.py +2 -2
  78. diffusers/models/unets/uvit_2d.py +1 -1
  79. diffusers/models/upsampling.py +8 -0
  80. diffusers/pipelines/__init__.py +34 -0
  81. diffusers/pipelines/allegro/__init__.py +48 -0
  82. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  83. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  84. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +8 -2
  85. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1 -1
  86. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +0 -6
  87. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +8 -8
  88. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  89. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -8
  90. diffusers/pipelines/auto_pipeline.py +53 -6
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +50 -22
  93. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +51 -20
  94. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +69 -21
  95. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +47 -21
  96. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +1 -1
  97. diffusers/pipelines/controlnet/__init__.py +86 -80
  98. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  99. diffusers/pipelines/controlnet/pipeline_controlnet.py +11 -2
  100. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +1 -2
  101. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +1 -2
  102. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +1 -2
  103. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +3 -3
  104. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +1 -3
  105. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  106. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  107. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  108. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +5 -1
  109. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +53 -19
  110. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  111. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -8
  112. diffusers/pipelines/flux/__init__.py +13 -1
  113. diffusers/pipelines/flux/modeling_flux.py +47 -0
  114. diffusers/pipelines/flux/pipeline_flux.py +204 -29
  115. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  116. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  117. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  118. diffusers/pipelines/flux/pipeline_flux_controlnet.py +49 -27
  119. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +40 -30
  120. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +78 -56
  121. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  122. diffusers/pipelines/flux/pipeline_flux_img2img.py +33 -27
  123. diffusers/pipelines/flux/pipeline_flux_inpaint.py +36 -29
  124. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  125. diffusers/pipelines/flux/pipeline_output.py +16 -0
  126. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  127. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  128. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  129. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +5 -1
  130. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  131. diffusers/pipelines/kolors/text_encoder.py +2 -2
  132. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  133. diffusers/pipelines/ltx/__init__.py +50 -0
  134. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  135. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  136. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  137. diffusers/pipelines/lumina/pipeline_lumina.py +1 -8
  138. diffusers/pipelines/mochi/__init__.py +48 -0
  139. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  140. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  141. diffusers/pipelines/pag/__init__.py +7 -0
  142. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -2
  143. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1 -2
  144. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1 -3
  145. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1 -3
  146. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +5 -1
  147. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +6 -13
  148. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  149. diffusers/pipelines/pag/pipeline_pag_sd_3.py +6 -6
  150. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  151. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +3 -0
  152. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  153. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  154. diffusers/pipelines/pipeline_loading_utils.py +25 -4
  155. diffusers/pipelines/pipeline_utils.py +35 -6
  156. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +6 -13
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +6 -13
  158. diffusers/pipelines/sana/__init__.py +47 -0
  159. diffusers/pipelines/sana/pipeline_output.py +21 -0
  160. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  161. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -3
  163. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +216 -20
  164. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +62 -9
  165. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +57 -8
  166. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  167. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +0 -8
  168. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +0 -8
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +0 -8
  170. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  171. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  172. diffusers/quantizers/auto.py +14 -1
  173. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -1
  174. diffusers/quantizers/gguf/__init__.py +1 -0
  175. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  176. diffusers/quantizers/gguf/utils.py +456 -0
  177. diffusers/quantizers/quantization_config.py +280 -2
  178. diffusers/quantizers/torchao/__init__.py +15 -0
  179. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  180. diffusers/schedulers/scheduling_ddpm.py +2 -6
  181. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -6
  182. diffusers/schedulers/scheduling_deis_multistep.py +28 -9
  183. diffusers/schedulers/scheduling_dpmsolver_multistep.py +35 -9
  184. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +35 -8
  185. diffusers/schedulers/scheduling_dpmsolver_sde.py +4 -4
  186. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +48 -10
  187. diffusers/schedulers/scheduling_euler_discrete.py +4 -4
  188. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  189. diffusers/schedulers/scheduling_heun_discrete.py +4 -4
  190. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +4 -4
  191. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +4 -4
  192. diffusers/schedulers/scheduling_lcm.py +2 -6
  193. diffusers/schedulers/scheduling_lms_discrete.py +4 -4
  194. diffusers/schedulers/scheduling_repaint.py +1 -1
  195. diffusers/schedulers/scheduling_sasolver.py +28 -9
  196. diffusers/schedulers/scheduling_tcd.py +2 -6
  197. diffusers/schedulers/scheduling_unipc_multistep.py +53 -8
  198. diffusers/training_utils.py +16 -2
  199. diffusers/utils/__init__.py +5 -0
  200. diffusers/utils/constants.py +1 -0
  201. diffusers/utils/dummy_pt_objects.py +180 -0
  202. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  203. diffusers/utils/dynamic_modules_utils.py +3 -3
  204. diffusers/utils/hub_utils.py +31 -39
  205. diffusers/utils/import_utils.py +67 -0
  206. diffusers/utils/peft_utils.py +3 -0
  207. diffusers/utils/testing_utils.py +56 -1
  208. diffusers/utils/torch_utils.py +3 -0
  209. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/METADATA +6 -6
  210. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/RECORD +214 -162
  211. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/WHEEL +1 -1
  212. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/LICENSE +0 -0
  213. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/entry_points.txt +0 -0
  214. {diffusers-0.31.0.dist-info → diffusers-0.32.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,489 @@
1
+ # Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from dataclasses import dataclass
17
+ from typing import Any, Dict, List, Optional, Tuple, Union
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+
22
+ from ...configuration_utils import ConfigMixin, register_to_config
23
+ from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
24
+ from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
25
+ from ..attention import JointTransformerBlock
26
+ from ..attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
27
+ from ..embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
28
+ from ..modeling_outputs import Transformer2DModelOutput
29
+ from ..modeling_utils import ModelMixin
30
+ from ..transformers.transformer_sd3 import SD3SingleTransformerBlock
31
+ from .controlnet import BaseOutput, zero_module
32
+
33
+
34
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
35
+
36
+
37
+ @dataclass
38
+ class SD3ControlNetOutput(BaseOutput):
39
+ controlnet_block_samples: Tuple[torch.Tensor]
40
+
41
+
42
+ class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
43
+ _supports_gradient_checkpointing = True
44
+
45
+ @register_to_config
46
+ def __init__(
47
+ self,
48
+ sample_size: int = 128,
49
+ patch_size: int = 2,
50
+ in_channels: int = 16,
51
+ num_layers: int = 18,
52
+ attention_head_dim: int = 64,
53
+ num_attention_heads: int = 18,
54
+ joint_attention_dim: int = 4096,
55
+ caption_projection_dim: int = 1152,
56
+ pooled_projection_dim: int = 2048,
57
+ out_channels: int = 16,
58
+ pos_embed_max_size: int = 96,
59
+ extra_conditioning_channels: int = 0,
60
+ dual_attention_layers: Tuple[int, ...] = (),
61
+ qk_norm: Optional[str] = None,
62
+ pos_embed_type: Optional[str] = "sincos",
63
+ use_pos_embed: bool = True,
64
+ force_zeros_for_pooled_projection: bool = True,
65
+ ):
66
+ super().__init__()
67
+ default_out_channels = in_channels
68
+ self.out_channels = out_channels if out_channels is not None else default_out_channels
69
+ self.inner_dim = num_attention_heads * attention_head_dim
70
+
71
+ if use_pos_embed:
72
+ self.pos_embed = PatchEmbed(
73
+ height=sample_size,
74
+ width=sample_size,
75
+ patch_size=patch_size,
76
+ in_channels=in_channels,
77
+ embed_dim=self.inner_dim,
78
+ pos_embed_max_size=pos_embed_max_size,
79
+ pos_embed_type=pos_embed_type,
80
+ )
81
+ else:
82
+ self.pos_embed = None
83
+ self.time_text_embed = CombinedTimestepTextProjEmbeddings(
84
+ embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
85
+ )
86
+ if joint_attention_dim is not None:
87
+ self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
88
+
89
+ # `attention_head_dim` is doubled to account for the mixing.
90
+ # It needs to crafted when we get the actual checkpoints.
91
+ self.transformer_blocks = nn.ModuleList(
92
+ [
93
+ JointTransformerBlock(
94
+ dim=self.inner_dim,
95
+ num_attention_heads=num_attention_heads,
96
+ attention_head_dim=self.config.attention_head_dim,
97
+ context_pre_only=False,
98
+ qk_norm=qk_norm,
99
+ use_dual_attention=True if i in dual_attention_layers else False,
100
+ )
101
+ for i in range(num_layers)
102
+ ]
103
+ )
104
+ else:
105
+ self.context_embedder = None
106
+ self.transformer_blocks = nn.ModuleList(
107
+ [
108
+ SD3SingleTransformerBlock(
109
+ dim=self.inner_dim,
110
+ num_attention_heads=num_attention_heads,
111
+ attention_head_dim=self.config.attention_head_dim,
112
+ )
113
+ for _ in range(num_layers)
114
+ ]
115
+ )
116
+
117
+ # controlnet_blocks
118
+ self.controlnet_blocks = nn.ModuleList([])
119
+ for _ in range(len(self.transformer_blocks)):
120
+ controlnet_block = nn.Linear(self.inner_dim, self.inner_dim)
121
+ controlnet_block = zero_module(controlnet_block)
122
+ self.controlnet_blocks.append(controlnet_block)
123
+ pos_embed_input = PatchEmbed(
124
+ height=sample_size,
125
+ width=sample_size,
126
+ patch_size=patch_size,
127
+ in_channels=in_channels + extra_conditioning_channels,
128
+ embed_dim=self.inner_dim,
129
+ pos_embed_type=None,
130
+ )
131
+ self.pos_embed_input = zero_module(pos_embed_input)
132
+
133
+ self.gradient_checkpointing = False
134
+
135
+ # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
136
+ def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
137
+ """
138
+ Sets the attention processor to use [feed forward
139
+ chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
140
+
141
+ Parameters:
142
+ chunk_size (`int`, *optional*):
143
+ The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
144
+ over each tensor of dim=`dim`.
145
+ dim (`int`, *optional*, defaults to `0`):
146
+ The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
147
+ or dim=1 (sequence length).
148
+ """
149
+ if dim not in [0, 1]:
150
+ raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
151
+
152
+ # By default chunk size is 1
153
+ chunk_size = chunk_size or 1
154
+
155
+ def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
156
+ if hasattr(module, "set_chunk_feed_forward"):
157
+ module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
158
+
159
+ for child in module.children():
160
+ fn_recursive_feed_forward(child, chunk_size, dim)
161
+
162
+ for module in self.children():
163
+ fn_recursive_feed_forward(module, chunk_size, dim)
164
+
165
+ @property
166
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
167
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
168
+ r"""
169
+ Returns:
170
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
171
+ indexed by its weight name.
172
+ """
173
+ # set recursively
174
+ processors = {}
175
+
176
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
177
+ if hasattr(module, "get_processor"):
178
+ processors[f"{name}.processor"] = module.get_processor()
179
+
180
+ for sub_name, child in module.named_children():
181
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
182
+
183
+ return processors
184
+
185
+ for name, module in self.named_children():
186
+ fn_recursive_add_processors(name, module, processors)
187
+
188
+ return processors
189
+
190
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
191
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
192
+ r"""
193
+ Sets the attention processor to use to compute attention.
194
+
195
+ Parameters:
196
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
197
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
198
+ for **all** `Attention` layers.
199
+
200
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
201
+ processor. This is strongly recommended when setting trainable attention processors.
202
+
203
+ """
204
+ count = len(self.attn_processors.keys())
205
+
206
+ if isinstance(processor, dict) and len(processor) != count:
207
+ raise ValueError(
208
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
209
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
210
+ )
211
+
212
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
213
+ if hasattr(module, "set_processor"):
214
+ if not isinstance(processor, dict):
215
+ module.set_processor(processor)
216
+ else:
217
+ module.set_processor(processor.pop(f"{name}.processor"))
218
+
219
+ for sub_name, child in module.named_children():
220
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
221
+
222
+ for name, module in self.named_children():
223
+ fn_recursive_attn_processor(name, module, processor)
224
+
225
+ # Copied from diffusers.models.transformers.transformer_sd3.SD3Transformer2DModel.fuse_qkv_projections
226
+ def fuse_qkv_projections(self):
227
+ """
228
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
229
+ are fused. For cross-attention modules, key and value projection matrices are fused.
230
+
231
+ <Tip warning={true}>
232
+
233
+ This API is 🧪 experimental.
234
+
235
+ </Tip>
236
+ """
237
+ self.original_attn_processors = None
238
+
239
+ for _, attn_processor in self.attn_processors.items():
240
+ if "Added" in str(attn_processor.__class__.__name__):
241
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
242
+
243
+ self.original_attn_processors = self.attn_processors
244
+
245
+ for module in self.modules():
246
+ if isinstance(module, Attention):
247
+ module.fuse_projections(fuse=True)
248
+
249
+ self.set_attn_processor(FusedJointAttnProcessor2_0())
250
+
251
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
252
+ def unfuse_qkv_projections(self):
253
+ """Disables the fused QKV projection if enabled.
254
+
255
+ <Tip warning={true}>
256
+
257
+ This API is 🧪 experimental.
258
+
259
+ </Tip>
260
+
261
+ """
262
+ if self.original_attn_processors is not None:
263
+ self.set_attn_processor(self.original_attn_processors)
264
+
265
+ def _set_gradient_checkpointing(self, module, value=False):
266
+ if hasattr(module, "gradient_checkpointing"):
267
+ module.gradient_checkpointing = value
268
+
269
+ # Notes: This is for SD3.5 8b controlnet, which shares the pos_embed with the transformer
270
+ # we should have handled this in conversion script
271
+ def _get_pos_embed_from_transformer(self, transformer):
272
+ pos_embed = PatchEmbed(
273
+ height=transformer.config.sample_size,
274
+ width=transformer.config.sample_size,
275
+ patch_size=transformer.config.patch_size,
276
+ in_channels=transformer.config.in_channels,
277
+ embed_dim=transformer.inner_dim,
278
+ pos_embed_max_size=transformer.config.pos_embed_max_size,
279
+ )
280
+ pos_embed.load_state_dict(transformer.pos_embed.state_dict(), strict=True)
281
+ return pos_embed
282
+
283
+ @classmethod
284
+ def from_transformer(
285
+ cls, transformer, num_layers=12, num_extra_conditioning_channels=1, load_weights_from_transformer=True
286
+ ):
287
+ config = transformer.config
288
+ config["num_layers"] = num_layers or config.num_layers
289
+ config["extra_conditioning_channels"] = num_extra_conditioning_channels
290
+ controlnet = cls.from_config(config)
291
+
292
+ if load_weights_from_transformer:
293
+ controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
294
+ controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
295
+ controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
296
+ controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
297
+
298
+ controlnet.pos_embed_input = zero_module(controlnet.pos_embed_input)
299
+
300
+ return controlnet
301
+
302
+ def forward(
303
+ self,
304
+ hidden_states: torch.FloatTensor,
305
+ controlnet_cond: torch.Tensor,
306
+ conditioning_scale: float = 1.0,
307
+ encoder_hidden_states: torch.FloatTensor = None,
308
+ pooled_projections: torch.FloatTensor = None,
309
+ timestep: torch.LongTensor = None,
310
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
311
+ return_dict: bool = True,
312
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
313
+ """
314
+ The [`SD3Transformer2DModel`] forward method.
315
+
316
+ Args:
317
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
318
+ Input `hidden_states`.
319
+ controlnet_cond (`torch.Tensor`):
320
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
321
+ conditioning_scale (`float`, defaults to `1.0`):
322
+ The scale factor for ControlNet outputs.
323
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
324
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
325
+ pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
326
+ from the embeddings of input conditions.
327
+ timestep ( `torch.LongTensor`):
328
+ Used to indicate denoising step.
329
+ joint_attention_kwargs (`dict`, *optional*):
330
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
331
+ `self.processor` in
332
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
333
+ return_dict (`bool`, *optional*, defaults to `True`):
334
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
335
+ tuple.
336
+
337
+ Returns:
338
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
339
+ `tuple` where the first element is the sample tensor.
340
+ """
341
+ if joint_attention_kwargs is not None:
342
+ joint_attention_kwargs = joint_attention_kwargs.copy()
343
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
344
+ else:
345
+ lora_scale = 1.0
346
+
347
+ if USE_PEFT_BACKEND:
348
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
349
+ scale_lora_layers(self, lora_scale)
350
+ else:
351
+ if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
352
+ logger.warning(
353
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
354
+ )
355
+
356
+ if self.pos_embed is not None and hidden_states.ndim != 4:
357
+ raise ValueError("hidden_states must be 4D when pos_embed is used")
358
+
359
+ # SD3.5 8b controlnet does not have a `pos_embed`,
360
+ # it use the `pos_embed` from the transformer to process input before passing to controlnet
361
+ elif self.pos_embed is None and hidden_states.ndim != 3:
362
+ raise ValueError("hidden_states must be 3D when pos_embed is not used")
363
+
364
+ if self.context_embedder is not None and encoder_hidden_states is None:
365
+ raise ValueError("encoder_hidden_states must be provided when context_embedder is used")
366
+ # SD3.5 8b controlnet does not have a `context_embedder`, it does not use `encoder_hidden_states`
367
+ elif self.context_embedder is None and encoder_hidden_states is not None:
368
+ raise ValueError("encoder_hidden_states should not be provided when context_embedder is not used")
369
+
370
+ if self.pos_embed is not None:
371
+ hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
372
+
373
+ temb = self.time_text_embed(timestep, pooled_projections)
374
+
375
+ if self.context_embedder is not None:
376
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
377
+
378
+ # add
379
+ hidden_states = hidden_states + self.pos_embed_input(controlnet_cond)
380
+
381
+ block_res_samples = ()
382
+
383
+ for block in self.transformer_blocks:
384
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
385
+
386
+ def create_custom_forward(module, return_dict=None):
387
+ def custom_forward(*inputs):
388
+ if return_dict is not None:
389
+ return module(*inputs, return_dict=return_dict)
390
+ else:
391
+ return module(*inputs)
392
+
393
+ return custom_forward
394
+
395
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
396
+ if self.context_embedder is not None:
397
+ encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
398
+ create_custom_forward(block),
399
+ hidden_states,
400
+ encoder_hidden_states,
401
+ temb,
402
+ **ckpt_kwargs,
403
+ )
404
+ else:
405
+ # SD3.5 8b controlnet use single transformer block, which does not use `encoder_hidden_states`
406
+ hidden_states = torch.utils.checkpoint.checkpoint(
407
+ create_custom_forward(block), hidden_states, temb, **ckpt_kwargs
408
+ )
409
+
410
+ else:
411
+ if self.context_embedder is not None:
412
+ encoder_hidden_states, hidden_states = block(
413
+ hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
414
+ )
415
+ else:
416
+ # SD3.5 8b controlnet use single transformer block, which does not use `encoder_hidden_states`
417
+ hidden_states = block(hidden_states, temb)
418
+
419
+ block_res_samples = block_res_samples + (hidden_states,)
420
+
421
+ controlnet_block_res_samples = ()
422
+ for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
423
+ block_res_sample = controlnet_block(block_res_sample)
424
+ controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
425
+
426
+ # 6. scaling
427
+ controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
428
+
429
+ if USE_PEFT_BACKEND:
430
+ # remove `lora_scale` from each PEFT layer
431
+ unscale_lora_layers(self, lora_scale)
432
+
433
+ if not return_dict:
434
+ return (controlnet_block_res_samples,)
435
+
436
+ return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
437
+
438
+
439
+ class SD3MultiControlNetModel(ModelMixin):
440
+ r"""
441
+ `SD3ControlNetModel` wrapper class for Multi-SD3ControlNet
442
+
443
+ This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be
444
+ compatible with `SD3ControlNetModel`.
445
+
446
+ Args:
447
+ controlnets (`List[SD3ControlNetModel]`):
448
+ Provides additional conditioning to the unet during the denoising process. You must set multiple
449
+ `SD3ControlNetModel` as a list.
450
+ """
451
+
452
+ def __init__(self, controlnets):
453
+ super().__init__()
454
+ self.nets = nn.ModuleList(controlnets)
455
+
456
+ def forward(
457
+ self,
458
+ hidden_states: torch.FloatTensor,
459
+ controlnet_cond: List[torch.tensor],
460
+ conditioning_scale: List[float],
461
+ pooled_projections: torch.FloatTensor,
462
+ encoder_hidden_states: torch.FloatTensor = None,
463
+ timestep: torch.LongTensor = None,
464
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
465
+ return_dict: bool = True,
466
+ ) -> Union[SD3ControlNetOutput, Tuple]:
467
+ for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
468
+ block_samples = controlnet(
469
+ hidden_states=hidden_states,
470
+ timestep=timestep,
471
+ encoder_hidden_states=encoder_hidden_states,
472
+ pooled_projections=pooled_projections,
473
+ controlnet_cond=image,
474
+ conditioning_scale=scale,
475
+ joint_attention_kwargs=joint_attention_kwargs,
476
+ return_dict=return_dict,
477
+ )
478
+
479
+ # merge samples
480
+ if i == 0:
481
+ control_block_samples = block_samples
482
+ else:
483
+ control_block_samples = [
484
+ control_block_sample + block_sample
485
+ for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0])
486
+ ]
487
+ control_block_samples = (tuple(control_block_samples),)
488
+
489
+ return control_block_samples